1
|
Wang TR, Ning X, Zheng SS, Li Y, Lu ZJ, Meng HH, Ge BJ, Kozlowski G, Yan MX, Song YG. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species. PLANT DIVERSITY 2025; 47:53-67. [PMID: 40041560 PMCID: PMC11873581 DOI: 10.1016/j.pld.2024.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 03/06/2025]
Abstract
Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change. Quercus is a keystone genus in Northern Hemisphere forests, and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations. Here we used a newly sequenced genome of Quercus gilva, an evergreen oak species from East Asia, with 18 published Fagales genomes to determine how Fagaceae genomes have evolved, identify genomic footprints of ecological adaptability in oaks in general, as well as between evergreen and deciduous oaks. We found that oak species exhibited a higher degree of genomic conservation and stability, as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events. In addition, we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense (e.g., cuticle biosynthesis and oxidosqualene cyclase genes), which may represent the foundation for the ecological adaptation of oak species. Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks. This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic, genome evolutionary, and functional genomic analyses.
Collapse
Affiliation(s)
- Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xin Ning
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zi-Jia Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin-Jie Ge
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
- Natural History Museum Fribourg, Fribourg, Switzerland
| | - Meng-Xiao Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Chen XY, Zhou BF, Shi Y, Liu H, Liang YY, Ingvarsson PK, Wang B. Evolution of the Correlated Genomic Variation Landscape Across a Divergence Continuum in the Genus Castanopsis. Mol Biol Evol 2024; 41:msae191. [PMID: 39248185 PMCID: PMC11421576 DOI: 10.1093/molbev/msae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Collapse
Affiliation(s)
- Xue-Yan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
3
|
Modica A, Lalagüe H, Muratorio S, Scotti I. Rolling down that mountain: microgeographical adaptive divergence during a fast population expansion along a steep environmental gradient in European beech. Heredity (Edinb) 2024; 133:99-112. [PMID: 38890557 PMCID: PMC11286953 DOI: 10.1038/s41437-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Forest tree populations harbour high genetic diversity thanks to large effective population sizes and strong gene flow, allowing them to diversify through adaptation to local environmental pressures within dispersal distance. Many tree populations also experienced historical demographic fluctuations, including spatial population contraction or expansions at various temporal scales, which may constrain their ability to adapt to environmental variations. Our aim is to investigate how recent contraction and expansion events interfere with local adaptation, by studying patterns of adaptive divergence between closely related stands undergoing environmentally contrasted conditions, and having or not recently expanded. To investigate genome-wide signatures of local adaptation while accounting for demography, we analysed divergence in a European beech population by testing pairwise differentiation among four tree stands at ~35k Single Nucleotide Polymorphisms from ~9k genomic regions. We applied three divergence outlier search methods resting on different assumptions and targeting either single SNPs or contiguous genomic regions, while accounting for the effect of population size variations on genetic divergence. We found 27 signals of selective signatures in 19 target regions. Putatively adaptive divergence involved all stand pairs. We retrieved signals both when comparing old-growth stands and recently colonised areas and when comparing stands within the old-growth area. Therefore, adaptive divergence processes have taken place both over short time spans, under strong environmental contrasts, and over short ecological gradients, in populations that have been stable in the long term. This suggests that standing genetic variation supports local, microgeographic divergence processes, which can maintain genetic diversity at the landscape level.
Collapse
Affiliation(s)
- Andrea Modica
- INRAE, URFM, 228, Route de l'Aérodrome, 84914, Avignon, France
| | - Hadrien Lalagüe
- INRAE, EcoFoG, Campus agronomique, 97310, Kourou, French Guiana
| | - Sylvie Muratorio
- INRAE, EcoBioP, 173, Route de Saint-Jean-de-Luz RD 918, 64310, Saint-Pée-sur-Nivelle, France
| | - Ivan Scotti
- INRAE, URFM, 228, Route de l'Aérodrome, 84914, Avignon, France.
| |
Collapse
|
4
|
Müller M, Leuschner C, Weithmann G, Weigel R, Banzragch BE, Steiner W, Gailing O. A genome-wide genetic association study reveals SNPs significantly associated with environmental variables and specific leaf area in European beech. PHYSIOLOGIA PLANTARUM 2024; 176:e14334. [PMID: 38705836 DOI: 10.1111/ppl.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
European beech is negatively affected by climate change and a further growth decline is predicted for large parts of its distribution range. Despite the importance of this species, little is known about its genetic adaptation and especially the genetic basis of its physiological traits. Here, we used genotyping by sequencing to identify SNPs in 43 German European beech populations growing under different environmental conditions. In total, 28 of these populations were located along a precipitation and temperature gradient in northern Germany, and single tree-based hydraulic and morphological traits were available. We obtained a set of 13,493 high-quality SNPs that were used for environmental and SNP-trait association analysis. In total, 22 SNPs were identified that were significantly associated with environmental variables or specific leaf area (SLA). Several SNPs were located in genes related to stress response. The majority of the significant SNPs were located in non-coding (intergenic and intronic) regions. These may be in linkage disequilibrium with the causative coding or regulatory regions. Our study gives insights into the genetic basis of abiotic adaptation in European beech, and provides genetic resources that can be used in future studies on this species. Besides clear patterns of local adaptation to environmental conditions of the investigated populations, the analyzed morphological and hydraulic traits explained most of the explainable genetic variation. Thus, they could successfully be altered in tree breeding programs, which may help to increase the adaptation of European beech to changing environmental conditions in the future.
Collapse
Affiliation(s)
- Markus Müller
- University of Göttingen, Forest Genetics and Forest Tree Breeding, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| | - Christoph Leuschner
- Department Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, Göttingen, Germany
| | - Greta Weithmann
- Department Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| | - Robert Weigel
- Department Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
- Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Bat-Enerel Banzragch
- Department Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
- Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Wilfried Steiner
- Department Forest Genetic Resources, Northwest German Forest Research Institute, Hann. Münden, Germany
| | - Oliver Gailing
- University of Göttingen, Forest Genetics and Forest Tree Breeding, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Zhang Y, Fu Y, Xian W, Li X, Feng Y, Bu F, Shi Y, Chen S, van Velzen R, Battenberg K, Berry AM, Salgado MG, Liu H, Yi T, Fournier P, Alloisio N, Pujic P, Boubakri H, Schranz ME, Delaux PM, Wong GKS, Hocher V, Svistoonoff S, Gherbi H, Wang E, Kohlen W, Wall LG, Parniske M, Pawlowski K, Normand P, Doyle JJ, Cheng S. Comparative phylogenomics and phylotranscriptomics provide insights into the genetic complexity of nitrogen-fixing root-nodule symbiosis. PLANT COMMUNICATIONS 2024; 5:100671. [PMID: 37553834 PMCID: PMC10811378 DOI: 10.1016/j.xplc.2023.100671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.
Collapse
Affiliation(s)
- Yu Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuan Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Fengjiao Bu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yan Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shiyu Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Robin van Velzen
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Kai Battenberg
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Marco G Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Hui Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Tingshuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Pascale Fournier
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Nicole Alloisio
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Valerie Hocher
- French National Research Institute for Sustainable Development (IRD), UMR LSTM (IRD/CIRAD/INRAe/Montpellier University/Supagro)- Campus International Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Sergio Svistoonoff
- French National Research Institute for Sustainable Development (IRD), UMR LSTM (IRD/CIRAD/INRAe/Montpellier University/Supagro)- Campus International Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Hassen Gherbi
- French National Research Institute for Sustainable Development (IRD), UMR LSTM (IRD/CIRAD/INRAe/Montpellier University/Supagro)- Campus International Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Luis G Wall
- Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | - Martin Parniske
- Faculty of Biology, Genetics, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Jeffrey J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
6
|
Garrigues R, Dox I, Flores O, Marchand LJ, Malyshev AV, Beemster G, AbdElgawad H, Janssens I, Asard H, Campioli M. Late autumn warming can both delay and advance spring budburst through contrasting effects on bud dormancy depth in Fagus sylvatica L. TREE PHYSIOLOGY 2023; 43:1718-1730. [PMID: 37364048 DOI: 10.1093/treephys/tpad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
The current state of knowledge on bud dormancy is limited. However, expanding such knowledge is crucial in order to properly model forest responses and feedback to future climate. Recent studies have shown that warming can decrease chilling accumulation and increase dormancy depth, thereby inducing delayed budburst in European beech (Fagus sylvatica L). Whether fall warming can advance spring phenology is unclear. To investigate the effect of warming on endodormancy of deciduous trees, we tested the impact of mild elevated temperature (+2.5-3.5 °C; temperature, on average, kept at 10 °C) in mid and late autumn on the bud dormancy depth and spring phenology of beech. We studied saplings by inducing periods of warming in greenhouses over a 2-year period. Even though warming reduced chilling accumulation in both years, we observed that the response of dormancy depth and spring budburst were year-specific. We found that warming during endodormancy peak could decrease the bud dormancy depth and therefore advance spring budburst. This effect appears to be modulated by factors such as the date of senescence onset and forcing intensity during endodormancy. Results from this study suggest that not only chilling but also forcing controls bud development during endodormancy and that extra forcing in autumn can offset reduced chilling.
Collapse
Affiliation(s)
- Romain Garrigues
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Inge Dox
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Omar Flores
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Lorène J Marchand
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Andrey V Malyshev
- Institute for Botany and Landscape Ecology, Experimental Plant Ecology, University of Greifswald, Soldmannstraße 15, 17487 Greifswald, Germany
| | - Gerrit Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
- Department of Botany and Microbiology, Science Faculty, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ivan Janssens
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Matteo Campioli
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| |
Collapse
|
7
|
Marchesini A, Silverj A, Torre S, Rota-Stabelli O, Girardi M, Passeri I, Fracasso I, Sebastiani F, Vernesi C. First genome-wide data from Italian European beech (Fagus sylvatica L.): Strong and ancient differentiation between Alps and Apennines. PLoS One 2023; 18:e0288986. [PMID: 37471380 PMCID: PMC10358878 DOI: 10.1371/journal.pone.0288986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The European beech (Fagus sylvatica L.) is one of the most widespread forest trees in Europe whose distribution and intraspecific diversity has been largely shaped by repeated glacial cycles. Previous studies, mainly based on palaeobotanical evidence and a limited set of chloroplast and nuclear genetic markers, highlighted a complex phylogeographic scenario, with southern and western Europe characterized by a rather heterogeneous genetic structure, as a result of recolonization from different glacial refugia. Despite its ecological and economic importance, the genome of this broad-leaved tree has only recently been assembled, and its intra-species genomic diversity is still largely unexplored. Here, we performed whole-genome resequencing of nine Italian beech individuals sampled from two stands located in the Alpine and Apennine mountain ranges. We investigated patterns of genetic diversity at chloroplast, mitochondrial and nuclear genomes and we used chloroplast genomes to reconstruct a temporally-resolved phylogeny. Results allowed us to test European beech differentiation on a whole-genome level and to accurately date their divergence time. Our results showed comparable, relatively high levels of genomic diversity in the two populations and highlighted a clear differentiation at chloroplast, mitochondrial and nuclear genomes. The molecular clock analysis indicated an ancient split between the Alpine and Apennine populations, occurred between the Günz and the Riss glaciations (approximately 660 kyrs ago), suggesting a long history of separation for the two gene pools. This information has important conservation implications in the context of adaptation to ongoing climate changes.
Collapse
Affiliation(s)
- Alexis Marchesini
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
- Research Institute on Terrestrial Ecosystems (IRET), The National Research Council of Italy (CNR), Porano (Terni), Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Sara Torre
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
- Plant Protection Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| | - Matteo Girardi
- Conservation Genomics Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| | - Iacopo Passeri
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| |
Collapse
|
8
|
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, Bombarely A, Crottini A, Gallo GR, Godoy JA, Jentoft S, Malukiewicz J, Mouton A, Oomen RA, Paez S, Palsbøll PJ, Pampoulie C, Ruiz-López MJ, Secomandi S, Svardal H, Theofanopoulou C, de Vries J, Waldvogel AM, Zhang G, Jarvis ED, Bálint M, Ciofi C, Waterhouse RM, Mazzoni CJ, Höglund J. How genomics can help biodiversity conservation. Trends Genet 2023; 39:545-559. [PMID: 36801111 DOI: 10.1016/j.tig.2023.01.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
Collapse
Affiliation(s)
- Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Carlos Fernandes
- CE3C - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal
| | - Giulio Formenti
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Iliana Bista
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, The Netherlands; Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Paul R Berg
- NIVA - Norwegian Institute for Water Research, Økernveien, 94, 0579 Oslo, Norway; Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Christoph Bleidorn
- University of Göttingen, Department of Animal Evolution and Biodiversity, Untere Karspüle, 2, 37073, Göttingen, Germany
| | | | - Angelica Crottini
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Rua Padre Armando Quintas, 7, 4485-661, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | - José A Godoy
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Joanna Malukiewicz
- Primate Genetics Laborator, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Alice Mouton
- InBios - Conservation Genetics Lab, University of Liege, Chemin de la Vallée 4, 4000, Liege, Belgium
| | - Rebekah A Oomen
- Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Sadye Paez
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Per J Palsbøll
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh, 9747, AG, Groningen, The Netherlands; Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657, USA
| | - Christophe Pampoulie
- Marine and Freshwater Research Institute, Fornubúðir, 5,220, Hanafjörður, Iceland
| | - María J Ruiz-López
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Hannes Svardal
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Constantina Theofanopoulou
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA; Hunter College, City University of New York, NY, USA
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Ann-Marie Waldvogel
- Institute of Zoology, University of Cologne, Zülpicherstrasse 47b, D-50674, Cologne, Germany
| | - Guojie Zhang
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Erich D Jarvis
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Claudio Ciofi
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino, (FI) 50019, Italy
| | - Robert M Waterhouse
- University of Lausanne, Department of Ecology and Evolution, Le Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Camila J Mazzoni
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str 17, 10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Koenigin-Luise-Str 6-8, 14195 Berlin, Germany
| | - Jacob Höglund
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75246, Uppsala, Sweden.
| |
Collapse
|
9
|
Wang WB, He XF, Yan XM, Ma B, Lu CF, Wu J, Zheng Y, Wang WH, Xue WB, Tian XC, Guo JF, El-Kassaby YA, Porth I, Leng PS, Hu ZH, Mao JF. Chromosome-scale genome assembly and insights into the metabolome and gene regulation of leaf color transition in an important oak species, Quercus dentata. THE NEW PHYTOLOGIST 2023; 238:2016-2032. [PMID: 36792969 DOI: 10.1111/nph.18814] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Quercus dentata Thunb., a dominant forest tree species in northern China, has significant ecological and ornamental value due to its adaptability and beautiful autumn coloration, with color changes from green to yellow into red resulting from the autumnal shifts in leaf pigmentation. However, the key genes and molecular regulatory mechanisms for leaf color transition remain to be investigated. First, we presented a high-quality chromosome-scale assembly for Q. dentata. This 893.54 Mb sized genome (contig N50 = 4.21 Mb, scaffold N50 = 75.55 Mb; 2n = 24) harbors 31 584 protein-coding genes. Second, our metabolome analyses uncovered pelargonidin-3-O-glucoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside as the main pigments involved in leaf color transition. Third, gene co-expression further identified the MYB-bHLH-WD40 (MBW) transcription activation complex as central to anthocyanin biosynthesis regulation. Notably, transcription factor (TF) QdNAC (QD08G038820) was highly co-expressed with this MBW complex and may regulate anthocyanin accumulation and chlorophyll degradation during leaf senescence through direct interaction with another TF, QdMYB (QD01G020890), as revealed by our further protein-protein and DNA-protein interaction assays. Our high-quality genome assembly, metabolome, and transcriptome resources further enrich Quercus genomics and will facilitate upcoming exploration of ornamental values and environmental adaptability in this important genus.
Collapse
Affiliation(s)
- Wen-Bo Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiang-Feng He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue-Mei Yan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bo Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Cun-Fu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Wen-He Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Wen-Bo Xue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xue-Chan Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jing-Fang Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Ping-Sheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Zeng-Hui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 90187, Sweden
| |
Collapse
|
10
|
Miehe W, Czempik L, Klebl F, Lohaus G. Sugar concentrations and expression of SUTs suggest active phloem loading in tall trees of Fagus sylvatica and Quercus robur. TREE PHYSIOLOGY 2023; 43:805-816. [PMID: 36579830 DOI: 10.1093/treephys/tpac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 05/13/2023]
Abstract
Phloem loading and sugar distribution are key steps for carbon partitioning in herbaceous and woody species. Although the phloem loading mechanisms in herbs are well studied, less is known for trees. It was shown for saplings of Fagus sylvatica L. and Quercus robur L. that the sucrose concentration in the phloem sap was higher than in the mesophyll cells, which suggests that phloem loading of sucrose involves active steps. However, the question remains whether this also applies for tall trees. To approach this question, tissue-specific sugar and starch contents of small and tall trees of F. sylvatica and Q. robur as well as the sugar concentration in the subcellular compartments of mesophyll cells were examined. Moreover, sucrose uptake transporters (SUTs) were analyzed by heterology expression in yeast and the tissue-specific expressions of SUTs were investigated. Sugar content in leaves of the canopy (11 and 26 m height) was up to 25% higher compared with that of leaves of small trees of F. sylvatica and Q. robur (2 m height). The sucrose concentration in the cytosol of mesophyll cells from tall trees was between 120 and 240 mM and about 4- to 8-fold lower than the sucrose concentration in the phloem sap of saplings. The analyzed SUT sequences of both tree species cluster into three types, similar to SUTs from other plant species. Heterologous expression in yeast confirmed that all analyzed SUTs are functional sucrose transporters. Moreover, all SUTs were expressed in leaves, bark and wood of the canopy and the expression levels in small and tall trees were similar. The results show that the phloem loading in leaves of tall trees of F. sylvatica and Q. robur probably involves active steps, because there is an uphill concentration gradient for sucrose. SUTs may be involved in phloem loading.
Collapse
Affiliation(s)
- Wiebke Miehe
- School of Mathematics and Natural Sciences, Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal 42119, Germany
| | - Laura Czempik
- School of Mathematics and Natural Sciences, Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal 42119, Germany
| | - Franz Klebl
- Department of Biology, Molecular Plant Physiology, University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Gertrud Lohaus
- School of Mathematics and Natural Sciences, Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal 42119, Germany
| |
Collapse
|
11
|
Huang WC, Liao B, Liu H, Liang YY, Chen XY, Wang B, Xia H. A chromosome-scale genome assembly of Castanopsis hystrix provides new insights into the evolution and adaptation of Fagaceae species. FRONTIERS IN PLANT SCIENCE 2023; 14:1174972. [PMID: 37215286 PMCID: PMC10197965 DOI: 10.3389/fpls.2023.1174972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 05/24/2023]
Abstract
Fagaceae species dominate forests and shrublands throughout the Northern Hemisphere, and have been used as models to investigate the processes and mechanisms of adaptation and speciation. Compared with the well-studied genus Quercus, genomic data is limited for the tropical-subtropical genus Castanopsis. Castanopsis hystrix is an ecologically and economically valuable species with a wide distribution in the evergreen broad-leaved forests of tropical-subtropical Asia. Here, we present a high-quality chromosome-scale reference genome of C. hystrix, obtained using a combination of Illumina and PacBio HiFi reads with Hi-C technology. The assembled genome size is 882.6 Mb with a contig N50 of 40.9 Mb and a BUSCO estimate of 99.5%, which are higher than those of recently published Fagaceae species. Genome annotation identified 37,750 protein-coding genes, of which 97.91% were functionally annotated. Repeat sequences constituted 50.95% of the genome and LTRs were the most abundant repetitive elements. Comparative genomic analysis revealed high genome synteny between C. hystrix and other Fagaceae species, despite the long divergence time between them. Considerable gene family expansion and contraction were detected in Castanopsis species. These expanded genes were involved in multiple important biological processes and molecular functions, which may have contributed to the adaptation of the genus to a tropical-subtropical climate. In summary, the genome assembly of C. hystrix provides important genomic resources for Fagaceae genomic research communities, and improves understanding of the adaptation and evolution of forest trees.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Borong Liao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hui Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Hanhan Xia
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
12
|
Liu D, Xie X, Tong B, Zhou C, Qu K, Guo H, Zhao Z, El-Kassaby YA, Li W, Li W. A high -quality genome assembly and annotation of Quercus acutissima Carruth. FRONTIERS IN PLANT SCIENCE 2022; 13:1068802. [PMID: 36507419 PMCID: PMC9729791 DOI: 10.3389/fpls.2022.1068802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Quercus acutissima is an economic and ecological tree species often used for afforestation of arid and semi-arid lands and is considered as an excellent tree for soil and water conservation. METHODS Here, we combined PacBio long reads, Hi-C, and Illumina short reads to assemble Q. acutissima genome. RESULTS We generated a 957.1 Mb genome with a contig N50 of 1.2 Mb and scaffold N50 of 77.0 Mb. The repetitive sequences constituted 55.63% of the genome, among which long terminal repeats were the majority and accounted for 23.07% of the genome. Ab initio, homology-based and RNA sequence-based gene prediction identified 29,889 protein-coding genes, of which 82.6% could be functionally annotated. Phylogenetic analysis showed that Q. acutissima and Q. variabilis were differentiated around 3.6 million years ago, and showed no evidence of species-specific whole genome duplication. CONCLUSION The assembled and annotated high-quality Q. acutissima genome not only promises to accelerate the species molecular biology studies and breeding, but also promotes genome level evolutionary studies.
Collapse
Affiliation(s)
- Dan Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Chengcheng Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai Qu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Zhiheng Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Wei Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenqing Li
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| |
Collapse
|
13
|
Alves S, Braga Â, Parreira D, Alhinho AT, Silva H, Ramos MJN, Costa MMR, Morais‐Cecílio L. Genome-wide identification, phylogeny, and gene duplication of the epigenetic regulators in Fagaceae. PHYSIOLOGIA PLANTARUM 2022; 174:e13788. [PMID: 36169620 PMCID: PMC9828519 DOI: 10.1111/ppl.13788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 05/04/2023]
Abstract
Epigenetic regulators are proteins involved in controlling gene expression. Information about the epigenetic regulators within the Fagaceae, a relevant family of trees and shrubs of the northern hemisphere ecosystems, is scarce. With the intent to characterize these proteins in Fagaceae, we searched for orthologs of DNA methyltransferases (DNMTs) and demethylases (DDMEs) and Histone modifiers involved in acetylation (HATs), deacetylation (HDACs), methylation (HMTs), and demethylation (HDMTs) in Fagus, Quercus, and Castanea genera. Blast searches were performed in the available genomes, and freely available RNA-seq data were used to de novo assemble transcriptomes. We identified homologs of seven DNMTs, three DDMEs, six HATs, 11 HDACs, 32 HMTs, and 21 HDMTs proteins. Protein analysis showed that most of them have the putative characteristic domains found in these protein families, which suggests their conserved function. Additionally, to elucidate the evolutionary history of these genes within Fagaceae, paralogs were identified, and phylogenetic analyses were performed with DNA and histone modifiers. We detected duplication events in all species analyzed with higher frequency in Quercus and Castanea and discuss the evidence of transposable elements adjacent to paralogs and their involvement in gene duplication. The knowledge gathered from this work is a steppingstone to upcoming studies concerning epigenetic regulation in this economically important family of Fagaceae.
Collapse
Affiliation(s)
- Sofia Alves
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, University of LisbonLisboaPortugal
| | - Ângelo Braga
- Instituto Superior de Agronomia, University of LisbonLisboaPortugal
| | - Denise Parreira
- Instituto Superior de Agronomia, University of LisbonLisboaPortugal
| | - Ana Teresa Alhinho
- Centre of Molecular and Environmental Biology (CBMA)University of MinhoBragaPortugal
| | - Helena Silva
- Centre of Molecular and Environmental Biology (CBMA)University of MinhoBragaPortugal
| | - Miguel Jesus Nunes Ramos
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, University of LisbonLisboaPortugal
- Present address:
GenoMed, Diagnósticos de Medicina MolecularLisboaPortugal
| | | | - Leonor Morais‐Cecílio
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, University of LisbonLisboaPortugal
| |
Collapse
|
14
|
Ai W, Liu Y, Mei M, Zhang X, Tan E, Liu H, Han X, Zhan H, Lu X. A chromosome-scale genome assembly of the Mongolian oak (Quercus mongolica). Mol Ecol Resour 2022; 22:2396-2410. [PMID: 35377556 DOI: 10.1111/1755-0998.13616] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Abstract
Mongolian oak (Quercus mongolica Fisch.) is an ecologically and economically important white oak species native to and widespread in the temperate zone of East Asia. Here, we present a chromosome-scale reference genome assembly of Q. mongolica, a representative white oak species, by combining Illumina and PacBio data with Hi-C mapping technologies that is the first reference genome created for an Asian oak. Our results showed that the PacBio draft genome size was 809.84 Mb, with a BUSCO complete gene percentage of 92.71%. Hi-C scaffolding anchored 774.59 Mb contigs (95.65% of draft assembly) onto 12 pseudochromosomes. The contig N50 and scaffold N50 were 2.64 Mb and 66.74 Mb, respectively. Of the 36,553 protein-coding genes predicted in the study, approximately 95% had functional annotations in public databases. A total of 435.34 Mb (53.75% of the genome) of repetitive sequences were predicted in the assembled genome. Genome evolution analysis showed that Q. mongolica is closely related to Q. robur from Europe, and they shared a common ancestor ~11.8 million years ago. Gene family evolution analysis of Q. mongolica revealed that the nucleotide-binding site (NBS)-encoding gene family related to disease resistance was significantly contracted, whereas the ECERIFERUM 1 (CER1) homologous genes related to cuticular wax biosynthesis was significantly expanded. This pioneering Asian oak genome resource represents an important supplement to the oak genomics community and will improve our understanding of Asian white oak biology and evolution.
Collapse
Affiliation(s)
- Wanfeng Ai
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yanqun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Mei Mei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.,Biotechnology and Analysis Test Center, Liaoning Academy of Forest Science, Shenyang, 110032, Liaoning, China
| | - Xiaolin Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Enguang Tan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hanzhang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xiaoyi Han
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hao Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xiujun Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.,College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| |
Collapse
|
15
|
Zhou BF, Yuan S, Crowl AA, Liang YY, Shi Y, Chen XY, An QQ, Kang M, Manos PS, Wang B. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nat Commun 2022; 13:1320. [PMID: 35288565 PMCID: PMC8921187 DOI: 10.1038/s41467-022-28917-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.
Collapse
Affiliation(s)
- Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Andrew A Crowl
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
16
|
A set of nuclear SNP loci derived from single sample double digest RAD and from pool sequencing for large-scale genetic studies in the European beech Fagus sylvatica. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe large-scale spatial genetic structure of European beech, Fagus sylvatica, has been until now poorly studied. We conducted double digest RAD sequencing (ddRADseq) on 54 beech individuals stemming from 36 provenances to discover spatially informative nuclear SNP loci. In addition, two pools derived from 14 early and 14 late flushing individuals each were sequenced with Illumina HiSeq. From an initial amount of 5,464 loci detected by ddRADseq, we selected 559 informative loci. Further 27 additional loci showing significant allelic differences among early and late flushing individuals could be identified after a genotyping on 95 test individuals. The final selection of 578 loci was submitted to probe design for targeted genotyping by sequencing, which yielded 543 loci. The new set of SNP loci should be, after validation on a larger sample size, useful for large-scale genetic studies in this economically-important species.
Collapse
|
17
|
Rivera Pérez CA, Janz D, Schneider D, Daniel R, Polle A. Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil. mSystems 2022; 7:e0095721. [PMID: 35089084 PMCID: PMC8725588 DOI: 10.1128/msystems.00957-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Mineral nitrogen (N) is a major nutrient showing strong fluctuations in the environment due to anthropogenic activities. The acquisition and translocation of N to forest trees are achieved mainly by highly diverse ectomycorrhizal fungi (EMF) living in symbioses with their host roots. Here, we examined colonized root tips to characterize the entire root-associated fungal community by DNA metabarcoding-Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2) molecular marker and used RNA sequencing to target metabolically active fungi and the plant transcriptome after N application. The study was conducted with beech (Fagus sylvatica L.), a dominant tree species in central Europe, grown in native forest soil. We demonstrate strong enrichment of 15N from nitrate or ammonium in the ectomycorrhizal roots by stable-isotope labeling. The relative abundance of the EMF members in the fungal community was correlated with their transcriptional abundances. The fungal metatranscriptome covered Kyoto Encyclopedia of Genes and Genomes (KEGG) and Eukaryotic Orthologous Groups (KOG) categories similar to those of model fungi and did not reveal significant changes related to N metabolization but revealed species-specific transcription patterns, supporting trait stability. In contrast to the resistance of the fungal metatranscriptome, the transcriptome of the host exhibited dedicated nitrate- or ammonium-responsive changes with the upregulation of transporters and enzymes required for nitrate reduction and a drastic enhancement of glutamine synthetase transcript levels, indicating the channeling of ammonium into the pathway for plant protein biosynthesis. Our results support that naturally assembled fungal communities living in association with the tree roots buffer nutritional signals in their own metabolism but do not shield plants from high environmental N levels. IMPORTANCE Although EMF are well known for their role in supporting tree N nutrition, the molecular mechanisms underlying N flux from the soil solution into the host through the ectomycorrhizal pathway remain widely unknown. Furthermore, ammonium and nitrate availability in the soil solution is subject to frequent oscillations that create a dynamic environment for the tree roots and associated microbes during N acquisition. Therefore, it is important to understand how root-associated mycobiomes and the tree roots handle these fluctuations. We studied the responses of the symbiotic partners by screening their transcriptomes after a sudden environmental flux of nitrate or ammonium. We show that the fungi and the host respond asynchronously, with the fungi displaying resistance to increased nitrate or ammonium and the host dynamically metabolizing the supplied N sources. This study provides insights into the molecular mechanisms of the symbiotic partners operating under N enrichment in a multidimensional symbiotic system.
Collapse
Affiliation(s)
- Carmen Alicia Rivera Pérez
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Mishra B, Ulaszewski B, Meger J, Aury JM, Bodénès C, Lesur-Kupin I, Pfenninger M, Da Silva C, Gupta DK, Guichoux E, Heer K, Lalanne C, Labadie K, Opgenoorth L, Ploch S, Le Provost G, Salse J, Scotti I, Wötzel S, Plomion C, Burczyk J, Thines M. A Chromosome-Level Genome Assembly of the European Beech ( Fagus sylvatica) Reveals Anomalies for Organelle DNA Integration, Repeat Content and Distribution of SNPs. Front Genet 2022; 12:691058. [PMID: 35211148 PMCID: PMC8862710 DOI: 10.3389/fgene.2021.691058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
The European Beech is the dominant climax tree in most regions of Central Europe and valued for its ecological versatility and hardwood timber. Even though a draft genome has been published recently, higher resolution is required for studying aspects of genome architecture and recombination. Here, we present a chromosome-level assembly of the more than 300 year-old reference individual, Bhaga, from the Kellerwald-Edersee National Park (Germany). Its nuclear genome of 541 Mb was resolved into 12 chromosomes varying in length between 28 and 73 Mb. Multiple nuclear insertions of parts of the chloroplast genome were observed, with one region on chromosome 11 spanning more than 2 Mb which fragments up to 54,784 bp long and covering the whole chloroplast genome were inserted randomly. Unlike in Arabidopsis thaliana, ribosomal cistrons are present in Fagus sylvatica only in four major regions, in line with FISH studies. On most assembled chromosomes, telomeric repeats were found at both ends, while centromeric repeats were found to be scattered throughout the genome apart from their main occurrence per chromosome. The genome-wide distribution of SNPs was evaluated using a second individual from Jamy Nature Reserve (Poland). SNPs, repeat elements and duplicated genes were unevenly distributed in the genomes, with one major anomaly on chromosome 4. The genome presented here adds to the available highly resolved plant genomes and we hope it will serve as a valuable basis for future research on genome architecture and for understanding the past and future of European Beech populations in a changing climate.
Collapse
Affiliation(s)
- Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Bartosz Ulaszewski
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Joanna Meger
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Isabelle Lesur-Kupin
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
- HelixVenture, Mérignac, France
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Corinne Da Silva
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Deepak K Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | | | - Katrin Heer
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
- Forest Genetics, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Lars Opgenoorth
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
| | - Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | | | | | - Stefan Wötzel
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | | | - Jaroslaw Burczyk
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
19
|
Can Forest Trees Cope with Climate Change?-Effects of DNA Methylation on Gene Expression and Adaptation to Environmental Change. Int J Mol Sci 2021; 22:ijms222413524. [PMID: 34948318 PMCID: PMC8703565 DOI: 10.3390/ijms222413524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, including chromatin modifications and DNA methylation, play key roles in regulating gene expression in both plants and animals. Transmission of epigenetic markers is important for some genes to maintain specific expression patterns and preserve the status quo of the cell. This article provides a review of existing research and the current state of knowledge about DNA methylation in trees in the context of global climate change, along with references to the potential of epigenome editing tools and the possibility of their use for forest tree research. Epigenetic modifications, including DNA methylation, are involved in evolutionary processes, developmental processes, and environmental interactions. Thus, the implications of epigenetics are important for adaptation and phenotypic plasticity because they provide the potential for tree conservation in forest ecosystems exposed to adverse conditions resulting from global warming and regional climate fluctuations.
Collapse
|
20
|
Satake A, Kelly D. Studying the genetic basis of masting. Philos Trans R Soc Lond B Biol Sci 2021; 376:20210116. [PMID: 34657458 PMCID: PMC8520782 DOI: 10.1098/rstb.2021.0116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/12/2022] Open
Abstract
The mechanisms underlying mast seeding have traditionally been studied by collecting long-term observational data on seed crops and correlating seedfall with environmental variables. Significant progress in ecological genomics will improve our understanding of the evolution of masting by clarifying the genetic basis of masting traits and the role of natural selection in shaping those traits. Here, we summarize three important aspects in studying the evolution of masting at the genetic level: which traits govern masting, whether those traits are genetically regulated, and which taxa show wide variation in these traits. We then introduce recent studies on the molecular mechanisms of masting. Those studies measure seasonal changes in gene expression in natural conditions to quantify how multiple environmental factors combine to regulate floral initiation, which in many masting plant species is the single largest contributor to among-year variation in seed crops. We show that Fagaceae offers exceptional opportunities for evolutionary investigations because of its diversity at both the phenotypic and genetic levels and existing documented genome sequences. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Dave Kelly
- Department of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
21
|
Xu Q, Zhang X, Zhang Y, Zheng C, Leebens-Mack JH, Jin L, Sankoff D. The monoploid chromosome complement of reconstructed ancestral genomes in a phylogeny. J Bioinform Comput Biol 2021; 19:2140008. [PMID: 34806950 DOI: 10.1142/s0219720021400084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using RACCROCHE, a method for reconstructing gene content and order of ancestral chromosomes from a phylogeny of extant genomes represented by the gene orders on their chromosomes, we study the evolution of three orders of woody plants. The method retrieves the monoploid complement of each Ancestor in a phylogeny, consisting a complete set of distinct chromosomes, despite some of the extant genomes being recently or historically polyploidized. The three orders are the Sapindales, the Fagales and the Malvales. All of these are independently estimated to have ancestral monoploid number [Formula: see text].
Collapse
Affiliation(s)
- Qiaoji Xu
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| | - Xiaomeng Zhang
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| | - Yue Zhang
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| | | | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9, Canada
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| |
Collapse
|
22
|
Sun Y, Guo J, Zeng X, Chen R, Feng Y, Chen S, Yang K. Chromosome-scale genome assembly of Castanopsis tibetana provides a powerful comparative framework to study the evolution and adaptation of Fagaceae trees. Mol Ecol Resour 2021; 22:1178-1189. [PMID: 34689424 DOI: 10.1111/1755-0998.13539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Fagaceae species are increasingly used as models to elucidate the process and mechanism of adaptation and speciation by integrating ecology, evolution and genomics. The genus Castanopsis belongs to the family Fagaceae and is mainly distributed across subtropical and tropical Asia. In the present study, we reported the first chromosome-scale genome assembly of Castanopsis tibetana, a common species of evergreen broadleaved forests in subtropical China. The combination of Nanopore sequencing and Hi-C technologies enabled a high-quality genome assembly. The final assembled genome size of C. tibetana was 878.6 Mb (97.6% of the estimated genome size), consisting of 477 contigs with an N50 length of 3.3 Mb. The benchmarking universal single-copy orthologue (BUSCO) assessment indicated a completeness of 93.0%. Hi-C scaffolding generated 12 pseudochromosomes, representing 98.7% of the assembled genome. Subsequently, 40,937 protein-coding genes were predicted and 90.04% of them were functionally annotated. More than 476.9 Mb of repetitive sequences (54.3% of the genome) were identified, and the percentage of the genome covered by TE elements was 39.98%. Comparative genomics analysis revealed that C. tibetana was most closely related to Castanea mollissima and diverged at 18.48 Ma, and that C. tibetana has undergone considerable gene family expansion and contraction. Evidence of positive selection was detected in 53 genes, which showed different arrangement pattern compared to Quercus robur. The chromosome-scale genome assembly of C. tibetana will expand Fagaceae genome resources across the family and provide a powerful comparative framework to study the adaptation and evolution of Fagaceae trees.
Collapse
Affiliation(s)
- Ye Sun
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianling Guo
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaorong Zeng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Risheng Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yi Feng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shuang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Kai Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Meger J, Ulaszewski B, Burczyk J. Genomic signatures of natural selection at phenology-related genes in a widely distributed tree species Fagus sylvatica L. BMC Genomics 2021; 22:583. [PMID: 34332553 PMCID: PMC8325806 DOI: 10.1186/s12864-021-07907-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diversity among phenology-related genes is predicted to be a contributing factor in local adaptations seen in widely distributed plant species that grow in climatically variable geographic areas, such as forest trees. European beech (Fagus sylvatica L.) is widespread, and is one of the most important broadleaved tree species in Europe; however, its potential for adaptation to climate change is a matter of uncertainty, and little is known about the molecular basis of climate change-relevant traits like bud burst. RESULTS We explored single nucleotide polymorphisms (SNP) at candidate genes related to bud burst in beech individuals sampled across 47 populations from Europe. SNP diversity was monitored for 380 candidate genes using a sequence capture approach, providing 2909 unlinked SNP loci. We used two complementary analytical methods to find loci significantly associated with geographic variables, climatic variables (expressed as principal components), or phenotypic variables (spring and autumn phenology, height, survival). Redundancy analysis (RDA) was used to detect candidate markers across two spatial scales (entire study area and within subregions). We revealed 201 candidate SNPs at the broadest scale, 53.2% of which were associated with phenotypic variables. Additive polygenic scores, which provide a measure of the cumulative signal across significant candidate SNPs, were correlated with a climate variable (first principal component, PC1) related to temperature and precipitation availability, and spring phenology. However, different genotype-environment associations were identified within Southeastern Europe as compared to the entire geographic range of European beech. CONCLUSIONS Environmental conditions play important roles as drivers of genetic diversity of phenology-related genes that could influence local adaptation in European beech. Selection in beech favors genotypes with earlier bud burst under warmer and wetter habitats within its range; however, selection pressures may differ across spatial scales.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| |
Collapse
|
24
|
Sharma T, Sharma NK, Kumar P, Panzade G, Rana T, Swarnkar MK, Singh AK, Singh D, Shankar R, Kumar S. The first draft genome of Picrorhiza kurrooa, an endangered medicinal herb from Himalayas. Sci Rep 2021; 11:14944. [PMID: 34294764 PMCID: PMC8298464 DOI: 10.1038/s41598-021-93495-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Picrorhiza kurrooa is an endangered medicinal herb which is distributed across the Himalayan region at an altitude between 3000–5000 m above mean sea level. The medicinal properties of P. kurrooa are attributed to monoterpenoid picrosides present in leaf, rhizome and root of the plant. However, no genomic information is currently available for P. kurrooa, which limits our understanding about its molecular systems and associated responses. The present study brings the first assembled draft genome of P. kurrooa by using 227 Gb of raw data generated by Illumina and PacBio RS II sequencing platforms. The assembled genome has a size of n = ~ 1.7 Gb with 12,924 scaffolds. Four pronged assembly quality validations studies, including experimentally reported ESTs mapping and directed sequencing of the assembled contigs, confirmed high reliability of the assembly. About 76% of the genome is covered by complex repeats alone. Annotation revealed 24,798 protein coding and 9789 non-coding genes. Using the assembled genome, a total of 710 miRNAs were discovered, many of which were found responsible for molecular response against temperature changes. The miRNAs and targets were validated experimentally. The availability of draft genome sequence will aid in genetic improvement and conservation of P. kurrooa. Also, this study provided an efficient approach for assembling complex genomes while dealing with repeats when regular assemblers failed to progress due to repeats.
Collapse
Affiliation(s)
- Tanvi Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nitesh Kumar Sharma
- Studio of Computational Biology and Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Prakash Kumar
- Studio of Computational Biology and Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ganesh Panzade
- Studio of Computational Biology and Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Tanuja Rana
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Anil Kumar Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834 003, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ravi Shankar
- Studio of Computational Biology and Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
25
|
Pfenninger M, Reuss F, Kiebler A, Schönnenbeck P, Caliendo C, Gerber S, Cocchiararo B, Reuter S, Blüthgen N, Mody K, Mishra B, Bálint M, Thines M, Feldmeyer B. Genomic basis for drought resistance in European beech forests threatened by climate change. eLife 2021; 10:e65532. [PMID: 34132196 PMCID: PMC8266386 DOI: 10.7554/elife.65532] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
In the course of global climate change, Central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought-damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated single-nucleotide polymorphisms (SNPs) throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. An SNP assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.
Collapse
Affiliation(s)
- Markus Pfenninger
- Molecular Ecology, Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Institute for Organismic and Molecular Evolution, Johannes Gutenberg UniversityMainzGermany
- LOEWE Centre for Translational Biodiversity GenomicsFrankfurt am MainGermany
| | - Friederike Reuss
- Molecular Ecology, Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Angelika Kiebler
- Molecular Ecology, Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Philipp Schönnenbeck
- Molecular Ecology, Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Cosima Caliendo
- Molecular Ecology, Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Berardino Cocchiararo
- LOEWE Centre for Translational Biodiversity GenomicsFrankfurt am MainGermany
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | - Sabrina Reuter
- Ecological Networks lab, Department of Biology, Technische Universität DarmstadtDarmstadtGermany
| | - Nico Blüthgen
- Ecological Networks lab, Department of Biology, Technische Universität DarmstadtDarmstadtGermany
| | - Karsten Mody
- Ecological Networks lab, Department of Biology, Technische Universität DarmstadtDarmstadtGermany
- Department of Applied Ecology, Hochschule Geisenheim UniversityGeisenheimGermany
| | - Bagdevi Mishra
- Biological Archives, Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity GenomicsFrankfurt am MainGermany
- Functional Environmental Genomics, Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Agricultural Sciences, Nutritional Sciences, and Environmental Management, Universität GiessenGiessenGermany
| | - Marco Thines
- LOEWE Centre for Translational Biodiversity GenomicsFrankfurt am MainGermany
- Biological Archives, Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-UniversityFrankfurt am MainGermany
| | - Barbara Feldmeyer
- Molecular Ecology, Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| |
Collapse
|
26
|
Comparative Analysis of SNP Discovery and Genotyping in Fagus sylvatica L. and Quercus robur L. Using RADseq, GBS, and ddRAD Methods. FORESTS 2021. [DOI: 10.3390/f12020222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Next-generation sequencing of reduced representation genomic libraries (RRL) is capable of providing large numbers of genetic markers for population genetic studies at relatively low costs. However, one major concern of these types of markers is the precision of genotyping, which is related to the common problem of missing data, which appears to be particularly important in association and genomic selection studies. We evaluated three RRL approaches (GBS, RADseq, ddRAD) and different SNP identification methods (de novo or based on a reference genome) to find the best solutions for future population genomics studies in two economically and ecologically important broadleaved tree species, namely F. sylvatica and Q. robur. We found that the use of ddRAD method coupled with SNP calling based on reference genomes provided the largest numbers of markers (28 k and 36 k for beech and oak, respectively), given standard filtering criteria. Using technical replicates of samples, we demonstrated that more than 80% of SNP loci should be considered as reliable markers in GBS and ddRAD, but not in RADseq data. According to the reference genomes’ annotations, more than 30% of the identified ddRAD loci appeared to be related to genes. Our findings provide a solid support for using ddRAD-based SNPs for future population genomics studies in beech and oak.
Collapse
|
27
|
Cuervo-Alarcon L, Arend M, Müller M, Sperisen C, Finkeldey R, Krutovsky KV. A candidate gene association analysis identifies SNPs potentially involved in drought tolerance in European beech (Fagus sylvatica L.). Sci Rep 2021; 11:2386. [PMID: 33504857 PMCID: PMC7840767 DOI: 10.1038/s41598-021-81594-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
Studies of genetic variation underlying traits related to drought tolerance in forest trees are of great importance for understanding their adaptive potential under a climate change scenario. In this study, using a candidate gene approach, associations between SNPs and drought related traits were assessed in saplings of European beech (Fagus sylvatica L.) representing trees growing along steep precipitation gradients. The saplings were subjected to experimentally controlled drought treatments. Response of the saplings was assessed by the evaluation of stem diameter growth (SDG) and the chlorophyll fluorescence parameters FV/FM, PIabs, and PItot. The evaluation showed that saplings from xeric sites were less affected by the drought treatment. Five SNPs (7.14%) in three candidate genes were significantly associated with the evaluated traits; saplings with particular genotypes at these SNPs showed better performance under the drought treatment. The SNPs were located in the cytosolic class I small heat-shock protein, CTR/DRE binding transcription factor, and isocitrate dehydrogenase genes and explained 5.8-13.4% of the phenotypic variance. These findings provide insight into the genetic basis of traits related to drought tolerance in European beech and could support the development of forest conservation management strategies under future climatic conditions.
Collapse
Affiliation(s)
- Laura Cuervo-Alarcon
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Matthias Arend
- Physiological Plant Ecology, University of Basel, Schönbeinstrasse 6, 4056, Basel, Switzerland
| | - Markus Müller
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Christoph Sperisen
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Reiner Finkeldey
- University of Kassel, Mönchebergstrasse 19, 34109, Kassel, Germany
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119333.
- Laboratory of Foresty Genomics, Genome Research and Education Center, Siberian Federal University, 50a/2 Akademgorodok, Krasnoyarsk, Russia, 660036.
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX, 77843-2138, USA.
| |
Collapse
|
28
|
Abstract
AbstractPeronospora belbahrii is one of the most destructive downy mildew diseases that has emerged throughout the past two decades. Due to the lack of quarantine regulations and its possible seed-borne nature, it has spread globally and is now present in most areas in which basil is produced. While most obligate biotrophic, plant parasitic oomycetes are highly host-specific, there are a few that have a wider host range, e.g. Albugo candida, Bremia tulasnei, and Pseudoperonospora cubensis. Recently, it was shown that Peronospora belbahrii is able to infect Rosmarinus, Nepetia, and Micromeria in Israel in cross-infection trials, hinting an extended host range for also this pathogen. In this study, a newly occurring downy mildew pathogen on lavender was investigated with respect to its morphology and phylogeny, and it is shown that it belongs to Peronospora belbahrii as well. Thus, it seems that Peronospora belbahrii is currently extending its host range to additional members of the tribe Mentheae and Ocimeae. Therefore, it seems advisable to scrutinise all commonly used members of these tribes in order to avoid further spread of virulent genotypes.
Collapse
|
29
|
Adaptive Evolution of Chalcone Isomerase Superfamily in Fagaceae. Biochem Genet 2020; 59:491-505. [PMID: 33135088 DOI: 10.1007/s10528-020-10012-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Chalcone Isomerase (CHI) catalyzes the biosynthesis of flavonoids and secondary metabolism in plants. Currently, there is no systematic analysis of CHIs gene family in Fagaceae which is available. In this study, twenty-two CHI proteins were identified in five species of the Fagaceae family. The CHI superfamily in Fagaceae can be classified into three subfamilies and five groups using phylogenetic analysis, analysis of physicochemical properties, and structural prediction. Results indicated that serine (Ser) and isoleucine (Ile) residues determine the substrate preferred by active Type I Fagaceae CHI, and the chalcone isomerase-like (CHIL) of Fagaceae had active site residues. Adaptive analysis of CHIs showed that CHIs are subject to selection pressure. The active CHI gene of Fagaceae was located in the cytoplasm, and it had the typical gene structure of CHI and contains four exons. All the twenty-two identified CHIs had the conserved domain motif 3, and the different groups had their own structural characteristics. In the process of fatty acid binding protein (FAP) evolution to CHIL and CHI, the physical and chemical properties of proteins also had significant differences in addition to changes in protein functions.
Collapse
|
30
|
Mader M, Schroeder H, Schott T, Schöning-Stierand K, Leite Montalvão AP, Liesebach H, Liesebach M, Fussi B, Kersten B. Mitochondrial Genome of Fagus sylvatica L. as a Source for Taxonomic Marker Development in the Fagales. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1274. [PMID: 32992588 PMCID: PMC7650814 DOI: 10.3390/plants9101274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
European beech, Fagus sylvatica L., is one of the most important and widespread deciduous tree species in Central Europe and is widely managed for its hard wood. The complete DNA sequence of the mitochondrial genome of Fagus sylvatica L. was assembled and annotated based on Illumina MiSeq reads and validated using long reads from nanopore MinION sequencing. The genome assembled into a single DNA sequence of 504,715 bp in length containing 58 genes with predicted function, including 35 protein-coding, 20 tRNA and three rRNA genes. Additionally, 23 putative protein-coding genes were predicted supported by RNA-Seq data. Aiming at the development of taxon-specific mitochondrial genetic markers, the tool SNPtax was developed and applied to select genic SNPs potentially specific for different taxa within the Fagales. Further validation of a small SNP set resulted in the development of four CAPS markers specific for Fagus, Fagaceae, or Fagales, respectively, when considering over 100 individuals from a total of 69 species of deciduous trees and conifers from up to 15 families included in the marker validation. The CAPS marker set is suitable to identify the genus Fagus in DNA samples from tree tissues or wood products, including wood composite products.
Collapse
Affiliation(s)
- Malte Mader
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Thomas Schott
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Katrin Schöning-Stierand
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
- Center for Bioinformatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Ana Paula Leite Montalvão
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Heike Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Mirko Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Barbara Fussi
- Bavarian Office for Forest Genetics, 83317 Teisendorf, Germany;
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| |
Collapse
|
31
|
Mishra B, Ploch S, Runge F, Schmuker A, Xia X, Gupta DK, Sharma R, Thines M. The Genome of Microthlaspi erraticum (Brassicaceae) Provides Insights Into the Adaptation to Highly Calcareous Soils. FRONTIERS IN PLANT SCIENCE 2020; 11:943. [PMID: 32719698 PMCID: PMC7350527 DOI: 10.3389/fpls.2020.00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Microthlaspi erraticum is widely distributed in temperate Eurasia, but restricted to Ca2+-rich habitats, predominantly on white Jurassic limestone, which is made up by calcium carbonate, with little other minerals. Thus, naturally occurring Microthlaspi erraticum individuals are confronted with a high concentration of Ca2+ ions while Mg2+ ion concentration is relatively low. As there is a competitive uptake between these two ions, adaptation to the soil condition can be expected. In this study, it was the aim to explore the genomic consequences of this adaptation by sequencing and analysing the genome of Microthlaspi erraticum. Its genome size is comparable with other diploid Brassicaceae, while more genes were predicted. Two Mg2+ transporters known to be expressed in roots were duplicated and one showed a significant degree of positive selection. It is speculated that this evolved due to the pressure to take up Mg2+ ions efficiently in the presence of an overwhelming amount of Ca2+ ions. Future studies on plants specialized on similar soils and affinity tests of the transporters are needed to provide unequivocal evidence for this hypothesis. If verified, the transporters found in this study might be useful for breeding Brassicaceae crops for higher yield on Ca2+-rich and Mg2+ -poor soils.
Collapse
Affiliation(s)
- Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Fabian Runge
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | - Xiaojuan Xia
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Deepak K. Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Rahul Sharma
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, Puiu D, Bianco L, Pierro EAD, Allen BJ, Chakraborty S, Troggio M, Leslie CA, Timp W, Dandekar A, Salzberg SL, Neale DB. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020; 9:giaa050. [PMID: 32432329 PMCID: PMC7238675 DOI: 10.1093/gigascience/giaa050] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Luca Bianco
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Erica Adele Di Pierro
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
33
|
Plomion C, Martin F. Oak genomics is proving its worth. THE NEW PHYTOLOGIST 2020; 226:943-946. [PMID: 32301515 DOI: 10.1111/nph.16560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 05/10/2023]
Affiliation(s)
| | - Francis Martin
- INRAE, UMR IAM, Centre INRAE-Grand Est, Université de Lorraine, F-54280, Champenoux, France
| |
Collapse
|
34
|
Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, Puiu D, Bianco L, Pierro EAD, Allen BJ, Chakraborty S, Troggio M, Leslie CA, Timp W, Dandekar A, Salzberg SL, Neale DB. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020. [PMID: 32432329 DOI: 10.1101/80979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Luca Bianco
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Erica Adele Di Pierro
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
35
|
Capblancq T, Morin X, Gueguen M, Renaud J, Lobreaux S, Bazin E. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J Evol Biol 2020; 33:783-796. [PMID: 32125745 DOI: 10.1111/jeb.13610] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/23/2020] [Indexed: 01/04/2023]
Abstract
Local adaptation patterns have been found in many plants and animals, highlighting the genetic heterogeneity of species along their range of distribution. In the next decades, global warming is predicted to induce a change in the selective pressures that drive this adaptive variation, forcing a reshuffling of the underlying adaptive allele distributions. For species with low dispersion capacity and long generation time such as trees, the rapidity of the change could impede the migration of beneficial alleles and lower their capacity to track the changing environment. Identifying the main selective pressures driving the adaptive genetic variation is thus necessary when investigating species capacity to respond to global warming. In this study, we investigate the adaptive landscape of Fagus sylvatica along a gradient of populations in the French Alps. Using a double-digest restriction-site-associated DNA (ddRAD) sequencing approach, we identified 7,000 SNPs from 570 individuals across 36 different sites. A redundancy analysis (RDA)-derived method allowed us to identify several SNPs that were strongly associated with climatic gradients; moreover, we defined the primary selective gradients along the natural populations of F. sylvatica in the Alps. Strong effects of elevation and humidity, which contrast north-western and south-eastern site, were found and were believed to be important drivers of genetic adaptation. Finally, simulations of future genetic landscapes that used these findings allowed identifying populations at risk for F. sylvatica in the Alps, which could be helpful for future management plans.
Collapse
Affiliation(s)
| | - Xavier Morin
- CNRS, EPHE, CEFE UMR 5175, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Maya Gueguen
- CNRS, LECA UMR 5553, Université Grenoble Alpes, Grenoble, France
| | - Julien Renaud
- CNRS, LECA UMR 5553, Université Grenoble Alpes, Grenoble, France
| | | | - Eric Bazin
- CNRS, LECA UMR 5553, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
36
|
Müller M, Gailing O. Abiotic genetic adaptation in the Fagaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:783-795. [PMID: 31081234 DOI: 10.1111/plb.13008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Fagaceae can be found in tropical and temperate regions and contain species of major ecological and economic importance. In times of global climate change, tree populations need to adapt to rapidly changing environmental conditions. The predicted warmer and drier conditions will potentially result in locally maladapted populations. There is evidence that major genera of the Fagaceae are already negatively affected by climate change-related factors such as drought and associated biotic stressors. Therefore, knowledge of the mechanisms underlying adaptation is of great interest. In this review, we summarise current literature related to genetic adaptation to abiotic environmental conditions. We begin with an overview of genetic diversity in Fagaceae species and then summarise current knowledge related to drought stress tolerance, bud burst timing and frost tolerance in the Fagaceae. Finally, we discuss the role of hybridisation, epigenetics and phenotypic plasticity in adaptation.
Collapse
Affiliation(s)
- M Müller
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
| | - O Gailing
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| |
Collapse
|
37
|
Xing Y, Liu Y, Zhang Q, Nie X, Sun Y, Zhang Z, Li H, Fang K, Wang G, Huang H, Bisseling T, Cao Q, Qin L. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). Gigascience 2019; 8:giz112. [PMID: 31513707 PMCID: PMC6741814 DOI: 10.1093/gigascience/giz112] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/01/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Chinese chestnut (Castanea mollissima) is widely cultivated in China for nut production. This plant also plays an important ecological role in afforestation and ecosystem services. To facilitate and expand the use of C. mollissima for breeding and its genetic improvement, we report here the whole-genome sequence of C. mollissima. FINDINGS We produced a high-quality assembly of the C. mollissima genome using Pacific Biosciences single-molecule sequencing. The final draft genome is ∼785.53 Mb long, with a contig N50 size of 944 kb, and we further annotated 36,479 protein-coding genes in the genome. Phylogenetic analysis showed that C. mollissima diverged from Quercus robur, a member of the Fagaceae family, ∼13.62 million years ago. CONCLUSIONS The high-quality whole-genome assembly of C. mollissima will be a valuable resource for further genetic improvement and breeding for disease resistance and nut quality.
Collapse
Affiliation(s)
- Yu Xing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Yang Liu
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Qing Zhang
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Xinghua Nie
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, 23 Hongda St., Tianjin 300457, China
| | - Zhiyong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Huchen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Kefeng Fang
- College of Landscape Architecture, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Guangpeng Wang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, 39 E Jieyangdajie, Changli 066600, China
| | - Hongwen Huang
- South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Guangzhou 510650, China
| | - Ton Bisseling
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Ling Qin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| |
Collapse
|
38
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 DOI: 10.3389/fpls.2018.0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/27/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
39
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 PMCID: PMC6331418 DOI: 10.3389/fpls.2018.01875] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
40
|
Mader M, Liesebach H, Liesebach M, Kersten B. The complete chloroplast genome sequence of Fagus sylvatica L. (Fagaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1612712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Malte Mader
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | | | - Birgit Kersten
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| |
Collapse
|
41
|
Mishra B, Gupta DK, Pfenninger M, Hickler T, Langer E, Nam B, Paule J, Sharma R, Ulaszewski B, Warmbier J, Burczyk J, Thines M. A reference genome of the European beech (Fagus sylvatica L.). Gigascience 2018; 7:5017772. [PMID: 29893845 PMCID: PMC6014182 DOI: 10.1093/gigascience/giy063] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/19/2018] [Indexed: 01/09/2023] Open
Abstract
Background The European beech is arguably the most important climax broad-leaved tree species in Central Europe, widely planted for its valuable wood. Here, we report the 542 Mb draft genome sequence of an up to 300-year-old individual (Bhaga) from an undisturbed stand in the Kellerwald-Edersee National Park in central Germany. Findings Using a hybrid assembly approach, Illumina reads with short- and long-insert libraries, coupled with long Pacific Biosciences reads, we obtained an assembled genome size of 542 Mb, in line with flow cytometric genome size estimation. The largest scaffold was of 1.15 Mb, the N50 length was 145 kb, and the L50 count was 983. The assembly contained 0.12% of Ns. A Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis retrieved 94% complete BUSCO genes, well in the range of other high-quality draft genomes of trees. A total of 62,012 protein-coding genes were predicted, assisted by transcriptome sequencing. In addition, we are reporting an efficient method for extracting high-molecular-weight DNA from dormant buds, by which contamination by environmental bacteria and fungi was kept at a minimum. Conclusions The assembled genome will be a valuable resource and reference for future population genomics studies on the evolution and past climate change adaptation of beech and will be helpful for identifying genes, e.g., involved in drought tolerance, in order to select and breed individuals to adapt forestry to climate change in Europe. A continuously updated genome browser and download page can be accessed from beechgenome.net, which will include future genome versions of the reference individual Bhaga, as new sequencing approaches develop.
Collapse
Affiliation(s)
- Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.,Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Deepak K Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.,Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.,Johannes Gutenberg Universität, Fachbereich Biologie, Institut für Organismische und Molekulare Evolutionsbiologie (iOME), Gresemundweg 2, 55128 Mainz
| | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.,Goethe University, Department for Geology, Institute of Geography, Max-von-Laue-Str. 23, D-60438 Frankfurt am Main, Germany
| | - Ewald Langer
- University of Kassel, FB 10, Department of Ecology, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
| | - Bora Nam
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.,Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Juraj Paule
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Botany and Molecular Evolution, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Rahul Sharma
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Bartosz Ulaszewski
- Kazimierz Wielki University, Department of Genetics, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Joanna Warmbier
- Kazimierz Wielki University, Department of Genetics, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Kazimierz Wielki University, Department of Genetics, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.,Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|