1
|
Tamazawa A, Naganuma T, Otsuka K, Takahashi T, Sassa T, Kihara A. Fatty acyl-CoA reductase FAR1 is essential for the testicular seminolipid synthesis required for spermatogenesis and male fertility. J Biol Chem 2025; 301:108538. [PMID: 40288649 DOI: 10.1016/j.jbc.2025.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Seminolipids are testis-specific ether glycolipids that are important for spermatogenesis. The fatty alcohol (ether-linked alkyl moiety) in ether lipids is generated from an acyl-CoA by fatty acyl-CoA reductase (FAR). To date, the diversity of the alkyl and acyl moieties in seminolipids, the specific stage of spermatogenesis during which seminolipids are produced, and the FAR isozyme (FAR1 or FAR2) involved in the synthesis of the alkyl moieties have remained largely unclear. Here, we demonstrated that Far1 is expressed in the mouse testis via quantitative RT-PCR analysis, whereas Far2 was barely detectable. In situ hybridization and quantitative RT-PCR analysis of spermatogenic cells separated via FACS revealed that Far1 is expressed in spermatogonia, spermatocytes, and spermatids. We generated Far1 KO mice and found that male Far1 KO mice were infertile. In these mice, sperms were absent in the epididymides and the testes were small, with multinucleated cells and vacuoles in the seminiferous tubules. LC-MS/MS analysis showed that the vast majority of seminolipids (>90%) in WT mouse testes contained C16:0 in both the alkyl and the acyl moieties. Seminolipids were present in all subclasses of spermatogenic cells in WT mice, but they were absent in Far1 KO mice. Instead, the production of nonether, diacyl-type sulfogalactosyl lipids (sulfogalactosyl diacylglycerols) was induced in Far1 KO mice. In conclusion, the alkyl and acyl moieties of seminolipids in the testis are low in diversity, and Far1 is essential for seminolipid synthesis and spermatogenesis.
Collapse
Affiliation(s)
- Ayano Tamazawa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuro Naganuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kento Otsuka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tenga Takahashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Sulc A, Czétány P, Máté G, Balló A, Semjén D, Szántó Á, Márk L. MALDI Imaging Mass Spectrometry Reveals Lipid Alterations in Physiological and Sertoli Cell-Only Syndrome Human Testicular Tissue Sections. Int J Mol Sci 2024; 25:8358. [PMID: 39125928 PMCID: PMC11313448 DOI: 10.3390/ijms25158358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Azoospermia, the absence of sperm cells in semen, affects around 15% of infertile males. Sertoli cell-only syndrome (SCOS) is the most common pathological lesion in the background of non-obstructive azoospermia and is characterised by the complete absence of germinal epithelium, with Sertoli cells exclusively present in the seminiferous tubules. Studies have shown a correlation between successful spermatogenesis and male fertility with lipid composition of spermatozoa, semen, seminal plasma or testis. The aim of this research was to discover the correlation between the Johnsen scoring system and phospholipid expressions in testicular cryosections of SCOS patients. MALDI imaging mass spectrometry is used to determine spatial distributions of molecular species, such as phospholipids. Phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingomyelins (SMs) are the most abundant phospholipids in mammalian cells and testis. SMs, the structural components of plasma membranes, are crucial for spermatogenesis and sperm function. Plasmalogens, are unique PCs in testis with strong antioxidative properties. This study, using imaging mass spectrometry, demonstrates the local distribution of phospholipids, particularly SMs, PCs, plasmalogens and PEs in human testicular samples with SCOS for the first time. This study found a strong relationship between the Johnsen scoring system and phospholipid expression levels in human testicular tissues. Future findings could enable routine diagnostic techniques during microTESE procedures for successful sperm extraction.
Collapse
Affiliation(s)
- Alexandra Sulc
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
| | - Péter Czétány
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - Gábor Máté
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
| | - András Balló
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - Dávid Semjén
- Institute of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Imaging Centre for Life and Material Sciences, University of Pécs, 7624 Pécs, Hungary
- HUN-REN-PTE, Human Reproduction Research Group, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Gasparini C, Iori S, Pietropoli E, Bonato M, Giantin M, Barbarossa A, Bardhi A, Pilastro A, Dacasto M, Pauletto M. Sub-acute exposure of male guppies (Poecilia reticulata) to environmentally relevant concentrations of PFOA and GenX induces significant changes in the testis transcriptome and reproductive traits. ENVIRONMENT INTERNATIONAL 2024; 187:108703. [PMID: 38705092 DOI: 10.1016/j.envint.2024.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are frequently detected in the environment and are linked to adverse reproductive health outcomes in humans. Although legacy PFAS have been phased out due to their toxicity, alternative PFAS are increasingly used despite the fact that information on their toxic effects on reproductive traits is particularly scarce. Here, we exposed male guppies (Poecilia reticulata) for a short period (21 days) to an environmentally realistic concentration (1 ppb) of PFOA, a legacy PFAS, and its replacement compound, GenX, to assess their impact on reproductive traits and gene expression. Exposure to PFAS did not impair survival but instead caused sublethal effects. Overall, PFAS exposure caused changes in male sexual behaviour and had detrimental effects on sperm motility. Sublethal variations were also seen at the transcriptional level, with the modulation of genes involved in immune regulation, spermatogenesis, and oxidative stress. We also observed bioaccumulation of PFAS, which was higher for PFOA than for GenX. Our results offer a comprehensive comparison of these two PFAS and shed light on the toxicity of a newly emerging alternative to legacy PFAS. It is therefore evident that even at low concentrations and with short exposure, PFAS can have subtle yet significant effects on behaviour, fertility, and immunity. These findings underscore the potential ramifications of pollution under natural conditions and their impact on fish populations.
Collapse
Affiliation(s)
- C Gasparini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy; National Biodiversity Future Center, Piazza Marina 61, I-90133 Palermo, Italy
| | - S Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - E Pietropoli
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - M Bonato
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy
| | - M Giantin
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - A Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (Bologna), Italy; Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (CIRI-SDV), Alma Mater Studiorum University of Bologna, I-40064 Ozzano dell'Emilia (Bologna), Italy
| | - A Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (Bologna), Italy
| | - A Pilastro
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy; National Biodiversity Future Center, Piazza Marina 61, I-90133 Palermo, Italy
| | - M Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - M Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy.
| |
Collapse
|
4
|
Singh N, Singh AK. A comprehensive review on structural and therapeutical insight of Cerebroside sulfotransferase (CST) - An important target for development of substrate reduction therapy against metachromatic leukodystrophy. Int J Biol Macromol 2024; 258:128780. [PMID: 38104688 DOI: 10.1016/j.ijbiomac.2023.128780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
This review is an effort towards the development of substrate reduction therapy using cerebroside sulfotransferase (CST) as a target protein for the development of inhibitors intended to treat pathophysiological condition resulting from the accumulation of sulfatide, a product from the catalytic action of CST. Accumulation of sulfatides leads to progressive impairment and destruction of the myelin structure, disruption of normal physiological transmission of electrical impulse between nerve cells, axonal loss in the central and peripheral nervous system and cumulatively gives a clinical manifestation of metachromatic leukodystrophy. Thus, there is a need to develop specific and potent CST inhibitors to positively control sulfatide accumulation. Structural similarity and computational studies revealed that LYS85, SER172 and HIS141 are key catalytic residues that determine the catalytic action of CST through the transfer of sulfuryl group from the donor PAPS to the acceptor galactosylceramide. Computational studies revealed catalytic site of CST consists two binding site pocket including PAPS binding pocket and substrate binding pocket. Specific substrate site residues in CST can be targeted to develop specific CST inhibitors. This review also explores the challenges of CST-directed substrate reduction therapy as well as the opportunities available in natural products for inhibitor development.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Qiao R, Li X, Madsen O, Groenen MAM, Xu P, Wang K, Han X, Li G, Li X, Li K. Potential selection for lipid kinase activity and spermatogenesis in Henan native pig breeds and growth shaping by introgression of European genes. Genet Sel Evol 2023; 55:64. [PMID: 37723431 PMCID: PMC10506266 DOI: 10.1186/s12711-023-00841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND China has one third of the worldwide indigenous pig breeds. The Henan province is one of the earliest pig domestication centers of China (about 8000 years ago). However, the precise genetic characteristics of the Henan local pig breeds are still obscure. To understand the origin and the effects of selection on these breeds, we performed various analyses on lineage composition, genetic structure, and detection of selection sweeps and introgression in three of these breeds (Queshan, Nanyang and Huainan) using genotyping data on 125 Queshan, 75 Nanyang, 16 Huainan pigs and 878 individuals from 43 Eurasian pig breeds. RESULTS We found no clear evidence of ancestral domestic pig DNA lineage in the Henan local breeds, which have an extremely complicated genetic background. Not only do they share genes with some northern Chinese pig breeds, such as Erhualian, Hetaodaer, and Laiwu, but they also have a high admixture of genes from foreign pig breeds (33-40%). Two striking selection sweeps in small regions of chromosomes 2 and 14 common to the Queshan and Nanyang breeds were identified. The most significant enrichment was for lipid kinase activity (GO:0043550) with the genes FII, AMBRA1, and PIK3IP1. Another interesting 636.35-kb region on chromosome 14 contained a cluster of spermatogenesis genes (OSBP2, GAL3ST1, PLA2G3, LIMK2, and PATZ1), a bisexual sterility gene MORC2, and a fat deposition gene SELENOM. Reproduction and growth genes LRP4, FII, and ARHGAP1 were present in a 238.05-kb region on SSC2 under selection. We also identified five loci associated with body length (P = 0.004) on chromosomes 1 and 12 that were introgressed from foreign pig breeds into the Henan breeds. In addition, the Chinese indigenous pig breeds fell into four main types instead of the previously reported six, among which the Eastern type could be divided into two subgroups. CONCLUSIONS Admixture of North China, East China and foreign pigs contributed to high genetic diversity of Henan local pigs. Ontology terms associated with lipid kinase activity and spermatogenesis and growth shaping by introgression of European genes in Henan pigs were identified through selective sweep analyses.
Collapse
Affiliation(s)
- Ruimin Qiao
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xinjian Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University & Research, 6700 HB, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University & Research, 6700 HB, Wageningen, The Netherlands
| | - Pan Xu
- Jiangsu Agri-Animal Husbandry and Veterinary College, Taizhou, 225300, China
| | - Kejun Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Gaiying Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
6
|
Horta Remedios M, Liang W, González LN, Li V, Da Ros VG, Cohen DJ, Zaremberg V. Ether lipids and a peroxisomal riddle in sperm. Front Cell Dev Biol 2023; 11:1166232. [PMID: 37397249 PMCID: PMC10309183 DOI: 10.3389/fcell.2023.1166232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.
Collapse
Affiliation(s)
| | - Weisheng Liang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lucas N. González
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Victoria Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Erukainure OL, Mansoor S, Chukwuma CI, Oyebode OA, Koorbanally NA, Islam MS. GC-MS metabolomics reveals dysregulated lipid metabolic pathways and metabolites in diabetic testicular toxicity: Therapeutic potentials of raffia palm (Raphia hookeri G. Mann & H. Wendl) wine. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114390. [PMID: 34224812 DOI: 10.1016/j.jep.2021.114390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Raffia palm (Raphia hookeri G. Mann & H. Wendl) wine (RPW) is a natural beverage obtained from the R. hookeri consumed for refreshment and medicinal purposes. For medicinal purposes, it is used singly or as macerating agent for other medicinal plants for the treatment of several diseases. AIM This study investigates the effect of Raffia palm wine on dysregulated lipid metabolic pathways in testicular tissues of type 2 diabetic (T2D) rats. METHODS Raffia palm wine (150 and 300 mg/kg bodyweight) was administered to two T2D groups respectively, another T2D group was not administered treatment and served as negative control, while metformin served as the standard drug. After 6 weeks of treatment, the rats were sacrificed, and the testes collected. After weighing, the organs were homogenized in 20% methanol/ethanol and centrifuged at 20,000 g to extract the lipid metabolites. RESULTS GC-MS analysis of the supernatants revealed an alteration of the metabolites on induction of T2D, with concomitant generation of 10 metabolites. Raffia palm wine inhibited the T2D-generated metabolites while replenishing cholesterol and squalene levels, with concomitant generation of 7 and 8 metabolites for low and high dose treatment respectively. Pathway enrichment analysis of the metabolites revealed a decreased level of steroid biosynthesis and increased level of fatty acid biosynthesis. Raffia palm wine inactivated glycerolipid, fatty acid, and arachidonic acid metabolisms, fatty acid biosynthesis and fatty acid elongation in mitochondria pathways, and activated pathways for plasmalogen synthesis, mitochondrial beta-oxidation of long chain saturated fatty acids. CONCLUSION The replenishment and generation of these metabolites and additional ones as well as activation of pathways involved in energy generation, phospholipids, antioxidant activity, steroidogenesis and spermatogenesis suggest a therapeutic effect of Raffia palm wine against hyperglycemic-induced testicular dysfunction.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa; Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Shazia Mansoor
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Chika I Chukwuma
- Centre for the Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Olajumoke A Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa; Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
8
|
Rivero-Hinojosa S, Pugacheva EM, Kang S, Méndez-Catalá CF, Kovalchuk AL, Strunnikov AV, Loukinov D, Lee JT, Lobanenkov VV. The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis. Nat Commun 2021; 12:3846. [PMID: 34158481 PMCID: PMC8219828 DOI: 10.1038/s41467-021-24140-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.
| | - Elena M Pugacheva
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sungyun Kang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Claudia Fabiola Méndez-Catalá
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Genetics and Molecular Oncology, Building A4, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, State of Mexico, Mexico
| | - Alexander L Kovalchuk
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, Guangzhou, China
| | - Dmitri Loukinov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Victor V Lobanenkov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
McKitrick TR, Bernard SM, Noll AJ, Collins BC, Goth CK, McQuillan AM, Heimburg-Molinaro J, Herrin BR, Wilson IA, Cooper MD, Cummings RD. Novel lamprey antibody recognizes terminal sulfated galactose epitopes on mammalian glycoproteins. Commun Biol 2021; 4:674. [PMID: 34083726 PMCID: PMC8175384 DOI: 10.1038/s42003-021-02199-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
The terminal galactose residues of N- and O-glycans in animal glycoproteins are often sialylated and/or fucosylated, but sulfation, such as 3-O-sulfated galactose (3-O-SGal), represents an additional, but poorly understood modification. To this end, we have developed a novel sea lamprey variable lymphocyte receptor (VLR) termed O6 to explore 3-O-SGal expression. O6 was engineered as a recombinant murine IgG chimera and its specificity and affinity to the 3-O-SGal epitope was defined using a variety of approaches, including glycan and glycoprotein microarray analyses, isothermal calorimetry, ligand-bound crystal structure, FACS, and immunohistochemistry of human tissue macroarrays. 3-O-SGal is expressed on N-glycans of many plasma and tissue glycoproteins, but recognition by O6 is often masked by sialic acid and thus exposed by treatment with neuraminidase. O6 recognizes many human tissues, consistent with expression of the cognate sulfotransferases (GAL3ST-2 and GAL3ST-3). The availability of O6 for exploring 3-O-SGal expression could lead to new biomarkers for disease and aid in understanding the functional roles of terminal modifications of glycans and relationships between terminal sulfation, sialylation and fucosylation.
Collapse
Affiliation(s)
- Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steffen M Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander J Noll
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Enteric Disease Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Bernard C Collins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Acceleron Pharma, Boston, MA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Oku N, Hasada A, Kimura K, Honoki H, Katsuta R, Yajima A, Nukada T, Ishigami K, Igarashi Y. Sulfoquinovosylglyceryl ether, a new group of ether lipids from lake ball-forming green alga Aegagropilopsis moravica (family Pithophoraceae). Chem Asian J 2021; 16:1493-1498. [PMID: 33871157 DOI: 10.1002/asia.202100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Ether lipids are a minor group of glycerolipids but widespread in nature, playing a vital function as membrane lipids, signalling molecules, or buoyant material. We have discovered sulfoquinovosylchimyl alcohol (1), a sulfonate-substituted glyceroglycolipid, from a lake ball-forming green alga Aegagropilopsis moravica (family Pithophoraceae), with the guidance of antimicrobial activity. The structure of 1, including absolute configurations of all sterogenic centers, was established by extensive NMR analysis, chemical degradation studies, and finally by total synthesis. Lipid 1 is an ether variant of a lyso-form of sulfoquinovosyldiacylglycerol, a chloroplast-specific membrane lipid, and thus represents a new lipid class, sulfoquinovosylglyceryl ether. A high occurrence of mobile life form in the family Pithophoraceae and a unique behaviour of chloroplasts reported in closely related Aegagropila linnaei, the famous lake-ball alga, implies a possible role of lipid 1 or its acyl derivatives in ecological adaptation to dysphotic niches.
Collapse
Affiliation(s)
- Naoya Oku
- Research Center for Biotechnology and Pharmaceutical Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Atsumi Hasada
- Research Center for Biotechnology and Pharmaceutical Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kenji Kimura
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hideharu Honoki
- Toyama Science Museum, 1-8-31 Nishinakano, Toyama, 939-8034, Japan
| | - Ryo Katsuta
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Arata Yajima
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tomoo Nukada
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Ken Ishigami
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yasuhiro Igarashi
- Research Center for Biotechnology and Pharmaceutical Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
11
|
Fu T, Knittelfelder O, Geffard O, Clément Y, Testet E, Elie N, Touboul D, Abbaci K, Shevchenko A, Lemoine J, Chaumot A, Salvador A, Degli-Esposti D, Ayciriex S. Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in Gammarus fossarum lipid composition. iScience 2021; 24:102115. [PMID: 33615205 PMCID: PMC7881238 DOI: 10.1016/j.isci.2021.102115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepatopancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies. Baseline lipidome profiling of G. fossarum of different sex and reproductive stages Spatial localization of lipids in gammarid tissue by mass spectrometry imaging SIMS imaging guided discovery of sulfate-based lipids in hepatopancreas epithelium Disclosure of a dynamic lipid composition in maturing female oocytes
Collapse
Affiliation(s)
- Tingting Fu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Yohann Clément
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nicolas Elie
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Khedidja Abbaci
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Lemoine
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Arnaud Salvador
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Sophie Ayciriex
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
- Corresponding author
| |
Collapse
|
12
|
Engel KM, Jakop U, Müller K, Grunewald S, Paasch U, Schiller J. MALDI MS Analysis to Investigate the Lipid Composition of Sperm. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666181030123256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The sperm plasma membrane meets the requirements of sperm transit
through the female genital tract and subsequent fertilization. Commonly, the (phospho)lipid composition
of sperm is characterized by tremendous amounts of highly unsaturated fatty acyl residues such
as docosahexaenoic and docosapentaenoic acid. While human sperm contain almost exclusively diacyl
lipids, many animal sperm additionally contain significant amounts of ether lipids such as alkylacyl-
and alkenyl-acyl lipids (plasmalogens).
Hypothesis/Objective:
It is suggested that deviations from the typical lipid composition are indicative
of pathological changes. Therefore, simple methods to elucidate the sperm lipid composition are essential.
Method:
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is a fast
and simple method. Since the selection of the most suitable matrix is a crucial step in MALDI MS,
this topic will be highlighted. It will also be shown that MALDI MS can be easily combined with
thin-layer chromatography to overcome ion suppression effects.
Results:
The lipid composition of sperm from different species can be elucidated by MALDI MS.
However, different matrix compounds have to be used to record positive and negative ion mass spectra.
Since some sperm (glyco)lipids are characterized by the presence of sulfate residues which suppress
the detection of less acidic lipids in the negative ion mode, previous separation is often necessary.
It will be also emphasized that plasmalogens can be easily identified by either enzymatic digestion
or treatment with acids.
Conclusion:
MALDI MS is a reliable method to obtain sperm lipid fingerprints in a simple and convenient
way.
Collapse
Affiliation(s)
- Kathrin M. Engel
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Ulrike Jakop
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Sonja Grunewald
- Dermatology, Venerology and Allergology Clinic, Andrological Unit, University Hospital Leipzig, Philipp-Rosenthal- Straße 23, D-04103, Leipzig, Germany
| | - Uwe Paasch
- Dermatology, Venerology and Allergology Clinic, Andrological Unit, University Hospital Leipzig, Philipp-Rosenthal- Straße 23, D-04103, Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
13
|
Iwamori M, Adachi S, Lin B, Tanaka K, Aoki D, Nomura T. Spermatogenesis-associated changes of fucosylated glycolipids in murine testis. Hum Cell 2019; 33:23-28. [PMID: 31784953 DOI: 10.1007/s13577-019-00304-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022]
Abstract
By targeted deletion of either the FUT1- or FUT2-gene for α1,2-fucosyltransferase, expression of FGM1 and FGA1, in murine testis was revealed to be sustained through unique interchangeability of the genes, indicating their significant roles for spermatogenesis. Accordingly, we examined the amounts of FGM1 and FGA1 in the testes of mice at 1-42 days after birth in comparison to those of several glycolipids including seminolipid. Although Forssman antigen and GM1 were present in relatively constant amounts during the period examined, GM3, which was the major one at 1 day, quickly decreased during development and had completely disappeared at 4 weeks. The following glycolipids were expressed in stage-specific manners, FGM1 for primary spermatocytes at 1 week, a seminolipid for secondary spermatocytes at 2 weeks, and GM3 lactone and FGA1 for spermatids and spermatozoa at 3 weeks. In fact, immunohistochemical staining with anti-FGM1 and anti-FGA1 antibodies demonstrated that FGM1 and FGA1 were distributed in the spermatocytes, and the spermatids and spermatozoa, respectively, and FGA1, together with seminolipid, were the immunogenic markers of spermatozoa. Thus, the fucosylation of glycolipids is a spermatogenesis-associated event, which should occur even with use of either the FUT1- or FUT2-gene.
Collapse
Affiliation(s)
- Masao Iwamori
- Animal and Human Model Project for Healthcare and Drug Development (Nomura Project), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi-Saito, Ibaraki, Osaka, 567-0085, Japan.
| | - Shigeki Adachi
- Animal and Human Model Project for Healthcare and Drug Development (Nomura Project), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi-Saito, Ibaraki, Osaka, 567-0085, Japan
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Kyoko Tanaka
- Department of Obstetrics and Gynecology, Ohashi Hospital, Toho University, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Taisei Nomura
- Animal and Human Model Project for Healthcare and Drug Development (Nomura Project), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi-Saito, Ibaraki, Osaka, 567-0085, Japan
| |
Collapse
|
14
|
Shimada N, Fukuhara K, Urata S, Makino K. Total syntheses of seminolipid and its analogues by using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent. Org Biomol Chem 2019; 17:7325-7329. [PMID: 31353379 DOI: 10.1039/c9ob01445d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concise total synthesis of seminolipid, a sulfoglycolipid, has been achieved; key features include regioselective, tin-free sulfation of allyl β-d-galactopyranoside using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent, stereoselective epoxidation, and site-selective acylation. The utility of this divergent synthetic approach to introduce 2,2,2-trichloroethyl-protected sulfate group at an early stage without toxic and environmentally unfavorable tin reagents was demonstrated by the syntheses of three seminolipid analogues with different side-chains from the common intermediate.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan.
| | | | | | | |
Collapse
|
15
|
Akintayo A, Stanley P. Roles for Golgi Glycans in Oogenesis and Spermatogenesis. Front Cell Dev Biol 2019; 7:98. [PMID: 31231650 PMCID: PMC6566014 DOI: 10.3389/fcell.2019.00098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of proteins by N- and O-glycans or glycosaminoglycans (GAGs) mostly begins in the endoplasmic reticulum and is further orchestrated in the Golgi compartment via the action of >100 glycosyltransferases that reside in this complex organelle. The synthesis of glycolipids occurs in the Golgi, also by resident glycosyltransferases. A defect in the glycosylation machinery may impair the functions of glycoproteins and other glycosylated molecules, and lead to a congenital disorder of glycosylation (CDG). Spermatogenesis in the male and oogenesis in the female are tightly regulated differentiation events leading to the production of functional gametes. Insights into roles for glycans in gamete production have been obtained from mutant mice following deletion or inactivation of genes that encode a glycosylation activity. In this review, we will summarize the effects of altering the synthesis of N-glycans, O-glycans, proteoglycans, glycophosphatidylinositol (GPI) anchored proteins, and glycolipids during gametogenesis in the mouse. Glycosylation genes whose deletion causes embryonic lethality have been investigated following conditional deletion using various Cre recombinase transgenes with a cell-type specific promoter. The potential effects of mutations in corresponding glycosylation genes of humans will be discussed in relation to consequences to fertility and potential for use in contraception.
Collapse
Affiliation(s)
- Ayodele Akintayo
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Dias IHK, Ferreira R, Gruber F, Vitorino R, Rivas-Urbina A, Sanchez-Quesada JL, Vieira Silva J, Fardilha M, de Freitas V, Reis A. Sulfate-based lipids: Analysis of healthy human fluids and cell extracts. Chem Phys Lipids 2019; 221:53-64. [PMID: 30910732 DOI: 10.1016/j.chemphyslip.2019.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Sulfate-based lipids (SL) have been proposed as players in inflammation, immunity and infection. In spite of the many biochemical processes linked to SL, analysis on this class of lipids has only focused on specific SL sub-classes in individual fluids or cells leaving a range of additional SL in other biological samples unaccounted for. This study describes the mass spectrometry screening of SL in lipid extracts of human fluids (saliva, plasma, urine, seminal fluid) and primary human cells (RBC, neutrophils, fibroblasts and skin epidermal) using targeted precursor ion scanning (PIS) approach. The PIS 97 mass spectra reveal a wide diversity of SL including steroid sulfates, sulfoglycolipids and other unidentified SL, as well as metabolites such as taurines, sulfated polyphenols and hypurate conjugates. Semi-quantification of SL revealed that plasma exhibited the highest content of SL whereas seminal fluid and epithelial cells contained the highest sulphur to phosphorous (S/P) ratio. The complexity of biofluids and cells sulfateome presented in this study highlight the importance of expanding the panel of synthetic sulfate-based lipid standards. Also, the heterogenous distribution of SL provides evidence for the interplay of sulfotransferases/sulfatases, opening new avenues for biomarker discovery in oral health, cardiovascular, fertility and dermatology research areas.
Collapse
Affiliation(s)
| | - Rita Ferreira
- Departamento de Quimica, Research Unit of Química Orgânica, Produtos Naturais e Agro-alimentares (QOPNA), Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Florian Gruber
- Medical University of Vienna, Department of Dermatology, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - José Luis Sanchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - Joana Vieira Silva
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal; Reproductive Genetics & Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor de Freitas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
17
|
Tanphaichitr N, Kongmanas K, Faull KF, Whitelegge J, Compostella F, Goto-Inoue N, Linton JJ, Doyle B, Oko R, Xu H, Panza L, Saewu A. Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction. Prog Lipid Res 2018; 72:18-41. [PMID: 30149090 PMCID: PMC6239905 DOI: 10.1016/j.plipres.2018.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
Sulfogalactosylglycerolipid (SGG, aka seminolipid) is selectively synthesized in high amounts in mammalian testicular germ cells (TGCs). SGG is an ordered lipid and directly involved in cell adhesion. SGG is indispensable for spermatogenesis, a process that greatly depends on interaction between Sertoli cells and TGCs. Spermatogenesis is disrupted in mice null for Cgt and Cst, encoding two enzymes essential for SGG biosynthesis. Sperm surface SGG also plays roles in fertilization. All of these results indicate the significance of SGG in male reproduction. SGG homeostasis is also important in male fertility. Approximately 50% of TGCs become apoptotic and phagocytosed by Sertoli cells. SGG in apoptotic remnants needs to be degraded by Sertoli lysosomal enzymes to the lipid backbone. Failure in this event leads to a lysosomal storage disorder and sub-functionality of Sertoli cells, including their support for TGC development, and consequently subfertility. Significantly, both biosynthesis and degradation pathways of the galactosylsulfate head group of SGG are the same as those of sulfogalactosylceramide (SGC), a structurally related sulfoglycolipid important for brain functions. If subfertility in males with gene mutations in SGG/SGC metabolism pathways manifests prior to neurological disorder, sperm SGG levels might be used as a reporting/predicting index of the neurological status.
Collapse
Affiliation(s)
- Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics/Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kanagawa 252-0880, Japan
| | - James-Jules Linton
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Brendon Doyle
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Hongbin Xu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Luigi Panza
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Honke K. Biological functions of sulfoglycolipids and the EMARS method for identification of co-clustered molecules in the membrane microdomains. J Biochem 2018; 163:253-263. [PMID: 29186467 DOI: 10.1093/jb/mvx078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/03/2017] [Indexed: 01/04/2025] Open
Abstract
Two major sulfoglycolipids, sulfatide (SO3-3Gal-ceramide) and seminolipid (SO3-3Gal-alkylacylglycerol) exist in mammals. Sulfatide is abundant in the myelin sheath and seminolipid is unique to the spermatogenic cells. The carbohydrate moiety of sulfatide and seminolipid is identical and synthesized by common enzymes: ceramide galactosyltransferase (CGT) and cerebroside sulfotransferase (CST). We have purified CST homogenously, cloned the CST gene and generated CST-knockout mice. CST-null mice completely lack sulfoglycolipids all over the body. Analysis of CST-null mice has revealed that sulfatide is an essential component for the axo-glial junction at the paranode region and regulates terminal differentiation of oligodendrocytes, and that seminolipid is responsible for the formation of a functional lactate transporter assembly to take up the critical energy source for spermatocytes. We have developed a new analytical method termed EMARS to identify co-clustered molecules in the membrane microdomains in order to elucidate the functional molecules that collaborate with sulfoglycolipids.
Collapse
Affiliation(s)
- Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
- Center for Innovative and Translational Medicine, Kochi University Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
19
|
Bhin J, Jeong HS, Kim JS, Shin JO, Hong KS, Jung HS, Kim C, Hwang D, Kim KS. PGC-Enriched miRNAs Control Germ Cell Development. Mol Cells 2015; 38:895-903. [PMID: 26442865 PMCID: PMC4625071 DOI: 10.14348/molcells.2015.0146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/25/2015] [Accepted: 07/08/2015] [Indexed: 01/21/2023] Open
Abstract
Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.
Collapse
Affiliation(s)
- Jinhyuk Bhin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hoe-Su Jeong
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 133-791,
Korea
| | - Jong Soo Kim
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 133-791,
Korea
| | - Jeong Oh Shin
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University, College of Dentistry, Seoul 120-752,
Korea
| | - Ki Sung Hong
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 133-791,
Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University, College of Dentistry, Seoul 120-752,
Korea
| | - Changhoon Kim
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 133-791,
Korea
| | - Daehee Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784,
Korea
- Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873,
Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 133-791,
Korea
| |
Collapse
|
20
|
Rabionet M, Bayerle A, Jennemann R, Heid H, Fuchser J, Marsching C, Porubsky S, Bolenz C, Guillou F, Gröne HJ, Gorgas K, Sandhoff R. Male meiotic cytokinesis requires ceramide synthase 3-dependent sphingolipids with unique membrane anchors. Hum Mol Genet 2015; 24:4792-808. [DOI: 10.1093/hmg/ddv204] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022] Open
|
21
|
Hering DM, Olenski K, Kaminski S. Genome-wide association study for sperm concentration in Holstein-Friesian bulls. Reprod Domest Anim 2014; 49:1008-14. [PMID: 25263565 DOI: 10.1111/rda.12423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/14/2014] [Indexed: 02/03/2023]
Abstract
The aim of the study was to screen the entire bull genome to identify markers and candidate genes underlying sperm concentration. The analysed data set originates from a population of 877 Polish Holstein-Friesian bulls. Based on sperm concentration value, two extreme groups of bulls were created: Low (L, n = 126) and High (H, n = 140). Each bull was genotyped using the Illumina BovineSNP50 BeadChip. Genome-wide association analysis was performed with the use of GoldenHelix SVS7 software. An additive model with a Cohran-Armitage test, Correlation/Trend adjusted by a Bonferroni test, was used to estimate the effect of SNP marker for sperm concentration. Thirteen markers reached genome-wide significance. The most significant SNPs were located on chromosome 3 (rs109154964 and rs108965556), 14 (rs41621145) and 18 (rs41615539), in the close vicinity of protein arginine methyltransferase 6 (PRMT6), Sel1 repeat containing 1 (SELRC1), triple QxxK/R motif containing (TRIQK) and zinc finger homeobox 3 (ZFHX3) genes, respectively. For three other candidate genes located close to significant markers (within a distance of ca 1 Mb), namely histone deacetylase 9 (HDAC9), an inhibitor of DNA binding 2 (ID2) and glutathione S-transferase theta 1 (GSTT1), their potential role in the production of male germ cells was confirmed in earlier studies. Six additional candidate genes (Vav3, GSTM1, CDK5, NOS3, PDP1 and GAL3ST1) were suspected of being significantly associated with sperm concentration or semen biochemistry. Our results indicate the genetic complexity of sperm concentration but also open the possibility for finding causal polymorphism useful in marker-assisted selection.
Collapse
Affiliation(s)
- D M Hering
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | |
Collapse
|
22
|
Honke K. Galactose-3-O-Sulfotransferase 1-4 (GAL3ST1-4). HANDBOOK OF GLYCOSYLTRANSFERASES AND RELATED GENES 2014:1123-1134. [DOI: 10.1007/978-4-431-54240-7_56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Nabatov AA, Hatzis P, Rouschop KMA, van Diest P, Vooijs M. Hypoxia inducible NOD2 interacts with 3-O-sulfogalactoceramide and regulates vesicular homeostasis. Biochim Biophys Acta Gen Subj 2013; 1830:5277-86. [PMID: 23880069 DOI: 10.1016/j.bbagen.2013.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Oxygen sensing in mammalian cells is a conserved signaling pathway regulated by hypoxia inducible factor type 1 (HIF-1). Inadequate oxygen supply (hypoxia) is common to many pathological disorders where autophagy plays an import role. The aim of this study was the identification and characterization of novel HIF-1 target genes that promote autophagy during hypoxia. METHODS Whole genome Chromatin Immune Precipitation from hypoxic HeLa cells was used to identify novel HIF-1 target genes. Hypoxia induced expression and transcription regulation was studied in wild type and HIF-deficient cells. siRNA silencing of candidate genes was used to establish their role during autophagy. Recombinant protein was used for screening immobilized glycosylated lipids to identify potential ligands. RESULTS We identified the Nucleotide Oligomerization Domain 2 (NOD2/CARD15) as a novel HIF-1 target and 3-O-sulfo-galactoceramide (sulfatide) and Mycobacterium sp. specific sulfolipid-1 as the first NOD2 ligands that both compete for binding to NOD2. Loss of NOD2 function impaired autophagy upstream of the autophagy inhibitor chloroquine by reducing the number of acidic vesicles. Inhibition of sulfatide synthesis elicited defects in autophagy similar to the NOD2 loss of function but did not influence NOD2-mediated NF-kB signaling. CONCLUSIONS Our findings suggest that the interaction of NOD2 with sulfatide may mediate the balance between autophagy and inflammation in hypoxic cells. GENERAL SIGNIFICANCE These findings may lead to a better understanding of complex inflammatory pathologies like Crohn's disease and tuberculosis where both NOD2 and hypoxia are implicated.
Collapse
Affiliation(s)
- Alexey A Nabatov
- Maastricht Radiation Oncology, MAASTRO/GROW Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Fujiwara Y, Ogonuki N, Inoue K, Ogura A, Handel MA, Noguchi J, Kunieda T. t-SNARE Syntaxin2 (STX2) is implicated in intracellular transport of sulfoglycolipids during meiotic prophase in mouse spermatogenesis. Biol Reprod 2013; 88:141. [PMID: 23595907 DOI: 10.1095/biolreprod.112.107110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Syntaxin2 (STX2), also known as epimorphin, is a member of the SNARE family of proteins, with expression in various types of cells. We previously identified an ENU-induced mutation, repro34, in the mouse Stx2 gene. The Stx2(repro34) mutation causes male-restricted infertility due to syncytial multinucleation of spermatogenic cells during meiotic prophase. A similar phenotype is also observed in mice with targeted inactivation of Stx2, as well as in mice lacking enzymes involved in sulfoglycolipid synthesis. Herein we analyzed expression and subcellular localization of STX2 and sulfoglycolipids in spermatogenesis. The STX2 protein localizes to the cytoplasm of germ cells at the late pachytene stage. It is found in a distinct subcellular pattern, presumably in the Golgi apparatus of pachytene/diplotene spermatocytes. Sulfoglycolipids are produced in the Golgi apparatus and transported to the plasma membrane. In Stx2(repro34) mutants, sulfoglycolipids are aberrantly localized in both pachytene/diplotene spermatocytes and in multinucleated germ cells. These results suggest that STX2 plays roles in transport and/or subcellular distribution of sulfoglycolipids. STX2 function in the Golgi apparatus and sulfoglycolipids may be essential for maintenance of the constriction between neighboring developing spermatocytes, which ensures ultimate individualization of germ cells in later stages of spermatogenesis.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Jennemann R, Gröne HJ. Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 2013; 52:231-48. [PMID: 23473748 DOI: 10.1016/j.plipres.2013.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022]
Abstract
Glycosphingolipids (GSLs) are believed to be involved in many cellular events including trafficking, signaling and cellular interactions. Over the past decade considerable progress was made elucidating the function of GSLs by generating and exploring animal models with GSL-deficiency. Initial studies focused on exploring the role of complex sialic acid containing GSLs (gangliosides) in neuronal tissue. Although complex gangliosides were absent, surprisingly, the phenotype observed was rather mild. In subsequent studies, several mouse models with combinations of gene-deletions encoding GSL-synthesizing enzymes were developed. The results indicated that reduction of GSL-complexity correlated with severity of phenotypes. However, in these mice, accumulation of precursor GSLs or neobiosynthesized GSL-series seemed to partly compensate the loss of GSLs. Thus, UDP-glucose:ceramide glucosyltransferase (Ugcg), catalyzing the basic step of the glucosylceramide-based GSL-biosynthesis, was genetically disrupted. A total systemic deletion of Ugcg caused early embryonic lethality. Therefore, Ugcg was eliminated in a cell-specific manner using the cre/loxP-system. New insights into the cellular function of GSLs were gained. It was demonstrated that neurons require GSLs for differentiation and maintenance. In keratinocytes, preservation of the skin barrier depends on GSL synthesis and in enterocytes of the small intestine GSLs are involved in endocytosis and vesicular transport.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
26
|
Honke K. Biosynthesis and biological function of sulfoglycolipids. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:129-138. [PMID: 23574804 PMCID: PMC3669731 DOI: 10.2183/pjab.89.129] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/19/2013] [Indexed: 06/02/2023]
Abstract
Sulfation confers negative charge on glycolipids and the attached sulfate group presents a part of determinants for the molecular interactions. Mammalian sulfoglycolipids are comprised of two major members, sulfatide (SO3-3Gal-ceramide) and seminolipid (SO3-3Gal-alkylacylglycerol). Sulfatide is abundant in the myelin sheath and seminolipid is unique to the spermatogenic cells. The carbohydrate moiety of sulfatide and seminolipid is biosynthesized via sequential reactions catalyzed by common enzymes: ceramide galactosyltransferase (CGT) and cerebroside sulfotransferase (CST). To elucidate the biological function of sulfoglycolipids, we have purified CST, cloned the CST gene, and generated CST-knockout mice. CST-null mice completely lack sulfoglycolipids all over the body. CST-null mice manifest some neurological disorders due to myelin dysfunction, an aberrant enhancement of oligodendrocyte terminal differentiation, and an arrest of spermatogenesis. CST-deficiency ameliorates L-selectin-dependent monocyte infiltration in the renal interstitial inflammation, indicating that sulfatide is an endogenous ligand of L-selectin. Studies on the molecular mechanisms underlying the biological events for which sulfoglycolipids are essential are ongoing
Collapse
Affiliation(s)
- Koichi Honke
- Department of Biochemistry and Kochi System Glycobiology Center, Kochi University Medical School, Kochi, Japan.
| |
Collapse
|
27
|
Vlajković S, Cukuranović R, Bjelaković MD, Stefanović V. Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: a brief overview. ScientificWorldJournal 2012; 2012:374151. [PMID: 22536138 PMCID: PMC3317611 DOI: 10.1100/2012/374151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022] Open
Abstract
Development of germ cells is a process starting in fetus and completed only in puberty. Spermatogonial stem cells maintain spermatogenesis throughout the reproductive life of mammals. They are undifferentiated cells defined by their ability to both self-renew and differentiate into mature spermatozoa. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression as well as the extrinsic gene signals from the local tissue microenvironment. The human testis is prone to damage, either for therapeutic reasons or because of toxic agents from the environment. For preservation of fertility, patients who will undergo radiotherapy and/or chemotherapy have an attractive possibility to keep in store and afterwards make a transfer of spermatogonial stem cells. Germ cell transplantation is not yet ready for the human fertility clinic, but it may be reasonable for young cancer patients, with no other options to preserve their fertility. Whereas this technique has become an important research tool in rodents, a clinical application must still be regarded as experimental, and many aspects of the procedure need to be optimized prior to a clinical application in men. In future, a range of options for the preservation of male fertility will get a new significance.
Collapse
|
28
|
Goto-Inoue N, Hayasaka T, Zaima N, Setou M. Imaging mass spectrometry for lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:961-9. [DOI: 10.1016/j.bbalip.2011.03.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 11/24/2022]
|
29
|
Valbuena G, Alonso E, Madrid JF, DíAz-Flores L, SáEz FJ. Galactosides in glycoconjugates of Xenopus laevis testis shown by lectin histochemistry. Microsc Res Tech 2011; 74:778-87. [DOI: 10.1002/jemt.21011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/03/2011] [Indexed: 11/06/2022]
|
30
|
Fluoride-induced apoptosis and gene expression profiling in mice sperm in vivo. Arch Toxicol 2011; 85:1441-52. [PMID: 21340527 DOI: 10.1007/s00204-011-0672-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
Exposure to fluoride can induce low sperm quality; however, little is known about the molecular mechanisms by which fluoride exerts its toxic effects. This study was conducted to evaluate ultrastructure, oxidative stress, and apoptosis in sperm of mice treated with 150 mg/l NaF for 49 days. Furthermore, microarray analysis was also utilized to characterize the effects of fluoride in gene expression profiling on mice sperm. An increased ROS and a decreased TAC accompanied with distinct morphological changes and significant apoptosis were observed in mice sperm from the fluoride group. Fluoride exposure also significantly elevated the protein expressions of cytochrome c and active caspase-3. In global gene expression profiling, 34 up-regulated and 63 down-regulated genes, which are involved in several sperm biological processes including signal transduction, oxidative stress, apoptosis, electron transport, glycolysis, chemotaxis, spermatogenesis, and sperm capacitation, were significantly differentially expressed. Based on these findings, it was proposed that oxidative stress induced by excessive ROS may trigger sperm apoptosis through mitochondrial impairment, resulting in decreased fertility in mice exposed to fluoride. Microarray analysis also provided several important biological clues for further investigating fluoride-induced damage in sperm morphology and functions.
Collapse
|
31
|
MALDI-TOF mass spectrometry as a simple tool to determine the phospholipid/glycolipid composition of sperm: Pheasant spermatozoa as one selected example. Anim Reprod Sci 2011; 123:270-8. [DOI: 10.1016/j.anireprosci.2011.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/20/2010] [Accepted: 01/04/2011] [Indexed: 11/15/2022]
|
32
|
Honke K, Kotani N. The enzyme-mediated activation of radical source reaction: a new approach to identify partners of a given molecule in membrane microdomains. J Neurochem 2011; 116:690-5. [PMID: 21214558 DOI: 10.1111/j.1471-4159.2010.07027.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Important biological events associated with plasma membranes, such as signal transduction, cell adhesion, and protein trafficking, are mediated through the membrane microdomains. However, it is difficult to assess the issue of how they assemble under physiological conditions. We developed a new approach to identify partners of a given molecule on the cell surface in living cells. The important feature of this system, termed as enzyme-mediated activation of radical source, is that activation of cross-linking reagent arylazide-biotin tag can be accomplished not by ultraviolet light, but by an enzyme, horseradish peroxidase. By using this method, we found that many kinds of receptor tyrosine kinases are associated with β1 integrin whereas a few receptor tyrosine kinases are associated with ganglioside GM1 in HeLa S3 cells. This system is a comprehensive approach to identify interactions between cell surface molecules under living conditions. The advantages of this approach are as follows: (i) easy, high throughput, and without the need for special equipment, (ii) applicable to systematic approaches such as proteomic analysis, (iii) applicable to studies on the interactions among not only proteins but also glycans and lipids. The biochemical approach although the enzyme-mediated activation of radical source reaction will provide a new insight into a wide range of research concerning cis-interaction between biomolecules on the cell surface in living cells.
Collapse
Affiliation(s)
- Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Nankoku, Kochi, Japan.
| | | |
Collapse
|
33
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
34
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
35
|
Braverman N, Zhang R, Chen L, Nimmo G, Scheper S, Tran T, Chaudhury R, Moser A, Steinberg S. A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton. Mol Genet Metab 2010; 99:408-16. [PMID: 20060764 PMCID: PMC2839039 DOI: 10.1016/j.ymgme.2009.12.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 02/01/2023]
Abstract
Rhizomelic chondrodysplasia punctata type 1 is a peroxisome biogenesis disorder with the clinical features of rhizomelia, abnormal epiphyseal calcifications, congenital cataracts, and profound growth and developmental delays. It is a rare autosomal recessive disorder, caused by defects in the peroxisome receptor, PEX7. The pathology results from a deficiency of plasmalogens, a critical class of ether phospholipids whose functions are largely unknown. To study plasmalogens in an animal model, avoid early mortality and facilitate therapeutic investigations in this disease, we engineered a hypomorphic mouse model in which Pex7 transcript levels are reduced to less than 5% of wild type. These mice are born in expected ratios, are fertile and have a normal life span. However, they are petite and develop early cataracts. Further investigations showed delayed endochondral ossification and abnormalities in lens fibers. The biochemical features of reduced Pex7 function were reproduced in this model, including tissue plasmalogen deficiency, phytanic acid accumulation, reduced import of Pex7 ligands and consequent defects in plasmalogen biosynthesis and phytanic acid oxidation. Dietary supplementation with batyl alcohol, a plasmalogen precursor, recovered ether phospholipids in blood, but did not alter the clinical phenotype. The relatively mild phenotype of these mice mimics patients with milder PEX7 defects, and highlights the skeleton and lens as sensitive markers of plasmalogen deficiency. The role of plasmalogens in the normal function of these tissues at various ages can now be studied and additional therapeutic interventions tested in this model.
Collapse
Affiliation(s)
- Nancy Braverman
- Department of Human Genetics and Pediatrics, Montreal Children's Hospital Research Institute, McGill University, Montreal, QC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Expression of a testis-specific form of Gal3st1 (CST), a gene essential for spermatogenesis, is regulated by the CTCF paralogous gene BORIS. Mol Cell Biol 2010; 30:2473-84. [PMID: 20231363 DOI: 10.1128/mcb.01093-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, it was shown that the CTCF paralogous gene, BORIS (brother of the regulator of imprinted sites) is expressed in male germ cells, but its function in spermatogenesis has not been defined. To develop an understanding of the functional activities of BORIS, we generated BORIS knockout (KO) mice. Mice homozygous for the null allele had a defect in spermatogenesis that resulted in small testes associated with increased cell death. The defect was evident as early as postnatal day 21 and was manifested by delayed production of haploid cells. By gene expression profiling, we found that transcript levels for Gal3st1 (also known as cerebroside sulfotransferase [CST]), known to play a crucial role in meiosis, were dramatically reduced in BORIS KO testes. We found that CST is expressed in testis as a novel testis-specific isoform, CST form F(TS), that has a short exon 1f. We showed that BORIS bound to and activated the promoter of CST form F(TS). Mutation of the BORIS binding site in the promoter reduced the ability of BORIS to activate the promoter. These findings define transcriptional regulation of CST expression as a critical role for BORIS in spermatogenesis.
Collapse
|
37
|
Goto-Inoue N, Hayasaka T, Zaima N, Setou M. The specific localization of seminolipid molecular species on mouse testis during testicular maturation revealed by imaging mass spectrometry. Glycobiology 2009; 19:950-7. [PMID: 19542524 DOI: 10.1093/glycob/cwp089] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
More than 90% of the glycolipid in mammalian testis consists of a unique sulfated glyceroglycolipid called seminolipid. The galactosylation of the molecule is catalyzed by UDP-galactose:ceramide galactosyltransferase (CGT). Disruption of the CGT gene in mice results in male infertility due to the arrest of spermatogenesis, indicating that seminolipid plays an important role in reproductive function. Seminolipid molecules can be assigned to different molecular species based on the fatty acid composition. In this report, we investigated the localizations of the molecular species of seminolipid by imaging mass spectrometry and demonstrated that major molecule (C16:0-alkyl-C16:0-acyl) was expressed throughout the tubules: some (C16:0-alkyl-C14:0-acyl and C14:0-alkyl-C16:0-acyl) were predominantly expressed in spermatocytes and the other (C17:0-alkyl-C16:0-acyl) was specifically expressed in spermatids and spermatozoa. This is the first report to show the cell-specific localization of each molecular species of seminolipid during testicular maturation.
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | | | | | | |
Collapse
|
38
|
Disruption of blood-testis barrier dynamics in ether-lipid-deficient mice. Cell Tissue Res 2009; 337:281-99. [DOI: 10.1007/s00441-009-0809-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/13/2009] [Indexed: 11/26/2022]
|
39
|
Rabionet M, van der Spoel AC, Chuang CC, von Tümpling-Radosta B, Litjens M, Bouwmeester D, Hellbusch CC, Körner C, Wiegandt H, Gorgas K, Platt FM, Gröne HJ, Sandhoff R. Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J Biol Chem 2008; 283:13357-69. [PMID: 18308723 DOI: 10.1074/jbc.m800870200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, it was found that a novel class of neutral fucosylated glycosphingolipids (GSLs) is required for male fertility. These lipids contain very long-chain (C26-C32) polyunsaturated (4-6 double bonds) fatty acid residues (VLC-PUFAs). To assess the role of these complex GSLs in spermatogenesis, we have now investigated with which of the testicular cell types these lipids are associated. During postnatal development, complex glycosylated and simple VLC-PUFA sphingolipids were first detectable at day 15, when the most advanced germ cells are pachytene spermatocytes. Their synthesis is most likely driven by ceramide synthase-3. This enzyme is encoded by the Cers3/Lass3 gene (longevity assurance genes), and out of six members of this gene family, only Cers3 mRNA expression was limited to germ cells, where it was up-regulated more than 700-fold during postnatal testicular maturation. Increasing levels of neutral complex VLC-PUFA GSLs also correlated with the progression of spermatogenesis in a series of male sterile mutants with arrests at different stages of spermatogenesis. Remarkably, fucosylation of the complex VLC-PUFA GSLs was not essential for spermatogenesis, as fucosylation-deficient mice produced nonfucosylated versions of the complex testicular VLC-PUFA GSLs, had complete spermatogenesis, and were fertile. Nevertheless, sterile Galgt1(-/-) mice, with a defective meiotic cytokinesis and a subsequent block in spermiogenesis, lacked complex but contained simple VLC-PUFA GSLs, as well as VLC-PUFA ceramides and sphingomyelins, indicating that the latter lipids are not sufficient for completion of spermatogenesis. Thus, our data imply that both glycans and the particular acyl chains of germinal sphingolipids are relevant for proper completion of meiosis.
Collapse
Affiliation(s)
- Mariona Rabionet
- Department of Cellular and Molecular Pathology, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Franchini L, Panza L, Kongmanas K, Tanphaichitr N, Faull KF, Ronchetti F. An efficient and convenient synthesis of deuterium-labelled seminolipid isotopomers and their ESI-MS characterization. Chem Phys Lipids 2008; 152:78-85. [PMID: 18319057 DOI: 10.1016/j.chemphyslip.2008.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 11/29/2022]
Abstract
Seminolipids 1a and 1b and galactosylalkylacylglycerols 2a and 2b, labelled with deuterium on the alkyl or acyl chain, respectively, were obtained isotopically and chemically pure through a straightforward synthesis from protected glycidyl galactoside 3 in an overall 22% yield. The identity and purity of compounds was ascertained by NMR spectroscopy and ESI mass spectrometry analysis. These labelled compounds are important as internal standards for quantification of these lipids by mass spectrometry, and they could also be used in metabolic studies in in vitro and even in vivo systems. Extension of the procedure could provide a route for the preparation of isotopomers of other compounds of the same general class.
Collapse
Affiliation(s)
- Laura Franchini
- Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università di Milano, Via Saldini 50, 20133-Milano, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Gorgas K, Teigler A, Komljenovic D, Just WW. The ether lipid-deficient mouse: Tracking down plasmalogen functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1511-26. [PMID: 17027098 DOI: 10.1016/j.bbamcr.2006.08.038] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/15/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Chemical and physico-chemical properties as well as physiological functions of major mammalian ether-linked glycerolipids, including plasmalogens were reviewed. Their chemical structures were described and their effect on membrane fluidity and membrane fusion discussed. The recent generation of mouse models with ether lipid deficiency offered the possibility to study ether lipid and particularly plasmalogen functions in vivo. Ether lipid-deficient mice revealed severe phenotypic alterations, including arrest of spermatogenesis, development of cataract and defects in central nervous system myelination. In several cell culture systems lack of plasmalogens impaired intracellular cholesterol distribution affecting plasma membrane functions and structural changes of ER and Golgi cisternae. Based on these phenotypic anomalies that were accurately described conclusions were drawn on putative functions of plasmalogens. These functions were related to cell-cell or cell-extracellular matrix interactions, formation of lipid raft microdomains and intracellular cholesterol homeostasis. There are several human disorders, such as Zellweger syndrome, rhizomelic chondrodysplasia punctata, Alzheimer's disease, Down syndrome, and Niemann-Pick type C disease that are distinguished by altered tissue plasmalogen concentrations. The role plasmalogens might play in the pathology of these disorders is discussed.
Collapse
Affiliation(s)
- Karin Gorgas
- Institut für Anatomie und Zellbiologie, Abteilung Medizinische Zellbiologie, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
42
|
Abstract
Lipid storage diseases are debilitating inherited metabolic disorders that stem from the absence of specific lysosomal enzymes that degrade selected lipids. Most characteristically, these disorders affect the nervous and the reticulo-endothelial systems, with massive organomegaly resulting from the presence of engorged, lipid-laden macrophages. In this issue of the JCI, Yildiz et al. describe the role of the ER-resident enzyme beta-glucosidase 2 (GBA2) in mice (see the related article beginning on page 2985). Surprisingly, GBA2 deficiency leaves bile acid and cholesterol metabolism intact, instead causing lipid accumulation in the ER of testicular Sertoli cells, round-headed sperm (globozoospermia), and impaired male fertility.
Collapse
Affiliation(s)
- Angshumoy Roy
- Department of Pathology,
Department of Molecular and Human Genetics, and
Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yi-Nan Lin
- Department of Pathology,
Department of Molecular and Human Genetics, and
Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Martin M. Matzuk
- Department of Pathology,
Department of Molecular and Human Genetics, and
Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|