1
|
Torrens-Mas M, Navas-Enamorado C, Galmes-Panades A, Masmiquel L, Sanchez-Polo A, Capo X, Gonzalez-Freire M. GDF-15 as a proxy for epigenetic aging: associations with biological age markers, and physical function. Biogerontology 2024; 26:22. [PMID: 39644331 PMCID: PMC11625061 DOI: 10.1007/s10522-024-10165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Growth differentiation factor 15 (GDF-15) has emerged as a significant biomarker of aging, linked to various physiological and pathological processes. This study investigates circulating GDF-15 levels in a cohort of healthy individuals from the Balearic Islands, exploring its associations with biological age markers, including multiple DNA methylation (DNAm) clocks, physical performance, and other age-related biomarkers. Seventy-two participants were assessed for general health, body composition, and physical function, with GDF-15 levels quantified using ELISA. Our results indicate that GDF-15 levels significantly increase with age, particularly in individuals over 60. Strong positive correlations were observed between GDF-15 levels and DNAm GrimAge, DNAm PhenoAge, Hannum, and Zhang clocks, suggesting that GDF-15 could serve as a proxy for epigenetic aging. Additionally, GDF-15 levels were linked to markers of impaired glycemic control, systemic inflammation, and physical decline, including decreased lung function and grip strength, especially in men. These findings highlight the use of GDF-15 as a biomarker for aging and age-related functional decline. Given that GDF-15 is easier to measure than DNA methylation, it has the potential to be more readily implemented in clinical settings for broader health assessment and management.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de La Salut (IUNICS), University of the Balearic Islands, 07122, Palma, Spain
| | - Cayetano Navas-Enamorado
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
| | - Aina Galmes-Panades
- Physical Activity and Sport Sciences Research Group (GICAFE), Institute for Educational Research and Innovation (IRIE), University of the Balearic Islands, 07122, Palma, Spain
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Luis Masmiquel
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
| | - Andrés Sanchez-Polo
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
| | - Xavier Capo
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain.
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-Institut Universitari d´Investigació en Ciències de La Salut (IUNICS), 07122, Palma, Spain.
| | - Marta Gonzalez-Freire
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain.
| |
Collapse
|
2
|
Górski P, Białas AJ, Piotrowski WJ. Aging Lung: Molecular Drivers and Impact on Respiratory Diseases-A Narrative Clinical Review. Antioxidants (Basel) 2024; 13:1480. [PMID: 39765809 PMCID: PMC11673154 DOI: 10.3390/antiox13121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The aging process significantly impacts lung physiology and is a major risk factor for chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and non-IPF interstitial lung fibrosis. This narrative clinical review explores the molecular and biochemical hallmarks of aging, such as oxidative stress, telomere attrition, genomic instability, epigenetic modifications, proteostasis loss, and impaired macroautophagy, and their roles in lung senescence. Central to this process are senescent cells, which, through the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and tissue dysfunction. The review highlights parallels between lung aging and pathophysiological changes in respiratory diseases, emphasizing the role of cellular senescence in disease onset and progression. Despite promising research into modulating aging pathways with interventions like caloric restriction, mTOR inhibitors, and SIRT1 activators, clinical evidence for efficacy in reversing or preventing age-related lung diseases remains limited. Understanding the interplay between aging-related mechanisms and environmental factors, such as smoking and pollution, is critical for developing targeted therapies. This review underscores the need for future studies focusing on therapeutic strategies to mitigate aging's detrimental effects on lung health and improve outcomes for patients with chronic respiratory conditions.
Collapse
Affiliation(s)
- Paweł Górski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
| | - Adam J. Białas
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
- Department of Pulmonary Rehabilitation, Regional Medical Center for Lung Diseases and Rehabilitation, Blessed Rafal Chylinski Memorial Hospital for Lung Diseases, 91-520 Lodz, Poland
| | - Wojciech J. Piotrowski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
| |
Collapse
|
3
|
Bathina S, Lopez VF, Prado M, Ballato E, Colleluori G, Tetlay M, Villareal DT, Mediwala S, Chen R, Qualls C, Armamento‐Villareal R. Health implications of racial differences in serum growth differentiation factor levels among men with obesity. Physiol Rep 2024; 12:e70124. [PMID: 39668628 PMCID: PMC11638490 DOI: 10.14814/phy2.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
Growth differentiation factor (GDF15) has been considered a biomarker and recently a hormonal driver for diseases in different populations. However, the role of GDF15 as a biomarker of health outcomes in obese men from different racial/ethnic background has not been evaluated. The objective of this study was to investigate the racial/ethnic differences on the relationship between GDF15 and markers of glucometabolic status, hormonal profile, body composition and bone mineral density (BMD) in obese men. One hundred ninety-three obese men from diverse racial/ethnic backgrounds were enrolled. BMD and body composition were measured by dual energy X-ray absorptiometry. Serum GDF15, osteocalcin, C-terminal telopeptide, sclerostin, adiponectin, leptin, estradiol, testosterone, follicle-stimulating hormone, luteinizing hormone, 25-hydroxyvitamin D, lipid profile, and hemoglobin A1C (A1C) were measured. Non-African Americans (NAA) had significantly higher GDF15 level than African Americans (AA). Level was also higher in patients with type 2 diabetes (T2DM). In both the groups GDF15 correlated with A1C and lean mass. However. GDF15 correlated with body fat, LDL total cholesterol and femoral neck BMD only in NAA and with appendicular lean mass only in AA. Ethnicity, total cholesterol and T2DM were found to be independent predictors of GDF15. We conclude that GDF15 may influence glucometabolic status, body composition and bone parameters which may affect cardiovascular risk and osteoporosis between races.
Collapse
Affiliation(s)
- Siresha Bathina
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
- Department of MedicineMichael E. De Bakey Veterans Affairs (VA) Medical CenterHoustonTexasUSA
| | - Virginia Fuenmayor Lopez
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
- Department of MedicineMichael E. De Bakey Veterans Affairs (VA) Medical CenterHoustonTexasUSA
| | - Mia Prado
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
- Department of MedicineMichael E. De Bakey Veterans Affairs (VA) Medical CenterHoustonTexasUSA
| | - Elliot Ballato
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
| | - Georgia Colleluori
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
| | - Maryam Tetlay
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
| | - Dennis Tan Villareal
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
- Department of MedicineMichael E. De Bakey Veterans Affairs (VA) Medical CenterHoustonTexasUSA
| | - Sanjay Mediwala
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
- Department of MedicineMichael E. De Bakey Veterans Affairs (VA) Medical CenterHoustonTexasUSA
| | - Rui Chen
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
- Department of MedicineMichael E. De Bakey Veterans Affairs (VA) Medical CenterHoustonTexasUSA
| | - Clifford Qualls
- Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Reina Armamento‐Villareal
- Division of Endocrinology Diabetes and Metabolism at Baylor College of MedicineHoustonTexasUSA
- Department of MedicineMichael E. De Bakey Veterans Affairs (VA) Medical CenterHoustonTexasUSA
| |
Collapse
|
4
|
Webber K, Patel S, Kizer JR, Eastell R, Psaty BM, Newman AB, Cummings SR. Associations of Serum GDF-15 Levels with Physical Performance, Mobility Disability, Cognition, Cardiovascular Disease, and Mortality in Older Adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311629. [PMID: 39148825 PMCID: PMC11326340 DOI: 10.1101/2024.08.07.24311629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Growth differentiation factor 15 (GDF-15) is a member of the TGFβ superfamily secreted by many cell types and found at higher blood concentrations as chronological age increases (1). Given the emergence of GDF-15 as a key protein associated with aging, it is important to understand the multitude of conditions with which circulating GDF-15 is associated. Methods We pooled data from 1,174 randomly selected Health ABC Study (Health ABC) participants and 1,503 Cardiovascular Health Study (CHS) participants to evaluate the risk of various conditions and age-related outcomes across levels of GDF-15. The primary outcomes were (1) risk of mobility disability and falls; (2) impaired cognitive function; (3) and increased risk of cardiovascular disease and total mortality. Results The pooled study cohort had a mean age of 75.4 +/-4.4 years. Using a Bonferroni-corrected threshold, our analyses show that high levels of GDF-15 were associated with a higher risk of severe mobility disability (HR: 2.13 [1.64, 2.77]), coronary heart disease (HR: 1.47 [1.17, 1.83]), atherosclerotic cardiovascular disease (HR: 1.56 [1.22, 1.98]), heart failure (HR: 2.09 [1.66, 2.64]), and mortality (HR: 1.81 [1.53, 2.15]) when comparing the highest and lowest quartiles. For CHS participants, analysis of extreme quartiles in fully adjusted models revealed a 3.5-fold higher risk of dementia (HR: 3.50 [1.97, 6.22]). Conclusions GDF-15 is associated with several age-related outcomes and diseases, including mobility disability, impaired physical and cognitive performance, dementia, cardiovascular disease, and mortality. Each of these findings demonstrates the importance of GDF-15 as a potential biomarker for many aging-related conditions.
Collapse
Affiliation(s)
- Katey Webber
- Research Institute, California Pacific Medical Center, San Francisco, CA
- Institute on Aging, San Francisco, CA
| | - Sheena Patel
- Research Institute, California Pacific Medical Center, San Francisco, CA
| | - Jorge R. Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, and Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Richard Eastell
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Heath Systems and Population Health, University of Washington, Seattle, WA
| | - Anne B. Newman
- Center for Aging and Population Health, Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Steven R. Cummings
- Research Institute, California Pacific Medical Center, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
5
|
León-González R, Ortolá R, Carballo-Casla A, Sotos-Prieto M, Buño-Soto A, Rodríguez-Sánchez I, Pastor-Barriuso R, Rodríguez-Artalejo F, García-Esquinas E. Growth Differentiation Factor 15 as a Biomarker of Cardiovascular Risk in Chronic Musculoskeletal Pain. J Gerontol A Biol Sci Med Sci 2024; 79:glae163. [PMID: 38975684 DOI: 10.1093/gerona/glae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND It is unknown whether growth differentiation factor 15 (GDF-15) is associated with chronic musculoskeletal pain (CMP) and whether or not its association with incident cardiovascular disease (CVD) changes according to CMP status. METHODS In total, 1 957 randomly selected adults aged ≥65 years without prior CVD were followed up between 2015 and 2023. CMP was classified according to its intensity, frequency, and interference with daily activities. The association between GDF-15 levels and CMP was assessed using linear models with progressive inclusion of potential confounders, whereas the association between GDF-15 and CVD risk was evaluated with Cox proportional hazard models with similar adjustment and interaction terms between GDF-15 and CMP. The incremental predictive performance of GDF-15 over standard predictors was evaluated using discrimination and risk reclassification metrics. RESULTS GDF-15 concentrations were 6.90% (95% confidence interval [CI]: 2.56; 11.25) higher in individuals with CMP, and up to 8.89% (4.07; 15.71) and 15.79% (8.43; 23.16) higher in those with ≥3 CMP locations and interfering pain. These increased levels were influenced by a higher prevalence of cardiometabolic risk factors, functional impairments, depressive symptoms, and greater levels of inflammation in individuals with CMP. In fully adjusted models, a twofold increase in GDF-15 was associated with a 1.49 increased risk (95% CI: 1.08; 2.05) of a CVD event in individuals with CMP, but not among those without CMP (1.02 [0.77; 1.35]); p-interaction 0.041. Adding GDF-15 to models including the Framingham Risk Score improved predictive performance among individuals with CMP. CONCLUSIONS We provide evidence that GDF-15 could serve as a biomarker to assess CMP, as well as to predict CVD incidence in individuals with CMP.
Collapse
Affiliation(s)
- Rocío León-González
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Ortolá
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Adrián Carballo-Casla
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Neurobiology, Aging Research Center, Care Sciences and Society Karolinska Institutet & Stockholm University, Stockholm, Sweden
| | - Mercedes Sotos-Prieto
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Environmental Health and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Antonio Buño-Soto
- Department of Laboratory Medicine, La Paz University Hospital-IdiPaz, Madrid, Spain
| | | | - Roberto Pastor-Barriuso
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Esther García-Esquinas
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
6
|
Kamper RS, Nygaard H, Praeger‐Jahnsen L, Ekmann A, Ditlev SB, Schultz M, Hansen SK, Hansen P, Pressel E, Suetta C. GDF-15 is associated with sarcopenia and frailty in acutely admitted older medical patients. J Cachexia Sarcopenia Muscle 2024; 15:1549-1557. [PMID: 38890783 PMCID: PMC11294026 DOI: 10.1002/jcsm.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Growth differentiation factor-15 (GDF-15) has been associated with senescence, lower muscle strength, and physical performance in healthy older people. Still, it is not clear whether GDF-15 can be utilized as a biomarker of sarcopenia and frailty in the early stages of hospitalization. We investigated the association of plasma GDF-15 with sarcopenia and frailty in older, acutely admitted medical patients. METHODS The present study is based on secondary analyses of cross-sectional data from the Copenhagen PROTECT study, a prospective cohort study including 1071 patients ≥65 years of age admitted to the acute medical ward at Copenhagen University Hospital, Bispebjerg, Denmark. Muscle strength was assessed using handgrip strength, and lean mass was assessed using direct segmental multifrequency bioelectrical impedance analyses and used to clarify the potential presence of sarcopenia defined according to guidelines from the European Working Group on Sarcopenia in Older People. Frailty was evaluated using the Clinical Frailty Scale. Plasma GDF-15 was measured using electrochemiluminescence assays from Meso Scale Discovery (MSD, Rockville, MD, USA). RESULTS We included 1036 patients with completed blood samples (mean age 78.9 ± 7.8 years, 53% female). The median concentration of GDF-15 was 2669.3 pg/mL. Systemic GDF-15 was significantly higher in patients with either sarcopenia (P < 0.01) or frailty (P < 0.001) compared with patients without the conditions. Optimum cut-off points of GDF-15 relating to sarcopenia and frailty were 1541 and 2166 pg/mL, respectively. CONCLUSIONS Systemic GDF-15 was higher in acutely admitted older medical patients with sarcopenia and frailty compared with patients without. The present study defined the optimum cut-off for GDF-15, related to the presence of sarcopenia and frailty, respectively. When elevated above the derived cutoffs, GDF-15 was strongly associated with frailty and sarcopenia in both crude and fully adjusted models.
Collapse
Affiliation(s)
- Rikke S. Kamper
- Department of Geriatric & Palliative MedicineCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical Age ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Hanne Nygaard
- Department of Geriatric & Palliative MedicineCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical Age ResearchUniversity of CopenhagenCopenhagenDenmark
- Department of Emergency MedicineCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Louis Praeger‐Jahnsen
- Copenhagen Center for Translational ResearchCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Anette Ekmann
- Department of Geriatric & Palliative MedicineCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical Age ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Sisse Bolm Ditlev
- Copenhagen Center for Translational ResearchCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Martin Schultz
- Department of GeriatricsCopenhagen University Hospital, Hvidovre and AmagerHvidovreDenmark
- Department of Clinical Medicine, Faculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - Sofie Krarup Hansen
- Department of Geriatric & Palliative MedicineCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical Age ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Pernille Hansen
- Department of Geriatric & Palliative MedicineCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical Age ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Eckart Pressel
- Department of Geriatric & Palliative MedicineCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - Charlotte Suetta
- Department of Geriatric & Palliative MedicineCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical Age ResearchUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of HealthUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Nielsen RL, Bornæs O, Iversen E, Strejby Christensen LW, Kallemose T, Jawad B, Rasmussen HH, Munk T, Lund TM, Andersen O, Houlind MB, Leegaard Andersen A, Tavenier J. Growth differentiation factor 15 (GDF15) levels are associated with malnutrition in acutely admitted older adults. Clin Nutr 2024; 43:1685-1693. [PMID: 38879915 DOI: 10.1016/j.clnu.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND AND AIMS The aging process is often accompanied by high risk of malnutrition and elevated levels of growth differentiation factor 15 (GDF15). GDF15 is an increasingly recognized biomarker for regulation of metabolism, but few studies have investigated the connection between GDF15 and malnutrition in older age and how it relates to other features of aging such as decreased appetite and physical function. Therefore, we investigated the associations between GDF15 levels and nutritional status, appetite, and physical function in acutely admitted older adults. METHODS Plasma GDF15 levels were measured using immunoassays in 302 older adults (≥65 years) admitted to the emergency department (ED). Nutritional status was evaluated with the Mini Nutritional Assessment Short-Form (MNA®-SF), appetite was evaluated with the Simplified Nutritional Appetite Questionnaire (SNAQ), and physical function was evaluated with handgrip strength (HGS), 30-s chair stand test (30s-RSS), and gait speed (GS). Associations between GDF15 and each outcome was determined by logistic regression adjusted for age, sex, and C-reactive protein (CRP). RESULTS Each doubling in plasma GDF15 level was associated with an adjusted odds ratio (OR) (95% confidence interval) of 1.59 (1.10-2.29, P = 0.01) for risk of malnutrition compared to normal nutrition and 1.19 (0.85-1.69, P = 0.3)) for malnutrition compared to risk of malnutrition. Each doubling in GDF15 was associated with an adjusted OR of 1.63 (1.21-2.23)) for having poor appetite, 1.46 (1.07-1.99) for having low HGS, 1.74 (1.23-2.51) for having low 30s-RSS, and 1.99 (1.39-2.94) for having low GS. CONCLUSION Among older adults admitted to the ED, higher GDF15 levels were significantly associated with malnutrition, poor appetite, and low physical function independent of age, sex, and CRP.
Collapse
Affiliation(s)
- Rikke Lundsgaard Nielsen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Olivia Bornæs
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Esben Iversen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| | - Louise Westberg Strejby Christensen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; The Capital Region Pharmacy, Marielundvej 25, 2730 Herlev, Denmark.
| | - Thomas Kallemose
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| | - Baker Jawad
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Henrik Højgaard Rasmussen
- Center for Nutrition and Intestinal Failure, Aalborg University Hospital, Aalborg University, 9220 Aalborg, Denmark; The Dietitians and Nutritional Research Unit, EATEN, Copenhagen University Hospital-Herlev and Gentofte, 2100 Copenhagen, Denmark.
| | - Tina Munk
- The Dietitians and Nutritional Research Unit, EATEN, Copenhagen University Hospital-Herlev and Gentofte, 2100 Copenhagen, Denmark.
| | - Trine Meldgaard Lund
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Emergency Department, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark.
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; The Capital Region Pharmacy, Marielundvej 25, 2730 Herlev, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Aino Leegaard Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| | - Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| |
Collapse
|
8
|
Mallardo M, Daniele A, Musumeci G, Nigro E. A Narrative Review on Adipose Tissue and Overtraining: Shedding Light on the Interplay among Adipokines, Exercise and Overtraining. Int J Mol Sci 2024; 25:4089. [PMID: 38612899 PMCID: PMC11012884 DOI: 10.3390/ijms25074089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Lifestyle factors, particularly physical inactivity, are closely linked to the onset of numerous metabolic diseases. Adipose tissue (AT) has been extensively studied for various metabolic diseases such as obesity, type 2 diabetes, and immune system dysregulation due to its role in energy metabolism and regulation of inflammation. Physical activity is increasingly recognized as a powerful non-pharmacological tool for the treatment of various disorders, as it helps to improve metabolic, immune, and inflammatory functions. However, chronic excessive training has been associated with increased inflammatory markers and oxidative stress, so much so that excessive training overload, combined with inadequate recovery, can lead to the development of overtraining syndrome (OTS). OTS negatively impacts an athlete's performance capabilities and significantly affects both physical health and mental well-being. However, diagnosing OTS remains challenging as the contributing factors, signs/symptoms, and underlying maladaptive mechanisms are individualized, sport-specific, and unclear. Therefore, identifying potential biomarkers that could assist in preventing and/or diagnosing OTS is an important objective. In this review, we focus on the possibility that the endocrine functions of AT may have significant implications in the etiopathogenesis of OTS. During physical exercise, AT responds dynamically, undergoing remodeling of endocrine functions that influence the production of adipokines involved in regulating major energy and inflammatory processes. In this scenario, we will discuss exercise about its effects on AT activity and metabolism and its relevance to the prevention and/or development of OTS. Furthermore, we will highlight adipokines as potential markers for diagnosing OTS.
Collapse
Affiliation(s)
- Marta Mallardo
- Department of Molecular and Biotechnological Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy;
| | - Aurora Daniele
- Department of Molecular and Biotechnological Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy;
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
| | - Ersilia Nigro
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Pharmaceutical, Biological, Environmental Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via G. Vivaldi 42, 81100 Caserta, Italy
| |
Collapse
|
9
|
Oba K, Ishikawa J, Tamura Y, Fujita Y, Ito M, Iizuka A, Fujiwara Y, Kodera R, Toyoshima K, Chiba Y, Tanaka M, Araki A. Serum Growth Differentiation Factor 15 Levels Predict the Incidence of Frailty among Patients with Cardiometabolic Diseases. Gerontology 2024; 70:517-525. [PMID: 38286122 DOI: 10.1159/000536150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Frailty is a crucial health issue among older adults. Growth differentiation factor 15 (GDF15) is associated with inflammation, oxidative stress, insulin resistance, and mitochondrial dysfunction, which are possible pathogeneses of frailty. However, few longitudinal studies have investigated the association between GDF15 and the incidence of frailty. Therefore, we investigated whether high serum GDF15 levels are associated with the incidence of frailty. METHODS A total of 175 older adults (mean age: 77 ± 6 years; 63% women) with cardiometabolic diseases and no frailty out of the two criteria at baseline participated. Individuals with severe renal impairment or severe cognitive impairment were excluded. Serum GDF15 levels were measured at baseline. Patients were asked to assess frailty status at baseline and annually during follow-up using the modified version of the Cardiovascular Health Study (mCHS) and the Kihon Checklist (KCL). We examined the association between GDF15 tertiles and each frailty measure during follow-up (median 38-39 months). In the multivariate Cox regression analysis, with the GDF15 tertile groups as the explanatory variables, hazard ratios (HRs) and 95% confidence intervals (CIs) for incident frailty were calculated after adjusting for covariates and using the lowest tertile group as the reference. RESULTS During the follow-up period, 25.6% and 34.0% of patients developed frailty, as defined by the mCHS and KCL, respectively. The highest GDF15 tertile group had a significantly higher incidence of mCHS- or KCL-defined frailty than the lowest GDF15 tertile group. Multivariate Cox regression analysis revealed that the adjusted HRs for incident mCHS- and KCL-defined frailty in the highest GDF15 tertile group were 3.9 (95% CI: 1.3-12.0) and 2.7 (95% CI: 1.1-6.9), respectively. CONCLUSION High serum GDF15 levels predicted the incidence of frailty among older adults with cardiometabolic diseases and could be an effective marker of the risk for frailty in interventions aimed at preventing frailty, such as exercise and nutrition.
Collapse
Affiliation(s)
- Kazuhito Oba
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Joji Ishikawa
- Department of Cardiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshiaki Tamura
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yasunori Fujita
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masafumi Ito
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ai Iizuka
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Research Team for Social Participation and Community, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Remi Kodera
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kenji Toyoshima
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuko Chiba
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masashi Tanaka
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
10
|
Merchant RA, Chan YH, Anbarasan D, Vellas B. Association of intrinsic capacity with functional ability, sarcopenia and systemic inflammation in pre-frail older adults. Front Med (Lausanne) 2024; 11:1374197. [PMID: 38510450 PMCID: PMC10953915 DOI: 10.3389/fmed.2024.1374197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Background Decline in intrinsic capacity (IC) has been shown to accelerate progression to disability. The study aims to explore association of IC composite score with functional ability, sarcopenia and systemic inflammation in pre-frail older adults. Methods Cross-sectional study of pre-frail older adults ≥60 years old recruited from the community and primary care centers. Composite scores of four domains of IC were measured: locomotion, vitality, cognition and psychological. FRAIL scale was used to define pre-frailty. Muscle mass was measured using the bioelectrical impedance analysis. Systemic inflammation biomarkers [Interleukin-6 (IL-6), Interleukin-10 (IL-10), Tumor Necrosis Factor Alpha (TNF-α), and Growth differentiated factor 15 (GDF-15)] were measured. Participants in the lowest tertile (T1) exhibited greater decline in IC. Results A total of 398 pre-frail older adults were recruited, mean age was 72.7 ± 5.8 years, 60.1% female, education level 7.8 years, and 85.2% were of Chinese ethnicity. A total of 75.1% had decline in locomotion, 40.5% in vitality, 53.2% in cognition and 41.7% in psychological domain. A total of 95% had decline in at least one domain. T1 was significantly associated with ADL impairment (aOR 3.36, 95% CI 1.78-6.32), IADL impairment (aOR 2.37, 95% CI 1.36-4.13), poor perceived health (aOR 0.96, 95% CI 0.95-0.98), fall (aOR 1.63, 95% CI 1.05-2.84), cognitive impairment (aOR 8.21, 95% CI 4.69-14.39), depression (aOR 101.82, 95% CI 33.62-308.37), and sarcopenia (aOR 2.40, 95% CI 1.60-5.45). T1 had significant associations with GDF-15, IL-10, and IL-10 to TNF-α ratio. Conclusion Decline in IC composite score among pre-frail older adults was associated with functional limitation, sarcopenia, and systemic inflammation.
Collapse
Affiliation(s)
- Reshma Aziz Merchant
- Division of Geriatric Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Denishkrshna Anbarasan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bruno Vellas
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
11
|
Evans DS, Young D, Tanaka T, Basisty N, Bandinelli S, Ferrucci L, Campisi J, Schilling B. Proteomic Analysis of the Senescence-Associated Secretory Phenotype: GDF-15, IGFBP-2, and Cystatin-C Are Associated With Multiple Aging Traits. J Gerontol A Biol Sci Med Sci 2024; 79:glad265. [PMID: 37982669 PMCID: PMC10876076 DOI: 10.1093/gerona/glad265] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 11/21/2023] Open
Abstract
Cellular senescence, a hallmark of aging, results in a senescence-associated secretory phenotype (SASP) with an increased production of proinflammatory cytokines, growth factors, and proteases. Evidence from nonhuman models demonstrates that SASP contributes to tissue dysfunction and pathological effects of aging. However, there are relatively few human studies on the relationship between SASP and aging-related health outcomes. Proteins from the SASP Atlas were measured in plasma using aptamer-based proteomics (SomaLogic). Regression models were used to identify SASP protein associations with aging-related traits representing multiple aspects of physiology in 1 201 participants from 2 human cohort studies (BLSA/GESTALT and InCHIANTI). Traits examined were fasting glucose, C-reactive protein, interleukin-6, alkaline phosphatase, blood urea nitrogen, albumin, red blood cell distribution width, waist circumference, systolic and diastolic blood pressure, gait speed, and grip strength. Study results were combined with a fixed-effect inverse-variance weighted meta-analysis. In the meta-analysis, 28 of 77 SASP proteins were significantly associated with age. Of the 28 age-associated SASP proteins, 18 were significantly associated with 1 or more clinical traits, and 7 SASP proteins were significantly associated with 3 or more traits. Growth/differentiation factor 15, Insulin-like growth factor-binding protein 2, and Cystatin-C showed significant associations with inflammatory markers and measures of physical function (grip strength or gait speed). These results support the relevance of SASP proteins to human aging, identify specific traits that are potentially affected by SASP, and prioritize specific SASP proteins for their utility as biomarkers of human aging.
Collapse
Affiliation(s)
- Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Danielle Young
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, NIA, NIH, Baltimore, Maryland, USA
| | - Nathan Basisty
- Longitudinal Studies Section, Translational Gerontology Branch, NIA, NIH, Baltimore, Maryland, USA
| | | | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, NIA, NIH, Baltimore, Maryland, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA
| | | |
Collapse
|
12
|
Shibasaki I, Otani N, Ouchi M, Fukuda T, Matsuoka T, Hirota S, Yokoyama S, Kanazawa Y, Kato T, Shimizu R, Tezuka M, Takei Y, Tsuchiya G, Saito S, Konishi T, Ogata K, Toyoda S, Fukuda H, Nakajima T. Utility of growth differentiation factor-15 as a predictor of cardiovascular surgery outcomes: Current research and future directions. J Cardiol 2024; 83:211-218. [PMID: 37648079 DOI: 10.1016/j.jjcc.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a world increasingly confronted by cardiovascular diseases (CVDs) and an aging population, accurate risk assessment prior to cardiac surgery is critical. Although effective, traditional risk calculators such as the Japan SCORE, Society of Thoracic Surgeons score, and EuroSCORE II may not completely capture contemporary risks, particularly due to emerging factors such as frailty and sarcopenia. These calculators often focus on regional and ethnic specificity and rely heavily on evaluations based on age and underlying diseases. Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine that has been identified as a potential biomarker for sarcopenia and a tool for future cardiac risk assessment. Preoperative plasma GDF-15 levels have been associated with preoperative, intraoperative, and postoperative factors and short- and long-term mortality rates in patients undergoing cardiac surgery. Increased plasma GDF-15 levels have prognostic significance, having been correlated with the use of cardiopulmonary bypass during surgery, amount of bleeding, postoperative acute kidney injury, and intensive care unit stay duration. Notably, the inclusion of preoperative levels of GDF-15 in risk stratification models enhances their predictive value, especially when compared with those of the N-terminal prohormone of brain natriuretic peptide, which does not lead to reclassification. Thus, this review examines traditional risk assessments for cardiac surgery and the role of the novel biomarker GDF-15. This study acknowledges that the relationship between patient outcomes and elevated GDF-15 levels is not limited to CVDs or cardiac surgery but can be associated with variable diseases, including diabetes and cancer. Moreover, the normal range of GDF-15 is not well defined. Given its promise for improving patient care and outcomes in cardiovascular surgery, future research should explore the potential of GDF-15 as a biomarker for postoperative outcomes and target therapeutic intervention.
Collapse
Affiliation(s)
- Ikuko Shibasaki
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan.
| | - Naoyuki Otani
- Department of Cardiology, Dokkyo Medical University, Nikko Medical Center, Nikko, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University, School of Medicine, Mibu, Japan; Department of Health Promotion in Nursing and Midwifery, Innovative Nursing for Life Course, Chiba University Graduate School of Nursing, Chiba, Japan
| | - Taira Fukuda
- Department of Liberal Arts and Human Development, Kanagawa University of Human Services, Yokosuka, Japan
| | - Taiki Matsuoka
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Shotaro Hirota
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Shohei Yokoyama
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Yuta Kanazawa
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Takashi Kato
- Department of Cardiovascular Surgery, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Riha Shimizu
- Department of Cardiovascular Surgery, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Masahiro Tezuka
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Yusuke Takei
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Go Tsuchiya
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Shunsuke Saito
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Taisuke Konishi
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Koji Ogata
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Hirotsugu Fukuda
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University, School of Medicine, Mibu, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, Dokkyo Medical University, School of Medicine, Mibu, Japan
| |
Collapse
|
13
|
Ahmad SS, Chun HJ, Ahmad K, Choi I. Therapeutic applications of ginseng for skeletal muscle-related disorder management. J Ginseng Res 2024; 48:12-19. [PMID: 38223826 PMCID: PMC10785254 DOI: 10.1016/j.jgr.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 01/14/2024] Open
Abstract
Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
14
|
Shin HE, Won CW, Kim M. Development of multiple biomarker panels for prediction of sarcopenia in community-dwelling older adults. Arch Gerontol Geriatr 2023; 115:105115. [PMID: 37422966 DOI: 10.1016/j.archger.2023.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND It is required to consider multiple biomarkers simultaneously to predict sarcopenia and to understand its complex pathological mechanisms. This study aimed to develop multiple biomarker panels for predicting sarcopenia in older adults and to further examine its association with the incidence of sarcopenia. METHODS A total of 1,021 older adults were selected from the Korean Frailty and Aging Cohort Study. Sarcopenia was defined by the Asian Working Group for Sarcopenia 2019 criteria. Among the 14 biomarker candidates at baseline, eight biomarkers that could optimally detect individuals with sarcopenia were selected to develop a multi-biomarker risk score (range from 0 to 10). The utility of developed multi-biomarker risk score in discriminating sarcopenia was investigated using receiver operating characteristic (ROC) analysis. RESULTS The multi-biomarker risk score had an area under the ROC curve (AUC) of 0.71 with an optimal cut-off of 1.76 score, which was significantly higher than all single biomarkers with AUC of <0.7 (all, p<0.01). During the two-year follow-up, the incidence of sarcopenia was 11.1%. Continuous multi-biomarker risk score was positively associated with incidence of sarcopenia after adjusting confounders (odds ratio [OR]=1.63; 95% confidence interval [CI]=1.23-2.17). Participants with a high risk score had higher odds of sarcopenia than those with a low risk score (OR=1.82; 95% CI=1.04-3.19). CONCLUSIONS Multi-biomarker risk score, which was a combination of eight biomarkers with different pathophysiologies, better discriminated the presence of sarcopenia than a single biomarker, and it could further predict the incidence of sarcopenia over two years in older adults.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
15
|
Liu F, Austin TR, Schrack JA, Chen J, Walston J, Mathias RA, Grams M, Odden MC, Newman A, Psaty BM, Ramonfaur D, Shah AM, Windham BG, Coresh J, Walker KA. Late-life plasma proteins associated with prevalent and incident frailty: A proteomic analysis. Aging Cell 2023; 22:e13975. [PMID: 37697678 PMCID: PMC10652348 DOI: 10.1111/acel.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Proteomic approaches have unique advantages in the identification of biological pathways that influence physical frailty, a multifactorial geriatric syndrome predictive of adverse health outcomes in older adults. To date, proteomic studies of frailty are scarce, and few evaluated prefrailty as a separate state or examined predictors of incident frailty. Using plasma proteins measured by 4955 SOMAmers in the Atherosclerosis Risk in Community study, we identified 134 and 179 proteins cross-sectionally associated with prefrailty and frailty, respectively, after Bonferroni correction (p < 1 × 10-5 ) among 3838 older adults aged ≥65 years, adjusting for demographic and physiologic factors and chronic diseases. Among them, 23 (17%) and 82 (46%) were replicated in the Cardiovascular Health Study using the same models (FDR p < 0.05). Notably, higher odds of prefrailty and frailty were observed with higher levels of growth differentiation factor 15 (GDF15; pprefrailty = 1 × 10-15 , pfrailty = 2 × 10-19 ), transgelin (TAGLN; pprefrailty = 2 × 10-12 , pfrailty = 6 × 10-22 ), and insulin-like growth factor-binding protein 2 (IGFBP2; pprefrailty = 5 × 10-15 , pfrailty = 1 × 10-15 ) and with a lower level of growth hormone receptor (GHR, pprefrailty = 3 × 10-16 , pfrailty = 2 × 10-18 ). Longitudinally, we identified 4 proteins associated with incident frailty (p < 1 × 10-5 ). Higher levels of triggering receptor expressed on myeloid cells 1 (TREM1), TAGLN, and heart and adipocyte fatty-acid binding proteins predicted incident frailty. Differentially regulated proteins were enriched in pathways and upstream regulators related to lipid metabolism, angiogenesis, inflammation, and cell senescence. Our findings provide a set of plasma proteins and biological mechanisms that were dysregulated in both the prodromal and the clinical stage of frailty, offering new insights into frailty etiology and targets for intervention.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Thomas R. Austin
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jennifer A. Schrack
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Center on Aging and HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jingsha Chen
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Jeremy Walston
- Department of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rasika A. Mathias
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Morgan Grams
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Division of Precision MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Michelle C. Odden
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCaliforniaUSA
| | - Anne Newman
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Diego Ramonfaur
- Brigham and Women's Hospital, Harvard Medical School, Cardiovascular MedicineBostonMassachusettsUSA
| | - Amil M. Shah
- Brigham and Women's Hospital, Harvard Medical School, Cardiovascular MedicineBostonMassachusettsUSA
| | - B. Gwen Windham
- Department of Medicine, MIND CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Josef Coresh
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Keenan A. Walker
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| |
Collapse
|
16
|
Fujita Y, Shinkai S, Taniguchi Y, Miura Y, Tanaka M, Ohsawa I, Kitamura A, Ito M. Association Between Serum GDF15 Concentration and Total Mortality in Community-Dwelling Japanese Older Populations: The Involvement of Renal Dysfunction. J Gerontol A Biol Sci Med Sci 2023; 78:1701-1707. [PMID: 37190783 DOI: 10.1093/gerona/glad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Serum growth differentiation factor 15 (GDF15) is associated with age-related adverse outcomes. However, renal function has not been thoroughly evaluated in studies addressing the association between GDF15 and mortality. We aimed to clarify whether GDF15 is associated with total mortality after carefully controlling renal function markers. METHODS We divided 1 801 community-dwelling Japanese older adults into quartiles according to their serum GDF15 concentrations. The correlation of GDF15 with renal function and inflammation markers was assessed by calculating Spearman correlation coefficients. Cumulative survival rates of the quartiles were estimated. In a Cox regression analysis adjusted for confounders, the association between GDF15 and mortality was evaluated. The discriminative capacity of GDF15 for the prediction of mortality was assessed with receiver-operating characteristic analysis. RESULTS GDF15 was correlated with cystatin C (r = 0.394), β2-microglobulin (r = 0.382), C-reactive protein (r = 0.124), and interleukin-6 (r = 0.166). The highest GDF15 quartile showed poor survival compared to the others. Older adults with higher GDF15 were associated with an increased mortality risk, independent of demographics and clinically relevant variables (hazard ratio [95% confidence interval]: 1.98 [1.09-3.59]). This significant association disappeared when additionally adjusted for cystatin C (1.65 [0.89-3.05]) or β2-microglobulin (1.69 [0.91-3.12]). The ability to predict mortality was approximately comparable between GDF15 (area under the curve: 0.667), cystatin C (0.691), and β2-microglobulin (0.715). CONCLUSIONS Serum GDF15 is associated with total mortality in older Japanese after adjustment for major confounders. The increased mortality risk in older adults with higher GDF15 may be partly attributed to decreased renal function.
Collapse
Affiliation(s)
- Yasunori Fujita
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shoji Shinkai
- Graduate School of Nutrition and Health Science, Kagawa Nutrition University, Sakado, Saitama, Japan
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yu Taniguchi
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masashi Tanaka
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akihiko Kitamura
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Health Town Development Science Center, Yao City Health Center, Yao, Osaka, Japan
| | - Masafumi Ito
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
17
|
Lu WH, González-Bautista E, Guyonnet S, Martinez LO, Lucas A, Parini A, Rolland Y, Vellas B, de Souto Barreto P. Investigating three ways of measuring the intrinsic capacity domain of vitality: nutritional status, handgrip strength and ageing biomarkers. Age Ageing 2023; 52:afad133. [PMID: 37505993 DOI: 10.1093/ageing/afad133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Vitality is conceptually considered as the underlying capacity influencing other intrinsic capacity (IC) domains and being related to nutrition, physiological reserve and biological ageing. However, there is no consensus on its operationalisation. OBJECTIVE To investigate the structure and magnitude of the association of vitality with other IC domains and functional difficulties using three operational definitions of vitality. METHODS We included 1,389 older adults from the Multidomain Alzheimer Preventive Trial with data on Mini Nutritional Assessment (MNA), handgrip strength and plasma biomarkers (comprising inflammatory and mitochondrial markers). Using path analysis, we examined the effects of vitality on difficulties in basic and instrumental activities of daily living (ADL and IADL) exerted directly and indirectly through the mediation of other IC domains: cognition, locomotion, psychological, vision and hearing. We further explored the longitudinal association of vitality with IC domains, ADL and IADL over 4 years using linear mixed-effect regression. RESULTS We observed significant indirect effects of vitality on IADL, mainly through cognitive, locomotor and psychological domains, regardless of the vitality measurement. Participants with higher vitality had fewer IADL difficulties at follow-up (MNA score: β [95% CI] = -0.020 [-0.037, -0.003]; handgrip strength: -0.011 [-0.023, 0.000]; plasma biomarker-based index: -0.015 [-0.028, -0.002]). Vitality assessed with the plasma biomarker-based index predicted improved locomotion over time. CONCLUSION Vitality was associated with disability primarily through the mediation of other IC domains. The three indicators examined are acceptable measurements of vitality; biomarkers might be more suitable for the early detection of locomotion decline.
Collapse
Affiliation(s)
- Wan-Hsuan Lu
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000 Toulouse, France
- Maintain Aging Research Team, Centre d'Epidémiologie et de Recherche en santé des POPulations (CERPOP), Inserm, Université Paul Sabatier, Toulouse, France
| | - Emmanuel González-Bautista
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000 Toulouse, France
- Maintain Aging Research Team, Centre d'Epidémiologie et de Recherche en santé des POPulations (CERPOP), Inserm, Université Paul Sabatier, Toulouse, France
| | - Sophie Guyonnet
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000 Toulouse, France
- Maintain Aging Research Team, Centre d'Epidémiologie et de Recherche en santé des POPulations (CERPOP), Inserm, Université Paul Sabatier, Toulouse, France
| | - Laurent O Martinez
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Angelo Parini
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Yves Rolland
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000 Toulouse, France
- Maintain Aging Research Team, Centre d'Epidémiologie et de Recherche en santé des POPulations (CERPOP), Inserm, Université Paul Sabatier, Toulouse, France
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000 Toulouse, France
- Maintain Aging Research Team, Centre d'Epidémiologie et de Recherche en santé des POPulations (CERPOP), Inserm, Université Paul Sabatier, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000 Toulouse, France
- Maintain Aging Research Team, Centre d'Epidémiologie et de Recherche en santé des POPulations (CERPOP), Inserm, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
18
|
Martin DE, Cadar AN, Panier H, Torrance BL, Kuchel GA, Bartley JM. The effect of metformin on influenza vaccine responses in nondiabetic older adults: a pilot trial. Immun Ageing 2023; 20:18. [PMID: 37131271 PMCID: PMC10152024 DOI: 10.1186/s12979-023-00343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Aging is associated with progressive declines in immune responses leading to increased risk of severe infection and diminished vaccination responses. Influenza (flu) is a leading killer of older adults despite availability of seasonal vaccines. Geroscience-guided interventions targeting biological aging could offer transformational approaches to reverse broad declines in immune responses with aging. Here, we evaluated effects of metformin, an FDA approved diabetes drug and candidate anti-aging drug, on flu vaccination responses and markers of immunological resilience in a pilot and feasibility double-blinded placebo-controlled study. RESULTS Healthy older adults (non-diabetic/non-prediabetic, age: 74.4 ± 1.7 years) were randomized to metformin (n = 8, 1500 mg extended release/daily) or placebo (n = 7) treatment for 20 weeks and were vaccinated with high-dose flu vaccine after 10 weeks of treatment. Peripheral blood mononuclear cells (PBMCs), serum, and plasma were collected prior to treatment, immediately prior to vaccination, and 1, 5, and 10 weeks post vaccination. Increased serum antibody titers were observed post vaccination with no significant differences between groups. Metformin treatment led to trending increases in circulating T follicular helper cells post-vaccination. Furthermore, 20 weeks of metformin treatment reduced expression of exhaustion marker CD57 in circulating CD4 T cells. CONCLUSIONS Pre-vaccination metformin treatment improved some components of flu vaccine responses and reduced some markers of T cell exhaustion without serious adverse events in nondiabetic older adults. Thus, our findings highlight the potential utility of metformin to improve flu vaccine responses and reduce age-related immune exhaustion in older adults, providing improved immunological resilience in nondiabetic older adults.
Collapse
Affiliation(s)
- Dominique E Martin
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Andreia N Cadar
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Hunter Panier
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Medicine, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, 06030, USA
| | - Blake L Torrance
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - George A Kuchel
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Jenna M Bartley
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA.
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA.
| |
Collapse
|
19
|
Merchant RA, Chan YH, Duque G. GDF-15 Is Associated with Poor Physical Function in Prefrail Older Adults with Diabetes. J Diabetes Res 2023; 2023:2519128. [PMID: 37152099 PMCID: PMC10162869 DOI: 10.1155/2023/2519128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/07/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Growth differentiation factor 15 (GDF-15) has been shown to be a metabolic and appetite regulator in diabetes mellitus (DM) and obesity. We aimed to investigate (i) the association between GDF-15 and DM with and without poor physical function independent of inflammation and (ii) the prediction model for poor physical function in prefrail older adults. Methods A cross-sectional study of 108-prefrail participants ≥60 years recruited for multidomain interventions. Data was collected for demographics, cognition, function, frailty, nutrition, handgrip strength (HGS), short physical performance battery (SPPB), and gait speed. Serum concentrations of GDF-15, IL-6, and TNF-α were measured. GDF-15 was classified into tertiles (T1, T2, and T3), and its association was studied with DM and physical function (DM poor physical function, DM no poor physical function, no DM poor physical function, and no DM no poor physical function). Results Compared with T1, participants in T3 were significantly older, had a lower education level, had almost three times higher prevalence of DM, slower gait speed, longer chair-stand time, and lower SPPB scores. On multivariate analysis, the odds of having both DM and poor physical performance compared to having no DM and no poor physical performance were significantly higher in GDF-15 T3 vs. GDF-15 T1 (aOR 9.7, 95% CI 1.4-67.7; p = 0.021), and the odds of having DM no poor physical function compared to having no DM and no poor physical performance were significantly higher in GDF-15 T2 (aOR 12.7, 95% CI 1.1-143.7; p = 0.040) independent of BMI, IL-6, TNF-α, nutrition, physical function, education, age, and gender. Conclusion The association of GDF-15 with DM-associated poor physical function is independent of inflammation in prefrail older adults. Its causal-association link needs to be determined in longitudinal studies.
Collapse
Affiliation(s)
- Reshma Aziz Merchant
- Division of Geriatric Medicine, Department of Medicine, National University Hospital, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gustavo Duque
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Ladang A, Beaudart C, Reginster JY, Al-Daghri N, Bruyère O, Burlet N, Cesari M, Cherubini A, da Silva MC, Cooper C, Cruz-Jentoft AJ, Landi F, Laslop A, Maggi S, Mobasheri A, Ormarsdottir S, Radermecker R, Visser M, Yerro MCP, Rizzoli R, Cavalier E. Biochemical Markers of Musculoskeletal Health and Aging to be Assessed in Clinical Trials of Drugs Aiming at the Treatment of Sarcopenia: Consensus Paper from an Expert Group Meeting Organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the Centre Académique de Recherche et d'Expérimentation en Santé (CARES SPRL), Under the Auspices of the World Health Organization Collaborating Center for the Epidemiology of Musculoskeletal Conditions and Aging. Calcif Tissue Int 2023; 112:197-217. [PMID: 36633611 PMCID: PMC9859913 DOI: 10.1007/s00223-022-01054-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023]
Abstract
In clinical trials, biochemical markers provide useful information on the drug's mode of action, therapeutic response and side effect monitoring and can act as surrogate endpoints. In pharmacological intervention development for sarcopenia management, there is an urgent need to identify biomarkers to measure in clinical trials and that could be used in the future in clinical practice. The objective of the current consensus paper is to provide a clear list of biochemical markers of musculoskeletal health and aging that can be recommended to be measured in Phase II and Phase III clinical trials evaluating new chemical entities for sarcopenia treatment. A working group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) proposed classifying biochemical markers into 2 series: biochemical markers evaluating musculoskeletal status and biochemical markers evaluating causal factors. For series 1, the group agreed on 4 biochemical markers that should be assessed in Phase II or Phase III trials (i.e., Myostatin-Follistatin, Brain Derived Neurotrophic Factor, N-terminal Type III Procollagen and Serum Creatinine to Serum Cystatin C Ratio - or the Sarcopenia Index). For series 2, the group agreed on 6 biochemical markers that should be assessed in Phase II trials (i.e., the hormones insulin-like growth factor-1 (IGF-I), dehydroepiandrosterone sulphate, and cortisol, and the inflammatory markers C-reactive protein (CRP), interleukin-6 and tumor necrosis factor-α), and 2 in Phase III trials (i.e., IGF-I and CRP). The group also proposed optional biochemical markers that may provide insights into the mode of action of pharmacological therapies. Further research and development of new methods for biochemical marker assays may lead to the evolution of these recommendations.
Collapse
Affiliation(s)
- Aurélie Ladang
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liège, Belgium.
| | - Charlotte Beaudart
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
| | - Jean-Yves Reginster
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
- Biochemistry Department, College of Science, Chair for Biomarkers of Chronic Diseases, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nasser Al-Daghri
- Biochemistry Department, College of Science, Chair for Biomarkers of Chronic Diseases, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Olivier Bruyère
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
| | - Nansa Burlet
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Cherubini
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy
| | | | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | | | - Francesco Landi
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Andrea Laslop
- Scientific Office, Federal Office for Safety in Health Care, Vienna, Austria
| | | | - Ali Mobasheri
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Régis Radermecker
- Department of Diabetes, Nutrition and Metabolic Disorders, Clinical Pharmacology, University of Liege, CHU de Liège, Liège, Belgium
| | - Marjolein Visser
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - René Rizzoli
- Faculty of Medicine, Service of Bone Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liège, Belgium
| |
Collapse
|
21
|
Kim-Muller JY, Song L, LaCarubba Paulhus B, Pashos E, Li X, Rinaldi A, Joaquim S, Stansfield JC, Zhang J, Robertson A, Pang J, Opsahl A, Boucher M, Breen D, Hales K, Sheikh A, Wu Z, Zhang BB. GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia. Cell Rep 2023; 42:111947. [PMID: 36640326 DOI: 10.1016/j.celrep.2022.111947] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cancer cachexia is a disorder characterized by involuntary weight loss and impaired physical performance. Decline in physical performance of patients with cachexia is associated with poor quality of life, and currently there are no effective pharmacological interventions that restore physical performance. Here we examine the effect of GDF15 neutralization in a mouse model of cancer-induced cachexia (TOV21G) that manifests weight loss and muscle function impairments. With comprehensive assessments, our results demonstrate that cachectic mice treated with the anti-GDF15 antibody mAB2 exhibit body weight gain with near-complete restoration of muscle mass and markedly improved muscle function and physical performance. Mechanistically, the improvements induced by GDF15 neutralization are primarily attributed to increased caloric intake, while altered gene expression in cachectic muscles is restored in caloric-intake-dependent and -independent manners. The findings indicate potential of GDF15 neutralization as an effective therapy to enhance physical performance of patients with cachexia.
Collapse
Affiliation(s)
- Ja Young Kim-Muller
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - LouJin Song
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Brianna LaCarubba Paulhus
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Evanthia Pashos
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Xiangping Li
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Anthony Rinaldi
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Stephanie Joaquim
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - John C Stansfield
- Biostatistics, Early Clinical Development, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Jiangwei Zhang
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 10777 Science Center Dr., San Diego, CA, USA
| | - Andrew Robertson
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA
| | - Jincheng Pang
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Alan Opsahl
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA
| | - Magalie Boucher
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA
| | - Danna Breen
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Katherine Hales
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Abdul Sheikh
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Bei B Zhang
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA.
| |
Collapse
|
22
|
He L, de Souto Barreto P, Sánchez Sánchez JL, Rolland Y, Guyonnet S, Parini A, Lucas A, Vellas B. Prospective Associations of Plasma Growth Differentiation Factor 15 With Physical Performance and Cognitive Functions in Older Adults. J Gerontol A Biol Sci Med Sci 2022; 77:2420-2428. [PMID: 35037034 DOI: 10.1093/gerona/glac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15) has been associated with several age-related disorders, but its associations with functional abilities in community-dwelling older adults are not well studied. METHODS The study was a secondary analysis of 1 096 community-dwelling older adults (aged 69-94 years) recruited from the Multidomain Alzheimer's Preventive Trial. Plasma GDF15 was measured 1 year after participants' enrollment. Annual data of physical performance (grip strength and Short Physical Performance Battery [SPPB]) and global cognitive functions (Mini-Mental State Examination [MMSE] and a composite cognitive score) were measured for 4 years. Adjusted mixed-effects linear models were performed for cross-sectional and longitudinal association analyses. RESULTS A higher GDF15 was cross-sectionally associated with a weaker grip strength (β = -1.1E-03, 95% CI [-2.0E-03, -1.5E-04]), a lower SPPB score (β = -3.1E-04, 95% CI [-5.4E-04, -9.0E-05]), and worse cognitive functions (β = -2.4E-04, 95% CI [-3.3E-04, -1.6E-04] for composite cognitive score; β = -4.0E-04, 95% CI [-6.4E-04, -1.6E-04] for MMSE). Participants with higher GDF15 demonstrated greater longitudinal declines in SPPB (β = -1.0E-04, 95% CI [-1.7E-04, -2.0E-05]) and composite cognitive score (β = -2.0E-05, 95% CI [-4.0E-05, -3.6E-06]). The optimal initial GDF15 cutoff values for identifying participants with minimal clinically significant decline after 1 year were 2 189 pg/mL for SPPB (AUC: 0.580) and 2 330 pg/mL for composite cognitive score (AUC: 0.587). CONCLUSIONS Plasma GDF15 is cross-sectionally and longitudinally associated with lower-limb physical performance and global cognitive function in older adults. Circulating GDF15 alone has a limited capacity of discriminating older adults who will develop clinically significant functional declines. CLINICAL TRIAL REGISTRATION NCT00672685.
Collapse
Affiliation(s)
- Lingxiao He
- School of Public Health, Xiamen University, Xiamen, China.,Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalier-Universitaire de Toulouse, Toulouse, France
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalier-Universitaire de Toulouse, Toulouse, France.,CERPOP, INSERM 1295, Université de Toulouse, UPS, Toulouse, France
| | - Juan Luis Sánchez Sánchez
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalier-Universitaire de Toulouse, Toulouse, France.,Faculty of Sport Science, Universidad Europea de Madrid, Madrid, Spain
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalier-Universitaire de Toulouse, Toulouse, France.,CERPOP, INSERM 1295, Université de Toulouse, UPS, Toulouse, France
| | - Sophie Guyonnet
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalier-Universitaire de Toulouse, Toulouse, France.,CERPOP, INSERM 1295, Université de Toulouse, UPS, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases, UMR1297, Toulouse, France.,Paul Sabatier University, Toulouse, France
| | - Alexandre Lucas
- Institute of Metabolic and Cardiovascular Diseases, UMR1297, Toulouse, France.,Paul Sabatier University, Toulouse, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalier-Universitaire de Toulouse, Toulouse, France.,CERPOP, INSERM 1295, Université de Toulouse, UPS, Toulouse, France
| | | |
Collapse
|
23
|
Picca A, Calvani R, Coelho-Júnior HJ, Landi F, Marzetti E. Anorexia of Aging: Metabolic Changes and Biomarker Discovery. Clin Interv Aging 2022; 17:1761-1767. [PMID: 36483084 PMCID: PMC9726216 DOI: 10.2147/cia.s325008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/24/2022] [Indexed: 08/04/2023] Open
Abstract
The age-associated decrease in appetite and food intake is referred to as "anorexia of aging". Older adults with anorexia show changes in the quantity/quality of energy supplied to the organism which eventually may cause a mismatch between ingested calories and physiological energy demands. Therefore, a state of malnutrition and impaired metabolism may ensue which renders older people more vulnerable to stressors and more prone to incur negative health outcomes. These latter cover a wide range of conditions including sarcopenia, low engagement in physical activity, and more severe consequences such as disability, loss of independence, hospitalization, nursing home placement, and mortality. Malnutrition has been recognized by the European Society of Clinical Nutrition (ESPEN) among the chief risk factors for the development of frailty. Frailty refers to a state of increased vulnerability to stressors stemming from reduced physiologic reserve, and according to ESPEN, is also nutrition-based. Alike frailty, anorexia is highly prevalent among older adults, and its multifactorial nature includes metabolic changes that develop in older age and possibly underly the condition. Circulating factors, including hormones (eg, cholecystokinin, ghrelin, leptin, and inflammatory and microbial mediators of gut dysbiosis), have been proposed as biomarkers for this condition to support early identification and develop personalized nutritional interventions. Additional studies are needed to untangle the interrelationship between gut microbiota and appetite regulation in older adults operating through brain-gut crosstalk. Furthermore, the contribution of the genetic background to appetite regulation and specific nutritional needs warrants investigation. Here, we provide an overview on anorexia of aging in the context of age-related metabolic changes. A special focus is placed on candidate biomarkers that may be used to assist in the early identification of anorexia of aging and in the development of personalized nutritional counseling.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | | | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
24
|
Liu X, Pan S, Xanthakis V, Vasan RS, Psaty BM, Austin TR, Newman AB, Sanders JL, Wu C, Tracy RP, Gerszten RE, Odden MC. Plasma proteomic signature of decline in gait speed and grip strength. Aging Cell 2022; 21:e13736. [PMID: 36333824 PMCID: PMC9741503 DOI: 10.1111/acel.13736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
The biological mechanisms underlying decline in physical function with age remain unclear. We examined the plasma proteomic profile associated with longitudinal changes in physical function measured by gait speed and grip strength in community-dwelling adults. We applied an aptamer-based platform to assay 1154 plasma proteins on 2854 participants (60% women, aged 76 years) in the Cardiovascular Health Study (CHS) in 1992-1993 and 1130 participants (55% women, aged 54 years) in the Framingham Offspring Study (FOS) in 1991-1995. Gait speed and grip strength were measured annually for 7 years in CHS and at cycles 7 (1998-2001) and 8 (2005-2008) in FOS. The associations of individual protein levels (log-transformed and standardized) with longitudinal changes in gait speed and grip strength in two populations were examined separately by linear mixed-effects models. Meta-analyses were implemented using random-effects models and corrected for multiple testing. We found that plasma levels of 14 and 18 proteins were associated with changes in gait speed and grip strength, respectively (corrected p < 0.05). The proteins most strongly associated with gait speed decline were GDF-15 (Meta-analytic p = 1.58 × 10-15 ), pleiotrophin (1.23 × 10-9 ), and TIMP-1 (5.97 × 10-8 ). For grip strength decline, the strongest associations were for carbonic anhydrase III (1.09 × 10-7 ), CDON (2.38 × 10-7 ), and SMOC1 (7.47 × 10-7 ). Several statistically significant proteins are involved in the inflammatory responses or antagonism of activin by follistatin pathway. These novel proteomic biomarkers and pathways should be further explored as future mechanisms and targets for age-related functional decline.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCaliforniaUSA
| | - Stephanie Pan
- Framingham Heart Study and Section of Preventive Medicine and EpidemiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Vanessa Xanthakis
- Framingham Heart Study and Section of Preventive Medicine and EpidemiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Ramachandran S. Vasan
- Framingham Heart Study and Section of Preventive Medicine and EpidemiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Section of Cardiovascular Medicine, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Thomas R. Austin
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Anne B. Newman
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Chenkai Wu
- Global Health Research CenterDuke Kunshan UniversityKunshanChina
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, The Robert Larner M.D. College of MedicineUniversity of VermontBurlingtonVermontUSA
- Department of Biochemistry, The Robert Larner M.D. College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Robert E. Gerszten
- Division of Cardiovascular MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Michelle C. Odden
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
25
|
De Paepe B. The Cytokine Growth Differentiation Factor-15 and Skeletal Muscle Health: Portrait of an Emerging Widely Applicable Disease Biomarker. Int J Mol Sci 2022; 23:ijms232113180. [PMID: 36361969 PMCID: PMC9654287 DOI: 10.3390/ijms232113180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a stress-induced transforming growth factor-β superfamily cytokine with versatile functions in human health. Elevated GDF-15 blood levels associate with multiple pathological conditions, and are currently extensively explored for diagnosis, and as a means to monitor disease progression and evaluate therapeutic responses. This review analyzes GDF-15 in human conditions specifically focusing on its association with muscle manifestations of sarcopenia, mitochondrial myopathy, and autoimmune and viral myositis. The use of GDF-15 as a widely applicable health biomarker to monitor muscle disease is discussed, and its potential as a therapeutic target is explored.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Deng M, Bian Y, Zhang Q, Zhou X, Hou G. Growth Differentiation Factor-15 as a Biomarker for Sarcopenia in Patients With Chronic Obstructive Pulmonary Disease. Front Nutr 2022; 9:897097. [PMID: 35845807 PMCID: PMC9282868 DOI: 10.3389/fnut.2022.897097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose Sarcopenia is an important factor contributing to comorbidities in patients with chronic obstructive pulmonary disease (COPD) and is an independent risk factor for increased mortality. The diagnostic process for sarcopenia requires specific equipment and specialized training and is difficult procedurally. A previous study found that GDF15 levels are associated with skeletal muscle mass and function in patients with COPD. However, whether circulating GDF15 levels can be used for the prediction of sarcopenia in patients with COPD is unknown. Methods This study included 235 patients with stable COPD who were divided into a development set (n = 117) and a validation set (n = 118), and we followed the definition of sarcopenia as defined by the guidelines from the Asian Working Group for Sarcopenia. Serum concentrations of GDF15 were measured using an enzyme-linked immunosorbent assay (ELISA), and construction of a nomogram and decision curve analysis were performed using the R package “rms.” Results In this study, serum GDF15 levels were negatively associated with skeletal muscle mass (r = –0.204, p = 0.031), handgrip strength (r = –0.274, p = 0.004), quadriceps strength (r = –0.269, p = 0.029), and the thickness (r = –0.338, p < 0.001) and area (r = –0.335, p < 0.001) of the rectus femoris muscle in patients with COPD. Furthermore, the serum levels of GDF15 in patients with sarcopenia were significantly higher than those in controls. Importantly, serum levels of GDF15 could effectively predict sarcopenia in patients with COPD based on the development set (AUC = 0.827) and validation set (AUC = 0.801). Finally, a nomogram model based on serum GDF15 levels and clinical features showed good predictive ability (AUC > 0.89) in the development and validation sets. Conclusion Serum GDF15 levels could be used to accurately and easily evaluate sarcopenia in patients with COPD.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Yiding Bian
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Xiaoming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- *Correspondence: Gang Hou,
| |
Collapse
|
27
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Yamamoto H, Takeshima F, Haraguchi M, Akazawa Y, Matsushima K, Kitayama M, Ogihara K, Tabuchi M, Hashiguchi K, Yamaguchi N, Miyaaki H, Kondo H, Nakao K. High serum concentrations of growth differentiation factor-15 and their association with Crohn's disease and a low skeletal muscle index. Sci Rep 2022; 12:6591. [PMID: 35449185 PMCID: PMC9023473 DOI: 10.1038/s41598-022-10587-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
Sarcopenia comprises a low skeletal muscle index (SMI) and low muscle strength (MS) or low physical function. Many sarcopenia biomarkers have been reported. With Crohn’s disease (CD), a low SMI is predictive of intestinal complications. Therefore, many CD studies have reported that sarcopenia is defined by SMI alone. This study investigated the sarcopenia frequency by assessing the SMI and MS of Japanese patients with CD and biomarkers predicting a low SMI. We evaluated the SMI using a bioelectrical impedance analysis, handgrip strength, and C-reactive protein, albumin, interleukin-6, tumor necrosis factor-α, growth differentiation factor (GDF)-8, and GDF-15 levels as biomarker candidates for 78 CD patients at our hospital. Sarcopenia and a low SMI were observed in 7.7% and 42.3% of the patients, respectively. There was a significant difference in the GDF-15 levels of the low SMI group and normal group according to the multivariate analysis (P = 0.028; odds ratio [OR], 1.001; 95% confidence interval [CI] 1.000–1.002). When evaluated by sex, males exhibited a negative correlation between the GDF-15 level and SMI (Pearson’s r = − 0.414; P = 0.0031), and the multivariate analysis indicated a significant difference in the GDF-15 levels (P = 0.011; OR, 1.001; 95% CI 1.000–1.002). GDF-15 levels may indicate a low SMI with CD.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.
| | - Fuminao Takeshima
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.,Department of Internal Medicine, Nagasaki Prefecture Goto Central Hospital, Nagasaki, Japan
| | - Masafumi Haraguchi
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.,Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Moto Kitayama
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Kumi Ogihara
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Maiko Tabuchi
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | | | - Naoyuki Yamaguchi
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Hisayoshi Kondo
- Biostatistics Section, Division of Scientific Data Registry, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| |
Collapse
|
29
|
García-Esquinas E, Ortolá R, Buño A, Olmedo P, Gil F, Banegas JR, Pérez-Gómez B, Navas-Acién A, Rodríguez-Artalejo F. Cadmium exposure and growth differentiation factor-15 (GDF-15) levels in non-smoking older adults. ENVIRONMENTAL RESEARCH 2022; 206:112250. [PMID: 34695433 DOI: 10.1016/j.envres.2021.112250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cadmium (Cd) exposure is a risk factor for cardiovascular disease (CVD); however, understanding the effects of Cd at the cellular level remains incomplete. Since growth differentiation factor-15 (GDF-15) is a cytokine produced in many cell types in response to tissue injury and inflammation that may capture several pathways between Cd and CVD, this study examined the relationship between blood Cd levels and serum GDF-15 concentrations in community-dwelling older adults. METHODS Cd and GDF-15 were measured in 1942 non-smoking individuals aged 65+ with no previous history of CVD. The association of Cd with GDF-15 was evaluated in linear regression models that adjusted for sociodemographic, lifestyle and biological risk factors, inflammatory biomarkers (IL-6, C-reactive protein and neutrophil to lymphocyte ratio), and markers of vascular damage (NTproBNP and cTnT-hs). RESULTS Geometric mean Cd exposure was 0.11 μg/L (0.09 in never- and 0.15 in former-smokers) and geometric mean GDF-15 was 1186.21 pg/mL (1182.67 in never- and 1191.66 in former-smokers). In multivariable analyses, we found a dose-response association between Cd levels and GDF-15: adjusted mean percentage differences in GDF-15 (95% confidence interval) per 2-fold increase in Cd concentrations in the overall non-smoking population and in never smokers were, respectively, 2.54% (1.01, 4.06) and 2.50% (0.47, 4.54). In spline regression, the dose-response relationship was progressive over the range of Cd concentrations with no significant departures from linearity. CONCLUSIONS Cd exposure may be related to enhanced GDF-15 expression. Future studies with repeated GDF-15 measurements should confirm the present findings to better understand the biological mechanisms underlying this association.
Collapse
Affiliation(s)
- Esther García-Esquinas
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain.
| | - Rosario Ortolá
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Antonio Buño
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; Department of Laboratory Medicine, La Paz University Hospital, Madrid, Spain
| | - Pablo Olmedo
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, Granada, Spain
| | - Fernando Gil
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, Granada, Spain
| | - José R Banegas
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Beatriz Pérez-Gómez
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Navas-Acién
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
30
|
Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S. GDF15, an emerging key player in human aging. Ageing Res Rev 2022; 75:101569. [PMID: 35051643 DOI: 10.1016/j.arr.2022.101569] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Growth differentiation factor 15 (GDF15) is recently emerging not only as a stress-related mitokine, but also as a key player in the aging process, being one of the most up-regulated protein with age and associated with a variety of age-related diseases (ARDs). Many data indicate that GDF15 has protective roles in several tissues during different stress and aging, thus playing a beneficial role in apparent contrast with the observed association with many ARDs. A possible detrimental role for this protein is then hypothesized to emerge with age. Therefore, GDF15 can be considered as a pleiotropic factor with beneficial activities that can turn detrimental in old age possibly when it is chronically elevated. In this review, we summarize the current knowledge on the biology of GDF15 during aging. We also propose GDF15 as a part of a dormancy program, where it may play a role as a mediator of defense processes aimed to protect from inflammatory damage and other stresses, according to the life history theory.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy.
| | - Cristina Giuliani
- Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy; Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Vincenzo Iannuzzi
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Lee SH, Lee JY, Lim KH, Lee YS, Koh JM. Associations Between Plasma Growth and Differentiation Factor-15 with Aging Phenotypes in Muscle, Adipose Tissue, and Bone. Calcif Tissue Int 2022; 110:236-243. [PMID: 34499185 DOI: 10.1007/s00223-021-00912-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/27/2021] [Indexed: 02/04/2023]
Abstract
Growth and differentiation factor 15 (GDF-15) is associated with muscle, fat, and bone metabolism; however, this association has not been well characterized. Plasma GDF-15, appendicular skeletal muscle mass (ASM), fat mass (FM), and bone mineral density (BMD) were measured in 146 postmenopausal women. GDF-15 levels were higher in subjects with low Body Mass Index (BMI)-adjusted ASM than in those without (median [interquartile range] 831.3 [635.4-1011.4] vs. 583.8 [455.8-771.1] pg/mL, p = 0.018). The GDF-15 level was inversely correlated with BMI-adjusted ASM (r = - 0.377, p < 0.001) and BMD at femur neck (FN-BMD; r = - 0.201, p = 0.015), and positively correlated with percent FM (pFM; r = 0.328, p < 0.001). After adjusting for confounders, the GDF-15 level was inversely associated with BMI-adjusted ASM (β = -0.250, p = 0.006) and positively associated with pFM (β = 0.272, p = 0.004), and tended to be inversely associated with FN-BMD (β = - 0.176, p = 0.076). The area under the receiver-operating characteristic curve of GDF-15 level > 618.4 pg/mL for sarcopenia was 0.706 (95% confidence interval (CI) 0.625-0.779) with a sensitivity of 83.3% and a specificity of 54.5%. Using a GDF-15 level of 618.4 pg/mL as a cut-off, the GDF-15 level was associated with a significantly greater likelihood of sarcopenia (odds ratio [OR] 2.35; 95% CI 1.00-5.51; p = 0.049), obesity (OR 3.28; 95% CI 1.48-7.27; p = 0.001), osteopenic obesity (OR 3.10; 95% CI 1.31-7.30; p = 0.010), and sarcopenic or osteosarcopenic obesity (OR 4.84; 95% CI 0.88-26.69; p = 0.070). These findings support the potential of GDF-15 as a biomarker for age-related changes in muscle, fat, and bone.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Jee Yang Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Kyeong-Hye Lim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Seoul, 05505, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
32
|
Tsai J, Wang S, Chang C, Chen C, Wen C, Chen G, Kuo C, Tseng YJ, Chen C. Identification of traumatic acid as a potential plasma biomarker for sarcopenia using a metabolomics-based approach. J Cachexia Sarcopenia Muscle 2022; 13:276-286. [PMID: 34939349 PMCID: PMC8818620 DOI: 10.1002/jcsm.12895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 08/30/2021] [Accepted: 11/21/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pathogenesis of sarcopenia is complex and has not been well explored. Identifying biomarkers is a promising strategy for exploring the mechanism of sarcopenia. This study aimed to identify potential biomarkers of sarcopenia through a metabolomic analysis of plasma metabolites in elderly subjects (≥65 years of age) vs. younger adults (<65 years of age). METHODS Of the 168 candidates in the Comprehensive Geriatric Assessment and Frailty Study of Elderly Outpatients, 24 elderly subjects (≥65 years of age) with sarcopenia were age and sex matched with 24 elderly subjects without sarcopenia. In addition, 24 younger adults were recruited for comparison. Muscle strength, gait speed, and metabolic and inflammatory parameters, including plasma tumour necrosis factor-α, C-reactive protein, irisin, and growth differentiation factor 15 (GDF-15) levels were assessed. Metabolomic analysis was carried out using the plasma metabolites. RESULTS Seventy-two participants were enrolled, including 10 (41.6%) men and 14 (58.3%) women in both groups of elderly subjects. The median ages of elderly subjects with and without sarcopenia were 82 (range: 67-88) and 81.5 (range: 67-87) years, respectively. Among the 242 plasma metabolic peaks analysed among these three groups, traumatic acid was considered as a sarcopenia-related metabolite. The plasma traumatic acid signal intensity level was significantly higher in elderly subjects with sarcopenia than in elderly subjects without sarcopenia [591.5 (inter-quartile range, IQR: 491.5-664.5) vs. 430.0 (IQR: 261.0-599.5), P = 0.0063]. The plasma concentrations of traumatic acid were 15.8 (IQR: 11.5-21.7), 21.1 (IQR: 16.0-25.8), and 24.3 (IQR: 18.0-29.5) ppb in younger adults [age range: 23-37 years, 12 (50%) men], elderly subjects without sarcopenia, and elderly subjects with sarcopenia, respectively, thereby depicting an increasing tendency (P for trend = 0.034). This pattern was similar to that of GDF-15, a recognized sarcopenia-related factor. Plasma traumatic acid concentrations were also positively correlated with the presence of hypertension (r = 0.25, P = 0.034), glucose AC (r = 0.34, P = 0.0035), creatinine (r = 0.40, P = 0.0006), and GDF-15 levels (r = 0.25, P = 0.0376), but negatively correlated with the Modification of Diet in Renal Disease-simplify-glomerular filtration rate (r = -0.50, P < 0.0001). Similarly, plasma GDF-15 concentrations were associated with these factors. CONCLUSIONS Traumatic acid might represent a potential plasma biomarker of sarcopenia. However, further studies are needed to validate the results and investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Jaw‐Shiun Tsai
- Department of Family MedicineNational Taiwan University Hospital, National Taiwan UniversityTaipeiTaiwan
- Department of Family Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - San‐Yuan Wang
- Master Program in Clinical Genomics and Proteomics, College of PharmacyTaipei Medical UniversityTaipeiTaiwan
| | - Chin‐Hao Chang
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Chin‐Ying Chen
- Department of Family MedicineNational Taiwan University Hospital, National Taiwan UniversityTaipeiTaiwan
- Department of Family Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Chiung‐Jung Wen
- Department of Family Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Department of Geriatrics and GerontologyNational Taiwan University HospitalTaipeiTaiwan
| | - Guan‐Yuan Chen
- Department and Graduate Institute of Forensic Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Ching‐Hua Kuo
- The Metabolomics Core Laboratory, Center of Genomic MedicineNational Taiwan UniversityTaipeiTaiwan
- School of Pharmacy, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Department of PharmacyNational Taiwan University Hospital, National Taiwan UniversityTaipeiTaiwan
| | - Y. Jane Tseng
- The Metabolomics Core Laboratory, Center of Genomic MedicineNational Taiwan UniversityTaipeiTaiwan
- School of Pharmacy, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan
- Graduate Institute of Biomedical Electronics and BioinformaticsNational Taiwan UniversityTaipeiTaiwan
| | - Ching‐Yu Chen
- Department of Family MedicineNational Taiwan University Hospital, National Taiwan UniversityTaipeiTaiwan
- Department of Family Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
33
|
De Paepe B. Growth differentiation factor-15 as an emerging biomarker for identifying myositis. Expert Rev Clin Immunol 2022; 18:115-123. [PMID: 35023440 DOI: 10.1080/1744666x.2022.2021879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The autoimmune disorders of the skeletal muscle tissue termed myositis are a rare yet diverse group of diseases with distinct clinical and pathological features and with different prognoses and treatment responses. Subtyping of patients is necessary for appropriate disease management, and requires specialized expertise and elaborate diagnostic testing of clinico-pathological disease features. AREAS COVERED Current clinical practice and diagnostic criteria for subtyping patients are searched on medical online platforms including PubMed and Web of Science. Recent publications on growth differentiation factor-15 (GDF-15) and muscle disorders are summarized and analyzed, and comparisons are made of data published in studies describing disease cohorts as well as individual patients. Influence of age and physical activity on GFD-15 levels and potential as a diagnostic criterion are discussed. This review contains supportive evidence of the elevated levels of GDF-15 in the blood of myositis patients, a feature which distinguishes these autoimmune muscle disorders from muscular dystrophy with secondary inflammation. EXPERT OPINION GDF-15 represents a novel and promising serological biomarker for diagnosing myositis, yet more studies are needed to assay its sensitivity and specificity. Increased diagnostic power is expected by combining GDF-15 levels with other blood-derived biomarkers.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
34
|
Sanchez-Sanchez JL, He L, Virecoulon Giudici K, Guyonnet S, Parini A, Dray C, Valet P, Pereira O, Vellas B, Rolland Y, de Souto Barreto P. Circulating Levels of Apelin, GDF-15 and Sarcopenia: Lack of Association in the MAPT Study. J Nutr Health Aging 2022; 26:564-570. [PMID: 35718864 DOI: 10.1007/s12603-022-1800-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Apelin and GDF-15 have been proposed as biomarkers of age-related sarcopenia but evidence in human models is scarce. This study aimed to explore the associations between blood apelin and GDF-15 with sarcopenia incidence and the evolution of sarcopenia components over two years in older adults >70 years. DESIGN Secondary longitudinal analysis of the Multidomain Alzheimer Preventive Trial. PARTICIPANTS Older adults (>70 years) attending primary care centers in France and Monaco. SETTING Community. MEASUREMENTS Serum Apelin (pg/mL) and plasma GDF-15 (pg/mL) were measured. Outcomes included sarcopenia defined by the European Working Group on Sarcopenia in Older People (EWGSOP) and its determinants (appendicular lean mass [ALM] evaluated through a Dual-energy X-ray Absorptiometry (DXA) scan, handgrip strength (HGS) and the 4-meter gait speed) measured over 2 years. Linear mixed models and logistic regression were used to explore the longitudinal associations. RESULTS We included 168 subjects from MAPT (median age=76y, IQR=73-79; 78% women). Serum apelin was not significantly associated with sarcopenia incidence (OR=1.001;95%CI=1.000,1.001;p-value>0.05 in full-adjusted models) nor with ALM (β=-5.8E-05;95%CI=-1.0E-04,2.12E-04;p>0.05), HGS (β=-1.1E-04;95%CI=-5.0E-04,2.8E-04;p>0.05), and GS (β=-5.1E-06;95%CI=-1.0E-05,2.0E-05;p>0.05) in fully adjusted models. Similarly, plasma GDF-15 was not associated with both the incidence of sarcopenia (OR=1.001,95%CI=1.000,1.002,p>0.05) and the evolution of its determinants ([ALM, β=2.1E-05;95%CI=-2.6E-04,3.03E-04;p>0.05], HGS [β=-5.9E-04;95%CI=-1.26E-03,8.1E-05; p>0.05] nor GS [β=-2.6E-06;95%CI=-3.0E-05, 2.3E-05;p>0.05]) in fully adjusted models. CONCLUSIONS Blood apelin and GDF-15 were not associated with sarcopenia incidence or with the evolution of sarcopenia components over a 2-year follow-up in community-dwelling older adults. Well-powered longitudinal studies are needed to confirm or refute our findings.
Collapse
Affiliation(s)
- J L Sanchez-Sanchez
- Juan Luis Sánchez, Gérontopôle de Toulouse, Institut du Vieillissement, 37 Allées Jules Guesde, 31000 Toulouse, France, +34662309412,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hong SW, Kang JH. Growth differentiation factor-15 as a modulator of bone and muscle metabolism. Front Endocrinol (Lausanne) 2022; 13:948176. [PMID: 36325442 PMCID: PMC9618662 DOI: 10.3389/fendo.2022.948176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to clarify the potential role of growth differentiation factor-15 (GDF-15) as a myokine in bone metabolism and muscle function in females with osteoporosis. In total, 45 female participants (71.0 ± 8.5 years) with distal radius fractures were recruited. Participants were classified as healthy/osteopenic (n = 28) (CON) or osteoporotic (n = 17) (OP) according to their T-score from the areal bone mineral density (aBMD) of the femoral neck. Body mass index, upper arm and calf circumferences, and handgrip strength were assessed. Total hip, femoral neck, and lumbar spine aBMD was measured via dual-energy x-ray absorptiometry. The focal bone quality of the distal radius was evaluated via 3D reconstructed computed tomographic images. Serum levels of GDF-15, insulin-like growth factor-1, and inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1β (IL-1β), as well as the corresponding mRNA levels in the pronator quadratus muscle were determined. Participants in the OP group had higher serum GDF-15 levels than those in the CON group. The mRNA levels of GDF-15, IL-1β, and TNF-α in the pronator quadratus muscle were significantly higher in the OP group than in the CON one. Levels of both serum GDF-15 and GDF-15 mRNA in muscle were positively correlated with age and negatively associated with the aBMD of the total hip and focal bone quality of the distal radius. Handgrip power was not correlated with circulating GDF-15 levels but was correlated with circumferences of the upper arm and calf, and levels of GDF-15 mRNA in muscle specimens. The mRNA levels of GDF-15 were correlated with those of inflammatory cytokines such as TNF-α and IL-1β. The mRNA levels of TNF-α were associated with circumferences of the upper arm and calf and with the aBMD of the total hip. The mRNA levels of GDF-15 in muscle were correlated with serum levels of GDF-15 and TNF-α. GDF-15 may have associations with bone metabolism in humans via paracrinological and endocrinological mechanisms. Maintenance of muscle mass and function would be influenced more by GDF-15 in muscle than by circulating GDF-15. The role of GDF-15 in bone metabolism and muscle homeostasis could be related to inflammatory responses.
Collapse
Affiliation(s)
- Seok Woo Hong
- Department of Orthopedic Surgery, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Jeong-Hyun Kang
- Clinic of Oral Medicine and Orofacial Pain, Institute of Oral Health Science, School of Medicine, Ajou University, Suwon, South Korea
- *Correspondence: Jeong-Hyun Kang,
| |
Collapse
|
36
|
Alcazar J, Frandsen U, Prokhorova T, Kamper RS, Haddock B, Aagaard P, Suetta C. Changes in systemic GDF15 across the adult lifespan and their impact on maximal muscle power: the Copenhagen Sarcopenia Study. J Cachexia Sarcopenia Muscle 2021; 12:1418-1427. [PMID: 34617415 PMCID: PMC8718085 DOI: 10.1002/jcsm.12823] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although growth differentiation factor 15 (GDF15) is known to increase with disease and is associated with low physical performance, the role of GDF15 in normal ageing is still not fully understood. Specifically, the influence of circulating GDF15 on impairments in maximal muscle power (a major contributor to functional limitations) and the underlying components has not been investigated. METHODS Data from 1305 healthy women and men aged 20 to 93 years from The Copenhagen Sarcopenia Study were analysed. Circulating levels of GDF15 and markers of inflammation (tumor necrosis factor-alpha, interleukin-6, and high-sensitivity C-reactive protein) were measured by ELISA (R&D Systems) and multiplex bead-based immunoassays (Bio-Rad). Relative (normalized to body mass), allometric (normalized to height squared), and specific (normalized to leg muscle mass) muscle power were assessed by the Nottingham power rig [leg extension power (LEP)] and the 30 s sit-to-stand (STS) muscle power test. Total body fat, visceral fat, and leg lean mass were assessed by dual energy X-ray absorptiometry. Leg skeletal muscle index was measured as leg lean mass normalized to body height squared. RESULTS Systemic levels of GDF15 increased progressively as a function of age in women (1.1 ± 0.4 pg·mL-1 ·year-1 ) and men (3.3 ± 0.6 pg·mL-1 ·year-1 ) (both P < 0.05). Notably, GDF15 increased at a faster rate from the age of 65 years in women (11.5 ± 1.2 pg·mL-1 ·year-1 , P < 0.05) and 70 years in men (19.3 ± 2.3 pg·mL-1 ·year-1 , P < 0.05), resulting in higher GDF15 levels in men compared with women above the age of 65 years (P < 0.05). Independently of age and circulatory markers of inflammation, GDF15 was negatively correlated to relative STS power (P < 0.05) but not LEP, in both women and men. These findings were mainly explained by negative associations of GDF15 with specific STS power in women and men (both P < 0.05). CONCLUSIONS A J-shaped relationship between age and systemic GDF15 was observed, with men at older age showing steeper increases and elevated GDF15 levels compared with women. Importantly, circulating GDF15 was independently and negatively associated with relative STS power, supporting the potential role of GDF15 as a sensitive biomarker of frailty in older people.
Collapse
Affiliation(s)
- Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,CopenAge - Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Frandsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Tatyana Prokhorova
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rikke S Kamper
- CopenAge - Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Charlotte Suetta
- CopenAge - Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Department of Internal Medicine, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| |
Collapse
|
37
|
Yamaguchi Y, Zampino M, Tanaka T, Bandinelli S, Moaddel R, Fantoni G, Candia J, Ferrucci L, Semba RD. The Plasma Proteome Fingerprint Associated with Circulating Carotenoids and Retinol in Older Adults. J Nutr 2021; 152:40-48. [PMID: 34550359 PMCID: PMC8754576 DOI: 10.1093/jn/nxab340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although diets rich in carotenoids are associated with reduced risks of cardiovascular disease, age-related macular degeneration, disability, and other adverse aging outcomes, the underlying biological mechanisms are not fully elucidated. OBJECTIVES To characterize the plasma proteome fingerprint associated with circulating carotenoid and retinol concentrations in older adults. METHODS In 728 adults ≥65 y participating in the Invecchiare in Chianti (InCHIANTI) Study, plasma α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, and lycopene were measured using HPLC. The SOMAscan assay was used to measure 1301 plasma proteins. Multivariable linear regression models were used to examine the relationship of individual carotenoids and retinol with plasma proteins. A false discovery rate approach was used to deal with multiple comparisons using a q-value < 0.05. RESULTS Plasma β-carotene, β-cryptoxanthin, lutein, zeaxanthin, and lycopene were associated with 85, 39, 4, 2, and 5 plasma proteins, respectively, in multivariable linear regression models adjusting for potential confounders (q < 0.05). No proteins were associated with α-carotene or retinol. Two or more carotenoids were positively associated with ferritin, 6-phosphogluconate dehydrogenase (decarboxylating), hepcidin, thrombospondin-2, and choline/ethanolamine kinase. The proteins associated with circulating carotenoids were related to energy metabolism, sirtuin signaling, inflammation and oxidative stress, iron metabolism, proteostasis, innate immunity, and longevity. CONCLUSIONS The plasma proteomic fingerprint associated with elevated circulating carotenoids in older adults provides insight into the mechanisms underlying the protective role of carotenoids on health.
Collapse
Affiliation(s)
| | - Marta Zampino
- National Institutes on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Toshiko Tanaka
- National Institutes on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Ruin Moaddel
- National Institutes on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Giovanna Fantoni
- National Institutes on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Julián Candia
- National Institutes on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- National Institutes on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
38
|
Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, Clish CB, Pierce K, Walker MA, Fryer R, Oglesbee D, Mao X, Shungu DC, Khatri A, Hirano M, De Vivo DC, Mootha VK. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest 2021; 131:136055. [PMID: 33463549 DOI: 10.1172/jci136055] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders represent a large collection of rare syndromes that are difficult to manage both because we do not fully understand biochemical pathogenesis and because we currently lack facile markers of severity. The m.3243A>G variant is the most common heteroplasmic mitochondrial DNA mutation and underlies a spectrum of diseases, notably mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). To identify robust circulating markers of m.3243A>G disease, we first performed discovery proteomics, targeted metabolomics, and untargeted metabolomics on plasma from a deeply phenotyped cohort (102 patients, 32 controls). In a validation phase, we measured concentrations of prioritized metabolites in an independent cohort using distinct methods. We validated 20 analytes (1 protein, 19 metabolites) that distinguish patients with MELAS from controls. The collection includes classic (lactate, alanine) and more recently identified (GDF-15, α-hydroxybutyrate) mitochondrial markers. By mining untargeted mass-spectra we uncovered 3 less well-studied metabolite families: N-lactoyl-amino acids, β-hydroxy acylcarnitines, and β-hydroxy fatty acids. Many of these 20 analytes correlate strongly with established measures of severity, including Karnofsky status, and mechanistically, nearly all markers are attributable to an elevated NADH/NAD+ ratio, or NADH-reductive stress. Our work defines a panel of organelle function tests related to NADH-reductive stress that should enable classification and monitoring of mitochondrial disease.
Collapse
Affiliation(s)
- Rohit Sharma
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Bryn Reinstadler
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Owen S Skinner
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Erin Stackowitz
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Institute for Exercise and Environmental Medicine of Texas Health Presbyterian Hospital, Dallas, Texas, USA
| | | | | | - Melissa A Walker
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert Fryer
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ashok Khatri
- Endocrine Division and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Darryl C De Vivo
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
39
|
Johnson AA, Shokhirev MN, Lehallier B. The protein inputs of an ultra-predictive aging clock represent viable anti-aging drug targets. Ageing Res Rev 2021; 70:101404. [PMID: 34242807 DOI: 10.1016/j.arr.2021.101404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022]
Abstract
Machine learning models capable of predicting age given a set of inputs are referred to as aging clocks. We recently developed an aging clock that utilizes 491 plasma protein inputs, has an exceptional accuracy, and is capable of measuring biological age. Here, we demonstrate that this clock is extremely predictive (r = 0.95) when used to measure age in a novel plasma proteomic dataset derived from 370 human subjects aged 18-69 years. Over-representation analyses of the proteins that make up this clock in the Gene Ontology and Reactome databases predominantly implicated innate and adaptive immune system processes. Immunological drugs and various age-related diseases were enriched in the DrugBank and GLAD4U databases. By performing an extensive literature review, we find that at least 269 (54.8 %) of these inputs regulate lifespan and/or induce changes relevant to age-related disease when manipulated in an animal model. We also show that, in a large plasma proteomic dataset, the majority (57.2 %) of measurable clock proteins significantly change their expression level with human age. Different subsets of proteins were overlapped with distinct epigenetic, transcriptomic, and proteomic aging clocks. These findings indicate that the inputs of this age predictor likely represent a rich source of anti-aging drug targets.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California, United States
| | | |
Collapse
|
40
|
Kim M, Walston JD, Won CW. Associations between elevated growth differentiation factor-15 and sarcopenia among community-dwelling older adults. J Gerontol A Biol Sci Med Sci 2021; 77:770-780. [PMID: 34255062 DOI: 10.1093/gerona/glab201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Growth differentiation factor 15 (GDF-15) is associated with disease progression, mitochondrial dysfunction, and mortality. Elevated GDF-15 level was recently reported to be associated with poorer physical performance in healthy adults. However, the association between serum GDF-15 level and sarcopenia in community-dwelling older adults has not been well characterized. METHODS We conducted cross-sectional (n = 929) and two-year prospective analyses (n = 788) among participants aged 70-84 years enrolled in the Korean Frailty and Aging Cohort Study. Participants with an estimated glomerular filtration rate of <60 mL/min/1.73 m 2 were excluded. Appendicular lean mass was measured using dual-energy X-ray absorptiometry. Sarcopenia status was determined according to the Asian Working Group for Sarcopenia-2019 algorithm. RESULTS At baseline, 16.6% of the participants had sarcopenia. Median GDF-15 concentration was higher in the sarcopenic group than in the non-sarcopenic group (1221 pg/mL vs. 1019 pg/mL, p<0.001). In the multivariate analysis adjusted for cardiometabolic risk and biological factors, the highest GDF-15 tertile (≥1245 pg/mL) had an increased likelihood of sarcopenia (odds ratio, 1.96; 95% confidence interval, 1.16-3.33) than the lowest tertile (<885 pg/mL). During the two-year follow-up period, 67 (10.1%) individuals without sarcopenia at baseline developed sarcopenia. There were no significant associations between baseline serum GDF-15 levels and incident sarcopenia or its components (all p>0.05). CONCLUSIONS Elevated GDF-15 was associated with prevalent sarcopenia but not able to predict incident sarcopenia in the 2-year follow-up. Further studies are needed to explore the pathophysiological roles of GDF-15 in the development of sarcopenia.
Collapse
Affiliation(s)
- Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, Korea
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland. USA.,Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang Won Won
- Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
41
|
Nga HT, Jang IY, Kim DA, Park SJ, Lee JY, Lee S, Kim JH, Lee E, Park JH, Lee YH, Yi HS, Kim BJ. Serum GDF15 Level Is Independent of Sarcopenia in Older Asian Adults. Gerontology 2021; 67:525-531. [PMID: 33690236 DOI: 10.1159/000513600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15), induced by tissue inflammation and mitochondrial stress, has received significant attention as a biomarker of mitochondrial dysfunction and has been implicated in various age-related diseases. However, the association between circulating GDF15 and sarcopenia-associated outcomes in older adults remains to be established. AIM To validate previous experimental data and to investigate the possible role of GDF15 in aging and muscle physiology in humans, this study examined serum GDF15 levels in relation to sarcopenia-related parameters in a cohort of older Asian adults. METHODS Muscle mass and muscle function-related parameters, such as grip strength, gait speed, chair stands, and short physical performance battery score were evaluated by experienced nurses in 125 geriatric participants with or without sarcopenia. Sarcopenia was diagnosed using the Asian-specific cutoff points. Serum GDF15 levels were measured using an enzyme immunoassay kit. RESULTS Serum GDF15 levels were not significantly different according to sarcopenia status, muscle mass, muscle strength, and physical performance and were not associated with the skeletal muscle index, grip strength, gait speed, time to complete 5 chair stands, and short physical performance battery score, regardless of adjustments for sex, age, and BMI. CONCLUSIONS These findings indicate that the definite role of GDF15 on muscle metabolism observed in animal models might not be evident in humans and that elevated GDF15 levels might not predict the risk for sarcopenia, at least in older Asian adults.
Collapse
Affiliation(s)
- Ha Thi Nga
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Il-Young Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Da Ae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Young Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seungjoo Lee
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeoung Hee Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunju Lee
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Hoon Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Ho Lee
- Protein Structure Group, Korea Basic Science Institute, Ochang, Cheongju, Republic of Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea, .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea,
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
42
|
From mitochondria to sarcopenia: Role of inflammaging and RAGE-ligand axis implication. Exp Gerontol 2021; 146:111247. [PMID: 33484891 DOI: 10.1016/j.exger.2021.111247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Sarcopenia is characterized by a loss of muscle mass and function that reduces mobility, diminishes quality of life, and can lead to fall-related injuries. At the intracellular level, mitochondrial population alterations are considered as key contributors to the complex etiology of sarcopenia. Mitochondrial dysfunctions lead to reactive oxygen species production, altered cellular proteostasis, and promotes inflammation. Interestingly, the receptor for advanced glycation end-products (RAGE) is a pro-inflammatory receptor involved in inflammaging. In this review, after a brief description of sarcopenia, we will describe how mitochondria and the pathways controlling mitochondrial population quality could participate to age-induced muscle mass and force loss. Finally, we will discuss the RAGE-ligand axis during aging and its possible connection with mitochondria to control inflammaging and sarcopenia.
Collapse
|
43
|
Tavenier J, Rasmussen LJH, Andersen AL, Houlind MB, Langkilde A, Andersen O, Petersen J, Nehlin JO. Association of GDF15 With Inflammation and Physical Function During Aging and Recovery After Acute Hospitalization: A Longitudinal Study of Older Patients and Age-Matched Controls. J Gerontol A Biol Sci Med Sci 2021; 76:964-974. [DOI: 10.1093/gerona/glab011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract
Growth differentiation factor 15 (GDF15) is a stress-induced cytokine. Its plasma levels increase during aging and acute illness. In older Patients and age-matched Controls, we evaluated whether GDF15 levels (i) were associated with recovery after acute illness, and (ii) reflected different trajectories of aging and longitudinal changes in health measures. Fifty-two older Patients (≥65 years) were included upon admission to the emergency department (ED). At 30 days after discharge (time of matching), Patients were matched 1:1 on age and sex with Controls who had not been hospitalized within 2 years of inclusion. Both groups were followed up after 1 year. We assessed plasma levels of GDF15 and inflammatory biomarkers, frailty, nutritional status (mini nutritional assessment short-form), physical and cognitive function, and metabolic biomarkers. In Patients, elevated GDF15 levels at ED admission were associated with poorer resolution of inflammation (soluble urokinase plasminogen activator receptor [suPAR]), slowing of gait speed, and declining nutritional status between admission and 30-day follow-up. At time of matching, Patients were frailer and overall less healthy than age-matched Controls. GDF15 levels were significantly associated with participant group, on average Patients had almost 60% higher GDF15 than age-matched Controls, and this difference was partly mediated by reduced physical function. Increases in GDF15 levels between time of matching and 1-year follow-up were associated with increases in levels of interleukin-6 in Patients, and tumor necrosis factor-α and suPAR in age-matched Controls. In older adults, elevated GDF15 levels were associated with signs of accelerated aging and with poorer recovery after acute illness.
Collapse
Affiliation(s)
- Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Line Jee Hartmann Rasmussen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Denmark
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | | | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Denmark
- The Capital Region Pharmacy, Herlev, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Anne Langkilde
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Denmark
- Emergency Department, Copenhagen University Hospital Amager and Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Janne Petersen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Denmark
- Center for Clinical Research and Prevention, Copenhagen University Hospital Frederiksberg, Denmark
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark
| | - Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Denmark
| |
Collapse
|
44
|
Kim H, Kim KM, Kang MJ, Lim S. Growth differentiation factor-15 as a biomarker for sarcopenia in aging humans and mice. Exp Gerontol 2020; 142:111115. [PMID: 33069782 DOI: 10.1016/j.exger.2020.111115] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Sarcopenia is a pathologic status characterized by impaired muscle strength or function accompanying decreased muscle mass. It results in increased vulnerability to chronic diseases. Despite growing clinical concerns about sarcopenia in an aging society, there are few validated biomarkers for age-related sarcopenia. We tested the potential of growth differentiation factor-15 (GDF-15) as a biomarker for sarcopenia in mice and humans across wide age ranges. We used four groups of mice (6, 10, 14, and 18 months old) to explore the association between GDF-15 levels and age, muscle mass, and endurance capacity. Among those four groups, 6- and 18-month-old mice were exposed to 8 weeks of treadmill exercise. The GDF-15 levels were measured in serum and muscle at baseline and after exercise intervention. The body composition was assessed using animal dual-energy X-ray absorptiometry (DXA). GDF-15 levels in tissue and serum increased with age in these mice. The serum levels of GDF-15 had a strong negative correlation with both muscle weight and exercise endurance capacity. Expression of GDF-15 in muscle also had a negative trend with muscle weight and endurance capacity. The muscle expression of GDF-15 was significantly attenuated after 8 weeks of exercise compared with the group without exercise, particularly in older mice. GDF-15 levels were also related to functional capacity and showed responses to therapeutic exercise intervention in this model. We also measured serum GDF-15 levels and muscle mass using DXA in healthy human adults (19 men and 18 women). As in mice, serum levels of GDF-15 were correlated positively with age, but negatively with muscle mass in these subjects. These findings support the potential of GDF-15 as a biomarker for age-related sarcopenia.
Collapse
Affiliation(s)
- Hoyoun Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kyoung Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, and Seoul National University College of Medicine, Seongnam, Korea.
| | - Min Ji Kang
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; National Fitness Team, Korea Sports Promotion Foundation, Seoul, Republic of Korea
| | - Soo Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, and Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
45
|
Oba K, Ishikawa J, Tamura Y, Fujita Y, Ito M, Iizuka A, Fujiwara Y, Kodera R, Toba A, Toyoshima K, Chiba Y, Mori S, Tanaka M, Ito H, Harada K, Araki A. Serum growth differentiation factor 15 level is associated with muscle strength and lower extremity function in older patients with cardiometabolic disease. Geriatr Gerontol Int 2020; 20:980-987. [DOI: 10.1111/ggi.14021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Kazuhito Oba
- Departments of Diabetes Metabolism, and Endocrinology Tokyo Japan
| | - Joji Ishikawa
- Cardiology Tokyo Metropolitan Geriatric Hospital Tokyo Japan
| | - Yoshiaki Tamura
- Departments of Diabetes Metabolism, and Endocrinology Tokyo Japan
| | | | - Masafumi Ito
- Research Team for Functional Biogerontology Tokyo Japan
| | - Ai Iizuka
- Departments of Diabetes Metabolism, and Endocrinology Tokyo Japan
- Research Team for Social Participation and Community Tokyo Metropolitan Institute of Gerontology Tokyo Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Tokyo Metropolitan Institute of Gerontology Tokyo Japan
| | - Remi Kodera
- Departments of Diabetes Metabolism, and Endocrinology Tokyo Japan
| | - Ayumi Toba
- Cardiology Tokyo Metropolitan Geriatric Hospital Tokyo Japan
| | - Kenji Toyoshima
- Departments of Diabetes Metabolism, and Endocrinology Tokyo Japan
| | - Yuko Chiba
- Departments of Diabetes Metabolism, and Endocrinology Tokyo Japan
| | - Seijiro Mori
- Departments of Diabetes Metabolism, and Endocrinology Tokyo Japan
| | - Masashi Tanaka
- Department of Neurology Juntendo University Graduate School of Medicine Tokyo Japan
| | - Hideki Ito
- Departments of Diabetes Metabolism, and Endocrinology Tokyo Japan
| | - Kazumasa Harada
- Cardiology Tokyo Metropolitan Geriatric Hospital Tokyo Japan
| | - Atsushi Araki
- Departments of Diabetes Metabolism, and Endocrinology Tokyo Japan
| |
Collapse
|
46
|
Yue T, Lu H, Yao XM, Du X, Wang LL, Guo DD, Liu YM. Elevated serum growth differentiation factor 15 in multiple system atrophy patients: A case control study. World J Clin Cases 2020; 8:2473-2483. [PMID: 32607324 PMCID: PMC7322433 DOI: 10.12998/wjcc.v8.i12.2473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a serious progressive neurodegenerative disease. Early diagnosis of MSA is very difficult, and diagnostic biomarkers are limited. Growth differentiation factor 15 (GDF15) is involved in the differentiation and progression of the central nervous system, and is widely distributed in peripheral blood, which may be a novel biomarker for MSA.
AIM To determine serum GDF15 levels, related factors and their potential diagnostic value in MSA patients, compared with Parkinson’s disease (PD) patients and healthy controls.
METHODS A case-control study was conducted, including 49 MSA patients, 50 PD patients and 50 healthy controls. Serum GDF15 levels were measured by human enzyme-linked immunosorbent assay, and the differences between the MSA, PD and control groups were analyzed. Further investigations were performed in different MSA subgroups according to age of onset, sex, clinical subtypes, diagnostic criteria, and disease duration. Receiver-operating characteristic curve analysis was used to evaluate the diagnostic value of GDF15, especially for the differential diagnosis between MSA and PD.
RESULTS Serum GDF15 levels were significantly higher in MSA patients than in PD patients and healthy controls (P = 0.000). Males and those with a disease duration of more than three years showed higher serum GDF15 levels (P = 0.043 and 0.000; respectively). Serum GDF15 levels may be a potential diagnostic biomarker for MSA patients compared with healthy controls and PD patients (cutoff: 470.42 pg/mL, sensitivity: 85.7%, specificity: 88.0%; cutoff: 1075.91 pg/mL, sensitivity: 51.0%, specificity: 96.0%; respectively).
CONCLUSION Serum GDF15 levels are significantly higher in MSA patients and provide suggestions on the etiology of MSA.
Collapse
Affiliation(s)
- Tao Yue
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- Department of Gerontology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Hui Lu
- Department of Ophthalmology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Xiao-Mei Yao
- Department of Gerontology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, Shandong Province, China
| | - Xia Du
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong Province, China
| | - Ling-Ling Wang
- Department of Neurology, Yantaishan Hospital, Yantai 264001, Shandong Province, China
| | - Dan-Dan Guo
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Ming Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
47
|
Herpich C, Franz K, Ost M, Otten L, Coleman V, Klaus S, Müller-Werdan U, Norman K. Associations Between Serum GDF15 Concentrations, Muscle Mass, and Strength Show Sex-Specific Differences in Older Hospital Patients. Rejuvenation Res 2020; 24:14-19. [PMID: 32475214 DOI: 10.1089/rej.2020.2308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aging is accompanied by a progressive decline of muscle mass and strength and also higher levels of circulating cytokines such as growth differentiation factor 15 (GDF15). Studies evaluating the association of GDF15 with muscle mass and strength are rare. In this analysis, we investigated GDF15 concentrations and their relationship with muscle mass and strength in older men compared with women. GDF15 serum concentrations were measured in 103 (60 years and older) hospital patients and an age-matched control group with an immunosorbent assay. Skeletal muscle mass was determined with the bioelectrical impedance analysis. Grip strength and knee extension strength were assessed and normalized for height. Associations between GDF15 concentrations and muscle mass and strength were evaluated with general linear models. Male patients showed higher levels of GDF15 compared with female patients (p = 0.021). Elevated GDF15 concentrations were associated with lower measures of muscle mass, exclusively in men, after adjustment for age and number of drugs per day. Our results indicate sex differences between associations of GDF15 with muscle mass and strength parameters in a cohort of older hospital patients.
Collapse
Affiliation(s)
- Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Kristina Franz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Research Group on Geriatrics, Working Group Nutrition and Body Composition, Berlin, Germany
| | - Mario Ost
- Department of Physiology and Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Lindsey Otten
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Research Group on Geriatrics, Working Group Nutrition and Body Composition, Berlin, Germany
| | - Verena Coleman
- Department of Physiology and Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Susanne Klaus
- Department of Physiology and Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Ursula Müller-Werdan
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Research Group on Geriatrics, Working Group Nutrition and Body Composition, Berlin, Germany.,Protestant Geriatric Centre Berlin, Berlin, Germany
| | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Research Group on Geriatrics, Working Group Nutrition and Body Composition, Berlin, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| |
Collapse
|
48
|
Conte M, Martucci M, Mosconi G, Chiariello A, Cappuccilli M, Totti V, Santoro A, Franceschi C, Salvioli S. GDF15 Plasma Level Is Inversely Associated With Level of Physical Activity and Correlates With Markers of Inflammation and Muscle Weakness. Front Immunol 2020; 11:915. [PMID: 32477368 PMCID: PMC7235447 DOI: 10.3389/fimmu.2020.00915] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) is a stress molecule produced in response to mitochondrial, metabolic and inflammatory stress with a number of beneficial effects on metabolism. However, at the level of skeletal muscle it is still unclear whether GDF15 is beneficial or detrimental. The aim of the study was to analyse the levels of circulating GDF15 in people of different age, characterized by different level of physical activity and to seek for correlation with hematological parameters related to inflammation. The plasma concentration of GDF15 was determined in a total of 228 subjects in the age range from 18 to 83 years. These subjects were recruited and divided into three different groups based on the level of physical activity: inactive patients with lower limb mobility impairment, active subjects represented by amateur endurance cyclists, and healthy controls taken from the general population. Cyclists were sampled before and after a strenuous physical bout (long distance cycling race). The plasma levels of GDF15 increase with age and are inversely associated with active lifestyle. In particular, at any age, circulating GDF15 is significantly higher in inactive patients and significantly lower in active people, such as cyclists before the race, with respect to control subjects. However, the strenuous physical exercise causes in cyclists a dramatic increase of GDF15 plasma levels, that after the race are similar to that of patients. Moreover, GDF15 plasma levels significantly correlate with quadriceps torque in patients and with the number of total leukocytes, neutrophils and lymphocytes in both cyclists (before and after race) and patients. Taken together, our data indicate that GDF15 is associated with decreased muscle performance and increased inflammation.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giovanni Mosconi
- Nephrology and Dialysis, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Cappuccilli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Valentina Totti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
Osawa Y, Semba RD, Fantoni G, Candia J, Biancotto A, Tanaka T, Bandinelli S, Ferrucci L. Plasma proteomic signature of the risk of developing mobility disability: A 9-year follow-up. Aging Cell 2020; 19:e13132. [PMID: 32157804 PMCID: PMC7189986 DOI: 10.1111/acel.13132] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Mobility disability is a powerful indicator of poor health in older adults. The biological and pathophysiological mechanism underlying the development of mobility disability remains unknown. This study conducted a data-driven discovery phase investigation to identify plasma proteins that predict the incidence of mobility disability in community-dwelling older adults without mobility disability at baseline. METHODS We investigated 660 women and men, aged 71.9 ± 6.0 (60-94) years, who participated in the Invecchiare in Chianti, "Aging in the Chianti Area" study and completed the 400-m walk at fast pace (400-m walk) at enrollment. Median follow-up time was 8.57 [interquartile, 3.20-9.08] years. SOMAscan technology was used to measure 1,301 plasma proteins at enrollment. The incident of mobility disability was defined as inability to complete the 400-m walk. Protein-specific Cox proportional hazard model was adjusted for sex, age, and other important covariates. RESULTS Plasma levels of 75 proteins predicted mobility disability (p < .05). Significant proteins were enriched for the KEGG "PI3K-Akt signaling," "phagosomes," and "cytokine-cytokine receptor interaction" pathways. After multiple comparison adjustment, plasma cathepsin S (CTSS; hazard ratio [HR] 1.33, 95% CI: 1.17, 1.51, q = 0.007), growth/differentiation factor 15 (GDF15; HR: 1.45, 95% CI: 1.23, 1.72, q = 0.007), and thrombospondin-2 (THBS2; HR: 1.44, 95% CI: 1.22, 1.69, q = 0.007) remained significantly associated with high risk of losing mobility. CONCLUSION CTSS, GDF15, and THBS2 are novel blood biomarkers associated with new mobility disability in community-dwelling individuals. Overall, our analysis suggests that cellular senescence and inflammation should be targeted for prevention of mobility disability.
Collapse
Affiliation(s)
- Yusuke Osawa
- Longitudinal Study SectionTranslational Gerontology BranchNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Richard D. Semba
- Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Giovanna Fantoni
- Clinical Research CoreNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Julián Candia
- Laboratory of Human CarcinogenesisCenter for Cancer ResearchNational Cancer InstituteNIHBethesdaMDUSA
| | - Angélique Biancotto
- Precision Immunology, Immunology and Inflammation Research Therapeutic AreaSanofiCambridgeMAUSA
| | - Toshiko Tanaka
- Longitudinal Study SectionTranslational Gerontology BranchNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | | | - Luigi Ferrucci
- Longitudinal Study SectionTranslational Gerontology BranchNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| |
Collapse
|
50
|
Semba RD, Tian Q, Carlson MC, Xue QL, Ferrucci L. Motoric cognitive risk syndrome: Integration of two early harbingers of dementia in older adults. Ageing Res Rev 2020; 58:101022. [PMID: 31996326 PMCID: PMC7697173 DOI: 10.1016/j.arr.2020.101022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022]
Abstract
Dementia is characterized by a long preclinical phase that may last years to decades before the onset of mild cognitive impairment. Slow gait speed and subjective memory complaint commonly co-occur during this preclinical phase, and each is a strong independent predictor of cognitive decline and dementia. Motoric cognitive risk (MCR) syndrome is a pre-dementia syndrome that combines these two early harbingers of dementia. The risk of cognitive decline or dementia is stronger for MCR than for either slow gait speed or subjective memory complaint alone. Slow gait speed and subjective memory complaint have several common risk factors: cardiovascular disease, diabetes mellitus, abnormal cortisol profiles, low vitamin D levels, brain atrophy with decreased hippocampal volume, and increased deposition of beta-amyloid in the brain. The underlying pathogenesis of MCR remains poorly understood. Metabolomics and proteomics have great potential to provide new insights into biological pathways involved in MCR during the long preclinical phase preceding dementia.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Qu Tian
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michelle C Carlson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Qian-Li Xue
- Departments of Medicine, Biostatistics, and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|