1
|
Walski T, De Schutter K, Van Damme EJM, Smagghe G. Diversity and functions of protein glycosylation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:21-34. [PMID: 28232040 DOI: 10.1016/j.ibmb.2017.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Protein N-glycosylation and N-glycan trimming are required for postembryonic development of the pest beetle Tribolium castaneum. Sci Rep 2016; 6:35151. [PMID: 27731363 PMCID: PMC5059678 DOI: 10.1038/srep35151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022] Open
Abstract
In holometabolous insects the transition from larva to adult requires a complete body reorganization and relies on N-glycosylated proteins. N-glycosylation is an important posttranslational modification that influences protein activity but its impact on the metamorphosis has not been studied yet. Here we used the red flour beetle, Tribolium castaneum, to perform a first comprehensive study on the involvement of the protein N-glycosylation pathway in metamorphosis. The transcript levels for genes encoding N-glycan processing enzymes increased during later developmental stages and, in turn, transition from larva to adult coincided with an enrichment of more extensively modified paucimannose glycans, including fucosylated ones. Blockage of N-glycan attachment resulted in larval mortality, while RNAi of α-glucosidases involved in early N-glycan trimming and quality control disrupted the larva to pupa transition. Additionally, simultaneous knockdown of multiple genes responsible for N-glycan processing towards paucimannose structures revealed their novel roles in pupal appendage formation and adult eclosion. Our findings revealed that, next to hormonal control, insect post-embryonic development and metamorphosis depend on protein N-glycan attachment and efficient N-glycan processing. Consequently, disruption of these processes could be an effective new approach for insect control.
Collapse
|
3
|
Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells. Mol Ther 2013; 22:575-587. [PMID: 24419083 DOI: 10.1038/mt.2013.278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/01/2013] [Indexed: 11/08/2022] Open
Abstract
As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.
Collapse
|
4
|
Geisler C, Jarvis DL. Substrate specificities and intracellular distributions of three N-glycan processing enzymes functioning at a key branch point in the insect N-glycosylation pathway. J Biol Chem 2012; 287:7084-97. [PMID: 22238347 DOI: 10.1074/jbc.m111.296814] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the net outcome of the insect cell N-glycosylation pathway.
Collapse
Affiliation(s)
- Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
5
|
Aumiller JJ, Mabashi-Asazuma H, Hillar A, Shi X, Jarvis DL. A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 2011; 22:417-28. [PMID: 22042767 DOI: 10.1093/glycob/cwr160] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The inability to produce recombinant glycoproteins with authentic N-glycans is a limitation of many heterologous protein expression systems. In the baculovirus-insect cell system, this limitation has been addressed by glycoengineering insect cell lines with mammalian genes encoding protein N-glycosylation functions ("glycogenes") under the transcriptional control of constitutive promoters. However, a potential problem with this approach is that the metabolic load imposed by the expression of multiple transgenes could adversely impact the growth and/or stability of glycoengineered insect cell lines. Thus, we created a new transgenic insect cell line (SfSWT-5) with an inducibly mammalianized protein N-glycosylation pathway. Expression of all six glycogenes was induced when uninfected SfSWT-5 cells were cultured in growth medium containing doxycycline. Higher levels of expression and induction were observed when SfSWT-5 cells were cultured with doxycycline and infected with a baculovirus. Interestingly, there were no major differences in the short-term growth properties of SfSWT-5 cells cultured with or without doxycycline. Furthermore, there were no major differences in the phenotypic stability of these cells after continuous culture for over 300 passages with or without doxycycline. Baculovirus-infected Sf9 and SfSWT-5 cells produced about the same amounts of a model recombinant glycoprotein, but only the latter sialylated this product and sialylation was more pronounced when the cells were treated with doxycycline. In summary, this is the first report of a lower eukaryotic system with an inducibly mammalianized protein N-glycosylation pathway and the first to examine how the presumed metabolic load imposed by multiple transgene expression impacts insect cell growth and stability.
Collapse
Affiliation(s)
- Jared J Aumiller
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | |
Collapse
|
6
|
Hillar A, Jarvis DL. Re-visiting the endogenous capacity for recombinant glycoprotein sialylation by baculovirus-infected Tn-4h and DpN1 cells. Glycobiology 2010; 20:1323-30. [PMID: 20574041 DOI: 10.1093/glycob/cwq099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It was previously reported that Tn-4h and DpN1 cells have the endogenous capacity to efficiently sialylate secreted alkaline phosphatase (SEAP) when infected with a baculovirus expression vector. In contrast, it has been found that lepidopteran insect cell lines that are more widely used as hosts for baculovirus vectors typically fail to sialylate SEAP and other recombinant glycoproteins. Thus, the N-glycan processing capabilities of Tn-4h and DpN1 cells are of potential interest to investigators using the baculovirus expression system for recombinant glycoprotein production. In this study, we experimentally re-assessed the ability of Tn-4h and DpN1 cells to sialylate SEAP with Sf9 and glyco-engineered Sf9 cells (SfSWT-1) as negative and positive controls, respectively. Our results showed that the SEAP purified from SfSWT-1 cells was strongly sialylated and initially indicated that the SEAP purified from Tn-4h cells was weakly sialylated. However, further analyses suggested that the SEAP produced by Tn-4h cells only appeared to be sialylated because it was contaminated with an electrophoretically indistinguishable sialoglycoprotein derived from fetal bovine serum. We subsequently expressed, purified, and analyzed a second recombinant glycoprotein (GST-SfManI) from all four cell lines and found that only the SfSWT-1 cells were able to detectably sialylate this product. Together, these results showed that neither Tn-4h nor DpN1 cells efficiently sialylated SEAP or GST-SfManI when infected by baculovirus expression vectors. Furthermore, they suggested that previous reports of efficient SEAP sialylation by Tn-4h and DpN1 cells probably reflect contamination with a sialylated, co-migrating glycoprotein, perhaps bovine fetuin, derived from the serum used in the insect cell growth medium.
Collapse
Affiliation(s)
- Alexander Hillar
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
7
|
Kajiura H, Koiwa H, Nakazawa Y, Okazawa A, Kobayashi A, Seki T, Fujiyama K. Two Arabidopsis thaliana Golgi alpha-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology 2009; 20:235-47. [PMID: 19914916 DOI: 10.1093/glycob/cwp170] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
N-Glycosylation is an important post-translational modification that occurs in many secreted and membrane proteins in eukaryotic cells. Golgi alpha-mannosidase I hydrolases (MANI) are key enzymes that play a role in the early N-glycan modification pathway in the Golgi apparatus. In Arabidopsis thaliana, two putative MANI genes, AtMANIa (At3g21160) and AtMANIb (At1g51590), were identified. Biochemical analysis using bacterially produced recombinant AtMANI isoforms revealed that both AtMANI isoforms encode 1-deoxymannojirimycin-sensitive alpha-mannosidase I and act on Man(8)GlcNAc(2) and Man(9)GlcNAc(2) structures to yield Man(5)GlcNAc(2). Structures of hydrolytic intermediates accumulated in the AtMANI reactions indicate that AtMANIs employ hydrolytic pathways distinct from those of mammalian MANIs. In planta, AtMANI-GFP/DsRed fusion proteins were detected in the Golgi stacks. Arabidopsis mutant lines manIa-1, manIa-2, manIb-1, and manIb-2 showed N-glycan profiles similar to that of wild type. On the other hand, the manIa manIb double mutant lines produced Man(8)GlcNAc(2) as the predominant N-glycan and lacked plant-specific complex and hybrid N-glycans. These data indicate that either AtMANIa or AtMANIb can function as the Golgi alpha-mannosidase I that produces the Man(5)GlcNAc(2) N-glycan structure necessary for complex N-glycan synthesis.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
One of the major advantages of the baculovirus-insect cell system is that it is a eukaryotic system that can provide posttranslational modifications, such as protein N-glycosylation. However, this is a vastly oversimplified view, which reflects a poor understanding of insect glycobiology. In general, insect protein glycosylation pathways are far simpler than the corresponding pathways of higher eukaryotes. Paradoxically, it is increasingly clear that various insects encode and can express more elaborate protein glycosylation functions in restricted fashion. Thus, the information gathered in a wide variety of studies on insect protein N-glycosylation during the past 25 years has provided what now appears to be a reasonably detailed, comprehensive, and accurate understanding of the protein N-glycosylation capabilities of the baculovirus-insect cell system. In this chapter, we discuss the models of insect protein N-glycosylation that have emerged from these studies and how this impacts the use of baculovirus-insect cell systems for recombinant glycoprotein production. We also discuss the use of these models as baselines for metabolic engineering efforts leading to the development of new baculovirus-insect cell systems with humanized protein N-glycosylation pathways, which can be used to produce more authentic recombinant N-glycoproteins for drug development and other biomedical applications.
Collapse
Affiliation(s)
- Xianzong Shi
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071
- Chesapeake-PERL, Inc. 8510A Corridor Rd, Savage, MD 20763, USA
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
9
|
Chang VT, Crispin M, Aricescu AR, Harvey DJ, Nettleship JE, Fennelly JA, Yu C, Boles KS, Evans EJ, Stuart DI, Dwek RA, Jones EY, Owens RJ, Davis SJ. Glycoprotein structural genomics: solving the glycosylation problem. Structure 2007; 15:267-73. [PMID: 17355862 PMCID: PMC1885966 DOI: 10.1016/j.str.2007.01.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 10/29/2022]
Abstract
Glycoproteins present special problems for structural genomic analysis because they often require glycosylation in order to fold correctly, whereas their chemical and conformational heterogeneity generally inhibits crystallization. We show that the "glycosylation problem" can be solved by expressing glycoproteins transiently in mammalian cells in the presence of the N-glycosylation processing inhibitors, kifunensine or swainsonine. This allows the correct folding of the glycoproteins, but leaves them sensitive to enzymes, such as endoglycosidase H, that reduce the N-glycans to single residues, enhancing crystallization. Since the scalability of transient mammalian expression is now comparable to that of bacterial systems, this approach should relieve one of the major bottlenecks in structural genomic analysis.
Collapse
Affiliation(s)
- Veronica T. Chang
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Max Crispin
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - A. Radu Aricescu
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - David J. Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Joanne E. Nettleship
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Janet A. Fennelly
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Chao Yu
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Kent S. Boles
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Edward J. Evans
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - David I. Stuart
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Raymond A. Dwek
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - E. Yvonne Jones
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Raymond J. Owens
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Simon J. Davis
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
10
|
Harrison RL, Jarvis DL. Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce "mammalianized" recombinant glycoproteins. Adv Virus Res 2006; 68:159-91. [PMID: 16997012 DOI: 10.1016/s0065-3527(06)68005-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Baculovirus expression vectors are frequently used to express glycoproteins, a subclass of proteins that includes many products with therapeutic value. The insect cells that serve as hosts for baculovirus vector infection are capable of transferring oligosaccharide side chains (glycans) to the same sites in recombinant proteins as those that are used for native protein N-glycosylation in mammalian cells. However, while mammalian cells produce compositionally more complex N-glycans containing terminal sialic acids, insect cells mostly produce simpler N-glycans with terminal mannose residues. This structural difference between insect and mammalian N-glycans compromises the in vivo bioactivity of glycoproteins and can potentially induce allergenic reactions in humans. These features obviously compromise the biomedical value of recombinant glycoproteins produced in the baculovirus expression vector system. Thus, much effort has been expended to characterize the potential and limits of N-glycosylation in insect cell systems. Discoveries from this research have led to the engineering of insect N-glycosylation pathways for assembly of mammalian-style glycans on baculovirus-expressed glycoproteins. This chapter summarizes our knowledge of insect N-glycosylation pathways and describes efforts to engineer baculovirus vectors and insect cell lines to overcome the limits of insect cell glycosylation. In addition, we consider other possible strategies for improving glycosylation in insect cells.
Collapse
Affiliation(s)
- Robert L Harrison
- Insect Biocontrol Laboratory, USDA Agricultural Research Service, Plant Sciences Institute, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | | |
Collapse
|
11
|
Hill DR, Aumiller JJ, Shi X, Jarvis DL. Isolation and analysis of a baculovirus vector that supports recombinant glycoprotein sialylation by SfSWT-1 cells cultured in serum-free medium. Biotechnol Bioeng 2006; 95:37-47. [PMID: 16607656 PMCID: PMC3612899 DOI: 10.1002/bit.20945] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The inability to sialylate recombinant glycoproteins is a critical limitation of the baculovirus-insect cell expression system. This limitation is due, at least in part, to the absence of detectable sialyltransferase activities and CMP-sialic acids in the insect cell lines routinely used as hosts in this system. SfSWT-1 is a transgenic insect cell line encoding five mammalian glycosyltransferases, including sialyltransferases, which can contribute to sialylation of recombinant glycoproteins expressed by baculovirus vectors. However, sialylation of recombinant glycoproteins requires culturing SfSWT-1 cells in the presence of fetal bovine serum or another exogenous source of sialic acid. To eliminate this requirement and extend the utility of SfSWT-1 cells, we have isolated a new baculovirus vector, AcSWT-7B, designed to express two mammalian enzymes that can convert N-acetylmannosamine to CMP-sialic acid during the early phase of infection. AcSWT-7B was also designed to express a model recombinant glycoprotein during the very late phase of infection. Characterization of this new baculovirus vector showed that it induced high levels of intracellular CMP-sialic acid and sialylation of the recombinant N-glycoprotein upon infection of SfSWT-1 cells cultured in serum-free medium supplemented with N-acetylmannosamine. In addition, co-infection of SfSWT-1 cells with AcSWT-7B plus a conventional baculovirus vector encoding human tissue plasminogen activator resulted in sialylation of this recombinant N-glycoprotein under the same culture conditions. These results demonstrate that AcSWT-7B can be used in two different ways to support recombinant N-glycoprotein sialylation by SfSWT-1 cells in serum-free medium. Thus, AcSWT-7B can be used to extend the utility of this previously described transgenic insect cell line for recombinant sialoglycoprotein production.
Collapse
Affiliation(s)
- Daniel R Hill
- Department of Molecular Biology, 1000 E. University Ave., University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
12
|
Tomiya N, Narang S, Lee YC, Betenbaugh MJ. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj J 2005; 21:343-60. [PMID: 15514482 DOI: 10.1023/b:glyc.0000046275.28315.87] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.
Collapse
Affiliation(s)
- Noboru Tomiya
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | | | | | |
Collapse
|
13
|
Vadaie N, Jarvis DL. Molecular cloning and functional characterization of a Lepidopteran insect beta4-N-acetylgalactosaminyltransferase with broad substrate specificity, a functional role in glycoprotein biosynthesis, and a potential functional role in glycolipid biosynthesis. J Biol Chem 2004; 279:33501-18. [PMID: 15173167 PMCID: PMC3610539 DOI: 10.1074/jbc.m404925200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A degenerate PCR approach was used to isolate a lepidopteran insect cDNA encoding a beta4-galactosyl-transferase family member. The isolation and initial identification of this cDNA was based on bioinformatics, but its identification as a beta4-galactosyltransferase family member was experimentally confirmed. The newly identified beta4-galactosyltransferase family member had unusually broad donor and acceptor substrate specificities in vitro, as transferred galactose, N-acetylglucosamine, and N-acetylgalactosamine to carbohydrate, glycoprotein, and glycolipid acceptors. However, the enzyme preferentially utilized N-acetylgalactosamine as the donor for all three acceptors, and its derived amino acid sequence was closely related to a known N-acetylgalactosaminyltransferase. These data suggested that the newly isolated cDNA encodes a beta4-N-acetylgalactosaminyltransferase that functions in insect cell glycoprotein biosynthesis, glycolipid biosynthesis, or both. The remainder of this study focused on the role of this enzyme in N-glycoprotein biosynthesis. The results showed that the purified enzyme transferred N-acetylgalactosamine, but no detectable galactose or N-acetylglucosamine, to a synthetic N-glycan in vitro. The structure of the reaction product was confirmed by chromatographic, mass spectroscopic, and nuclear magnetic resonance analyses. Co-expression of the new cDNA product in insect cells with an N-glycoprotein reporter showed that it transferred N-acetylgalactosamine, but no detectable galactose or N-acetylglucosamine, to this N-glycoprotein in vivo. Confocal microscopy showed that a GFP-tagged version of the enzyme was localized in the insect cell Golgi apparatus. In summary, this study demonstrated that lepidopteran insect cells encode and express a beta4-N-acetylgalactosaminyltransferase that functions in N-glycoprotein biosynthesis and perhaps in glycolipid biosynthesis, as well. The isolation and characterization of this gene and its product contribute to our basic understanding of insect protein N-glycosylation pathways and to the growing body of evidence that insects can produce glycoproteins with complex N-glycans.
Collapse
Affiliation(s)
| | - Donald L. Jarvis
- To whom correspondence should be addressed. Tel.: 307-766-4282; Fax: 307-766-5098;
| |
Collapse
|
14
|
Tomiya N, Betenbaugh MJ, Lee YC. Humanization of lepidopteran insect-cell-produced glycoproteins. Acc Chem Res 2003; 36:613-20. [PMID: 12924958 DOI: 10.1021/ar020202v] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The insect cell-baculovirus expression vector system, widely used for glycoprotein production, is not ideal for pharmaceutical glycoprotein production due to the characteristics of the N-glycans in the expressed products. Insect cells lack several enzymes required for mammalian-type N-glycan synthesis and contain a specific N-acetylglucosaminidase that stunts the growth of chains and a core alpha-1,3-fucosyltransferase that yields potentially allergenic glycoforms. Current knowledge on N-glycan processing in lepidopteran insect cells is summarized, and strategies to develop better glycoprotein expression systems suitable for pharmaceutical glycoprotein production are discussed.
Collapse
Affiliation(s)
- Noboru Tomiya
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
15
|
Aumiller JJ, Hollister JR, Jarvis DL. A transgenic insect cell line engineered to produce CMP-sialic acid and sialylated glycoproteins. Glycobiology 2003; 13:497-507. [PMID: 12626399 PMCID: PMC3612900 DOI: 10.1093/glycob/cwg051] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously engineered transgenic insect cell lines to express mammalian glycosyltransferases and showed that these cells can sialylate N-glycoproteins, despite the fact that they have little intracellular sialic acid and no detectable CMP-sialic acid. In the accompanying study, we presented evidence that these cell lines can salvage sialic acids for de novo glycoprotein sialylation from extracellular sialoglycoproteins, such as fetuin, found in fetal bovine serum. This finding led us to create a new transgenic insect cell line designed to synthesize its own sialic acid and CMP-sialic acid. SfSWT-1 cells, which encode five mammalian glycosyltransferases, were transformed with two additional mammalian genes that encode sialic acid synthase and CMP-sialic acid synthetase. The resulting cell line expressed all seven mammalian genes, produced CMP-sialic acid, and sialylated a recombinant glycoprotein when cultured in a serum-free growth medium supplemented with N-acetylmannosamine. Thus the addition of mammalian genes encoding two enzymes involved in CMP-sialic acid biosynthesis yielded a new transgenic insect cell line, SfSWT-3, that can sialylate recombinant glycoproteins in the absence of fetal bovine serum. This new cell line will be widely useful as an improved host for baculovirus-mediated recombinant glycoprotein production.
Collapse
|
16
|
Hollister J, Conradt H, Jarvis DL. Evidence for a sialic acid salvaging pathway in lepidopteran insect cells. Glycobiology 2003; 13:487-95. [PMID: 12626401 PMCID: PMC3632433 DOI: 10.1093/glycob/cwg053] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously described a transgenic insect cell line, Sfbeta4GalT/ST6, that expresses mammalian beta-1,4-galactosyltransferase and alpha2,6-sialyltransferase genes and produces glycoproteins with terminally sialylated N-glycans. The ability of these cells to produce sialylated N-glycans was surprising because insect cells contain only small amounts of sialic acid and no detectable CMP-sialic acid. Thus, it was of interest to investigate potential sources of sialic acids for sialoglycoprotein synthesis by these cells. We found that Sfbeta4GalT/ST6 cells can produce sialylated N-glycans when cultured in the presence but not in the absence of fetal bovine serum. The serum component(s) supporting N-glycan sialylation by Sfbeta4GalT/ST6 cells is relatively large-it was not removed by dialysis in a 50,000-molecular-weight cutoff membrane. Serum-free media supplemented with purified fetuin but not asialofetuin supported N-glycan sialylation by Sfbeta4GalT/ST6 cells. The terminally sialylated N-glycans isolated from fetuin also supported glycoprotein sialylation by Sfbeta4GalT/ST6 cells. Finally, serum-free medium supplemented with N-acetylneuraminic acid or N-acetylmannosamine supported glycoprotein sialylation by Sfbeta4GalT/ST6 cells but to a much lower degree than serum or fetuin. These results provide the first evidence of a sialic acid salvaging pathway in insect cells, which begins to explain how Sfbeta4GalT/ST6 and other transgenic insect cell lines can sialylate recombinant glycoproteins in the absence of a more obvious source of CMP-sialic acid.
Collapse
Affiliation(s)
- Jason Hollister
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Harald Conradt
- Protein Glycosylation, Gesellschaft fur Biotechnologische Forschung mbH, Braunschweig, Germany
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
- To whom correspondence should be addressed;
| |
Collapse
|
17
|
Jarvis DL. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 2003; 310:1-7. [PMID: 12788624 PMCID: PMC3641552 DOI: 10.1016/s0042-6822(03)00120-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The baculovirus-insect cell expression system is widely used to produce recombinant glycoproteins for many different biomedical applications. However, due to the fundamental nature of insect glycoprotein processing pathways, this system is typically unable to produce recombinant mammalian glycoproteins with authentic oligosaccharide side chains. This minireview summarizes our current understanding of insect protein glycosylation pathways and our recent efforts to address this problem. These efforts have yielded new insect cell lines and baculoviral vectors that can produce recombinant glycoproteins with humanized oligosaccharide side chains.
Collapse
Affiliation(s)
- Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, P.O. Box 3944, Laramie, WY 82071-3944, USA.
| |
Collapse
|
18
|
Hollister J, Grabenhorst E, Nimtz M, Conradt H, Jarvis DL. Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 2002; 41:15093-104. [PMID: 12475259 PMCID: PMC3612895 DOI: 10.1021/bi026455d] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insect cells, like other eucaryotic cells, modify many of their proteins by N-glycosylation. However, the endogenous insect cell N-glycan processing machinery generally does not produce complex, terminally sialylated N-glycans such as those found in mammalian systems. This difference in the N-glycan processing pathways of insect cells and higher eucaryotes imposes a significant limitation on their use as hosts for baculovirus-mediated recombinant glycoprotein production. To address this problem, we previously isolated two transgenic insect cell lines that have mammalian beta1,4-galactosyltransferase or beta1,4-galactosyltransferase and alpha2,6-sialyltransferase genes. Unlike the parental insect cell line, both transgenic cell lines expressed the mammalian glycosyltransferases and were able to produce terminally galactosylated or sialylated N-glycans. The purpose of the present study was to investigate the structures of the N-glycans produced by these transgenic insect cell lines in further detail. Direct structural analyses revealed that the most extensively processed N-glycans produced by the transgenic insect cell lines were novel, monoantennary structures with elongation of only the alpha1,3 branch. This led to the hypothesis that the transgenic insect cell lines lacked adequate endogenous N-acetylglucosaminyltransferase II activity for biantennary N-glycan production. To test this hypothesis and further extend the N-glycan processing pathway in Sf9 cells, we produced a new transgenic line designed to constitutively express a more complete array of mammalian glycosyltransferases, including N-acetylglucosaminyltransferase II. This new transgenic insect cell line, designated SfSWT-1, has higher levels of five glycosyltransferase activities than the parental cells and supports baculovirus replication at normal levels. In addition, direct structural analyses showed that SfSWT-1 cells could produce biantennary, terminally sialylated N-glycans. Thus, this study provides new insight on the glycobiology of insect cells and describes a new transgenic insect cell line that will be widely useful for the production of more authentic recombinant glycoproteins by baculovirus expression vectors.
Collapse
Affiliation(s)
- Jason Hollister
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Eckart Grabenhorst
- Protein Glycosylation, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany
| | - Manfred Nimtz
- Protein Glycosylation, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany
| | - Harald Conradt
- Protein Glycosylation, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
- To whom correspondence should be addressed. Phone: 307-766-4383. Fax: 307-766-5098.
| |
Collapse
|
19
|
Lobsanov YD, Vallée F, Imberty A, Yoshida T, Yip P, Herscovics A, Howell PL. Structure of Penicillium citrinum alpha 1,2-mannosidase reveals the basis for differences in specificity of the endoplasmic reticulum and Golgi class I enzymes. J Biol Chem 2002; 277:5620-30. [PMID: 11714724 DOI: 10.1074/jbc.m110243200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class I alpha1,2-mannosidases (glycosylhydrolase family 47) are key enzymes in the maturation of N-glycans. This protein family includes two distinct enzymatically active subgroups. Subgroup 1 includes the yeast and human endoplasmic reticulum (ER) alpha1,2-mannosidases that primarily trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomer B whereas subgroup 2 includes mammalian Golgi alpha1,2-mannosidases IA, IB, and IC that trim Man(9)GlcNAc(2) to Man(5)GlcNAc(2) via Man(8)GlcNAc(2) isomers A and C. The structure of the catalytic domain of the subgroup 2 alpha1,2-mannosidase from Penicillium citrinum has been determined by molecular replacement at 2.2-A resolution. The fungal alpha1,2-mannosidase is an (alphaalpha)(7)-helix barrel, very similar to the subgroup 1 yeast (Vallée, F., Lipari, F., Yip, P., Sleno, B., Herscovics, A., and Howell, P. L. (2000) EMBO J. 19, 581-588) and human (Vallée, F., Karaveg, K., Herscovics, A., Moremen, K. W., and Howell, P. L. (2000) J. Biol. Chem. 275, 41287-41298) ER enzymes. The location of the conserved acidic residues of the catalytic site and the binding of the inhibitors, kifunensine and 1-deoxymannojirimycin, to the essential calcium ion are conserved in the fungal enzyme. However, there are major structural differences in the oligosaccharide binding site between the two alpha1,2-mannosidase subgroups. In the subgroup 1 enzymes, an arginine residue plays a critical role in stabilizing the oligosaccharide substrate. In the fungal alpha1,2-mannosidase this arginine is replaced by glycine. This replacement and other sequence variations result in a more spacious carbohydrate binding site. Modeling studies of interactions between the yeast, human and fungal enzymes with different Man(8)GlcNAc(2) isomers indicate that there is a greater degree of freedom to bind the oligosaccharide in the active site of the fungal enzyme than in the yeast and human ER alpha1,2-mannosidases.
Collapse
Affiliation(s)
- Yuri D Lobsanov
- Program in Structural Biology and Biochemistry, Research Institute, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Herscovics A. Structure and function of Class I alpha 1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 2001; 83:757-62. [PMID: 11530208 DOI: 10.1016/s0300-9084(01)01319-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Class I alpha 1,2-mannosidases (glycosylhydrolase family 47) are conserved through eukaryotic evolution. This protein family comprises three subgroups distinguished by their enzymatic properties. The first subgroup includes yeast (Saccharomyces cerevisiae) and human alpha 1,2-mannosidases of the endoplasmic reticulum that primarily form Man(8)GlcNAc(2) isomer B from Man(9)GlcNAc(2). The second subgroup includes mammalian Golgi alpha 1,2-mannosidases, as well as enzymes from insect cells and from filamentous fungi, that trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomers A and/or C intermediates toward the formation of Man(5)GlcNAc(2). Yeast and mammalian proteins of the third subgroup have no enzyme activity with Man(9)GlcNAc(2) as substrate. The members of subgroups 1 and 3 participate in endoplasmic reticulum quality control and promote proteasomal degradation of misfolded glycoproteins. The yeast endoplasmic reticulum alpha 1,2-mannosidase has served as a model for structure-function studies of this family. Its structure was determined by X-ray crystallography as an enzyme-product complex. It consists of a novel (alpha alpha)(7) barrel containing the active site that includes essential acidic residues and calcium. The structures of the subgroup 1 human endoplasmic reticulum alpha 1,2-mannosidase and of a subgroup 2 fungal alpha 1,2-mannosidase were determined by molecular replacement. Comparison of the enzyme structures is providing some insight into the reasons for their different specificities.
Collapse
Affiliation(s)
- A Herscovics
- McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montréal, H3G 1Y6, Québec, Canada.
| |
Collapse
|
21
|
Kawar Z, Karaveg K, Moremen KW, Jarvis DL. Insect cells encode a class II alpha-mannosidase with unique properties. J Biol Chem 2001; 276:16335-40. [PMID: 11279010 PMCID: PMC3633600 DOI: 10.1074/jbc.m100119200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we cloned and characterized an insect (Sf9) cell cDNA encoding a class II alpha-mannosidase with amino acid sequence and biochemical similarities to mammalian Golgi alpha-mannosidase II. Since then, it has been demonstrated that other mammalian class II alpha-mannosidases can participate in N-glycan processing. Thus, the present study was performed to evaluate the catalytic properties of the Sf9 class II alpha-mannosidase and to more clearly determine its relationship to mammalian Golgi alpha-mannosidase II. The results showed that the Sf9 enzyme is cobalt-dependent and can hydrolyze Man(5)GlcNAc(2) to Man(3)GlcNAc(2), but it cannot hydrolyze GlcNAcMan(5)GlcNAc(2). These data establish that the Sf9 enzyme is distinct from Golgi alpha-mannosidase II. This enzyme is not a lysosomal alpha-mannosidase because it is not active at acidic pH and it is localized in the Golgi apparatus. In fact, its sensitivity to swainsonine distinguishes the Sf9 enzyme from all other known mammalian class II alpha-mannosidases that can hydrolyze Man(5)GlcNAc(2). Based on these properties, we designated this enzyme Sf9 alpha-mannosidase III and concluded that it probably provides an alternate N-glycan processing pathway in Sf9 cells.
Collapse
Affiliation(s)
- Ziad Kawar
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071–3944
| | - Khanita Karaveg
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071–3944
- To whom correspondence should be addressed: Dept. of Molecular Biology, Univ. of Wyoming, P. O. Box 3944, Laramie, Wyoming 82071–3944. Tel.: 307-766-4282; Fax: 307-766-5098;
| |
Collapse
|
22
|
Kawar Z, Jarvis DL. Biosynthesis and subcellular localization of a lepidopteran insect alpha 1,2-mannosidase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:289-97. [PMID: 11222938 PMCID: PMC3644116 DOI: 10.1016/s0965-1748(00)00121-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Like lower and higher eucaryotes, insects have alpha 1,2-mannosidases which function in the processing of N-glycans. We previously cloned and characterized an insect alpha 1,2-mannosidase cDNA and demonstrated that it encodes a member of a family of N-glycan processing alpha 1,2-mannosidases (Kawar, Z., Herscovics, A., Jarvis, D.L., 1997. Isolation and characterisation of an alpha 1,2-mannosidase cDNA from the lepidopteran insect cell line Sf9. Glycobiology 7, 433-443). These enzymes have similar protein sequences, require calcium for their activities, and are sensitive to 1-deoxymannojirimycin, but can have different substrate specificities and intracellular distributions. We recently determined the substrate specificity of the insect alpha 1,2-mannosidase, SfManI (Kawar, Z., Romero, P., Herscovics, A., Jarvis, D.L., 2000. N-glycan processing by a lepidopteran insect and 1,2-mannosidase. Glycobiology 10, 347-355). Now, we have examined the biosynthesis and subcellular localization of SfManI. We found that SfManI is partially N-glycosylated and that N-glycosylation is dramatically enhanced if the wild type sequon is changed to one that is highly utilized in a mammalian system. We also found that an SfManI-GFP fusion protein had a punctate cytoplasmic distribution in insect cells. Colocalization studies indicated that this fusion protein is localized in the Golgi apparatus, not in the endoplasmic reticulum or lysosomes. Finally, N-glycosylation had no influence over the substrate specificity or subcellular localization of SfManI.
Collapse
Affiliation(s)
| | - Donald L. Jarvis
- Correspondence author. Tel.: +1-307-766-4282; Fax: +1-307-766-5098., (D.L. Jarvis)
| |
Collapse
|
23
|
Sarkar M, Schachter H. Cloning and expression of Drosophila melanogaster UDP-GlcNAc:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I. Biol Chem 2001; 382:209-17. [PMID: 11308019 DOI: 10.1515/bc.2001.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A TBLASTN search of the Drosophila melanogaster expressed sequence tag (EST) database with the amino acid sequence of human UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT I, EC 2.4.1.101) as probe yielded a clone (GM01211) with 56% identity over 36 carboxy-terminal amino acids. A 550 base pair (bp) probe derived from the EST clone was used to screen a Drosophila cDNA library in lambda-ZAP II and two cDNAs lacking a start ATG codon were obtained. 5'-Rapid amplification of cDNA ends (5'-RACE) yielded a 2828 bp cDNA containing a full-length 1368 bp open reading frame encoding a 456 amino acid protein with putative N-terminal cytoplasmic (5 residues) and hydrophobic transmembrane (20 residues) domains. The protein showed 52% amino acid sequence identity to human GnT I. This cDNA, truncated to remove the N-terminal hydrophobic domain, was expressed in the baculovirus/Sf9 system as a secreted protein containing an N-terminal (His)6 tag. Protein purified by adsorption to and elution from nickel beads converted Man alpha1-6(Man alpha1-3)Man beta-octyl (M3-octyl) to Man alpha1-6(GlcNAc beta1-2Man alpha1-3)Man beta-octyl. The Km values (0.7 and 0.03 mM for M3-octyl and UDP-GlcNAc respectively), temperature optimum (37 degrees C), pH optimum (pH 5 to 6) and divalent cation requirements (Mn > Fe, Mg, Ni > Ba, Ca, Cd, Cu) were similar to mammalian GnT I. TBLASTN searches of the Berkeley Drosophila Genome Project database with the Drosophila GnT I cDNA sequence as probe allowed localization of the gene to chromosomal region 2R; 57A9. Comparison of the cDNA and genomic DNA sequences allowed the assignment of seven exons and six introns; all introns showed GT-AG splice site consensus sequences. This is the first insect GnT I gene to be cloned and expressed.
Collapse
Affiliation(s)
- M Sarkar
- The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Hollister JR, Jarvis DL. Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. Glycobiology 2001; 11:1-9. [PMID: 11181556 DOI: 10.1093/glycob/11.1.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombinant mammalian glycoproteins produced by the baculovirus-insect cell expression system usually do not have structurally authentic glycans. One reason for this limitation is the virtual absence in insect cells of certain glycosyltransferases, which are required for the biosynthesis of complex, terminally sialylated glycoproteins by mammalian cells. In this study, we genetically transformed insect cells with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. This produced a new insect cell line that can express both genes, serve as hosts for baculovirus infection, and produce foreign glycoproteins with terminally sialylated N-glycans.
Collapse
Affiliation(s)
- J R Hollister
- Department of Molecular Biology, University of Wyoming, P.O. Box 3944, Laramie, WY 82071-3944, USA
| | | |
Collapse
|
25
|
Vallee F, Karaveg K, Herscovics A, Moremen KW, Howell PL. Structural basis for catalysis and inhibition of N-glycan processing class I alpha 1,2-mannosidases. J Biol Chem 2000; 275:41287-98. [PMID: 10995765 DOI: 10.1074/jbc.m006927200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) class I alpha1,2-mannosidase (also known as ER alpha-mannosidase I) is a critical enzyme in the maturation of N-linked oligosaccharides and ER-associated degradation. Trimming of a single mannose residue acts as a signal to target misfolded glycoproteins for degradation by the proteasome. Crystal structures of the catalytic domain of human ER class I alpha1,2-mannosidase have been determined both in the presence and absence of the potent inhibitors kifunensine and 1-deoxymannojirimycin. Both inhibitors bind to the protein at the bottom of the active-site cavity, with the essential calcium ion coordinating the O-2' and O-3' hydroxyls and stabilizing the six-membered rings of both inhibitors in a (1)C(4) conformation. This is the first direct evidence of the role of the calcium ion. The lack of major conformational changes upon inhibitor binding and structural comparisons with the yeast alpha1, 2-mannosidase enzyme-product complex suggest that this class of inverting enzymes has a novel catalytic mechanism. The structures also provide insight into the specificity of this class of enzymes and provide a blueprint for the future design of novel inhibitors that prevent degradation of misfolded proteins in genetic diseases.
Collapse
Affiliation(s)
- F Vallee
- Program in Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
26
|
Tremblay LO, Herscovics A. Characterization of a cDNA encoding a novel human Golgi alpha 1, 2-mannosidase (IC) involved in N-glycan biosynthesis. J Biol Chem 2000; 275:31655-60. [PMID: 10915796 DOI: 10.1074/jbc.m004935200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A human cDNA encoding a 70.9-kDa type II membrane protein with sequence similarity to class I alpha1,2-mannosidases was isolated. The enzymatic properties of the novel alpha1,2-mannosidase IC were studied by expressing its catalytic domain in Pichia pastoris as a secreted glycoprotein. alpha1,2-Mannosidase IC sequentially hydrolyzes the alpha1,2-linked mannose residues of [(3)H]mannose-labeled Man(9)GlcNAc to form [(3)H]Man(6)GlcNAc and a small amount of [(3)H]Man(5)GlcNAc. The enzyme requires calcium for activity and is inhibited by both 1-deoxymannojirimycin and kifunensine. The order of mannose removal was determined by separating oligosaccharide isomers formed from pyridylaminated Man(9)GlcNAc(2) by high performance liquid chromatography. The terminal alpha1,2-linked mannose residue from the middle branch is the last mannose removed by the enzyme. This residue is the mannose cleaved from Man(9)GlcNAc(2) by the endoplasmic reticulum alpha1, 2-mannosidase I to form Man(8)GlcNAc(2) isomer B. The order of mannose hydrolysis from either pyridylaminated Man(9)GlcNAc(2) or Man(8)GlcNAc(2) isomer B differs from that previously reported for mammalian Golgi alpha1,2-mannosidases IA and IB. The full-length alpha1,2-mannosidase IC was localized to the Golgi of MDBK and MDCK cells by indirect immunofluorescence. Northern blot analysis showed tissue-specific expression of a major transcript of 3.8 kilobase pairs. The expression pattern is different from that of human Golgi alpha1,2-mannosidases IA and IB. Therefore, the human genome contains at least three differentially regulated Golgi alpha1, 2-mannosidase genes encoding enzymes with similar, but not identical specificities.
Collapse
Affiliation(s)
- L O Tremblay
- McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | |
Collapse
|