1
|
Zhang H, Liang J, Huang J, Wang M, Wu L, Wu T, Chen N. Exerkine irisin mitigates cognitive impairment by suppressing gut-brain axis-mediated inflammation. J Adv Res 2024:S2090-1232(24)00485-5. [PMID: 39481644 DOI: 10.1016/j.jare.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION Exercise has been recognized to improve cognitive performance by optimizing gut flora and up-regulating exerkine irisin. OBJECTIVE Although exercise-induced irisin is beneficial to cognitive improvement, whether this benefit is achieved by optimizing gut microbiota and metabolites is not fully explored. METHODS After aerobic exercise and exogenous irisin interventions for 12 weeks, the 16S rRNA and metabolites in feces of 21-month-old mice were analyzed. Meanwhile, the differential miRNAs and mRNAs in hippocampal tissues were screened by high-throughput sequencing. Relevant mRNAs and proteins were evaluated by RT-PCR, Western blot, and immunofluorescence. RESULTS Compared with the young control mice, irisin levels and cognitive capacity of aged mice revealed a significant reduction, while aerobic exercise and intraperitoneal injection of exogenous irisin reversed aging-induced cognitive impairment. Similarly, 147 up-regulated and 173 down-regulated metabolites were detected in aged mice, while 64 and 45 up-regulated and 225 and 187 down-regulated metabolites were detected in aged mice with exercise and irisin interventions, respectively. Moreover, during hippocampal miRNA and mRNA sequencing analysis, 9 differential gut flora and 35 differential genes were identified to be correlated with the inflammatory signaling mediated by the TLR4/MyD88 signal pathway. CONCLUSION Aging-induced cognitive impairment is due to insulin resistance induced by TLR4/MyD88 signaling activation in hippocampal tissues mediated by gut microbiota and metabolite changes. Myokine irisin may be an important mediator in optimizing gut microbiota and metabolism for an improved understanding of mitigated aging process upon exercise interventions.
Collapse
Affiliation(s)
- Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Liangwen Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
2
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
3
|
Hu Y, Aljumaah MR, Azcarate-Peril MA. Galacto-Oligosaccharides and the Elderly Gut: Implications for Immune Restoration and Health. Adv Nutr 2024; 15:100263. [PMID: 38897384 PMCID: PMC11292246 DOI: 10.1016/j.advnut.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
The increasing prevalence of noncommunicable diseases in the aging population has been correlated with a decline in innate and adaptive immune responses; hence, it is imperative to identify approaches to improve immune function, prevent related disorders, and reduce or treat age-associated health complications. Prebiotic supplementation is a promising approach to modulate the gut microbiome and immune system, offering a potential strategy to maintain the integrity of immune function in older individuals. This review summarizes the current research on prebiotic galacto-oligosaccharide (GOS) immunomodulatory mechanisms mediated by bacterial-derived metabolites, including short-chain fatty acids and secondary bile acids, to maintain immune homeostasis. The potential applications of GOS as immunotherapy for age-related disease prevention in older individuals are also highlighted. This aligns with the global shift toward proactive healthcare and emphasizes the significance of early intervention in directing an individual's health trajectory.
Collapse
Affiliation(s)
- Yunan Hu
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States; UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Mashael R Aljumaah
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, United States; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maria Andrea Azcarate-Peril
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States; UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
4
|
Zhang W, Zhong Y, Wang Z, Tang F, Zheng C. Apple polysaccharide improves age-matched cognitive impairment and intestinal aging through microbiota-gut-brain axis. Sci Rep 2024; 14:16215. [PMID: 39003416 PMCID: PMC11246462 DOI: 10.1038/s41598-024-67132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
The Apple polysaccharides (AP), extracted from the fruit of apple, has been used to treat multiple pathological diseases. In this study, we evaluated the effects of AP on cognitive impairment and intestinal aging in naturally aging mice. As a result, it was found that AP could improve spatial learning and memory impairment in aging mice through the Morris water maze experiment. Additionally, AP intervention can upregulate the expression of nerve growth factor (BDNF), postsynaptic marker (PSD95), and presynaptic marker (SYP) proteins. Moreover, AP can enhance total antioxidant capacity, reduce the level of pro-inflammatory cytokine, and inhibit the activation of the NF-κB signaling pathway, exerting anti-inflammatory and antioxidant functions. And the administration of AP restored intestinal mucosal barrier function, reduced the expression of aging and apoptosis related proteins. The administration of AP also altered the gut microbiota of mice. At the genus level, AP decreased the abundance of Helicobacter and Bilophila, while increased the abundance of Lactobacillus and Bacteroides. In summary, these data demonstrate that AP treatment can alleviate cognitive impairment, oxidative stress, and inflammatory reactions, repair the intestinal mucosal barrier, reduce intestinal aging, and alter specific microbial characteristics, ultimately improving the health of the elderly.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yuchun Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Furui Tang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Cihua Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China.
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
5
|
Le Cosquer G, Vergnolle N, Motta JP. Gut microb-aging and its relevance to frailty aging. Microbes Infect 2024; 26:105309. [PMID: 38316374 DOI: 10.1016/j.micinf.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
This review explores 'microb-aging' in the gut and its potential link to frailty aging. We explore this connection through alterations in microbiota's taxonomy and metabolism, as well as with concepts of ecological resilience, pathobionts emergence, and biogeography. We examine microb-aging in interconnected body organs, emphasizing the bidirectional relationship with 'inflammaging'. Finally, we discuss how targeting microb-aging could improve screening, diagnostic, and therapeutic approaches in geriatrics.
Collapse
Affiliation(s)
- Guillaume Le Cosquer
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Gastroenterology and Pancreatology, Toulouse University Hospital, Toulouse Paul Sabatier University, 31059 Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France.
| |
Collapse
|
6
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
7
|
Galloway-Peña JR, Jobin C. Microbiota Influences on Hematopoiesis and Blood Cancers: New Horizons? Blood Cancer Discov 2023; 4:267-275. [PMID: 37052501 PMCID: PMC10320642 DOI: 10.1158/2643-3230.bcd-22-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Hematopoiesis governs the generation of immune cells through the differentiation of hematopoietic stem cells (HSC) into various progenitor cells, a process controlled by intrinsic and extrinsic factors. Among extrinsic factors influencing hematopoiesis is the microbiota, or the collection of microorganisms present in various body sites. The microbiota has a profound impact on host homeostasis by virtue of its ability to release various molecules and structural components, which promote normal organ function. In this review, we will discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies, as well as highlight important knowledge gaps to move this field of research forward. SIGNIFICANCE Microbiota dysfunction is associated with many pathologic conditions, including hematologic malignancies. In this review, we discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies. Understanding how the microbiota influences hematologic malignancies could have an important therapeutic impact for patients.
Collapse
Affiliation(s)
- Jessica R. Galloway-Peña
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Salazar J, Durán P, Díaz MP, Chacín M, Santeliz R, Mengual E, Gutiérrez E, León X, Díaz A, Bernal M, Escalona D, Hernández LAP, Bermúdez V. Exploring the Relationship between the Gut Microbiota and Ageing: A Possible Age Modulator. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5845. [PMID: 37239571 PMCID: PMC10218639 DOI: 10.3390/ijerph20105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The gut microbiota (GM) has been the subject of intense research in recent years. Therefore, numerous factors affecting its composition have been thoroughly examined, and with them, their function and role in the individual's systems. The gut microbiota's taxonomical composition dramatically impacts older adults' health status. In this regard, it could either extend their life expectancy via the modulation of metabolic processes and the immune system or, in the case of dysbiosis, predispose them to age-related diseases, including bowel inflammatory and musculoskeletal diseases and metabolic and neurological disorders. In general, the microbiome of the elderly tends to present taxonomic and functional changes, which can function as a target to modulate the microbiota and improve the health of this population. The GM of centenarians is unique, with the faculty-promoting metabolic pathways capable of preventing and counteracting the different processes associated with age-related diseases. The molecular mechanisms by which the microbiota can exhibit anti-ageing properties are mainly based on anti-inflammatory and antioxidant actions. This review focuses on analysing the current knowledge of gut microbiota characteristics and modifiers, its relationship with ageing, and the GM-modulating approaches to increase life expectancy.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Maricarmen Chacín
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Sociedad Internacional de Rejuvenecimiento Facial No Quirúrgico (SIRF), Barranquilla 080002, Colombia
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Edgardo Mengual
- Biological Research Institute “Doctors Orlando Castejon and Haydee V Castejon”, Faculty of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Emma Gutiérrez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Xavier León
- Instituto Ecuatoriano de Seguridad Social, Cuenca 010101, Ecuador
| | - Andrea Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Marycarlota Bernal
- Facultad de Ingenierias, Universidad Simón Bolívar, Cúcuta 540001, Colombia
| | - Daniel Escalona
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | | | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
9
|
Miguéns-Gómez A, Sierra-Cruz M, Blay MT, Rodríguez-Gallego E, Beltrán-Debón R, Terra X, Pinent M, Ardévol A. GSPE Pre-Treatment Exerts Long-Lasting Preventive Effects against Aging-Induced Changes in the Colonic Enterohormone Profile of Female Rats. Int J Mol Sci 2023; 24:ijms24097807. [PMID: 37175514 PMCID: PMC10177949 DOI: 10.3390/ijms24097807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The impact that healthy aging can have on society has raised great interest in understanding aging mechanisms. However, the effects this biological process may have on the gastrointestinal tract (GIT) have not yet been fully described. Results in relation to changes observed in the enteroendocrine system along the GIT are controversial. Grape seed proanthocyanidin extracts (GSPE) have been shown to protect against several pathologies associated with aging. Based on previous results, we hypothesized that a GSPE pre-treatment could prevent the aging processes that affect the enteroendocrine system. To test this hypothesis, we treated 21-month-old female rats with GSPE for 10 days. Eleven weeks after the treatment, we analyzed the effects of GSPE by comparing these aged animals with young animals. Aging induced a greater endocrine response to stimulation in the upper GIT segments (cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1)), a decrease in the mRNA abundance of GLP-1, peptide YY (PYY) and chromogranin A (ChgA) in the colon, and an increase in colonic butyrate. GSPE-treated rats were protected against a decrease in enterohormone expression in the colon. This effect is not directly related to the abundance of microbiome or short-chain fatty acids (SCFA) at this location. GSPE may therefore be effective in preventing a decrease in the colonic abundance of enterohormone expression induced by aging.
Collapse
Affiliation(s)
- Alba Miguéns-Gómez
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Marta Sierra-Cruz
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| |
Collapse
|
10
|
View from the Biological Property: Insight into the Functional Diversity and Complexity of the Gut Mucus. Int J Mol Sci 2023; 24:ijms24044227. [PMID: 36835646 PMCID: PMC9960128 DOI: 10.3390/ijms24044227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Due to mucin's important protective effect on epithelial tissue, it has garnered extensive attention. The role played by mucus in the digestive tract is undeniable. On the one hand, mucus forms "biofilm" structures that insulate harmful substances from direct contact with epithelial cells. On the other hand, a variety of immune molecules in mucus play a crucial role in the immune regulation of the digestive tract. Due to the enormous number of microorganisms in the gut, the biological properties of mucus and its protective actions are more complicated. Numerous pieces of research have hinted that the aberrant expression of intestinal mucus is closely related to impaired intestinal function. Therefore, this purposeful review aims to provide the highlights of the biological characteristics and functional categorization of mucus synthesis and secretion. In addition, we highlight a variety of the regulatory factors for mucus. Most importantly, we also summarize some of the changes and possible molecular mechanisms of mucus during certain disease processes. All these are beneficial to clinical practice, diagnosis, and treatment and can provide some potential theoretical bases. Admittedly, there are still some deficiencies or contradictory results in the current research on mucus, but none of this diminishes the importance of mucus in protective impacts.
Collapse
|
11
|
Miguéns-Gómez A, Sierra-Cruz M, Pérez-Vendrell AM, Rodríguez-Gallego E, Beltrán-Debón R, Terra X, Ardévol A, Pinent M. Differential effects of a cafeteria diet and GSPE preventive treatments on the enterohormone secretions of aged vs. young female rats. Food Funct 2022; 13:10491-10500. [PMID: 36148543 DOI: 10.1039/d2fo02111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape seed derived procyanidins (GSPE) have been shown to effectively prevent intestinal disarrangements induced by a cafeteria diet in young rats. However, little is known about the effects of procyanidins and cafeteria diet on enterohormone secretion in aged rats, as the ageing processes modify these effects. To study these effects in aged rats, we subjected 21-month-old and young 2-month-old female rats to two sub-chronic preventive GSPE treatments. After three months of cafeteria diet administration, we analysed the basal and stimulated secretion and mRNA expression of CCK, PYY and GLP-1, caecal SCFA and intestinal sizes. We found that the effects of a cafeteria diet on the basal duodenal CCK secretion are age dependent. GLP-1 in the ileum was not modified regardless of the rat's age, and GSPE preventive effects differed in the two age groups. GSPE pre-treatment reduced GLP-1, PYY and ChgA in mRNA in aged ileum tissue, while the cafeteria diet increased these in aged colon. The GSPE treatments only modified low-abundance SCFAs. The cafeteria diet in aged rats increases the caecum size differently from that in young rats and GSPE pre-treatment prevents this increase. Therefore, ageing modifies nutrient sensing, and the cafeteria diet acts mainly on the duodenum and colon, while procyanidins have a larger effect on the ileum.
Collapse
Affiliation(s)
- Alba Miguéns-Gómez
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Marta Sierra-Cruz
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Anna Maria Pérez-Vendrell
- Monogastric Nutrition, Centre Mas de Bover, IRTA, Ctra. Reus-El Morell Km 3.8, 43120 Constantí, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Ximena Terra
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| |
Collapse
|
12
|
Klæstrup IH, Just MK, Holm KL, Alstrup AKO, Romero-Ramos M, Borghammer P, Van Den Berge N. Impact of aging on animal models of Parkinson's disease. Front Aging Neurosci 2022; 14:909273. [PMID: 35966779 PMCID: PMC9366194 DOI: 10.3389/fnagi.2022.909273] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Aging is the biggest risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. Several animal models have been developed to explore the pathophysiology underlying neurodegeneration and the initiation and spread of alpha-synuclein-related PD pathology, and to investigate biomarkers and therapeutic strategies. However, bench-to-bedside translation of preclinical findings remains suboptimal and successful disease-modifying treatments remain to be discovered. Despite aging being the main risk factor for developing idiopathic PD, most studies employ young animals in their experimental set-up, hereby ignoring age-related cellular and molecular mechanisms at play. Consequently, studies in young animals may not be an accurate reflection of human PD, limiting translational outcomes. Recently, it has been shown that aged animals in PD research demonstrate a higher susceptibility to developing pathology and neurodegeneration, and present with a more disseminated and accelerated disease course, compared to young animals. Here we review recent advances in the investigation of the role of aging in preclinical PD research, including challenges related to aged animal models that are limiting widespread use. Overall, current findings indicate that the use of aged animals may be required to account for age-related interactions in PD pathophysiology. Thus, although the use of older animals has disadvantages, a model that better represents clinical disease within the elderly would be more beneficial in the long run, as it will increase translational value and minimize the risk of therapies failing during clinical studies. Furthermore, we provide recommendations to manage the challenges related to aged animal models.
Collapse
Affiliation(s)
- Ida Hyllen Klæstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- DANDRITE-Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | | | - Aage Kristian Olsen Alstrup
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- DANDRITE-Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Per Borghammer
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Yuan H, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Front Pharmacol 2022; 13:893567. [PMID: 35677440 PMCID: PMC9168430 DOI: 10.3389/fphar.2022.893567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that the gut microbiota influences mood and cognitive function through the gut-brain axis, which is involved in the pathophysiology of neurocognitive and mental disorders, including Parkinson’s disease, Alzheimer’s disease, and schizophrenia. These disorders have similar pathophysiology to that of cognitive dysfunction in bipolar disorder (BD), including neuroinflammation and dysregulation of various neurotransmitters (i.e., serotonin and dopamine). There is also emerging evidence of alterations in the gut microbial composition of patients with BD, suggesting that gut microbial dysbiosis contributes to disease progression and cognitive impairment in BD. Therefore, microbiota-centered treatment might be an effective adjuvant therapy for BD-related cognitive impairment. Given that studies focusing on connections between the gut microbiota and BD-related cognitive impairment are lagging behind those on other neurocognitive disorders, this review sought to explore the potential mechanisms of how gut microbial dysbiosis affects cognitive function in BD and identify potential microbiota-centered treatment.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Yuan
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
15
|
Carter CS. A "Gut Feeling" to Create a 10th Hallmark of Aging. J Gerontol A Biol Sci Med Sci 2021; 76:1891-1894. [PMID: 34245264 DOI: 10.1093/gerona/glab191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christy S Carter
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, USA
| |
Collapse
|