1
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
2
|
Physical understanding of axonal growth patterns on grooved substrates: groove ridge crossing versus longitudinal alignment. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00089-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Gebhart VM, Caldwell JD, Rodewald A, Kalyvianaki K, Kampa M, Jirikowski GF. Estrogen receptors and sex hormone binding globulin in neuronal cells and tissue. Steroids 2019; 142:94-99. [PMID: 30030052 DOI: 10.1016/j.steroids.2018.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 01/28/2023]
Abstract
Estrogens exert a critical influence on neuronal tissues and cells. As demonstrated in many clinical studies, estrogens are neuroprotective to the extent that they improve prognosis for women with neurodegenerative diseases. Unfortunately, we still do not know exactly how these effects are mediated. Fifty years ago the first estrogen receptor was found, but since then many other new pathways of estrogen action have been identified. This review describes several of these pathways of estrogen effects and provides some conclusions and correlations about these as determined by recent studies with nerve growth factor differentiated rat pheochromocytoma cell line.
Collapse
Affiliation(s)
| | - Jack D Caldwell
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Spartanburg, SC, United States
| | | | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | |
Collapse
|
4
|
Banks DA, Dahal A, McFarland AG, Flowers BM, Stephens CA, Swack B, Gugssa A, Anderson WA, Hinton SD. MK-STYX Alters the Morphology of Primary Neurons, and Outgrowths in MK-STYX Overexpressing PC-12 Cells Develop a Neuronal Phenotype. Front Mol Biosci 2017; 4:76. [PMID: 29250526 PMCID: PMC5715325 DOI: 10.3389/fmolb.2017.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/02/2017] [Indexed: 01/14/2023] Open
Abstract
We previously reported that the pseudophosphatase MK-STYX (mitogen activated kinase phosphoserine/threonine/tyrosine binding protein) dramatically increases the number of what appeared to be primary neurites in rat pheochromocytoma (PC-12) cells; however, the question remained whether these MK-STYX-induced outgrowths were bona fide neurites, and formed synapses. Here, we report that microtubules and microfilaments, components of the cytoskeleton that are involved in the formation of neurites, are present in MK-STYX-induced outgrowths. In addition, in response to nerve growth factor (NGF), MK-STYX-expressing cells produced more growth cones than non-MK-STYX-expressing cells, further supporting a model in which MK-STYX has a role in actin signaling. Furthermore, immunoblot analysis demonstrates that MK-STYX modulates actin expression. Transmission electron microscopy confirmed that MK-STYX-induced neurites form synapses. To determine whether these MK-STYX-induced neurites have pre-synaptic or post-synaptic properties, we used classical markers for axons and dendrites, Tau-1 and MAP2 (microtubule associated protein 2), respectively. MK-STYX induced neurites were dopaminergic and expression of both Tau-1 and MAP2 suggests that they have both axonal and dendritic properties. Further studies in rat hippocampal primary neurons demonstrated that MK-STYX altered their morphology. A significant number of primary neurons in the presence of MK-STYX had more than the normal number of primary neurites. Our data illustrate the novel findings that MK-STYX induces outgrowths in PC-12 cells that fit the criteria for neurites, have a greater number of growth cones, form synapses, and have pre-synaptic and post-synaptic properties. It also highlights that the pseudophosphatase MK-STYX significantly alters the morphology of primary neurons.
Collapse
Affiliation(s)
- Dallas A Banks
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Arya Dahal
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Alexander G McFarland
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Brittany M Flowers
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States.,National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christina A Stephens
- Department of Chemistry, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Benjamin Swack
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, United States
| | | | - Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
5
|
Popova D, Karlsson J, Jacobsson SOP. Comparison of neurons derived from mouse P19, rat PC12 and human SH-SY5Y cells in the assessment of chemical- and toxin-induced neurotoxicity. BMC Pharmacol Toxicol 2017; 18:42. [PMID: 28583171 PMCID: PMC5460426 DOI: 10.1186/s40360-017-0151-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
Background Exposure to chemicals might be toxic to the developing brain. There is a need for simple and robust in vitro cellular models for evaluation of chemical-induced neurotoxicity as a complement to traditional studies on animals. In this study, neuronally differentiated mouse embryonal carcinoma P19 cells (P19 neurons) were compared with human neuroblastoma SH-SY5Y cells and rat adrenal pheochromocytoma PC12 cells for their ability to detect toxicity of methylmercury (MeHg), okadaic acid and acrylamide. Methods Retinoic acid-treated P19 and SH-SY5Y cells and nerve growth factor-stimulated PC12 cells, allowed to differentiate for 6 days, were exposed to MeHg, okadaic acid and acrylamide for 48 h. Cell survival and neurite outgrowth were assessed with the calcein-AM assay and fluorescence detection of antibodies against the cytoskeletal neuron-specific protein βIII-tubulin, respectively. The effects of glutathione (GSH) and the potent inhibitor of GSH synthesis buthionine sulfoximine (BSO) on the MeHg induced-toxicity were assessed using the PrestoBlue™ cell viability assay and the TMRE mitochondrial membrane potential assay. Results Differentiated P19 cells developed the most extensive neuronal network among the three cell models and were the most sensitive neuronal model to detect neurotoxic effects of the test compounds. MeHg produced a concentration-dependent toxicity in differentiated P19 cells and SH-SY5Y cells, with statistically significant effects at concentrations from 0.1 μM in the P19 neurons and 1 μM in the SH-SY5Y cells. MeHg induced a decrease in the cellular metabolic activity and mitochondrial membrane potential (ΔΨm) in the differentiated P19 cells and SH-SY5Y cells, that were attenuated by GSH. Okadaic acid and acrylamide also showed statistically significant toxicity in the P19 neurons, but not in the SH-SY5Y cells or the P12 cells. Conclusions P19 neurons are more sensitive to detect cytotoxicity of MeHg, okadaic acid and acrylamide than retinoic acid-differentiated SH-SY5Y cells and nerve growth factor-treated PC12 cells. P19 neurons are at least as sensitive as differentiated SH-SY5Y cells to detect the loss of mitochondrial membrane potential produced by MeHg and the protective effects of extracellular GSH on MeHg toxicity. P19 neurons may be a useful model to study neurotoxic effects of chemicals.
Collapse
Affiliation(s)
- Dina Popova
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Jessica Karlsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Stig O P Jacobsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden.
| |
Collapse
|
6
|
Kundu B, Eltohamy M, Yadavalli VK, Kundu SC, Kim HW. Biomimetic Designing of Functional Silk Nanotopography Using Self-assembly. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28458-28467. [PMID: 27686123 DOI: 10.1021/acsami.6b07872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In nature inorganic-organic building units create multifunctional hierarchical architectures. Organic silk protein is particularly attractive in this respect because of its micro-nanoscale structural blocks that are attributed to sophisticated hierarchical assembly imparting flexibility and compressibility to designed biohybrid materials. In the present study, aqueous silk fibroin is assembled to form nano/microtopography on inorganic silica surface via a facile diffusion-limited aggregation process. This process is driven by electrostatic interaction and only possible at a specified aminated surface chemistry. The self-assembled topography depends on the age and concentration of protein solution as well as on the surface charge distribution of the template. The self-assembled silk trails closely resemble natural cypress leaf architecture, which is considered a structural analogue of neuronal cortex. This assembled surface significantly enhances anchorage of neuronal cell and cytoskeletal extensions, providing an effective nano/microtopographical cue for cellular recognition and guidance.
Collapse
Affiliation(s)
| | - Mohamed Eltohamy
- Glass Research Department, National Research Centre , Dokki, Cairo, Egypt
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur , Kharagpur, West Bengal 721302, India
| | | |
Collapse
|
7
|
Koss K, Tsui C, Unsworth LD. Induced Neural Differentiation of MMP-2 Cleaved (RADA) 4 Drug Delivery Systems. J Control Release 2016; 243:204-213. [PMID: 27720765 DOI: 10.1016/j.jconrel.2016.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/17/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
(RADA)4 self-assembling peptides (SAPs) are promising for neural nanoscaffolds with on-demand drug delivery capabilities due to their automated synthesis, in-situ assembly, and potential for interaction with and release of biomolecules. Neuroinflammation cued on-demand drug release, due to up-regulated proteases, may well be vital in the treatment of several neurological diseases. In these conditions, releasing neurotrophic growth factors (NTFs) could potentially lead to neuroprotection and neurogenesis. As such, (RADA)4 was made with the high and low activity matrix metalloproteinase 2 (MMP-2) cleaved sequences, GPQG+IASQ (CP1) and GPQG+PAGQ (CP2), the brain-derived NTF secretion stimulating peptide MVG (DP1) and the ciliary NTF analogue DGGL (DP2). PC-12 cell culture was performed to assess bioactive substrate cell adhesion and NTF specific neuronal differentiation. The laminin-derived IKVAV peptide, known for neural cell attachment and interaction, was tethered to (RADA)4-IKVAV and mixed in increasing increments with (RADA)4 for this purpose. With 1 nanomolar MMP-2 treatment, product formation was observed to increase over a three day period, with (RADA)4/(RADA)4-CP1/CP2 mixture, however there was little difference between groups. Smaller CP1/CP2 concentrations displayed comparable (RADA)4 nanoscale morphology to higher concentrations. Acetylcholine esterase and neural differentiation was observed over 3 days with 1 nM MMP-2 treatment according to the following makeup: 8/1/1 (RADA)4/(RADA)4-IKVAV/(RADA)4-CP1/CP2-DP1/DP2. Signalling gradually increased in all groups, and neurite outgrowth was visible after three days.
Collapse
Affiliation(s)
- K Koss
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 ave, Edmonton, AB, T6G 2M7; National Institute for Nanotechnology, NRC, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9
| | - C Tsui
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 ave, Edmonton, AB, T6G 2M7; National Institute for Nanotechnology, NRC, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9
| | - L D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 ave, Edmonton, AB, T6G 2M7; National Institute for Nanotechnology, NRC, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9.
| |
Collapse
|
8
|
Zhang Q, Zhang ZJ, Wang XH, Ma J, Song YH, Liang M, Lin SX, Zhao J, Zhang AZ, Li F, Hua Q. The prescriptions from Shenghui soup enhanced neurite growth and GAP-43 expression level in PC12 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:369. [PMID: 27646829 PMCID: PMC5029060 DOI: 10.1186/s12906-016-1339-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/05/2016] [Indexed: 11/28/2022]
Abstract
Background Shenghui soup is a traditional Chinese herbal medicine used in clinic for the treatment of forgetfulness. In order to understanding the prescription principle, the effects of “tonifying qi and strengthening spleen” group (TQSS) including Poria cocos (Schw.) Wolf. and Panax ginseng C.A.Mey and “eliminating phlegm and strengthening intelligence” group (EPSI) composed of Polygala tenuifolia Willd., Acorus calamus L. and Sinapis alba L from the herb complex on neurite growth in PC12 cells, two disassembled prescriptions derived from Shenghui soup and their molecular mechanisms were investigated. Methods Firstly, CCK-8 kit was used to detect the impact of the two prescriptions on PC12 cell viability; and Flow cytometry was performed to measure the cell apoptosis when PC12 cells were treated with these drugs. Secondly, the effect of the two prescriptions on the differentiation of PC12 cells was observed. Finally, the mRNA and protein expression levels of GAP-43 were analyzed by RT-PCR and western blot, respectively. Results “Tonifying qi and strengthening spleen” prescription decreased cell viability in a dose-dependent manner, but had no significant effect on cell apoptosis. Meanwhile, it could improve neurite growth and elevate the mRNA and protein expression level of GAP-43. “Eliminating phlegm and strengthening intelligence” prescription also exerted the similar effects on cell viability and apoptosis. Furthermore, it could also enhance cell neurite growth, with a higher expression level of GAP-43 mRNA and protein. Conclusion “Tonifying qi and strengthening spleen” and “eliminating phlegm and strengthening intelligence” prescriptions from Shenghui soup have a positive effect on neurite growth. Their effects are related to the up-regulating expression of GAP-43. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1339-y) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Wang XY, Yang HW. Upregulation of CBS/H2S system contributes to asymmetric dimethylarginine-triggered protection against the neurotoxicity of glutamate to PC12 cells by inhibiting NOS/NO pathway. Exp Cell Res 2016; 346:111-8. [PMID: 27321959 DOI: 10.1016/j.yexcr.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/02/2016] [Accepted: 06/14/2016] [Indexed: 11/27/2022]
Abstract
Glutamate-induced neurotoxicity involves in overproduction of nitric oxide (NO) and oxidative stress. Our previous data demonstrated that asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, has a protective effect against glutamate-induced neurotoxicity. Hydrogen sulfide (H2S), the third endogenous gaseous mediator, has potential therapeutic value for oxidative stress-induced neural damage. Therefore, we hypothesized that ADMA provides protection against the neurotoxicity of glutamate by regulating endogenous H2S generation. In the present study, we found that ADMA prevented glutamate-triggered decrease in endogenous H2S generation in PC12 cells and reversed glutamate-induced suppression in the expression and activity of cystathionine-β-synthetase (CBS), the predominant enzymatic source of H2S in PC12 cells. Furthermore, AOAA, a potent inhibitor of CBS, significantly abolished the protective action of ADMA against glutamate-induced neurotoxicity to PC12 cells. We also showed that ADMA suppressed glutamate-elicited NOS excessive activation and NO overproduction in PC12 cells. These data indicate that the protection of ADMA against glutamate-induced neurotoxicity is by promoting endogenous H2S generation, resulting from suppression in NOS excessive activation and NO overproduction. These findings provide a novel mechanism underlying the protection of ADMA against glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- Department of Neurology, Third Clinical Hospital, China Three Gorges University, 60 Qiaohu 1st Road, 443002 Yichang, PR China; Department of Neurology, Gezhouba Central Hospital, 443002 Yichang, PR China.
| | - Hong-Wei Yang
- Department of Physiology, college of medical sciences, China Three Gorges University, 443002 Yichang, PR China
| |
Collapse
|
10
|
Jiang JM, Zhou CF, Gao SL, Tian Y, Wang CY, Wang L, Gu HF, Tang XQ. BDNF-TrkB pathway mediates neuroprotection of hydrogen sulfide against formaldehyde-induced toxicity to PC12 cells. PLoS One 2015; 10:e0119478. [PMID: 25749582 PMCID: PMC4352058 DOI: 10.1371/journal.pone.0119478] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity.
Collapse
Affiliation(s)
- Jia-Mei Jiang
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Cheng-Fang Zhou
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
| | - Sheng-Lan Gao
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Ying Tian
- Department of Biochemistry, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
- * E-mail: (X-QT); (YT)
| | - Chun-Yan Wang
- Department of Pathophysiology, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Li Wang
- Department of Anthropotomy, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Xiao-Qing Tang
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang, 421001, Hunan, P. R. China
- * E-mail: (X-QT); (YT)
| |
Collapse
|
11
|
Abstract
Rat pheochromocytoma PC 12 cells are known to develop features of dopaminergic neurons upon treatment with nerve growth factor. They express in part estrogen receptors α and β, and G-protein coupled receptor 30. Estrogens promote development of these cells and exert neuroprotective effects. Here we treated differentiated PC 12 cells with physiological concentrations of 17-β-estradiol. We observed with immunocytochemistry cytoplasmic staining for SHBG in a portion of these cells Double immunostaining for estrogen receptor-β revealed that some PC 12 cells contained both antigens. Numbers of estrogen receptor-β positive cells were significantly higher after estradiol treatment; an effect that was not altered by pretreatment of cultures with tamoxifen. With reverse transcriptase polymerase chain reaction we observed sex hormone binding globulin encoding transcripts indicating intrinsic expression of the steroid binding globulin. We conclude that estrogen treatment induces SHBG expression in differentiated PC12.
Collapse
Affiliation(s)
- Veronika M Gebhart
- Institute of Anatomy II, University Hospital Jena, Friedrich Schiller University, Jena, Germany.
| | - Gustav F Jirikowski
- Institute of Anatomy II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
12
|
Li X, Zhang KY, Zhang P, Chen LX, Wang L, Xie M, Wang CY, Tang XQ. Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1. PLoS One 2014; 9:e89856. [PMID: 24587076 PMCID: PMC3938548 DOI: 10.1371/journal.pone.0089856] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/23/2014] [Indexed: 12/29/2022] Open
Abstract
Background Formaldehyde (FA), a well-known environmental pollutant, has been classified as a neurotoxic molecule. Our recent data demonstrate that hydrogen sulfide (H2S), the third gaseous transmitter, has a protective effect on the neurotoxicity of FA. However, the exact mechanisms underlying this protection remain largely unknown. Endoplasmic reticulum (ER) stress has been implicated in the neurotoxicity of FA. Silent mating type information regulator 2 homolog 1 (SIRT-1), a histone deacetylases, has various biological activities, including the extension of lifespan, the modulation of ER stress, and the neuroprotective action. Objective We hypothesize that the protection of H2S against FA-induced neurotoxicity involves in inhibiting ER stress by upregulation of SIRT-1. The present study attempted to investigate the protective effect of H2S on FA-induced ER stress in PC12 cells and the contribution of SIRT-1 to the protection of H2S against FA-induced injuries, including ER stress, cytotoxicity and apoptosis. Principal Findings We found that exogenous application of sodium hydrosulfide (NaHS; an H2S donor) significantly attenuated FA-induced ER stress responses, including the upregulated levels of glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 expression. We showed that NaHS upregulates the expression of SIRT-1 in PC12 cells. Moreover, the protective effects of H2S on FA-elicited ER stress, cytotoxicity and apoptosis were reversed by Sirtinol, a specific inhibitor of SIRT-1. Conclusion/Significance These data indicate that H2S exerts its protection against the neurotoxicity of FA through overcoming ER stress via upregulation of SIRT-1. Our findings provide novel insights into the protective mechanisms of H2S against FA-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- Department of Neurology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
| | - Kai-Yan Zhang
- Department of Neurology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China
| | - Ping Zhang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
| | - Li-Xun Chen
- Department of Neurology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
| | - Li Wang
- Department of Anthropotomy, Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Ming Xie
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- Department of Neurology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- * E-mail: (X-QT); (MX)
| | - Chun-Yan Wang
- Department of Pathophysiology, Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Xiao-Qing Tang
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China
- * E-mail: (X-QT); (MX)
| |
Collapse
|
13
|
Sirivisoot S, Pareta R, Harrison BS. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration. Interface Focus 2014; 4:20130050. [PMID: 24501678 PMCID: PMC3886315 DOI: 10.1098/rsfs.2013.0050] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It has been established that nerves and skeletal muscles respond and communicate via electrical signals. In regenerative medicine, there is current emphasis on using conductive nanomaterials to enhance electrical conduction through tissue-engineered scaffolds to increase cell differentiation and tissue regeneration. We investigated the role of chemically synthesized polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer nanofibres for conductive gels. To mimic a naturally derived extracellular matrix for cell growth, type I collagen gels were reconstituted with conductive polymer nanofibres and cells. Cell viability and proliferation of PC-12 cells and human skeletal muscle cells on these three-dimensional conductive collagen gels were evaluated in vitro. PANI and PEDOT nanofibres were found to be cytocompatible with both cell types and the best results (i.e. cell growth and gel electrical conductivity) were obtained with a low concentration (0.5 wt%) of PANI. After 7 days of culture in the conductive gels, the densities of both cell types were similar and comparable to collagen positive controls. Moreover, PC-12 cells were found to differentiate in the conductive hydrogels without the addition of nerve growth factor or electrical stimulation better than collagen control. Importantly, electrical conductivity of the three-dimensional gel scaffolds increased by more than 400% compared with control. The increased conductivity and injectability of the cell-laden collagen gels to injury sites in order to create an electrically conductive extracellular matrix makes these biomaterials very conducive for the regeneration of tissues.
Collapse
Affiliation(s)
- Sirinrath Sirivisoot
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | | | - Benjamin S. Harrison
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
14
|
Blumenthal J, Cohen-Matsliah SI, Levenberg S. Olfactory Bulb-Derived Cells Seeded on 3D Scaffolds Exhibit Neurotrophic Factor Expression and Pro-Angiogenic Properties. Tissue Eng Part A 2013; 19:2284-91. [DOI: 10.1089/ten.tea.2012.0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jacob Blumenthal
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Chai YS, Hu J, Lei F, Wang YG, Yuan ZY, Lu X, Wang XP, Du F, Zhang D, Xing DM, Du LJ. Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correlations with p53/cyclin D1 and PI3K/Akt. Eur J Pharmacol 2013; 708:44-55. [DOI: 10.1016/j.ejphar.2013.02.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/12/2013] [Accepted: 02/24/2013] [Indexed: 12/22/2022]
|
16
|
Wang XY, Zhao J, Yang HW. Asymmetrical dimethylarginine antagonizes glutamate-induced apoptosis in PC12 cells. J Mol Neurosci 2012; 49:89-95. [PMID: 23054590 DOI: 10.1007/s12031-012-9897-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Overproduction of nitric oxide (NO) plays an important role in glutamate-induced excitotoxicity. Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor. The aim of this study is to explore whether ADMA antagonizes the excitotoxicity of glutamate to neuronal cells and the underlying molecular mechanisms. In this work, we investigated the effects of ADMA on glutamate-induced toxicity in neuronal cells by studying PC12 cells, a clonal rat pheochromocytoma cell line. We show that ADMA obviously protects PC12 cells against glutamate-induced cytotoxicity and apoptosis. We also found that ADMA treatment results in prevention of glutamate-induced mitochondrial membrane potential loss and caspase-3 activation. Moreover, ADMA prevents glutamate-caused down-regulation of bcl-2 protein expression. These results indicate that ADMA protects against glutamate-induced apoptosis and excitotoxicity and the underlying mechanism may be involved in preservation of mitochondrial function by up-regulating the expression of bcl-2. Our study suggests a promising future of ADMA-based therapies for neuropathologies associated with an excess of NO.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- Department of Neurology, Third Clinical Hospital, China Three Gorges University, 60 Qiaohu 1st Road, 443002 Yichang, China.
| | | | | |
Collapse
|
17
|
Hydrogen sulfide prevents formaldehyde-induced neurotoxicity to PC12 cells by attenuation of mitochondrial dysfunction and pro-apoptotic potential. Neurochem Int 2012; 61:16-24. [PMID: 22542418 DOI: 10.1016/j.neuint.2012.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 04/08/2012] [Accepted: 04/11/2012] [Indexed: 11/23/2022]
Abstract
Hydrogen sulfide (H(2)S) has been shown to act as a neuroprotectant and antioxidant. Numerous studies have demonstrated that exposure to formaldehyde (FA) causes neuronal damage and that oxidative stress is one of the most critical effects of FA exposure. Accumulation of FA is involved in the pathogenesis of Alzheimer's disease (AD). The aim of present study is to explore the inhibitory effects of H(2)S on FA-induced cytotoxicity and apoptosis and the molecular mechanisms underlying in PC12 cells. We show that sodium hydrosulfide (NaHS), a H(2)S donor, protects PC12 cells against FA-mediated cytotoxicity and apoptosis and that NaHS preserves the function of mitochondria by preventing FA-induced loss of mitochondrial membrane potential and release of cytochrome c in PC12 cells. Furthermore, NaHS blocks FA-exerted accumulation of intracellular reactive oxygen species (ROS), down-regulation of Bcl-2 expression, and up-regulation of Bax expression. These results indicate that H(2)S protects neuronal cells against neurotoxicity of FA by preserving mitochondrial function through attenuation of ROS accumulation, up-regulation of Bcl-2 level, and down-regulation of Bax expression. Our study suggests a promising future of H(2)S-based preventions and therapies for neuronal damage after FA exposure.
Collapse
|
18
|
Tang XQ, Chen RQ, Ren YK, Soldato PD, Sparatore A, Zhuang YY, Fang HR, Wang CY. ACS6, a Hydrogen sulfide-donating derivative of sildenafil, inhibits homocysteine-induced apoptosis by preservation of mitochondrial function. Med Gas Res 2011; 1:20. [PMID: 22146536 PMCID: PMC3231821 DOI: 10.1186/2045-9912-1-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/16/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hydrogen sulfide-releasing sildenafil, ACS6, has been demonstrated to inhibit superoxide formation through donating hydrogen sulfide (H2S). We have found that H2S antagonizes homocysteine-induced oxidative stress and neurotoxicity. The aim of the present study is to explore the protection of ACS6 against homocysteine-triggered cytotoxicity and apoptosis and the molecular mechanisms underlying in PC12 cells. METHODS Cell viability was determined by Cell Counting Kit-8 assay. Cell apoptosis was observed using the chromatin dye Hoechst 33258 and analyzed by Flow Cytometry after propidium iodide staining. Mitochondrial membrane potential was monitored using the fluorescent dye Rh123. Intracellular reactive oxygen species were determined by oxidative conversion of cell permeable 2',7'-dichlorfluorescein-diacetate to fluorescent 2',7'-dichlorfluorescein. The expression of cleaved caspase-3 and bcl-2 and the accumulation of cytosolic cytochrome c were analyzed by Western blot. RESULTS We show that ACS6 protects PC12 cells against cytotoxicity and apoptosis induced by homocysteine and blocks homocysteine-triggered cytochrome c release and caspase-3 activation. ACS6 treatment results in not only prevention of homocysteine-caused mitochondrial membrane potential (Δψ) loss and reactive oxygen species (ROS) overproduction but also reversal of Bcl-2 down-expression. CONCLUSIONS These results indicate that ACS6 protects PC12 cells against homocysteine-induced cytotoxicity and apoptosis by preservation of mitochondrial function though inhibiting both loss of Δψ and accumulation of ROS as well as modulating the expression of Bcl-2. Our study provides evidence both for a neuroprotective effect of ACS6 and for further evaluation of ACS6 as novel neuroprotectants for Alzheimer's disease associated with homocysteine.
Collapse
Affiliation(s)
- Xiao-Qing Tang
- Department of Physiology, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Rong-Qian Chen
- Department of Physiology, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Yan-Kai Ren
- Department of Physiology, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
| | | | - Anna Sparatore
- Department of Pharmaceutical Sciences "Pietro Pratesi", Università degli Studi di Milano, Milan, Italy
| | - Yuan-Yuan Zhuang
- Department of Physiology, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Hen-Rong Fang
- Department of Physiology, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Chun-Yan Wang
- Department of Pathophysiology, Medical College,, University of south China, Hengyang, 421001, Hunan, P.R. China
| |
Collapse
|
19
|
Tang XQ, Ren YK, Chen RQ, Zhuang YY, Fang HR, Xu JH, Wang CY, Hu B. Formaldehyde induces neurotoxicity to PC12 cells involving inhibition of paraoxonase-1 expression and activity. Clin Exp Pharmacol Physiol 2011; 38:208-14. [PMID: 21261675 DOI: 10.1111/j.1440-1681.2011.05485.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. Formaldehyde (FA) has been found to cause toxicity to neurons. However, its neurotoxic mechanisms have not yet been clarified. Increasing evidence has shown that oxidative damage is one of the most critical effects of formaldehyde exposure. Paraoxonase-1 (PON-1) is a pivotal endogenous anti-oxidant. Thus, we hypothesized that FA-mediated downregulation of PON1 is associated with its neurotoxicity. 2. In the present work, we used PC12 cells to study the neurotoxicity of FA and explore whether PON-1 is implicated in FA-induced neurotoxicity. 3. We found that FA has potent cytotoxic and apoptotic effects on PC12 cells. FA induces an accumulation of intracellular reactive oxygen species along with downregulation of Bcl-2 expression, as well as increased cytochrome c release. FA significantly suppressed the expression and activity of PON-1 in PC12 cells. Furthermore, H(2)S, an endogenous anti-oxidant gas, antagonizes FA-induced cytotoxicity as well as 2-hydroxyquinoline, a specific inhibitor of PON-1, which also induces cytotoxicity to PC12 cells. 4. The results of the present study provide, for the first time, evidence that the inhibitory effect on PON-1 expression and activity is involved in the neurotoxicity of FA, and suggest a promising role of PON-1 as a novel therapeutic strategy for FA-mediated toxicity.
Collapse
Affiliation(s)
- Xiao-Qing Tang
- Department of Physiology, Medical College, University of South China, Hengyang, Hunan, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Endogenous Hydrogen Sulfide is Involved in Asymmetric Dimethylarginine-induced Protection Against Neurotoxicity of 1-Methyl-4-phenyl-pyridinium Ion. Neurochem Res 2011; 36:2176-85. [DOI: 10.1007/s11064-011-0542-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2011] [Indexed: 01/21/2023]
|
21
|
Hanson L, Cui L, Xie C, Cui B. A microfluidic positioning chamber for long-term live-cell imaging. Microsc Res Tech 2011; 74:496-501. [PMID: 20936672 PMCID: PMC3021629 DOI: 10.1002/jemt.20937] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/18/2010] [Indexed: 12/11/2022]
Abstract
We report a microfluidic positioning chamber (MPC) that can rapidly and repeatedly relocate the same imaging area on a microscope stage. The "roof" of the microfluidic chamber was printed with serials of coordinate numbers that act as positioning marks for mammalian cells that grow attached to the "floor" of the microfluidic chamber. MPC cell culture chamber provided a simple solution for tracking the same cell or groups of cells over days or weeks. The positioning marks were used to register time-lapse images of the same imaging area to single-pixel accuracy. Using MPC cell culture chamber, we tracked the migration, division, and differentiation of individual PC12 cells for over a week using bright field and fluorescence imaging.
Collapse
Affiliation(s)
- Lindsey Hanson
- Department of Chemistry, Stanford University, Stanford, California, 94305
| | - Lifeng Cui
- Department of Material Science and Engineering, Stanford University, Stanford, California, 94305
| | - Chong Xie
- Department of Material Science and Engineering, Stanford University, Stanford, California, 94305
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California, 94305
| |
Collapse
|
22
|
Deng GF, Qin JM, Sun XS, Kuang ZY, Su T, Zhao QH, Shi YW, Liu XR, Yu MJ, Yi YH, Liao WP, Long YS. Promoter analysis of mouse Scn3a gene and regulation of the promoter activity by GC box and CpG methylation. J Mol Neurosci 2011; 44:115-21. [PMID: 21271300 DOI: 10.1007/s12031-011-9492-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/11/2011] [Indexed: 01/04/2023]
Abstract
Voltage-gated sodium channel α-subunit type III (Na(v)1.3) is mainly expressed in the central nervous system and is associated with neurological disorders. The expression of mouse Scn3a product (Na(v)1.3) mainly occurs in embryonic and early postnatal brain but not in adult brain. Here, we report for the first time the identification and characterization of the mouse Scn3a gene promoter region and regulation of the promoter activity by GC box and CpG methylation. Luciferase assay showed that the promoter region F1.2 (nt -1,049 to +157) had significantly higher activity in PC12 cells, comparing with that in SH-SY5Y cells and HEK293 cells. A stepwise 5' truncation of the promoter region found that the minimal functional promoter located within the region nt -168 to +157. Deletion of a GC box (nt -254 to -258) in the mouse Scn3a promoter decreased the promoter activity. CpG methylation of the F1.2 without the GC box completely repressed the promoter activity, suggesting that the GC box is a critical element in the CpG-methylated Scn3a promoter. These results suggest that the GC box and CpG methylation might play important roles in regulating mouse Scn3a gene expression.
Collapse
Affiliation(s)
- Guang-Fei Deng
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China, Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang XQ, Shen XT, Huang YE, Chen RQ, Ren YK, Fang HR, Zhuang YY, Wang CY. Inhibition of endogenous hydrogen sulfide generation is associated with homocysteine-induced neurotoxicity: role of ERK1/2 activation. J Mol Neurosci 2010; 45:60-7. [PMID: 21104457 DOI: 10.1007/s12031-010-9477-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 11/07/2010] [Indexed: 12/01/2022]
Abstract
Both elevated homocysteine and decreased hydrogen sulfide (H(2)S) are observed in the brains of Alzheimer's disease (AD) patients. Reactive oxygen species (ROS) overproduction contributes to the neurotoxicity of homocysteine; however, H(2)S is an endogenous antioxidant gas. Therefore, the aim of this study was to investigate whether the imbalance of proportion to this endogenous protective antioxidant gas is involved in homocysteine-caused neurotoxicity. We show that homocysteine inhibits the generation of endogenous H(2)S and the expression and activity of cystathionine-β-synthetase (CBS), the main enzyme responsible for the generation of H(2)S in PC12 cells. S-Adenosylmethionine, an activator of CBS, not only prevents homocysteine-induced inhibition of endogenous H(2)S production but also attenuates homocysteine-triggered cytotoxicity and accumulation of ROS. We find that activation of ERK1/2 occurs in homocysteine-treated PC12 cells and blockade of ERK1/2 with U0126 abolished the homocysteine-induced cytotoxicity and inhibitory effect on endogenous H(2)S generation. These results indicate that homocysteine neurotoxicity involves reduction of H(2)S production, which is caused by inhibition of CBS and mediated by activation of ERK1/2. Our study suggests a promising future of H(2)S-based therapies for neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Xiao-Qing Tang
- Department of Physiology, Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells. Neurosci Res 2010; 68:241-9. [DOI: 10.1016/j.neures.2010.07.2039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 06/02/2010] [Accepted: 07/21/2010] [Indexed: 01/15/2023]
|
25
|
Wu L, Zhao Q, Zhu X, Peng M, Jia C, Wu W, Zheng J, Wu XZ. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol 2010; 20:1042-54. [PMID: 20557304 DOI: 10.1111/j.1750-3639.2010.00410.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study we investigated the locomotor activity and non-selective attention in spontaneously hypertensive rats (SHR) with control Wistar-Kyoto (WKY) rats, which were employed as an attention deficit hyperactivity disorder (ADHD) model. In open-field test and làt maze, SHR rats were found to be much more spontaneously active than WKY rats. As compared with WKY rats, a lower level of galectin-3 was observed in SHR brain prefrontal cortex (PFC), which was the major affected brain area of ADHD. Through miRNA microarray screening, rno-let-7d was noted to be solely upregulated in SHR PFC. Interestingly, rno-let-7d had a binding site at galectin-3 mRNA and was shown to regulate galectin-3 3' untranslated region (UTR) directly. Mutation of galectin-3 3'UTR by one nucleotide of the seed sequence prevented rno-let-7d regulation of the 3' UTR completely. Although rno-let-7d did not directly regulate tyrosine hydroxylase (TH) 3'UTR, the level of galectin-3 was important for cAMP response element binding protein, the major transcript factor for TH gene. Either overexpression or downexpression of galectin-3 could result in modulation of TH expression in both PC12H and PC12L cells. In conclusion, our data suggested a novel function of rno-let-7d in regulation of galectin-3 and in ADHD development. Rno-let-7d, which is increased in the PFC of SHR brain, negatively regulated galectin-3, which is coupled with TH expression regulation.
Collapse
Affiliation(s)
- Lihui Wu
- Department of Children's Health Care, Yu Ying Children's Hospital, Wenzhou Medical College, Cha Shan College Zone, Wenzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mehta NR, Lopez PHH, Vyas AA, Schnaar RL. Gangliosides and Nogo receptors independently mediate myelin-associated glycoprotein inhibition of neurite outgrowth in different nerve cells. J Biol Chem 2007; 282:27875-86. [PMID: 17640868 PMCID: PMC2377359 DOI: 10.1074/jbc.m704055200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the injured nervous system, myelin-associated glycoprotein (MAG) on residual myelin binds to receptors on axons, inhibits axon outgrowth, and limits functional recovery. Conflicting reports identify gangliosides (GD1a and GT1b) and glycosylphosphatidylinositol-anchored Nogo receptors (NgRs) as exclusive axonal receptors for MAG. We used enzymes and pharmacological agents to distinguish the relative roles of gangliosides and NgRs in MAG-mediated inhibition of neurite outgrowth from three nerve cell types, dorsal root ganglion neurons (DRGNs), cerebellar granule neurons (CGNs), and hippocampal neurons. Primary rat neurons were cultured on control substrata and substrata adsorbed with full-length native MAG extracted from purified myelin. The receptors responsible for MAG inhibition of neurite outgrowth varied with nerve cell type. In DRGNs, most of the MAG inhibition was via NgRs, evidenced by reversal of inhibition by phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves glycosylphosphatidylinositol anchors, or by NEP1-40, a peptide inhibitor of NgR. A smaller percentage of MAG inhibition of DRGN outgrowth was via gangliosides, evidenced by partial reversal by addition of sialidase to cleave GD1a and GT1b or by P4, an inhibitor of ganglioside biosynthesis. Combining either PI-PLC and sialidase or NEP1-40 and P4 was additive. In contrast to DRGNs, in CGNs MAG inhibition was exclusively via gangliosides, whereas inhibition of hippocampal neuron outgrowth was mostly reversed by sialidase or P4 and only modestly reversed by PI-PLC or NEP1-40 in a non-additive fashion. A soluble proteolytic fragment of native MAG, dMAG, also inhibited neurite outgrowth. In DRGNs, dMAG inhibition was exclusively NgR-dependent, whereas in CGNs it was exclusively ganglioside-dependent. An inhibitor of Rho kinase reversed MAG-mediated inhibition in all nerve cells, whereas a peptide inhibitor of the transducer p75(NTR) had cell-specific effects quantitatively similar to NgR blockers. Our data indicate that MAG inhibits axon outgrowth via two independent receptors, gangliosides and NgRs.
Collapse
Affiliation(s)
- Niraj R. Mehta
- Department of Pharmacology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Pablo H. H. Lopez
- Department of Pharmacology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Alka A. Vyas
- Department of Pharmacology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Ronald L. Schnaar
- Department of Pharmacology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
27
|
Hettmer S, Ladisch S, Kaucic K. Low complex ganglioside expression characterizes human neuroblastoma cell lines. Cancer Lett 2005; 225:141-9. [PMID: 15922866 PMCID: PMC2866625 DOI: 10.1016/j.canlet.2004.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 11/17/2004] [Indexed: 11/23/2022]
Abstract
Low (< or = 35%) or absent expression of the complex 'b' pathway gangliosides GD1b, GT1b and GQ1b (CbG) correlates with an aggressive biological phenotype in human neuroblastoma tumors. To develop an in vitro model to probe mechanisms by which CbG may contribute to neuroblastoma behavior, we have comprehensively evaluated ganglioside expression in nine well-established human neuroblastoma cell lines, all derived from poor prognosis tumors. Total cellular ganglioside content ranged from 8 to 69 nmol/10(8) cells. High performance thin layer chromatography revealed that the simple disialoganglioside GD2 was prominent in eight of the cell lines (up to 60% of total gangliosides), whereas CbG were low (1-21%) in all nine cell lines. The structurally most complex 'b' pathway species, GQ1b, was not detected in any of the cell lines. The prominence of GD2 in neuroblastoma cell lines mirrors the high expression of GD2 that characterizes human neuroblastoma tumors, and the low CbG expression in the cell lines is analogous to that found in clinically and biologically unfavorable neuroblastoma tumors, thus establishing these neuroblastoma cell lines as valuable model systems for study of the role of CbG in the pathobiology of human neuroblastoma.
Collapse
Affiliation(s)
| | | | - Karen Kaucic
- Corresponding author. Tel.: +1 202 884 3217; fax: +1 202 884 3929. (K. Kaucic)
| |
Collapse
|
28
|
Colombaioni L, Garcia-Gil M. Sphingolipid metabolites in neural signalling and function. ACTA ACUST UNITED AC 2004; 46:328-55. [PMID: 15571774 DOI: 10.1016/j.brainresrev.2004.07.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/20/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine, sphingosine-1-phosphate (S1P) and complex sphingolipids (gangliosides), are recognized as molecules capable of regulating a variety of cellular processes. The role of sphingolipid metabolites has been studied mainly in non-neuronal tissues. These studies have underscored their importance as signals transducers, involved in control of proliferation, survival, differentiation and apoptosis. In this review, we will focus on studies performed over the last years in the nervous system, discussing the recent developments and the current perspectives in sphingolipid metabolism and functions.
Collapse
|
29
|
Mendez-Otero R, Cavalcante LA. Functional role of gangliosides in neuronal motility. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 32:97-124. [PMID: 12827973 DOI: 10.1007/978-3-642-55557-2_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- R Mendez-Otero
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, 21941-590 Rio de Janeiro, Brazil
| | | |
Collapse
|
30
|
Liour SS, Yu RK. Differential effects of three inhibitors of glycosphingolipid biosynthesis on neuronal differentiation of embryonal carcinoma stem cells. Neurochem Res 2002; 27:1507-12. [PMID: 12512955 DOI: 10.1023/a:1021652506370] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gangliosides have been implicated in having important roles in neural development. It has been shown that disruption of ganglioside biosynthesis inhibits neurite outgrowth. However, many contradictory results have been reported. The inconsistency of these reports may result from the differential use of neuronal cell lines and inhibitors for ganglioside biosynthesis. In order to clarify the inconsistency in these studies, we utilized an in vitro neuronal differentiation model using an embryonic caricinoma (EC) stem cell line to elucidate the relationship between ganglioside expression and neural development. These cells were exposed to three different inhibitors of glucosylceramide synthase, the first enzyme committed for the biosynthesis of most of the brain gangliosides. All three inhibitors, D-threo-1-phenyl-2-decanoylamino-3-morphlino-1-propanol (D-PDMP), D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (D-PPPP), and N-butydeoxynojirimycin (NB-DNJ) can inhibit greater than 90% of ganglioside biosynthesis at certain concentrations, respectively. D-PDMP significantly slowed down cellular proliferation in undifferentiated P19 EC cells, inhibited neurite outgrowth, and eventually caused cell death in differentiated cells. However, no retardation in cell growth, neuronal differentiation, and neurite outgrowth was observed in cultures treated with D-PPPP or NB-DNJ despite the depletion of gangliosides. These results indicate that the effect of D-PDMP on cellular proliferation, neurite outgrowth, and survival of differentiated cells is independent of the inhibition of ganglioside biosynthesis.
Collapse
Affiliation(s)
- Sean S Liour
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912-2697, USA
| | | |
Collapse
|
31
|
Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 2002; 99:8412-7. [PMID: 12060784 PMCID: PMC123081 DOI: 10.1073/pnas.072211699] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myelin-associated glycoprotein (MAG) binds to the nerve cell surface and inhibits nerve regeneration. The nerve cell surface ligand(s) for MAG are not established, although sialic acid-bearing glycans have been implicated. We identify the nerve cell surface gangliosides GD1a and GT1b as specific functional ligands for MAG-mediated inhibition of neurite outgrowth from primary rat cerebellar granule neurons. MAG-mediated neurite outgrowth inhibition is attenuated by (i) neuraminidase treatment of the neurons; (ii) blocking neuronal ganglioside biosynthesis; (iii) genetically modifying the terminal structures of nerve cell surface gangliosides; and (iv) adding highly specific IgG-class antiganglioside mAbs. Furthermore, neurite outgrowth inhibition is mimicked by highly multivalent clustering of GD1a or GT1b by using precomplexed antiganglioside Abs. These data implicate the nerve cell surface gangliosides GD1a and GT1b as functional MAG ligands and suggest that the first step in MAG inhibition is multivalent ganglioside clustering.
Collapse
Affiliation(s)
- Alka A Vyas
- Departments of Pharmacology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 2002. [DOI: 10.1073/pnas.072211699 99/12/8412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Kimura M, Hidari KI, Suzuki T, Miyamoto D, Suzuki Y. Engagement of endogenous ganglioside GM1a induces tyrosine phosphorylation involved in neuron-like differentiation of PC12 cells. Glycobiology 2001; 11:335-43. [PMID: 11358882 DOI: 10.1093/glycob/11.4.335] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using the cholera toxin B subunit (CTB) that specifically binds to ganglioside GM1a on the plasma membrane, we investigated intracellular signaling mediated by endogenous GM1a involved in neuronal differentiation of PC12 cells. The treatment with CTB induced morphological alternations of PC12 cells, such as augmentation of the cell body, neurite extension, and branched spikes of tips of neurites. The neurite extension induced with CTB was strongly suppressed by the pretreatment of tyrosine kinase inhibitors in a dose-dependent manner. Western blotting analysis showed that CTB induced tyrosine phosphorylation of several cellular proteins with molecular masses around 120, 70, and 45-40 kDa in PC12 cells. Some of the proteins identified were extracellular-signal regulated kinase (ERKs) (ERK1 and ERK2). The peak activation of ERKs lasted for 60-90 min and gradually decreased thereafter. Immunoprecipitation analysis demonstrated that the intracellular events induced with CTB are not related with the activation of Trk proteins, suggesting that signals evoked by ligation of endogenous GM1a are unique and distinct from those induced with exogenous GM1a. Although the presence of a tyrosine kinase inhibitor, genistein, at a concentration of 10 microM diminished the neurite extension of PC12 cells induced with CTB, ERK activation was still observed. However, pretreatment with a MEK inhibitor, PD98059, abolished the activation of ERKs induced with CTB in a dose-dependent manner and only attenuated the morphological alternations of PC12 cells. Considered together, we concluded that tyrosine phosphorylation induced with CTB was responsible for neuron-like differentiation of PC12 cells and that the MEK-ERK cascade is part of the biological signals mediated by endogenous ganglioside GM1a on PC12 cells.
Collapse
Affiliation(s)
- M Kimura
- Department of Biochemistry, University of Shizuoka Pharmaceutical Sciences, 52-1 Yada, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | | | | | | | |
Collapse
|
34
|
von Reitzenstein C, Kopitz J, Schuhmann V, Cantz M. Differential functional relevance of a plasma membrane ganglioside sialidase in cholinergic and adrenergic neuroblastoma cell lines. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:326-33. [PMID: 11168367 DOI: 10.1046/j.1432-1033.2001.01883.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gangliosides located in the outer leaflet of the plasma membrane are important modulators of cellular functions. Our previous work has shown that in cultured human SK-N-MC neuroblastoma cells a sialidase residing in the same membrane selectively desialylates gangliosides with terminal sialic acid residues, causing a shift from higher species to GM1 and a conversion of GM3 to lactosylceramide. Inhibition of this sialidase by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (NeuAc2en) resulted in increased cell proliferation and a loss of differentiation markers. In this study, we examined the occurrence and function of this ganglioside sialidase in other neuronal cells. Subcellular fractionation showed the sialidase to be located in the plasma membrane of all cell lines studied. The presence of the inhibitor NeuAc2en led to a profound decrease in the amount of the differentiation marker 200 kDa/70 kDa neurofilaments and an increase in cell proliferation in the cholinergic SK-N-MC and mixed cholinergic/adrenergic SK-N-FI and SK-N-DZ neuroblastoma lines, but had little or no effect in the human adrenergic SK-N-SH and SK-N-AS and the adrenergic/cholinergic PC12 cells from rat. The influence of the inhibitor on cell behaviour was paralleled by a diminished number of cholera toxin B-binding GM1 sites. The findings demonstrate that the plasma membrane ganglioside sialidase is an important element of proliferation and differentiation control in some, but not all, neuroblastoma cells and suggest that there might be a relationship between plasma membrane sialidase activity and cholinergic differentiation.
Collapse
Affiliation(s)
- C von Reitzenstein
- Institut für Pathochemie und Neurochemie, Im Neuenheimer Feld 220, Klinikum der Ruprecht-Karls-Universität, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
Gangliosides are constituents of the cell membrane and are known to have important functions in neuronal differentiation. We employed an embryonal carcinoma stem cell line P19 as an in vitro model to investigate the expression of gangliosides during neuronal development. After treatment with retinoic acid, these cells differentiate synchronously into neuron-like cells by a series of well-defined events of development. We examined several aspects of ganglioside metabolism, including the changes of ganglioside pattern, the activities and gene expression of several enzymes at different stages of differentiation, and the distribution of gangliosides in differentiating neurons. Undifferentiated P19 cells express mainly GM3 and GD3. After P19 cells were committed to differentiation, the synthesis of complex gangliosides was elevated more than 20-fold, coinciding with the stage of neurite outgrowth. During the maturation of differentiated cells, the expression of c-series gangliosides was downregulated concomitantly with upregulation of the expression of a- and b-series gangliosides. We also examined the distribution of gangliosides in differentiating neurons by confocal and transmission electron microscopy after cholera toxin B subunit and sialidase treatment. Confocal microscopic studies showed that gangliosides were distributed on the growth cones and exhibited a punctate localization on neurites and soma. Electron microscopic studies indicated that they also are enriched on the plasma membranes of neurites and the filopodia as well as on the lamellipodia of growth cones during the early stage of neurite outgrowth. Our data demonstrate that the expression of gangliosides in P19 cells during RA-induced neuronal differentiation resembles that of the in vivo development of the vertebrate brain, and hence validates it as an in vitro model for investigating the function of gangliosides in neuronal development.
Collapse
Affiliation(s)
- S S Liour
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912-2697, USA
| | | | | |
Collapse
|
36
|
Cunha GM, Moraes RA, Moraes GA, França MC, Moraes MO, Viana GS. Nerve growth factor, ganglioside and vitamin E reverse glutamate cytotoxicity in hippocampal cells. Eur J Pharmacol 1999; 367:107-12. [PMID: 10082272 DOI: 10.1016/s0014-2999(98)00942-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present work showed that glutamate decreased hippocampal cell viability in a dose-dependent manner. While no significant effect was observed after cell exposure to 0.1 mM glutamate, cell incubation for 0.5 h caused a progressive decrease of cell viability, which at 5 mM concentration reached 68% as compared to controls. No further effect was observed in the presence of 10 mM glutamate. While nerve growth factor (NGF) at the dose of 0.5 ng/ml presented no effect, it significantly reduced glutamate cytotoxicity at a higher dose (1 ng/ml) increasing the cell viability to 66%. Similarly, cell viabilities in the presence of the ganglioside GM, (5 and 10 ng/ml) after glutamate exposure were 19 and 73%, respectively. A dose-response relationship was observed after cell incubation with vitamin E (0.5 and 1 mM) which resulted in cell viability of the order of 34 and 70%, respectively. Surprisingly, a potentiation of the effect was observed after the association of NGF (0.5 ng/ml) plus ganglioside GM1 (5 ng/ml) or vitamin E (0.5 mM) plus ganglioside GM1 (5 ng/ml), after pre-incubation with glutamate. In these conditions, significantly higher viabilities were demonstrated (66 and 71% for the two associations, respectively) as compared to each one of the compounds alone (NGF 0.5 ng/ml--29.5%; ganglioside GM1 5 ng/ml--19.4%). However, no potentiation was seen after the association of NGF plus vitamin E on glutamate pre-exposed cells. These results showed a cytoprotective effect of ganglioside GM1, NGF and vitamin E on the glutamate-induced cytotoxicity in rat hippocampal cells.
Collapse
Affiliation(s)
- G M Cunha
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | |
Collapse
|