1
|
Heng S, Sutheeworapong S, Wangnai C, Champreda V, Kosugi A, Ratanakhanokchai K, Tachaapaikoon C, Ceballos RM. Hydrolysis of ionic liquid-treated substrate with an Iocasia fonsfrigidae strain SP3-1 endoglucanase. Appl Microbiol Biotechnol 2024; 108:63. [PMID: 38189956 PMCID: PMC10774164 DOI: 10.1007/s00253-023-12918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Recently, we reported the discovery of a novel endoglucanase of the glycoside hydrolase family 12 (GH12), designated IfCelS12A, from the haloalkaliphilic anaerobic bacterium Iocasia fonsfrigidae strain SP3-1, which was isolated from a hypersaline pond in the Samut Sakhon province of Thailand (ca. 2017). IfCelS12A exhibits high substrate specificity on carboxymethyl cellulose and amorphous cellulose but low substrate specificity on b-1,3;1,4-glucan. Unlike some endoglucanases of the GH12 family, IfCelS12A does not exhibit hydrolytic activity on crystalline cellulose (i.e., Avicel™). High-Pressure Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) analyses of products resulting from IfCelS12-mediated hydrolysis indicate mode of action for this enzyme. Notably, IfCelS12A preferentially hydrolyzes cellotetraoses, cellopentaoses, and cellohexaoses with negligible activity on cellobiose or cellotriose. Kinetic analysis with cellopentaose and barely b-D-glucan as cellulosic substrates were conducted. On cellopentaose, IfCelS12A demonstrates a 16-fold increase in activity (KM = 0.27 mM; kcat = 0.36 s-1; kcat/KM = 1.34 mM-1 s-1) compared to the enzymatic hydrolysis of barley b-D-glucan (KM: 0.04 mM, kcat: 0.51 s-1, kcat/KM = 0.08 mM-1 s-1). Moreover, IfCelS12A enzymatic efficacy is stable in hypersaline sodium chlorids (NaCl) solutions (up to 10% NaCl). Specifically, IfCel12A retains notable activity after 24 h at 2M NaCl (10% saline solution). IfCelS12A used as a cocktail component with other cellulolytic enzymes and in conjunction with mobile sequestration platform technology offers additional options for deconstruction of ionic liquid-pretreated cellulosic feedstock. KEY POINTS: • IfCelS12A from an anaerobic alkaliphile Iocasia fronsfrigidae shows salt tolerance • IfCelS12A in cocktails with other enzymes efficiently degrades cellulosic biomass • IfCelS12A used with mobile enzyme sequestration platforms enhances hydrolysis.
Collapse
Affiliation(s)
- Sobroney Heng
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Department of Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chinnapong Wangnai
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road Klong Luang, Pathumthani, 12120, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| | - Ruben Michael Ceballos
- Department of Molecular and Cell Biology, University of California, Merced, CA, 95343, USA.
- Quantitative Systems Biology Program, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
2
|
Zhou Y, Gao YH, Zhang BC, Yang HL, Tian YB, Huang YH, Yin CC, Tao JJ, Wei W, Zhang WK, Chen SY, Zhou YH, Zhang JS. CELLULOSE SYNTHASE-LIKE C proteins modulate cell wall establishment during ethylene-mediated root growth inhibition in rice. THE PLANT CELL 2024; 36:3751-3769. [PMID: 38943676 PMCID: PMC11371184 DOI: 10.1093/plcell/koae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
The cell wall shapes plant cell morphogenesis and affects the plasticity of organ growth. However, the way in which cell wall establishment is regulated by ethylene remains largely elusive. Here, by analyzing cell wall patterns, cell wall composition and gene expression in rice (Oryza sativa, L.) roots, we found that ethylene induces cell wall thickening and the expression of cell wall synthesis-related genes, including CELLULOSE SYNTHASE-LIKE C1, 2, 7, 9, 10 (OsCSLC1, 2, 7, 9, 10) and CELLULOSE SYNTHASE A3, 4, 7, 9 (OsCESA3, 4, 7, 9). Overexpression and mutant analyses revealed that OsCSLC2 and its homologs function in ethylene-mediated induction of xyloglucan biosynthesis mainly in the cell wall of root epidermal cells. Moreover, OsCESA-catalyzed cellulose deposition in the cell wall was enhanced by ethylene. OsCSLC-mediated xyloglucan biosynthesis likely plays an important role in restricting cell wall extension and cell elongation during the ethylene response in rice roots. Genetically, OsCSLC2 acts downstream of ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1)-mediated ethylene signaling, and OsCSLC1, 2, 7, 9 are directly activated by OsEIL1. Furthermore, the auxin signaling pathway is synergistically involved in these regulatory processes. These findings link plant hormone signaling with cell wall establishment, broadening our understanding of root growth plasticity in rice and other crops.
Collapse
Affiliation(s)
- Yang Zhou
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hong Gao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao-Cai Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han-Lei Yang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan-Bao Tian
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Huang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Jun Tao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Zhou
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Song Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li K, Barrett K, Agger JW, Zeuner B, Meyer AS. Bioinformatics-based identification of GH12 endoxyloglucanases in citrus-pathogenic Penicillium spp. Enzyme Microb Technol 2024; 178:110441. [PMID: 38574421 DOI: 10.1016/j.enzmictec.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Millions of tons of citrus peel waste are produced every year as a byproduct of the juice industry. Citrus peel is rich in pectin and xyloglucan, but while the pectin is extracted for use in the food industry, the xyloglucan is currently not valorized. To target hydrolytic degradation of citrus peel xyloglucan into oligosaccharides, we have used bioinformatics to identify three glycoside hydrolase 12 (GH12) endoxyloglucanases (EC 3.2.1.151) from the citrus fruit pathogens Penicillium italicum GL-Gan1 and Penicillium digitatum Pd1 and characterized them on xyloglucan obtained by alkaline extraction from citrus peel. The enzymes displayed pH-temperature optima of pH 4.6-5.3 and 35-37°C. PdGH12 from P. digitatum and PiGH12A from P. italicum share 84% sequence identity and displayed similar kinetics, although kcat was highest for PdGH12. In contrast, PiGH12B from P. italicum, which has the otherwise conserved Trp in subsite -4 replaced with a Tyr, displayed a 3 times higher KM and a 4 times lower kcat/KM than PiGH12A, but was the most thermostable enzyme of the three Penicillium-derived endoxyloglucanases. The benchmark enzyme AnGH12 from Aspergillus nidulans was more thermally stable and had a higher pH-temperature optimum than the enzymes from Penicillum spp. The difference in structure of the xyloglucan oligosaccharides extracted from citrus peel xyloglucan and tamarind xyloglucan by the new endoxyloglucanases was determined by LC-MS. The inclusion of citrus peel xyloglucan demonstrated that the endoxyloglucanases liberated fucosylated xyloglucan oligomers, implying that these enzymes have the potential to upgrade citrus peel residues to produce oligomers useful as intermediates or bioactive compounds.
Collapse
Affiliation(s)
- Kai Li
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| | - Jane W Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| | - Birgitte Zeuner
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
4
|
Wilson LFL, Neun S, Yu L, Tryfona T, Stott K, Hollfelder F, Dupree P. The biosynthesis, degradation, and function of cell wall β-xylosylated xyloglucan mirrors that of arabinoxyloglucan. THE NEW PHYTOLOGIST 2023; 240:2353-2371. [PMID: 37823344 PMCID: PMC10952531 DOI: 10.1111/nph.19305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit β1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan β-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and β-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that β-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.
Collapse
Affiliation(s)
- Louis F. L. Wilson
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Stefanie Neun
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Li Yu
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Theodora Tryfona
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Katherine Stott
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Florian Hollfelder
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|
5
|
Li H, Tao H, Xiao Y, Qin L, Lan C, Cheng B, Roberts JA, Zhang X, Lu X. ZmXYL modulates auxin-induced maize growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1699-1715. [PMID: 37300848 DOI: 10.1111/tpj.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Plant architecture, lodging resistance, and yield are closely associated with height. In this paper, we report the identification and characterization of two allelic EMS-induced mutants of Zea mays, xyl-1, and xyl-2 that display dwarf phenotypes. The mutated gene, ZmXYL, encodes an α-xylosidase which functions in releasing xylosyl residue from a β-1,4-linked glucan chain. Total α-xylosidase activity in the two alleles is significantly decreased compared to wild-type plants. Loss-of-function mutants of ZmXYL resulted in a decreased xylose content, an increased XXXG content in xyloglucan (XyG), and a reduced auxin content. We show that auxin has an antagonistic effect with XXXG in promoting cell divisions within mesocotyl tissue. xyl-1 and xyl-2 were less sensitive to IAA compared to B73. Based on our study, a model is proposed that places XXXG, an oligosaccharide derived from XyG and the substrate of ZmXYL, as having a negative impact on auxin homeostasis resulting in the dwarf phenotypes of the xyl mutants. Our results provide a insight into the roles of oligosaccharides released from plant cell walls as signals in mediating plant growth and development.
Collapse
Affiliation(s)
- Haiyan Li
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Huifang Tao
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yao Xiao
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Li Qin
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan, 250200, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, China
| | - Xiaoduo Lu
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan, 250200, China
- Lab of Molecular Breeding by Design in Maize Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572000, China
| |
Collapse
|
6
|
Immelmann R, Gawenda N, Ramírez V, Pauly M. Identification of a xyloglucan beta-xylopyranosyltransferase from Vaccinium corymbosum. PLANT DIRECT 2023; 7:e514. [PMID: 37502316 PMCID: PMC10368651 DOI: 10.1002/pld3.514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Plant cell walls contain the hemicellulose xyloglucan, whose fine structure may vary depending on cell type, tissue, and/or plant species. Most but not all of the glycosyltransferases involved in the biosynthesis of xyloglucan sidechains have been identified. Here, we report the identification of several functional glycosyltransferases from blueberry (Vaccinium corymbosum bluecrop). Among those transferases is a hitherto elusive Xyloglucan:Beta-xylosylTransferase (XBT). Heterologous expression of VcXBT in the Arabidopsis thaliana double mutant mur3 xlt2, where xyloglucan consists only of an unsubstituted xylosylated glucan core structure, results in the production of the xylopyranose-containing "U" sidechain as characterized by mass spectrometry, glycosidic linkage, and NMR analysis. The introduction of the additional xylopyranosyl residue rescues the dwarfed phenotype of the untransformed Arabidopsis mur3 xlt2 mutant to wild-type height. Structural protein analysis using Alphafold of this and other related xyloglucan glycosyltransferase family 47 proteins not only identifies potential domains that might influence the regioselectivity of these enzymes but also gives hints to specific amino acids that might determine the donor-substrate specificity of these glycosyltransferases.
Collapse
Affiliation(s)
- Ronja Immelmann
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Niklas Gawenda
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Vicente Ramírez
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
7
|
Zhang N, Julian JD, Yap CE, Swaminathan S, Zabotina OA. The Arabidopsis xylosyltransferases, XXT3, XXT4, and XXT5, are essential to complete the fully xylosylated glucan backbone XXXG-type structure of xyloglucans. THE NEW PHYTOLOGIST 2023; 238:1986-1999. [PMID: 36856333 DOI: 10.1111/nph.18851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/18/2023] [Indexed: 05/04/2023]
Abstract
Although most xyloglucans (XyGs) biosynthesis enzymes have been identified, the molecular mechanism that defines XyG branching patterns is unclear. Four out of five XyG xylosyltransferases (XXT1, XXT2, XXT4, and XXT5) are known to add the xylosyl residue from UDP-xylose onto a glucan backbone chain; however, the function of XXT3 has yet to be demonstrated. Single xxt3 and triple xxt3xxt4xxt5 mutant Arabidopsis (Arabidopsis thaliana) plants were generated using CRISPR-Cas9 technology to determine the specific function of XXT3. Combined biochemical, bioinformatic, and morphological data conclusively established for the first time that XXT3, together with XXT4 and XXT5, adds xylosyl residue specifically at the third glucose in the glucan chain to synthesize XXXG-type XyGs. We propose that the specificity of XXT3, XXT4, and XXT5 is directed toward the prior synthesis of the acceptor substrate by the other two enzymes, XXT1 and XXT2. We also conclude that XXT5 plays a dominant role in the synthesis of XXXG-type XyGs, while XXT3 and XXT4 complementarily contribute their activities in a tissue-specific manner. The newly generated xxt3xxt4xxt5 mutant produces only XXGG-type XyGs, which further helps to understand the impact of structurally deficient polysaccharides on plant cell wall organization, growth, and development.
Collapse
Affiliation(s)
- Ning Zhang
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jordan D Julian
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cheng Ern Yap
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
8
|
Guo R, Sun X, Kou Y, Song H, Li X, Song L, Zhao T, Zhang H, Li D, Liu Y, Song Z, Wu J, Wu Y. Hydrophobic aggregation via partial Gal removal affects solution characteristics and fine structure of tamarind kernel polysaccharides. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
9
|
Behar H, Mottiar Y, Chandrasekhar R, Grappadelli AC, Pauly M, Samuels AL, Mansfield SD, Brumer H. Populus endo-glucanase 16 localizes to the cell walls of developing tissues. PLANT DIRECT 2023; 7:e482. [PMID: 36733272 PMCID: PMC9887094 DOI: 10.1002/pld3.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The hemicelluloses comprise a group of matrix glycans that interact with cellulose microfibrils in plant cell walls and play important roles in establishing wall architecture. The structures of hemicelluloses are determined by carbohydrate-active enzymes (CAZymes) that synthesize, integrate, and break down these polymers. Specifically, endo-glucanase 16 (EG16) enzymes, which are related to the well-known xyloglucan endotransglycosylase/hydrolase (XTH) gene products in Glycoside Hydrolase Family 16 (GH16), have been implicated in the degradation of the β(1,4)-linked backbone of mixed-linkage β(1,3);β(1,4)-glucans (MLG) and xyloglucans. EG16 members are single-copy genes found in most plant clades but are absent from many eudicots, including the model plant Arabidopsis thaliana. Until recently, EG16 members had only been characterized in vitro, establishing their substrate specificity, protein structure, and phylogenetic history, but their biological function was unknown. Here we used a hybrid polar, Populus alba × Populus grandidentata (P39), as a model to examine EG16 expression, subcellular localization, and pheno- and chemotypes of EG16-downregulated P39 plants. Populus EG16 expression is strong in young tissues, but RNAi-mediated downregulation did not impact plant growth nor the fine structure of the hemicellulose xyloglucan, suggesting a restricted or currently unknown role in angiosperm physiology.
Collapse
Affiliation(s)
- Hila Behar
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Yaseen Mottiar
- Department of Wood ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rohan Chandrasekhar
- Department of Wood ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Markus Pauly
- Institute for Plant Cell Biology and BiotechnologyHeinrich Heine UniversityDüsseldorfGermany
| | - A. Lacey Samuels
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Shawn D. Mansfield
- Department of Wood ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Harry Brumer
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ChemistryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
10
|
Hsiung SY, Li J, Imre B, Kao MR, Liao HC, Wang D, Chen CH, Liang PH, Harris PJ, Hsieh YSY. Structures of the xyloglucans in the monocotyledon family Araceae (aroids). PLANTA 2023; 257:39. [PMID: 36650257 PMCID: PMC9845173 DOI: 10.1007/s00425-023-04071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The xyloglucans of all aquatic Araceae species examined had unusual structures compared with those of other non-commelinid monocotyledon families previously examined. The aquatic Araceae species Lemna minor was earlier shown to have xyloglucans with a different structure from the fucogalactoxyloglucans of other non-commelinid monocotyledons. We investigated 26 Araceae species (including L. minor), from five of the seven subfamilies. All seven aquatic species examined had xyloglucans that were unusual in having one or two of three features: < 77% XXXG core motif [L. minor (Lemnoideae) and Orontium aquaticum (Orontioideae)]; no fucosylation [L. minor (Lemnoideae), Cryptocoryne aponogetonifolia, and Lagenandra ovata (Aroideae, Rheophytes clade)]; and > 14% oligosaccharide units with S or D side chains [Spirodela polyrhiza and Landoltia punctata (Lemnoideae) and Pistia stratiotes (Aroideae, Dracunculus clade)]. Orontioideae and Lemnoideae are the two most basal subfamilies, with all species being aquatic, and Aroideae is the most derived. Two terrestrial species [Dieffenbachia seguine and Spathicarpa hastifolia (Aroideae, Zantedeschia clade)] also had xyloglucans without fucose indicating this feature was not unique to aquatic species.
Collapse
Affiliation(s)
- Shih-Yi Hsiung
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Li
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Balazs Imre
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mu-Rong Kao
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chun Liao
- Division of Botany, Taiwan Endemic Species Research Institute, Nantou, 552, Taiwan
| | - Damao Wang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- College of Food Science, Southwest University, Chongqing, China
| | - Chih-Hui Chen
- Division of Botany, Taiwan Endemic Species Research Institute, Nantou, 552, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Philip J Harris
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden.
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Lassfolk R, Pedrón M, Tejero T, Merino P, Wärnå J, Leino R. Acetyl Group Migration in Xylan and Glucan Model Compounds as Studied by Experimental and Computational Methods. J Org Chem 2022; 87:14544-14554. [PMID: 36251002 PMCID: PMC9639004 DOI: 10.1021/acs.joc.2c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It was recently demonstrated by us that acetyl groups in oligosaccharides can migrate not only within one saccharide unit but also between two different saccharide units. Kinetics of this phenomenon were previously investigated in both mannan model compounds and a naturally occurring polysaccharide. In addition to mannans, there are also several other naturally acetylated polysaccharides, such as xyloglucans and xylans. Both xyloglucans and xylans are some of the most common acetylated polysaccharides in nature, displaying important roles in the plant cells. Considering the various biological roles of natural polysaccharides, it could be hypothesized that the intramolecular migration of acetyl groups might also be associated with regulation of the biological activity of polysaccharides in nature. Consequently, a better understanding of the overall migration phenomenon across the glycosidic bonds could help to understand the potential role of such migrations in the context of the biological activity of polysaccharides. Here, we present a detailed investigation on acetyl group migration in the synthesized xylan and glucan trisaccharide model compounds by a combination of experimental and computational methods, showing that the migration between the saccharide units proceeds from a secondary hydroxyl group of one saccharide unit toward a primary hydroxyl group of the other unit.
Collapse
Affiliation(s)
- Robert Lassfolk
- Laboratory
of Molecular Science and Engineering, Åbo
Akademi University, 20500Turku, Finland
| | - Manuel Pedrón
- Institute
of Biocomputation & Physics of Complex Systems (BIFI), University of Zaragoza, 50009Zaragoza, Spain
| | - Tomás Tejero
- Institute
of Chemical Synthesis & Homogeneous Catalysis (ISQCH), University of Zaragoza, 50009Zaragoza, Spain
| | - Pedro Merino
- Institute
of Biocomputation & Physics of Complex Systems (BIFI), University of Zaragoza, 50009Zaragoza, Spain,
| | - Johan Wärnå
- Laboratory
of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, 20500Turku, Finland
| | - Reko Leino
- Laboratory
of Molecular Science and Engineering, Åbo
Akademi University, 20500Turku, Finland,
| |
Collapse
|
12
|
Herburger K, Schoenaers S, Vissenberg K, Mravec J. Shank-localized cell wall growth contributes to Arabidopsis root hair elongation. NATURE PLANTS 2022; 8:1222-1232. [PMID: 36303011 DOI: 10.1038/s41477-022-01259-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Root hairs are highly elongated tubular extensions of root epidermal cells with a plethora of physiological functions, particularly in establishing the root-rhizosphere interface. Anisotropic expansion of root hairs is generally thought to be exclusively mediated by tip growth-a highly controlled apically localized secretion of cell wall material-enriched vesicles that drives the extension of the apical dome. Here we show that tip growth is not the only mode of root hair elongation. We identified events of substantial shank-localized cell wall expansion along the polar growth axis of Arabidopsis root hairs using morphometric analysis with quantum dots. These regions expanded after in vivo immunolocalization using cell wall-directed antibodies and appeared as distinct bands that were devoid of cell wall labelling. Application of a novel click chemistry-enabled galactose analogue for pulse chase and real-time imaging allowed us to label xyloglucan, a major root hair glycan, and demonstrate its de novo deposition and enzymatic remodelling in these shank regions. Our data reveal a previously unknown aspect of root hair growth in which both tip- and shank-localized dynamic cell wall deposition and remodelling contribute to root hair elongation.
Collapse
Affiliation(s)
- Klaus Herburger
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
- Institute of Biological Sciences, University of Rostock, Rostock, Germany.
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Antwerp, Belgium
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Heraklion, Greece
| | - Jozef Mravec
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
13
|
Chen M, Ropartz D, Mac-Béar J, Bonnin E, Lahaye M. New insight into the mode of action of a GH74 xyloglucanase on tamarind seed xyloglucan: Action pattern and cleavage site. Carbohydr Res 2022; 521:108661. [DOI: 10.1016/j.carres.2022.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
|
14
|
Tao Y, Wan JX, Liu YS, Yang XZ, Shen RF, Zhu XF. The NAC transcription factor ANAC017 regulates aluminum tolerance by regulating the cell wall-modifying genes. PLANT PHYSIOLOGY 2022; 189:2517-2534. [PMID: 35512200 PMCID: PMC9342997 DOI: 10.1093/plphys/kiac197] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 05/06/2023]
Abstract
Aluminum (Al) toxicity is one of the key factors limiting crop production in acid soils; however, little is known about its transcriptional regulation in plants. In this study, we characterized the role of a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factors (TFs), ANAC017, in the regulation of Al tolerance in Arabidopsis (Arabidopsis thaliana). ANAC017 was localized in the nucleus and exhibited constitutive expression in the root, stem, leaf, flower, and silique, although its expression and protein accumulation were repressed by Al stress. Loss of function of ANAC017 enhanced Al tolerance when compared with wild-type Col-0 and was accompanied by lower root and root cell wall Al content. Furthermore, both hemicellulose and xyloglucan content decreased in the anac017 mutants, indicating the possible interaction between ANAC017 and xyloglucan endotransglucosylase/hydrolase (XTH). Interestingly, the expression of XTH31, which is responsible for xyloglucan modification, was downregulated in the anac017 mutants regardless of Al supply, supporting the possible interaction between ANAC017 and XTH31. Yeast one-hybrid, dual-luciferase reporter assay, and chromatin immunoprecipitation-quantitative PCR analysis revealed that ANAC017 positively regulated the expression of XTH31 through directly binding to the XTH31 promoter region, and overexpression of XTH31 in the anac017 mutant background rescued its Al-tolerance phenotype. In conclusion, we identified that the tTF ANAC017 acts upstream of XTH31 to regulate Al tolerance in Arabidopsis.
Collapse
Affiliation(s)
| | | | - Yu Song Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zheng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
15
|
Wu Q, Tao Y, Huang J, Liu YS, Yang XZ, Jing HK, Shen RF, Zhu XF. The MYB transcription factor MYB103 acts upstream of TRICHOME BIREFRINGENCE-LIKE27 in regulating aluminum sensitivity by modulating the O-acetylation level of cell wall xyloglucan in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:529-545. [PMID: 35596722 DOI: 10.1111/tpj.15837] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Modification of the O-acetylation level of xyloglucan (XyG) appears to affect aluminum (Al) sensitivity in Arabidopsis by modulating its binding capacity to Al. However, the transcriptional regulation of this process remains largely unknown. In our previous studies, we found that the expression of TRICHOME BIREFRINGENCE-LIKE27 (TBL27), which is responsible for the O-acetylation of XyG, was downregulated under Al stress. In the present study, we showed that the expression of an R2R3-type transcription factor-encoding gene, MYB103, was also inhibited by Al exposure and exhibited a co-expression pattern with TBL27 in roots and siliques, suggesting a potential link between MYB103 and TBL27. The loss of function of MYB103 resulted in increased Al sensitivity, as indicated by more inhibited root growth and elevated root Al content compared with the wild type. Moreover, we also detected increased Al accumulation in the root cell wall and the hemicellulose fraction, which was attributed to the changes in the O-acetylation level of XyG rather than the XyG content itself. In addition, further analysis revealed that MYB103 positively activated TBL27 expression by directly binding to the TBL27 promoter region, and TBL27 overexpression in the myb103 mutant rescued the Al-sensitive phenotype of the mutant to the wild-type level. Taken together, we conclude that MYB103 acts upstream of TBL27 to positively regulate Al resistance by modulating the O-acetylation of the cell wall XyG.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Tao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Song Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zheng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huai Kang Jing
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Comparison of the Biochemical Properties and Roles in the Xyloglucan-Rich Biomass Degradation of a GH74 Xyloglucanase and Its CBM-Deleted Variant from Thielavia terrestris. Int J Mol Sci 2022; 23:ijms23095276. [PMID: 35563667 PMCID: PMC9103125 DOI: 10.3390/ijms23095276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Xyloglucan is closely associated with cellulose and still retained with some modification in pretreated lignocellulose; however, its influence on lignocellulose biodegradation is less understood. TtGH74 from Thielavia terrestris displayed much higher catalytic activity than previously characterized fungal GH74 xyloglucanases. The carbohydrate-binding module 1 (CBM1) deleted variant (TtGH74ΔCBM) had the same optimum temperature and pH but an elevated thermostability. TtGH74 displayed a high binding affinity on xyloglucan and cellulose, while TtGH74ΔCBM completely lost the adsorption capability on cellulose. Their hydrolysis action alone or in combination with other glycoside hydrolases on the free xyloglucan, xyloglucan-coated phosphoric acid-swollen cellulose or pretreated corn bran and apple pomace was compared. CBM1 might not be essential for the hydrolysis of free xyloglucan but still effective for the associated xyloglucan to an extent. TtGH74 alone or synergistically acting with the CBH1/EG1 mixture was more effective in the hydrolysis of xyloglucan in corn bran, while TtGH74ΔCBM showed relatively higher catalytic activity on apple pomace, indicating that the role and significance of CBM1 are substrate-specific. The degrees of synergy for TtGH74 or TtGH74ΔCBM with the CBH1/EG1 mixture reached 1.22–2.02. The addition of GH10 xylanase in TtGH74 or the TtGH74ΔCBM/CBH1/EG1 mixture further improved the overall hydrolysis efficiency, and the degrees of synergy were up to 1.50–2.16.
Collapse
|
17
|
Characterization of an extracellular α-xylosidase involved in xyloglucan degradation in Aspergillus oryzae. Appl Microbiol Biotechnol 2021; 106:675-687. [PMID: 34971412 DOI: 10.1007/s00253-021-11744-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
α-Xylosidases release the α-D-xylopyranosyl side chain from di- and oligosaccharides derived from xyloglucans and are involved in xyloglucan degradation. In this study, an extracellular α-xylosidase, named AxyB, is identified and characterized in Aspergillus oryzae. AxyB belongs to the glycoside hydrolase family 31 and releases D-xylose from isoprimeverose (α-D-xylopyranosyl-(1 → 6)-D-glucopyranose) and xyloglucan oligosaccharides. In the hydrolysis of xyloglucan oligosaccharides (XLLG, Glc4Xyl3Gal2 nonasaccharide; XLXG/XXLG, Glc4Xyl3Gal1 octasaccharide; and XXXG, Glc4Xyl3 heptasaccharide), AxyB releases one molecule of the xylopyranosyl side chain attached to the non-reducing end of the β-1,4-glucan main chain of these xyloglucan oligosaccharides to yield GLLG (Glc4Xyl2Gal2), GLXG/GXLG (Glc4Xyl2Gal1), and GXXG (Glc4Xyl2). A. oryzae has both extracellular and intracellular α-xylosidase, suggesting that xyloglucan oligosaccharides are degraded by a combination of isoprimeverose-producing oligoxyloglucan hydrolase and intracellular α-xylosidase and a combination of extracellular α-xylosidase and β-glucosidase(s) in A. oryzae. KEY POINTS: • An extracellular α-xylosidase, AxyB, is identified in Aspergillus oryzae. • AxyB releases the xylopyranosyl side chain from xyloglucan oligosaccharides. • Different sets of glycosidases degrade xyloglucan oligosaccharides in A. oryzae.
Collapse
|
18
|
Wei Q, Yang Y, Li H, Liu Z, Fu R, Feng H, Li C. The xyloglucan galactosylation modulates the cell wall stability of pollen tube. PLANTA 2021; 254:133. [PMID: 34821984 DOI: 10.1007/s00425-021-03779-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
A pollen specific homolog to a xyloglucan galactosyltransferase regulates cell wall stability and therefore pollen tube growth in Arabidopsis. In angiosperms, pollen tubes grow through the transmitting tract to deliver the sperm cells to the ovule for fertilization. Fast growing pollen tubes coordinate the synthesis, secretion and assembly of cell wall components to maintain the mechanical properties of the cell wall. Xyloglucan, the major hemicellulosic polysaccharide in the primary cell wall, tethers cellulose to form the complexed cell wall network through its side chain modifications. How the side chain modifications of the xyloglucan regulate the pollen tube cell wall strength and growth remains elusive. Here we found that AtGT11, a MUR3 xyloglucan galactosyltransferase homolog highly expressed in pollen regulated the cell wall stability of pollen tubes. Genetic analysis of the gt11 and the xylosyltransferase 1/2 mutant indicated that the xylosylation of XyG side chains played dominant role while galactosylation of the XyG side chains finely modified the cell wall mechanics.
Collapse
Affiliation(s)
- Qiqi Wei
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hui Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rong Fu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hanqian Feng
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
19
|
Steck J, Kaufhold L, Bunzel M. Structural Profiling of Xyloglucans from Food Plants by High-Performance Anion-Exchange Chromatography with Parallel Pulsed Amperometric and Mass Spectrometric Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8838-8849. [PMID: 34339210 DOI: 10.1021/acs.jafc.1c02967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xyloglucans are the dominant hemicelluloses in the primary cell wall of dicotyledonous plants, fulfilling numerous functions. However, routine methods of cell wall analytical chemistry such as methylation analysis are time-consuming and often not adequate to capture the structural diversity of xyloglucans. Here, a xyloglucan profiling method based on the enzymatic release of xyloglucan oligosaccharides by a xyloglucan-specific endo-β-(1→4)-glucanase and subsequent analysis of these oligosaccharides by high-performance anion-exchange chromatography (HPAEC) with parallel pulsed amperometric and mass spectrometric detection was developed. For this purpose, a set of 23 authentic xyloglucan oligosaccharides was generated, structurally characterized by mass spectrometry and NMR spectroscopy, and established as analytical standard compounds. Coupling of HPAEC with parallel electrochemical and MS detection was demonstrated to be an excellent tool to analyze xyloglucan-derived oligosaccharides. The applicability of the method was demonstrated by characterizing the xyloglucan architecture from a set of nine economically relevant food plants from the botanical orders Caryophyllales (rhubarb, buckwheat, amaranth, and quinoa), Cucurbitales (Hokkaido squash), Laurales (avocado), Myrtales (pomegranate), and Sapindales (mango and orange) for the first time. In future studies, this method can ideally be used to monitor structural alterations of xyloglucans as a result of genetic engineering, plant/tissue maturation, and processing of plant material.
Collapse
Affiliation(s)
- Jan Steck
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Larissa Kaufhold
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
20
|
Pu J, Wang L, Zhang W, Ma J, Zhang X, Putnis CV. Organically-bound silicon enhances resistance to enzymatic degradation and nanomechanical properties of rice plant cell walls. Carbohydr Polym 2021; 266:118057. [PMID: 34044915 DOI: 10.1016/j.carbpol.2021.118057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/31/2022]
Abstract
Plant cell walls exhibit excellent mechanical properties, which form the structural basis for sustainable bioresources and multifunctional nanocelluloses. The wall nanomechanical properties of living cells through covalent modifications of hybrid inorganic elements, such as silicon, may confer significant influence on local mechano-response and enzymatic degradation. Here, we present a combination of ex situ measurements of enzyme-released oligosaccharide fragments using MALDI-TOF MS and in situ atomic force microscopy (AFM) imaging through PeakForce quantitative nanomechanical mapping of tip-functionalized single-molecule enzyme-polysaccharide substrate recognition and the nanoscale dissolution kinetics of individual cellulose microfibrils of living rice (Oryza sativa) cells following silicate cross-linking of cell wall xyloglucan. We find that xyloglucan-bound silicon enhances the resistance to degradation by cellulase and improves the wall nanomechanical properties in the elastic modulus at the single-cell level. The findings establish a direct link between an inorganic element of silicon and the nanoscale architecture of plant cell wall materials for sustainable utilization.
Collapse
Affiliation(s)
- Junbao Pu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jie Ma
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuqing Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, 48149, Münster, Germany; School of Molecular and Life Science, Curtin University, 6845, Perth, Australia
| |
Collapse
|
21
|
Enzymatic degradation of xyloglucans by Aspergillus species: a comparative view of this genus. Appl Microbiol Biotechnol 2021; 105:2701-2711. [PMID: 33760931 DOI: 10.1007/s00253-021-11236-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Aspergillus species are closely associated with humanity through fermentation, infectious disease, and mycotoxin contamination of food. Members of this genus produce various enzymes to degrade plant polysaccharides, including starch, cellulose, xylan, and xyloglucan. This review focus on the machinery of the xyloglucan degradation using glycoside hydrolases, such as xyloglucanases, isoprimeverose-producing oligoxyloglucan hydrolases, and α-xylosidases, in Aspergillus species. Some xyloglucan degradation-related glycoside hydrolases are well conserved in this genus; however, other enzymes are not. Cooperative actions of these glycoside hydrolases are crucial for xyloglucan degradation in Aspergillus species. KEY POINTS: •Xyloglucan degradation-related enzymes of Aspergillus species are reviewed. •Each Aspergillus species possesses a different set of glycoside hydrolases. •The machinery of xyloglucan degradation of A. oryzae is overviewed.
Collapse
|
22
|
Chettri D, Verma AK, Verma AK. Innovations in CAZyme gene diversity and its modification for biorefinery applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00525. [PMID: 32963975 PMCID: PMC7490808 DOI: 10.1016/j.btre.2020.e00525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
For sustainable growth, concept of biorefineries as recourse to the "fossil derived" energy source is important. Here, the Carbohydrate Active enZymes (CAZymes) play decisive role in generation of biofuels and related sugar-based products utilizing lignocellulose as a carbon source. Given their industrial significance, extensive studies on the evolution of CAZymes have been carried out. Various bacterial and fungal organisms have been scrutinized for the development of CAZymes, where advance techniques for strain enhancement such as CRISPR and analysis of specific expression systems have been deployed. Specific Omic-based techniques along with protein engineering have been adopted to unearth novel CAZymes and improve applicability of existing enzymes. In-Silico computational research and functional annotation of new CAZymes to synergy experiments are being carried out to devise cocktails of enzymes for use in biorefineries. Thus, with the establishment of these technologies, increased diversity of CAZymes with broad span of functions and applications is seen.
Collapse
|
23
|
Lupinus albus γ-Conglutin, a Protein Structurally Related to GH12 Xyloglucan-Specific Endo-Glucanase Inhibitor Proteins (XEGIPs), Shows Inhibitory Activity against GH2 β-Mannosidase. Int J Mol Sci 2020; 21:ijms21197305. [PMID: 33022933 PMCID: PMC7583008 DOI: 10.3390/ijms21197305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
γ-conglutin (γC) is a major protein of Lupinus albus seeds, but its function is still unknown. It shares high structural similarity with xyloglucan-specific endo-glucanase inhibitor proteins (XEGIPs) and, to a lesser extent, with Triticum aestivum endoxylanase inhibitors (TAXI-I), active against fungal glycoside hydrolases GH12 and GH11, respectively. However, γC lacks both these inhibitory activities. Since β-galactomannans are major components of the cell walls of endosperm in several legume plants, we tested the inhibitory activity of γC against a GH2 β-mannosidase (EC 3.2.1.25). γC was actually able to inhibit the enzyme, and this effect was enhanced by the presence of zinc ions. The stoichiometry of the γC/enzyme interaction was 1:1, and the calculated Ki was 1.55 μM. To obtain further insights into the interaction between γC and β-mannosidase, an in silico structural bioinformatic approach was followed, including some docking analyses. By and large, this work describes experimental findings that highlight new scenarios for understanding the natural role of γC. Although structural predictions can leave space for speculative interpretations, the full complexity of the data reported in this work allows one to hypothesize mechanisms of action for the basis of inhibition. At least two mechanisms seem plausible, both involving lupin-γC-peculiar structures.
Collapse
|
24
|
Matsuzawa T, Kameyama A, Nakamichi Y, Yaoi K. Identification and characterization of two xyloglucan-specific endo-1,4-glucanases in Aspergillus oryzae. Appl Microbiol Biotechnol 2020; 104:8761-8773. [PMID: 32910269 DOI: 10.1007/s00253-020-10883-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 02/03/2023]
Abstract
Aspergillus oryzae produces glycoside hydrolases to degrade xyloglucan. We identified and characterized two xyloglucan-specific endo-1,4-glucanases (xyloglucanases) named Xeg12A and Xeg5A. Based on their amino acid sequences, Xeg12A and Xeg5A were classified into glycoside hydrolase families GH12 and GH5, respectively. Xeg12A degrades tamarind seed xyloglucan polysaccharide into xyloglucan oligosaccharides containing four glucopyranosyl residues as main chains, including heptasaccharides (XXXG: Glc4Xyl3), octasaccharides (XXLG and XLXG: Glc4Xyl3Gal1), and nonasaccharides (XLLG: Glc4Xyl3Gal2). By contrast, Xeg5A produces various xyloglucan oligosaccharides from xyloglucan. Xeg5A hydrolyzes xyloglucan into not only XXXG, XXLG/XLXG, and XLLG but also disaccharides (isoprimeverose: Glc1Xyl1), tetrasaccharides (XX: Glc2Xyl2 and LG: Glc2Xyl1Gal1), and so on. Xeg12A is a typical endo-dissociative-type xyloglucanase that repeats hydrolysis and desorption from xyloglucan. Conversely, Xeg5A acts as an endo-processive-type xyloglucanase that hydrolyzes xyloglucan progressively without desorption. These results indicate that although both Xeg12A and Xeg5A contribute to the degradation of xyloglucan, they have different modes of activity toward xyloglucan, and the hydrolysis machinery of Xeg5A is unique compared with that of other known GH5 enzymes. KEY POINTS: • We identified two xyloglucanases, Xeg12A and Xeg5A, in A. oryzae. • Modes of activity and regiospecificities of Xeg12A and Xeg5A were clearly different. • Xeg5A is a unique xyloglucanase that produces low-molecular-weight oligosaccharides.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Akihiko Kameyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yusuke Nakamichi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, HigashiHiroshima, Hiroshima, 739-0046, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
25
|
Herburger K, Franková L, Pičmanová M, Loh JW, Valenzuela-Ortega M, Meulewaeter F, Hudson AD, French CE, Fry SC. Hetero-trans-β-Glucanase Produces Cellulose-Xyloglucan Covalent Bonds in the Cell Walls of Structural Plant Tissues and Is Stimulated by Expansin. MOLECULAR PLANT 2020; 13:1047-1062. [PMID: 32376294 PMCID: PMC7339142 DOI: 10.1016/j.molp.2020.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 05/19/2023]
Abstract
Current cell-wall models assume no covalent bonding between cellulose and hemicelluloses such as xyloglucan or mixed-linkage β-d-glucan (MLG). However, Equisetum hetero-trans-β-glucanase (HTG) grafts cellulose onto xyloglucan oligosaccharides (XGOs) - and, we now show, xyloglucan polysaccharide - in vitro, thus exhibiting CXE (cellulose:xyloglucan endotransglucosylase) activity. In addition, HTG also catalyzes MLG-to-XGO bonding (MXE activity). In this study, we explored the CXE action of HTG in native plant cell walls and tested whether expansin exposes cellulose to HTG by disrupting hydrogen bonds. To quantify and visualize CXE and MXE action, we assayed the sequential release of HTG products from cell walls pre-labeled with substrate mimics. We demonstrated covalent cellulose-xyloglucan bonding in plant cell walls and showed that CXE and MXE action was up to 15% and 60% of total transglucanase action, respectively, and peaked in aging, strengthening tissues: CXE in xylem and cells bordering intercellular canals and MXE in sclerenchyma. Recombinant bacterial expansin (EXLX1) strongly augmented CXE activity in vitro. CXE and MXE action in living Equisetum structural tissues potentially strengthens stems, while expansin might augment the HTG-catalyzed CXE reaction, thereby allowing efficient CXE action in muro. Our methods will enable surveys for comparable reactions throughout the plant kingdom. Furthermore, engineering similar hetero-polymer formation into angiosperm crop plants may improve certain agronomic traits such as lodging tolerance.
Collapse
Affiliation(s)
- Klaus Herburger
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Martina Pičmanová
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Jia Wooi Loh
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcos Valenzuela-Ortega
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Frank Meulewaeter
- BASF, BBCC Innovation Center Gent - Trait Research, 9052 Gent (Zwijnaarde), Belgium
| | - Andrew D Hudson
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Christopher E French
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; Zhejiang University-University of Edinburgh Joint Research Centre for Engineering Biology, Zhejiang University, Haining, Zhejiang 314400, China
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
26
|
Zavyalov AV, Rykov SV, Lunina NA, Sushkova VI, Yarotsky SV, Berezina OV. Plant Polysaccharide Xyloglucan and Enzymes That Hydrolyze It (Review). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019070148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Gusakov AV. Additional sequence and structural characterization of an endo-processive GH74 xyloglucanase from Myceliophthora thermophila and the revision of the EC 3.2.1.155 entry. Biochim Biophys Acta Gen Subj 2020; 1864:129511. [PMID: 31911243 DOI: 10.1016/j.bbagen.2020.129511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Alexander V Gusakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Vorobyovy Gory 1/11, Moscow 119991, Russia.
| |
Collapse
|
28
|
Pauly M, Gawenda N, Wagner C, Fischbach P, Ramírez V, Axmann IM, Voiniciuc C. The Suitability of Orthogonal Hosts to Study Plant Cell Wall Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E516. [PMID: 31744209 PMCID: PMC6918405 DOI: 10.3390/plants8110516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Plant cells are surrounded by an extracellular matrix that consists mainly of polysaccharides. Many molecular components involved in plant cell wall polymer synthesis have been identified, but it remains largely unknown how these molecular players function together to define the length and decoration pattern of a polysaccharide. Synthetic biology can be applied to answer questions beyond individual glycosyltransferases by reconstructing entire biosynthetic machineries required to produce a complete wall polysaccharide. Recently, this approach was successful in establishing the production of heteromannan from several plant species in an orthogonal host-a yeast-illuminating the role of an auxiliary protein in the biosynthetic process. In this review we evaluate to what extent a selection of organisms from three kingdoms of life (Bacteria, Fungi and Animalia) might be suitable for the synthesis of plant cell wall polysaccharides. By identifying their key attributes for glycoengineering as well as analyzing the glycosidic linkages of their native polymers, we present a valuable comparison of their key advantages and limitations for the production of different classes of plant polysaccharides.
Collapse
Affiliation(s)
- Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Niklas Gawenda
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Christine Wagner
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Patrick Fischbach
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Cătălin Voiniciuc
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| |
Collapse
|
29
|
Zhu Z, Qu J, Yu L, Jiang X, Liu G, Wang L, Qu Y, Qin Y. Three glycoside hydrolase family 12 enzymes display diversity in substrate specificities and synergistic action between each other. Mol Biol Rep 2019; 46:5443-5454. [PMID: 31359382 DOI: 10.1007/s11033-019-04999-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/23/2019] [Indexed: 12/01/2022]
Abstract
PoCel12A, PoCel12B, and PoCel12C are genes that encode glycoside hydrolase family 12 (GH12) enzymes in Penicillium oxalicum. PoCel12A and PoCel12B are typical GH12 enzymes that belong to fungal subfamilies 12-1 and 12-2, respectively. PoCel12C contains a low-complexity region (LCR) domain, which is not found in PoCel12A or PoCel12B and independent of fungal subfamily 12-1 or 12-2. Recombinant enzymes (named rCel12A, rCel12B and rCel12C) demonstrate existing diversity in the substrate specificities. Although most members in GH family 12 are typical endoglucanases and preferentially hydrolyze β-1,4-glucan (e.g., carboxymethylcellulose), recombinant PoCel12A is a non-typical endo-(1-4)-β-glucanase; it preferentially hydrolyzes mix-linked β-glucan (barley β-glucan, β-1,3-1,4-glucan) and slightly hydrolyzes β-1,4-glucan (carboxymethylcellulose). Recombinant PoCel12B possesses a significantly high activity against xyloglucan. A specific activity of rCel12B toward xyloglucan (239 µmol/min/mg) is the second-highest value known. Recombinant PoCel12C shows low activity toward β-glucan, carboxymethylcellulose, or xyloglucan. All three enzymes can degrade phosphoric acid-swollen cellulose (PASC). However, the hydrolysis products toward PASC by enzymes are different: the main hydrolysis products are cellotriose, cellotetraose, and cellobiose for rCel12A, rCel12B, and rCel12C, correspondingly. A synergistic action toward PASC among rCel12A and rCel12B is observed, thereby suggesting a potential application for preparing enzyme cocktails used in lignocellulose hydrolysis.
Collapse
Affiliation(s)
- Zhu Zhu
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.,State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Jingyao Qu
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.,State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Lele Yu
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.,State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.,Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash Biomedicine Discovery Institute, Monash University, Melbourne, 3800, Australia
| | - Guodong Liu
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.,State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Lushan Wang
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Yinbo Qu
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.,State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China. .,State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
30
|
Xu H, Ding A, Chen S, Marowa P, Wang D, Chen M, Hu R, Kong Y, O’Neill M, Chai G, Zhou G. Genome-Wide Analysis of Sorghum GT47 Family Reveals Functional Divergences of MUR3-Like Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:1773. [PMID: 30619385 PMCID: PMC6302003 DOI: 10.3389/fpls.2018.01773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/15/2018] [Indexed: 05/13/2023]
Abstract
Sorghum (Sorghum bicolor) is an important bioenergy crop. Its biomass mainly consists of the cellulosic and non-cellulosic polysaccharides, both which can be converted to biofuels. The biosynthesis of non-cellulosic polysaccharides involves several glycosyltransferases (GT) families including GT47. However, there was no systemic study on GT47 family in sorghum to date. Here, we identified 39 sorghum GT47 family members and showed the functional divergences of MURUS3 (MUR3) homologs. Sorghum GT47 proteins were phylogenetically clustered into four distinct subfamilies. Within each subfamily, gene structure was relatively conserved between the members. Ten gene pairs were identified from the 39 GT47 genes, of which two pairs might be originated from tandem duplication. 25.6% (10/39) of sorghum GT47 genes were homologous to Arabidopsis MUR3, a xyloglucan biosynthesis gene in primary cell walls. SbGT47_2, SbGT47_7, and SbGT47_8, three most homologous genes of MUR3, exhibited different tissue expression patterns and were selected for complementation into Arabidopsis mur3-3. Physiological and cell wall analyses showed that SbGT47_2 and SbGT47_7 may be two functional xyloglucan galactosyltransferases in sorghum. Further studies found that MUR3-like genes are widely present in the seed plants but not in the chlorophytic alga Chlamydomonas reinhardtii. Our results provide novel information for evolutionary analysis and functional dissection of sorghum GT47 family members.
Collapse
Affiliation(s)
- Hua Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Anming Ding
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Sihui Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Prince Marowa
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Dian Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Ruibo Hu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yingzhen Kong
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Malcolm O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Guohua Chai
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
31
|
Badhan A, Ribeiro GO, Jones DR, Wang Y, Abbott DW, Di Falco M, Tsang A, McAllister TA. Identification of novel enzymes to enhance the ruminal digestion of barley straw. BIORESOURCE TECHNOLOGY 2018; 260:76-84. [PMID: 29621684 DOI: 10.1016/j.biortech.2018.03.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Crude enzyme extracts typically contain a broad spectrum of enzyme activities, most of which are redundant to those naturally produced by the rumen microbiome. Identification of enzyme activities that are synergistic to those produced by the rumen microbiome could enable formulation of enzyme cocktails that improve fiber digestion in ruminants. Compared to untreated barley straw, Viscozyme® increased gas production, dry matter digestion (P < 0.01) and volatile fatty acid production (P < 0.001) in ruminal batch cultures. Fractionation of Viscozyme® by Blue Native PAGE and analyses using a microassay and mass-spectrometry revealed a GH74 endoglucanase, GH71 α-1,3-glucanase, GH5 mannanase, GH7 cellobiohydrolase, GH28 pectinase, and esterases from Viscozyme® contributed to enhanced saccharification of barley straw by rumen mix enzymes. Grouping of these identified activities with their carbohydrate active enzymes (CAZy) counterparts enabled selection of similar CAZymes for downstream production and screening. Mining of these specific activities from other biological systems could lead to high value enzyme formulations for ruminants.
Collapse
Affiliation(s)
- Ajay Badhan
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4P4, Canada
| | - Gabriel O Ribeiro
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4P4, Canada
| | - Darryl R Jones
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4P4, Canada
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4P4, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4P4, Canada
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4P4, Canada.
| |
Collapse
|
32
|
Zhu L, Dama M, Pauly M. Identification of an arabinopyranosyltransferase from Physcomitrella patens involved in the synthesis of the hemicellulose xyloglucan. PLANT DIRECT 2018; 2:e00046. [PMID: 31245712 PMCID: PMC6508525 DOI: 10.1002/pld3.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/18/2023]
Abstract
The hemicellulose xyloglucan consists of a backbone of a β-1,4 glucan substituted with xylosyl moieties and many other, diverse side chains that are important for its proper function. Many, but not all glycosyltransferases involved in the biosynthesis of xyloglucan have been identified. Here, we report the identification of an hitherto elusive xyloglucan:arabinopyranosyltransferase. This glycosyltransferase was isolated from the moss Physcomitrella patens, where it acts as a xyloglucan "D"-side chain transferase (XDT). Heterologous expression of PpXDT in the Arabidopsis thaliana double mutant mur3.1 xlt2, where xyloglucan consists of a xylosylated glucan without further glycosyl substituents, results in the production of the arabinopyranose-containing "D" side chain as characterized by oligosaccharide mass profiling, glycosidic linkage analysis, and NMR analysis. In addition, expression of a related Physcomitrella glycosyltransferase ortholog of PpXLT2 leads to the production of the galactose-containing "L" side chain. The presence of the "D" and "L" xyloglucan side chains in the Arabidopsis double mutant Atmur3.1 xlt2 expressing PpXDT and PpXLT2, respectively, rescues the dwarfed phenotype of untransformed Atmur3.1 xlt2 mutants to nearly wild-type height. Expression of PpXDT and PpXLT2 in the Atmur3.1 xlt2 mutant also enhanced root growth.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Murali Dama
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| |
Collapse
|
33
|
Wan JX, Zhu XF, Wang YQ, Liu LY, Zhang BC, Li GX, Zhou YH, Zheng SJ. Xyloglucan Fucosylation Modulates Arabidopsis Cell Wall Hemicellulose Aluminium binding Capacity. Sci Rep 2018; 8:428. [PMID: 29323145 PMCID: PMC5765015 DOI: 10.1038/s41598-017-18711-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/16/2017] [Indexed: 01/08/2023] Open
Abstract
Although xyloglucan (XyG) is reported to bind Aluminium (Al), the influence of XyG fucosylation on the cell wall Al binding capacity and plant Al stress responses is unclear. We show that Arabidopsis T-DNA insertion mutants with reduced AXY3 (XYLOSIDASE1) function and consequent reduced levels of fucosylated XyG are more sensitive to Al than wild-type Col-0 (WT). In contrast, T-DNA insertion mutants with reduced AXY8 (FUC95A) function and consequent increased levels of fucosylated XyG are more Al resistant. AXY3 transcript levels are strongly down regulated in response to 30 min Al treatment, whilst AXY8 transcript levels also repressed until 6 h following treatment onset. Mutants lacking AXY3 or AXY8 function exhibit opposing effects on Al contents of root cell wall and cell wall hemicellulose components. However, there was no difference in the amount of Al retained in the pectin components between mutants and WT. Finally, whilst the total sugar content of the hemicellulose fraction did not change, the altered hemicellulose Al content of the mutants is shown to be a likely consequence of their different XyG fucosylation levels. We conclude that variation in XyG fucosylation levels influences the Al sensitivity of Arabidopsis by affecting the Al-binding capacity of hemicellulose.
Collapse
Affiliation(s)
- Jiang-Xue Wan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yu-Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin-Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bao-Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gui-Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shao-Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
de Eugenio LI, Méndez-Líter JA, de los Ríos V, Prieto A, Martínez MJ. β-1,4-endoglucanases from Talaromyces amestolkiae: Production of glucooligosaccharides from different β-glucans. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2017.1306741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - V. de los Ríos
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - A. Prieto
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - M. J. Martínez
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
35
|
Abstract
Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become an important tool for the analysis of biomolecules, such as DNA, peptides, and oligosaccharides. This technique has been developed as a rapid, sensitive, and accurate means for analyzing cell wall polysaccharide structures. Here, we describe a method using mass spectrometry to provide xyloglucan composition and structure information of Brachypodium plants which will be useful for functional characterization of xyloglucan biosynthesis pathway in Brachypodium distachyon.
Collapse
|
36
|
Affiliation(s)
- R. Rashmi
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - K. R. Siddalingamurthy
- Department of Biochemistry, Jnanabharathi Campus, Bangalore University, Bengaluru, India
| |
Collapse
|
37
|
Huang JH, Jiang R, Kortstee A, Dees DC, Trindade LM, Gruppen H, Schols HA. Transgenic modification of potato pectic polysaccharides also affects type and level of cell wall xyloglucan. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3240-3248. [PMID: 27976364 DOI: 10.1002/jsfa.8172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/23/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Genes encoding pectic enzymes were introduced into wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14) or rhamnogalacturonan lyase (RGL-18). Pectic polysaccharides from the β-Gal-14 transgenic line exhibited rhamnogalacturonan-I structural elements with shorter galactan side chains, whereas the RGL-18 transgenic line had less rhamnogalacturonan-I structures than Karnico. Xyloglucan in primary cell walls interacts with pectin and other cell wall polysaccharides and controls cell growth. RESULTS Xyloglucan extracts from transgenic lines had different levels of monosaccharides compared to wild-type. Most XXGG-type xyloglucans from Karnico and RGL-18 alkali-extractable extracts predominantly consisted of XXGG and XSGG building blocks. Karnico and RGL-18 4 mol L-1 extracts had small proportions of the XXXG-type xyloglucan, whereas β-Gal-14 extracts also contained the XXXG-type xyloglucan. The peak ratios of XSGG/XXGG were 1.9, 2.4 and 1.1 for 4 mol L-1 extracts of Karnico, RGL-18 and β-Gal-14 lines, respectively. CONCLUSION After transgenic modification on pectin, the xyloglucan building blocks may have been changed. The β-Gal-14 lines mostly present XXXG-type repeating units instead of the XXGG-type in 4 mol L-1 extracts. The ratio of XSGG/XXGG repeating units also changed, indicating that the transgenic modification of pectin altered xyloglucan structure during plant development. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie-Hong Huang
- Laboratory of Food Chemistry, Wageningen University, 6700, AA, Wageningen, Wageningen, The Netherlands
| | - Rui Jiang
- Laboratory of Food Chemistry, Wageningen University, 6700, AA, Wageningen, Wageningen, The Netherlands
| | - Anne Kortstee
- UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Dianka Ct Dees
- UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Luisa M Trindade
- UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University, 6700, AA, Wageningen, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, 6700, AA, Wageningen, Wageningen, The Netherlands
| |
Collapse
|
38
|
Cantu-Jungles TM, Iacomini M, Cordeiro LMC. Investigation of Structural Features of Prunes (Prunus domestica) Insoluble Dietary Fibers. ACTA ACUST UNITED AC 2017. [DOI: 10.17352/jfsnt.000006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Damm T, Pattathil S, Günl M, Jablonowski ND, O'Neill M, Grün KS, Grande PM, Leitner W, Schurr U, Usadel B, Klose H. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydr Polym 2017; 168:94-102. [PMID: 28457468 DOI: 10.1016/j.carbpol.2017.03.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/27/2017] [Accepted: 03/18/2017] [Indexed: 01/25/2023]
Abstract
The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis.
Collapse
Affiliation(s)
- Tatjana Damm
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd. Athens, GA, USA.
| | - Markus Günl
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Nicolai David Jablonowski
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Malcolm O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd. Athens, GA, USA.
| | - Katharina Susanne Grün
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | - Philipp Michael Grande
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1-2, 52074 Aachen Germany.
| | - Walter Leitner
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1-2, 52074 Aachen Germany; Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany.
| | - Ulrich Schurr
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Holger Klose
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
40
|
Simmons TJ, Fry SC. Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase. Biochem J 2017; 474:1055-1070. [PMID: 28108640 PMCID: PMC5341106 DOI: 10.1042/bcj20160935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/17/2022]
Abstract
Mixed-linkage glucan∶xyloglucan endotransglucosylase (MXE) is one of the three activities of the recently characterised hetero-trans-β-glucanase (HTG), which among land plants is known only from Equisetum species. The biochemical details of the MXE reaction were incompletely understood - details that would promote understanding of MXE's role in vivo and enable its full technological exploitation. We investigated HTG's site of attack on one of its donor substrates, mixed-linkage (1→3),(1→4)-β-d-glucan (MLG), with radioactive oligosaccharides of xyloglucan as the acceptor substrate. Comparing three different MLG preparations, we showed that the enzyme favours those with a high content of cellotetraose blocks. The reaction products were analysed by enzymic digestion, thin-layer chromatography (TLC), high-pressure liquid chromatography (HPLC) and gel-permeation chromatography (GPC). Equisetum HTG consistently cleaved the MLG at the third consecutive β-(1→4)-bond following (towards the reducing terminus) a β-(1→3)-bond. It then formed a β-(1→4)-bond between the MLG and the non-reducing terminal glucose residue of the xyloglucan oligosaccharide, consistent with its xyloglucan endotransglucosylase/hydrolase subfamily membership. Using size-homogeneous barley MLG as the donor substrate, we showed that HTG does not favour any particular region of the MLG chain relative to the polysaccharide's reducing and non-reducing termini; rather, it selects its target cellotetraosyl unit stochastically along the MLG molecule. This work improves our understanding of how enzymes can exhibit promiscuous substrate specificities and provides the foundations to explore strategies for engineering novel substrate specificities into transglycanases.
Collapse
Affiliation(s)
- Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K.
| |
Collapse
|
41
|
The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development. Nat Commun 2016; 7:12119. [PMID: 27381418 PMCID: PMC4935801 DOI: 10.1038/ncomms12119] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/01/2016] [Indexed: 02/06/2023] Open
Abstract
Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development. Nucleotide sugars are transported from the cytoplasm to the Golgi lumen where they are incorporated into cell wall polysaccharides and used for glycosylation of proteins and lipids. Here the authors identify GFT1, an Arabidopsis Golgi-localized GDP-fucose transporter that is required for plant growth and development
Collapse
|
42
|
Xian L, Wang F, Yin X, Feng JX. Identification and characterization of an acidic and acid-stable endoxyloglucanase from Penicillium oxalicum. Int J Biol Macromol 2016; 86:512-8. [DOI: 10.1016/j.ijbiomac.2016.01.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/16/2022]
|
43
|
Pauly M, Keegstra K. Biosynthesis of the Plant Cell Wall Matrix Polysaccharide Xyloglucan. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:235-59. [PMID: 26927904 DOI: 10.1146/annurev-arplant-043015-112222] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xyloglucan (XyG) is a matrix polysaccharide that is present in the cell walls of all land plants. It consists of a β-1,4-linked glucan backbone that is further substituted with xylosyl residues. These xylosyl residues can be further substituted with other glycosyl and nonglycosyl substituents that vary depending on the plant family and specific tissue. Advances in plant mutant isolation and characterization, functional genomics, and DNA sequencing have led to the identification of nearly all transferases and synthases necessary to synthesize XyG. Thus, in terms of the molecular mechanisms of plant cell wall polysaccharide biosynthesis, XyG is the most well understood. However, much remains to be learned about the molecular mechanisms of polysaccharide assembly and the regulation of these processes. Knowledge of the XyG biosynthetic machinery allows the XyG structure to be tailored in planta to ascertain the functions of this polysaccharide and its substituents in plant growth and interactions with the environment.
Collapse
Affiliation(s)
- Markus Pauly
- Department of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Kenneth Keegstra
- DOE Great Lakes Bioenergy Research Center, DOE Plant Research Laboratory, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
44
|
Shelomi M, Heckel DG, Pauchet Y. Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:1-11. [PMID: 26855199 DOI: 10.1016/j.ibmb.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The Phasmatodea (stick insects) have multiple, endogenous, highly expressed copies of glycoside hydrolase family 9 (GH9) genes. The purpose for retaining so many was unknown. We cloned and expressed the enzymes in transfected insect cell lines, and tested the individual proteins against different plant cell wall component poly- and oligosaccharides. Nearly all isolated enzymes were active against carboxymethylcellulose, however most could also degrade glucomannan, and some also either xylan or xyloglucan. The latter two enzyme groups were each monophyletic, suggesting the evolution of these novel substrate specificities in an early ancestor of the order. Such enzymes are highly unusual for Metazoa, for which no xyloglucanases had been reported. Phasmatodea gut extracts could degrade multiple plant cell wall components fully into sugar monomers, suggesting that enzymatic breakdown of plant cell walls by the entire Phasmatodea digestome may contribute to the Phasmatodea nutritional budget. The duplication and neofunctionalization of GH9s in the ancestral Phasmatodea may have enabled them to specialize as folivores and diverge from their omnivorous ancestors. The structural changes enabling these unprecedented activities in the cellulases require further study.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany.
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
45
|
Sato S, Ohta K, Kojima K, Kozeki T, Ohmachi T, Yoshida T. Isolation and Characterization of Two Types of Xyloglucanases from a Phytopathogenic Fungus, Verticillium dahliae. J Appl Glycosci (1999) 2016; 63:13-18. [PMID: 34354476 PMCID: PMC8056924 DOI: 10.5458/jag.jag.jag-2015_012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 09/25/2015] [Indexed: 11/13/2022] Open
Abstract
Xyloglucan is a major hemicellulosic component in plant cell walls. Phytopathogenic fungi secrete cell wall-degrading enzymes on their infection to hosts, while the nature of the cell wall-lytic enzymes of such fungi are yet to be fully understood. Verticillium dahliae is a soil-borne fungus that causes vascular wilt diseases in a variety of commercially important crops worldwide. We purified two types of xyloglucanases, XEG12A and XEG74B, from the culture of naturally isolated Verticillium dahliae strain 2148. XEG12A showed a molecular size of 23 kDa with its maximal activity at pH 7.5. XEG12A specifically hydrolyzed xyloglucan with no activity on other β-glucans. XEG74B had a molecular size of 110 kDa with its optimum pH at 6.0. XEG74B primarily hydrolyzed xyloglucan, with a slight activity on β-1,3-1,4-glucan. Analysis of hydrolytic products of xyloglucanooligasaccharide (XXXGXXXG) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that the both enzymes cleaved β-1,4-glucosidic linkage at the position of unbranched chain, while XEG74B showed a little fluctuation with the cleavage site. Both enzymes did not hydrolyzed xyloglucanoheptasaccharide (XXXG) at all. N-Terminal and internal amino acid sequencing of the enzymes revealed that XEG12A and XEG74B belonged to Glycoside Hydrolase (GH) Families 12 and 74, respectively. Based on these results we concluded that V. dahliae XEG12A and XEG74B were xyloglucan-specific endo-β-1,4-glucanases (EC 3.2.1.151).
Collapse
Affiliation(s)
- Shota Sato
- 1 Faculty of Agriculture and Life Science, Hirosaki University.,2 The United Graduate School of Agricultural Sciences, Iwate University
| | - Kunihiko Ohta
- 1 Faculty of Agriculture and Life Science, Hirosaki University
| | - Kaoru Kojima
- 1 Faculty of Agriculture and Life Science, Hirosaki University
| | | | - Tetsuo Ohmachi
- 1 Faculty of Agriculture and Life Science, Hirosaki University
| | - Takashi Yoshida
- 1 Faculty of Agriculture and Life Science, Hirosaki University
| |
Collapse
|
46
|
Scarafoni A, Consonni A, Pessina S, Balzaretti S, Capraro J, Galanti E, Duranti M. Structural basis of the lack of endo-glucanase inhibitory activity of Lupinus albus γ-conglutin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:79-85. [PMID: 26741537 DOI: 10.1016/j.plaphy.2015.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Lupin γ-conglutin and soybean BG7S are two legume seed proteins strongly similar to plant endo-β-glucanases inhibitors acting against fungal GH11 and GH12 glycoside hydrolase. However these proteins lack inhibitory activity. Here we describe the conversion of lupin γ-conglutin to an active inhibitor of endo-β-glucanases belonging to GH11 family. A set of γ-conglutin mutants was designed and expressed in Pichia pastoris, along with the wild-type protein. Unexpectedly, this latter was able to inhibit a GH11 enzyme, but not GH12, whereas the mutants were able to modulate the inhibition capacity. In lupin, γ-conglutin is naturally cleaved in two subunits, whereas in P. pastoris it is not. The lack of proteolytic cleavage is one of the reasons at the basis of the inhibitory activity of recombinant γ-conglutin. The results provide new insights about structural features at the basis of the lack of inhibitory activity of wild-type γ-conglutin and its legume homologues.
Collapse
Affiliation(s)
- Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Alessandro Consonni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Stefano Pessina
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Silvia Balzaretti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Elisabetta Galanti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Marcello Duranti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
47
|
Loc NH, Ngoc LMT, Quang HT, Huy ND, Luong NN. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris. CHEMICAL PAPERS 2016. [DOI: 10.1515/chempap-2015-0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractTwo genes coding endo-β-1,4-glucanases were cloned from Trichoderma asperellum PQ34 which was isolated from Thua Thien Hue province, Vietnam. The expression of these genes in Pichia pastoris produced two enzymes with molecular masses of approximately 46 kDa (about 42 kDa of enzymes and 4 kDa of signal peptide). The effects of induction time and temperature, inducer concentration, and culture medium on the endo-β-1,4-glucanase activity were investigated. The results showed that the highest total activities of two endo-β-1,4-glucanases were approximately 4.7 × 10
Collapse
|
48
|
Muszyński A, O'Neill MA, Ramasamy E, Pattathil S, Avci U, Peña MJ, Libault M, Hossain MS, Brechenmacher L, York WS, Barbosa RM, Hahn MG, Stacey G, Carlson RW. Xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I do not have identical structures in soybean root and root hair cell walls. PLANTA 2015; 242:1123-38. [PMID: 26067758 DOI: 10.1007/s00425-015-2344-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 05/14/2023]
Abstract
MAIN CONCLUSION Chemical analyses and glycome profiling demonstrate differences in the structures of the xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I isolated from soybean ( Glycine max ) roots and root hair cell walls. The root hair is a plant cell that extends only at its tip. All other root cells have the ability to grow in different directions (diffuse growth). Although both growth modes require controlled expansion of the cell wall, the types and structures of polysaccharides in the walls of diffuse and tip-growing cells from the same plant have not been determined. Soybean (Glycine max) is one of the few plants whose root hairs can be isolated in amounts sufficient for cell wall chemical characterization. Here, we describe the structural features of rhamnogalacturonan I, rhamnogalacturonan II, xyloglucan, glucomannan, and 4-O-methyl glucuronoxylan present in the cell walls of soybean root hairs and roots stripped of root hairs. Irrespective of cell type, rhamnogalacturonan II exists as a dimer that is cross-linked by a borate ester. Root hair rhamnogalacturonan I contains more neutral oligosaccharide side chains than its root counterpart. At least 90% of the glucuronic acid is 4-O-methylated in root glucuronoxylan. Only 50% of this glycose is 4-O-methylated in the root hair counterpart. Mono O-acetylated fucose-containing subunits account for at least 60% of the neutral xyloglucan from root and root hair walls. By contrast, a galacturonic acid-containing xyloglucan was detected only in root hair cell walls. Soybean homologs of the Arabidopsis xyloglucan-specific galacturonosyltransferase are highly expressed only in root hairs. A mannose-rich polysaccharide was also detected only in root hair cell walls. Our data demonstrate that the walls of tip-growing root hairs cells have structural features that distinguish them from the walls of other roots cells.
Collapse
Affiliation(s)
- Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.
| | - Easwaran Ramasamy
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Marc Libault
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Md Shakhawat Hossain
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Laurent Brechenmacher
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
- Southern Alberta Mass Spectrometry Center, University of Calgary, Alberta, T2N 4N1, Canada
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Rommel M Barbosa
- Instituto de Informática, Universidade Federal de Goiás, Goiânia, 74001-970, Brazil
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
49
|
Abstract
SUMMARY Biomass is constructed of dense recalcitrant polymeric materials: proteins, lignin, and holocellulose, a fraction constituting fibrous cellulose wrapped in hemicellulose-pectin. Bacteria and fungi are abundant in soil and forest floors, actively recycling biomass mainly by extracting sugars from holocellulose degradation. Here we review the genome-wide contents of seven Aspergillus species and unravel hundreds of gene models encoding holocellulose-degrading enzymes. Numerous apparent gene duplications followed functional evolution, grouping similar genes into smaller coherent functional families according to specialized structural features, domain organization, biochemical activity, and genus genome distribution. Aspergilli contain about 37 cellulase gene models, clustered in two mechanistic categories: 27 hydrolyze and 10 oxidize glycosidic bonds. Within the oxidative enzymes, we found two cellobiose dehydrogenases that produce oxygen radicals utilized by eight lytic polysaccharide monooxygenases that oxidize glycosidic linkages, breaking crystalline cellulose chains and making them accessible to hydrolytic enzymes. Among the hydrolases, six cellobiohydrolases with a tunnel-like structural fold embrace single crystalline cellulose chains and cooperate at nonreducing or reducing end termini, splitting off cellobiose. Five endoglucanases group into four structural families and interact randomly and internally with cellulose through an open cleft catalytic domain, and finally, seven extracellular β-glucosidases cleave cellobiose and related oligomers into glucose. Aspergilli contain, on average, 30 hemicellulase and 7 accessory gene models, distributed among 9 distinct functional categories: the backbone-attacking enzymes xylanase, mannosidase, arabinase, and xyloglucanase, the short-side-chain-removing enzymes xylan α-1,2-glucuronidase, arabinofuranosidase, and xylosidase, and the accessory enzymes acetyl xylan and feruloyl esterases.
Collapse
|
50
|
Liu L, Paulitz J, Pauly M. The presence of fucogalactoxyloglucan and its synthesis in rice indicates conserved functional importance in plants. PLANT PHYSIOLOGY 2015; 168:549-60. [PMID: 25869654 PMCID: PMC4453794 DOI: 10.1104/pp.15.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 05/17/2023]
Abstract
The predominant structure of the hemicellulose xyloglucan (XyG) found in the cell walls of dicots is a fucogalactoXyG with an XXXG core motif, whereas in the Poaceae (grasses and cereals), the structure of XyG is less xylosylated (XXGGn core motif) and lacks fucosyl residues. However, specialized tissues of rice (Oryza sativa) also contain fucogalactoXyG. Orthologous genes of the fucogalactoXyG biosynthetic machinery of Arabidopsis (Arabidopsis thaliana) are present in the rice genome. Expression of these rice genes, including fucosyl-, galactosyl-, and acetyltransferases, in the corresponding Arabidopsis mutants confirmed their activity and substrate specificity, indicating that plants in the Poaceae family have the ability to synthesize fucogalactoXyG in vivo. The data presented here provide support for a functional conservation of XyG structure in higher plants.
Collapse
Affiliation(s)
- Lifeng Liu
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| | - Jonathan Paulitz
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| | - Markus Pauly
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| |
Collapse
|