1
|
Prato CA, Borbolla LV, Lizarraga L, Campetella O, Tribulatti MV. The interaction of Galectin-8 C-terminal domain with cell surface glycoconjugates modulates membrane elasticity to stimulate antigen uptake and presentation to CD4 T cells. J Leukoc Biol 2025; 117:qiae214. [PMID: 39365278 PMCID: PMC11879003 DOI: 10.1093/jleuko/qiae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Galectins constitute a family of soluble lectins with unique capacity to induce macroscale rearrangements upon interacting with cell membrane glycoconjugates. Galectin-8 is acknowledged for its role in facilitating antigen uptake and processing upon engaging with cell surface glycoconjugates on antigen-presenting cells. Galectin-8 consists of two covalently fused N- and C-terminal carbohydrate recognition domains, each exhibiting distinct glycan specificity. In this study, we utilized single N- and C-carbohydrate recognition domains recombinant proteins to dissect the nature of Galectin-8-glycan interactions during antigen internalization enhancement. Single C-carbohydrate recognition domain was able to replicate the effect of full-length Galectin-8 on antigen internalization in bone marrow-derived dendritic cells. Antigen uptake enhancement was diminished in the presence of lactose or when N-glycosylation-deficient macrophages served as antigen-presenting cells, underscoring the significance of glycan recognition. Measurement of the elastic modulus using Atomic Force Microscopy unveiled that full-length Galectin-8- and C-carbohydrate recognition domain-stimulated macrophages exhibited heightened membrane stiffness compared to untreated cells, providing a plausible mechanism for their involvement in endocytosis. C-carbohydrate recognition domain proved to be as efficient as full-length Galectin-8 in promoting antigen degradation, suggesting its implication in antigen-processing induction. Lastly, C-carbohydrate recognition domain was able to replicate full-length Galectin-8-induced antigen presentation in the major histocompatibility complex class II (MHC-II) context both in vitro and in vivo. Our findings support the notion that Galectin-8 binds through its C-carbohydrate recognition domain to cell surface N-glycans, thereby altering membrane mechanical forces conducive to soluble antigen endocytosis, processing, and presentation to cognate CD4 T cells. These findings contribute to a deeper comprehension of Galectin-8 and its mechanisms of action, paving the way for the development of more efficacious immunotherapies.
Collapse
Affiliation(s)
- Cecilia A Prato
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Avenida 25 de mayo y Francia, B1650HMP, San Martín, Buenos Aires, Argentina
| | - Laura V Borbolla
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Avenida 25 de mayo y Francia, B1650HMP, San Martín, Buenos Aires, Argentina
| | - Leonardo Lizarraga
- Centro de Investigaciones en Bionanociencias (CIBION), CONICET, Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Avenida 25 de mayo y Francia, B1650HMP, San Martín, Buenos Aires, Argentina
| | - María V Tribulatti
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Avenida 25 de mayo y Francia, B1650HMP, San Martín, Buenos Aires, Argentina
| |
Collapse
|
2
|
Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol 2024; 15:1469794. [PMID: 39386209 PMCID: PMC11461229 DOI: 10.3389/fimmu.2024.1469794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer, Gal-9 displays variable expression patterns across different tumor types. Its interactions with multiple binding partners, both intracellularly and extracellularly, influence key cellular processes, including immune cell modulation and tumor microenvironment dynamics. Notably, Gal-9 binding to cell-specific glycoconjugate ligands has been implicated in both promoting and suppressing tumor progression. Here, we provide insights into Gal-9 and its involvement in immune homeostasis and cancer biology with an emphasis on multiple myeloma (MM) pathophysiology, highlighting its complex and context-dependent dual functions as a pro- and anti-tumorigenic molecule and its potential implications for therapy in MM patients.
Collapse
Affiliation(s)
- Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
3
|
Mendoza M, Ballesteros A, Rendon-Correa E, Tonk R, Warren J, Snow AL, Stowell SR, Blois SM, Dveksler G. Modulation of galectin-9 mediated responses in monocytes and T-cells by pregnancy-specific glycoprotein 1. J Biol Chem 2024; 300:107638. [PMID: 39121996 PMCID: PMC11403483 DOI: 10.1016/j.jbc.2024.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Successful pregnancy relies on a coordinated interplay between endocrine, immune, and metabolic processes to sustain fetal growth and development. The orchestration of these processes involves multiple signaling pathways driving cell proliferation, differentiation, angiogenesis, and immune regulation necessary for a healthy pregnancy. Among the molecules supporting placental development and maternal tolerance, the families of pregnancy-specific glycoproteins and galectins are of great interest in reproductive biology. We previously found that PSG1 can bind to galectin-1 (GAL-1). Herein, we characterized the interaction between PSG1 and other members of the galectin family expressed during pregnancy, including galectin-3, -7, -9, and -13 (GAL-3, GAL-7, GAL-9, and GAL-13). We observed that PSG1 binds to GAL-1, -3, and -9, with the highest apparent affinity seen for GAL-9, and that the interaction of PSG1 with GAL-9 is carbohydrate-dependent. We further investigated the ability of PSG1 to regulate GAL-9 responses in human monocytes, a murine macrophage cell line, and T-cells, and determined whether PSG1 binds to both carbohydrate recognition domains of GAL-9. Additionally, we compared the apparent affinity of GAL-9 binding to PSG1 with other known GAL-9 ligands in these cells, Tim-3 and CD44. Lastly, we explored functional conservation between murine and human PSGs by determining that Psg23, a highly expressed member of the murine Psg family, can bind some murine galectins despite differences in amino acid composition and domain structure.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Angela Ballesteros
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Rendon-Correa
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rohan Tonk
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Boston Massachusetts, USA
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Glyco-HAM, a cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Thijssen VLJL. Vascular galectins in tumor angiogenesis and cancer immunity. Semin Immunopathol 2024; 46:3. [PMID: 38990363 PMCID: PMC11239785 DOI: 10.1007/s00281-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 07/12/2024]
Abstract
Sustained tumor angiogenesis, i.e., the induction and maintenance of blood vessel growth by tumor cells, is one of the hallmarks of cancer. The vascularization of malignant tissues not only facilitates tumor growth and metastasis, but also contributes to immune evasion. Important players in all these processes are the endothelial cells which line the luminal side of blood vessel. In the tumor vasculature, these cells are actively involved in angiogenesis as well in the hampered recruitment of immune cells. This is the result of the abnormal tumor microenvironment which triggers both angiostimulatory and immune inhibitory gene expression profiles in endothelial cells. In recent years, it has become evident that galectins constitute a protein family that is expressed in the tumor endothelium. Moreover, several members of this glycan-binding protein family have been found to facilitate tumor angiogenesis and stimulate immune suppression. All this has identified galectins as potential therapeutic targets to simultaneously hamper tumor angiogenesis and alleviate immune suppression. The current review provides a brief introduction in the human galectin protein family. The current knowledge regarding the expression and regulation of galectins in endothelial cells is summarized. Furthermore, an overview of the role that endothelial galectins play in tumor angiogenesis and tumor immunomodulation is provided. Finally, some outstanding questions are discussed that should be addressed by future research efforts. This will help to fully understand the contribution of endothelial galectins to tumor progression and to exploit endothelial galectins for cancer therapy.
Collapse
Affiliation(s)
- Victor L J L Thijssen
- Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Ippel H, Miller MC, Dings RPM, Ludwig AK, Gabius HJ, Mayo KH. Cysteine Oxidation in Human Galectin-1 Occurs Sequentially via a Folded Intermediate to a Fully Oxidized Unfolded Form. Int J Mol Sci 2024; 25:6956. [PMID: 39000066 PMCID: PMC11241627 DOI: 10.3390/ijms25136956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Galectins are multifunctional effectors in cellular homeostasis and dysregulation. Oxidation of human galectin-1 (Gal-1) with its six sulfhydryls produces a disulfide-bridged oxidized form that lacks normal lectin activity yet gains new glycan-independent functionality. Nevertheless, the mechanistic details as to how Gal-1 oxidation occurs remain unclear. Here, we used 15N and 13C HSQC NMR spectroscopy to gain structural insight into the CuSO4-mediated path of Gal-1 oxidation and identified a minimum two-stage conversion process. During the first phase, disulfide bridges form slowly between C16-C88 and/or C42-C66 to produce a partially oxidized, conformationally flexible intermediate that retains the ability to bind lactose. Site-directed mutagenesis of C16 to S16 impedes the onset of this overall slow process. During the second phase, increased motional dynamics of the intermediate enable the relatively distant C2 and C130 residues to form the third and final disulfide bond, leading to an unfolded state and consequent dimer dissociation. This fully oxidized end state loses the ability to bind lactose, as shown by the hemagglutination assay. Consistent with this model, we observed that the Gal-1 C2S mutant maintains intermediate-state structural features with a free sulfhydryl group at C130. Incubation with dithiothreitol reduces all disulfide bonds and allows the lectin to revert to its native state. Thus, the sequential, non-random formation of three disulfide bridges in Gal-1 in an oxidative environment acts as a molecular switch for fundamental changes to its functionality. These data inspire detailed bioactivity analysis of the structurally defined oxidized intermediate in, e.g., acute and chronic inflammation.
Collapse
Affiliation(s)
- Hans Ippel
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
- Department of Biochemistry, Cardiovascular Research Instutute Maastricht (CARIM), University of Maastricht, 6229 ER Maastricht, The Netherlands
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Ruud P M Dings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Anna-Kristin Ludwig
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Hans-Joachim Gabius
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Jan HM, Wu SC, Stowell CJ, Vallecillo-Zúniga ML, Paul A, Patel KR, Muthusamy S, Lin HY, Ayona D, Jajosky RP, Varadkar SP, Nakahara H, Chan R, Bhave D, Lane WJ, Yeung MY, Hollenhorst MA, Rakoff-Nahoum S, Cummings RD, Arthur CM, Stowell SR. Galectin-4 Antimicrobial Activity Primarily Occurs Through its C-Terminal Domain. Mol Cell Proteomics 2024; 23:100747. [PMID: 38490531 PMCID: PMC11097083 DOI: 10.1016/j.mcpro.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.
Collapse
Affiliation(s)
- Hau-Ming Jan
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carter J Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasikala Muthusamy
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hsien-Ya Lin
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samata P Varadkar
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rita Chan
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Devika Bhave
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William J Lane
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Y Yeung
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie A Hollenhorst
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth Rakoff-Nahoum
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Roy M, Mbous Nguimbus L, Badiane PY, Goguen-Couture V, Degrandmaison J, Parent JL, Brunet MA, Roux S. Galectin-8 modulates human osteoclast activity partly through isoform-specific interactions. Life Sci Alliance 2024; 7:e202302348. [PMID: 38395460 PMCID: PMC10895193 DOI: 10.26508/lsa.202302348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In overactive human osteoclasts, we previously identified an alternative splicing event in LGALS8, encoding galectin-8, resulting in decreased expression of the long isoform. Galectin-8, which modulates cell-matrix interactions and functions intracellularly as a danger recognition receptor, has never been associated with osteoclast biology. In human osteoclasts, inhibition of galectin-8 expression revealed its roles in bone resorption, osteoclast nuclearity, and mTORC1 signaling regulation. Galectin-8 isoform-specific inhibition asserted a predominant role for the short isoform in bone resorption. Moreover, a liquid chromatography with tandem mass spectrometry (LC-MS/MS) proteomic analysis of galectin-8 isoforms performed in HEK293T cells identified 22 proteins shared by both isoforms. Meanwhile, nine interacting partners were specific for the short isoform, and none were unique to the long isoform. Interactors specific for the galectin-8 short isoform included cell adhesion proteins and lysosomal proteins. We confirmed the interactions of galectin-8 with CLCN3, CLCN7, LAMP1, and LAMP2, all known to localize to secretory vesicles, in human osteoclasts. Altogether, our study reveals direct roles of galectin-8 in osteoclast activity, mostly attributable to the short isoform.
Collapse
Affiliation(s)
- Michèle Roy
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Léopold Mbous Nguimbus
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Papa Yaya Badiane
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Victor Goguen-Couture
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jade Degrandmaison
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jean-Luc Parent
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Marie A Brunet
- Department of Paediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Sophie Roux
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
8
|
Si Y, Cai J, Zhu J, Wang Y, Zhang F, Meng L, Huang J, Shi A. Linker remodels human Galectin-8 structure and regulates its hemagglutination and pro-apoptotic activity. Int J Biol Macromol 2023:125456. [PMID: 37331541 DOI: 10.1016/j.ijbiomac.2023.125456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Numerous articles have reported the involvement of linker in regulating bioactivity of tandem-repeat galectins. We hypothesize that linker interacts with N/C-CRDs to regulate the bioactivity of tandem-repeat galectins. To further investigate structural molecular mechanism of linker in regulating bioactivity of Gal-8, Gal-8LC was crystallized. Gal-8LC structure revealed formation of β-strand S1 by Asn174 to Pro176 from linker. S1-strand interacts with C-terminal of C-CRD via hydrogen bond interactions, mutually influencing their spatial structures. Our Gal-8 NL structure have demonstrated that linker region from Ser154 to Gln158 interacts with the N-terminal of Gal-8. Ser154 to Gln158 and Asn174 to Pro176 are likely involved in regulation of Gal-8's biological activity. Our preliminary experiment results revealed different hemagglutination and pro-apoptotic activities between full-length and truncated forms of Gal-8, indicating involvement of linker in regulating these activities. We generated several mutant and truncated forms of Gal-8 (Gal-8 M3, Gal-8 M5, Gal-8TL1, Gal-8TL2, Gal-8LC-M3 and Gal-8_177-317). Ser154 to Gln158 and Asn174 to Pro176 were found to be involved in regulating hemagglutination and pro-apoptotic activities of Gal-8. Ser154 to Gln158 and Asn174 to Pro176 are critical functional regulatory regions within linker. Our study holds significant importance in providing a profound understanding of how linker regulates biological activity of Gal-8.
Collapse
Affiliation(s)
- Yunlong Si
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jun Cai
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiahui Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuchen Wang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Fali Zhang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Li Meng
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Huang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Anqi Shi
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
9
|
Plasma N-Cleaved Galectin-9 Is a Surrogate Marker for Determining the Severity of COVID-19 and Monitoring the Therapeutic Effects of Tocilizumab. Int J Mol Sci 2023; 24:ijms24043591. [PMID: 36835000 PMCID: PMC9964849 DOI: 10.3390/ijms24043591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Galectin-9 (Gal-9) is known to contribute to antiviral responses in coronavirus disease 2019 (COVID-19). Increased circulating Gal-9 in COVID-19 is associated with COVID-19 severity. In a while, the linker-peptide of Gal-9 is susceptible to proteolysis that can cause the change or loss of Gal-9 activity. Here, we measured plasma levels of N-cleaved-Gal9, which is Gal9 carbohydrate-recognition domain at the N-terminus (NCRD) with attached truncated linker peptide that differs in length depending on the type of proteases, in COVID-19. We also investigated the time course of plasma N-cleaved-Gal9 levels in severe COVID-19 treated with tocilizumab (TCZ). As a result, we observed an increase in plasma N-cleaved-Gal9 levels in COVID-19 and its higher levels in COVID-19 with pneumonia compared to the mild cases (healthy: 326.1 pg/mL, mild: 698.0 pg/mL, and with pneumonia: 1570 pg/mL). N-cleaved-Gal9 levels were associated with lymphocyte counts, C-reactive protein (CRP), soluble interleukin-2 receptor (sIL-2R), D-dimer, and ferritin levels, and ratio of percutaneous oxygen saturation to fraction of inspiratory oxygen (S/F ratio) in COVID-19 with pneumonia and discriminated different severity groups with high accuracy (area under the curve (AUC): 0.9076). Both N-cleaved-Gal9 and sIL-2R levels were associated with plasma matrix metalloprotease (MMP)-9 levels in COVID-19 with pneumonia. Furthermore, a decrease in N-cleaved-Gal9 levels was associated with a decrease of sIL-2R levels during TCZ treatment. N-cleaved-Gal9 levels showed a moderate accuracy (AUC: 0.8438) for discriminating the period before TCZ from the recovery phase. These data illustrate that plasma N-cleaved-Gal9 is a potential surrogate marker for assessing COVID-19 severity and the therapeutic effects of TCZ.
Collapse
|
10
|
Blenda AV, Kamili NA, Wu SC, Abel WF, Ayona D, Gerner-Smidt C, Ho AD, Benian GM, Cummings RD, Arthur CM, Stowell SR. Galectin-9 recognizes and exhibits antimicrobial activity toward microbes expressing blood group-like antigens. J Biol Chem 2022; 298:101704. [PMID: 35148986 PMCID: PMC9019251 DOI: 10.1016/j.jbc.2022.101704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022] Open
Abstract
While adaptive immunity recognizes a nearly infinite range of antigenic determinants, immune tolerance renders adaptive immunity vulnerable to microbes decorated in self-like antigens. Recent studies suggest that sugar-binding proteins galectin-4 and galectin-8 bind microbes expressing blood group antigens. However, the binding profile and potential antimicrobial activity of other galectins, particularly galectin-9 (Gal-9), has remained incompletely defined. Here, we demonstrate that while Gal-9 possesses strong binding preference for ABO(H) blood group antigens, each domain exhibits distinct binding patterns, with the C-terminal domain (Gal-9C) exhibiting higher binding to blood group B than the N-terminal domain (Gal-9N). Despite this binding preference, Gal-9 readily killed blood group B–positive Escherichia coli, whereas Gal-9N displayed higher killing activity against this microbe than Gal-9C. Utilization of microarrays populated with blood group O antigens from a diverse array of microbes revealed that Gal-9 can bind various microbial glycans, whereas Gal-9N and Gal-9C displayed distinct and overlapping binding preferences. Flow cytometric examination of intact microbes corroborated the microbial glycan microarray findings, demonstrating that Gal-9, Gal-9N, and Gal-9C also possess the capacity to recognize distinct strains of Providencia alcalifaciens and Klebsiella pneumoniae that express mammalian blood group–like antigens while failing to bind related strains that do not express mammalian-like glycans. In each case of microbial binding, Gal-9, Gal-9N, and Gal-9C induced microbial death. In contrast, while Gal-9, Gal-9N, and Gal-9C engaged red blood cells, each failed to induce hemolysis. These data suggest that Gal-9 recognition of distinct microbial strains may provide antimicrobial activity against molecular mimicry.
Collapse
Affiliation(s)
- Anna V Blenda
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nourine A Kamili
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William F Abel
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Gerner-Smidt
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alex D Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Guy M Benian
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, Massachusetts, USA
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Iqbal AJ, Krautter F, Blacksell IA, Wright RD, Austin-Williams SN, Voisin MB, Hussain MT, Law HL, Niki T, Hirashima M, Bombardieri M, Pitzalis C, Tiwari A, Nash GB, Norling LV, Cooper D. Galectin-9 mediates neutrophil capture and adhesion in a CD44 and β2 integrin-dependent manner. FASEB J 2021; 36:e22065. [PMID: 34847625 DOI: 10.1096/fj.202100832r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023]
Abstract
Neutrophil trafficking is a key component of the inflammatory response. Here, we have investigated the role of the immunomodulatory lectin Galectin-9 (Gal-9) on neutrophil recruitment. Our data indicate that Gal-9 is upregulated in the inflamed vasculature of RA synovial biopsies and report the release of Gal-9 into the extracellular environment following endothelial cell activation. siRNA knockdown of endothelial Gal-9 resulted in reduced neutrophil adhesion and neutrophil recruitment was significantly reduced in Gal-9 knockout mice in a model of zymosan-induced peritonitis. We also provide evidence for Gal-9 binding sites on human neutrophils; Gal-9 binding induced neutrophil activation (increased expression of β2 integrins and reduced expression of CD62L). Intra-vital microscopy confirmed a pro-recruitment role for Gal-9, with increased numbers of transmigrated neutrophils following Gal-9 administration. We studied the role of both soluble and immobilized Gal-9 on human neutrophil recruitment. Soluble Gal-9 significantly strengthened the interaction between neutrophils and the endothelium and inhibited neutrophil crawling on ICAM-1. When immobilized, Gal-9 functioned as an adhesion molecule and captured neutrophils from the flow. Neutrophils adherent to Gal-9 exhibited a spread/activated phenotype that was inhibited by CD18 and CD44 neutralizing antibodies, suggesting a role for these molecules in the pro-adhesive effects of Gal-9. Our data indicate that Gal-9 is expressed and released by the activated endothelium and functions both in soluble form and when immobilized as a neutrophil adhesion molecule. This study paves the way for further investigation of the role of Gal-9 in leukocyte recruitment in different inflammatory settings.
Collapse
Affiliation(s)
- Asif J Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Franziska Krautter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Isobel A Blacksell
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Rachael D Wright
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Shani N Austin-Williams
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Mohammed T Hussain
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hannah L Law
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Toshiro Niki
- Research Division, GalPharma Company, Ltd., Kagawa, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Michele Bombardieri
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Alok Tiwari
- Department of Vascular Surgery, University Hospitals Birmingham, Birmingham, UK
| | - Gerard B Nash
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lucy V Norling
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Dianne Cooper
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Galectins in Endothelial Cell Biology and Angiogenesis: The Basics. Biomolecules 2021; 11:biom11091386. [PMID: 34572599 PMCID: PMC8464943 DOI: 10.3390/biom11091386] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis, the growth of new blood vessels out of existing vessels, is a complex and tightly regulated process. It is executed by the cells that cover the inner surface of the vasculature, i.e., the endothelial cells. During angiogenesis, these cells adopt different phenotypes, which allows them to proliferate and migrate, and to form tube-like structures that eventually result in the generation of a functional neovasculature. Multiple internal and external cues control these processes and the galectin protein family was found to be indispensable for proper execution of angiogenesis. Over the last three decades, several members of this glycan-binding protein family have been linked to endothelial cell functioning and to different steps of the angiogenesis cascade. This review provides a basic overview of our current knowledge regarding galectins in angiogenesis. It covers the main findings with regard to the endothelial expression of galectins and highlights their role in endothelial cell function and biology.
Collapse
|
13
|
Bai G, Furushima D, Niki T, Matsuba T, Maeda Y, Takahashi A, Hattori T, Ashino Y. High Levels of the Cleaved Form of Galectin-9 and Osteopontin in the Plasma Are Associated with Inflammatory Markers That Reflect the Severity of COVID-19 Pneumonia. Int J Mol Sci 2021; 22:ijms22094978. [PMID: 34067072 PMCID: PMC8125627 DOI: 10.3390/ijms22094978] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
Numbers of patients with coronavirus disease 2019 (COVID-19) have increased rapidly worldwide. Plasma levels of full-length galectin-9 (FL-Gal9) and osteopontin (FL-OPN) as well as their truncated forms (Tr-Gal9, Ud-OPN, respectively), are representative inflammatory biomarkers. Here, we measured FL-Gal9, FL-OPN, Tr-Gal9, and Ud-OPN in 94 plasma samples obtained from 23 COVID-19-infected patients with mild clinical symptoms (CV), 25 COVID-19 patients associated with pneumonia (CP), and 14 patients with bacterial infection (ID). The four proteins were significantly elevated in the CP group when compared with healthy individuals. ROC analysis between the CV and CP groups showed that C-reactive protein had the highest ability to differentiate, followed by Tr-Gal9 and ferritin. Spearman's correlation analysis showed that Tr-Gal9 and Ud-OPN but not FL-Gal9 and FL-OPN, had a significant association with laboratory markers for lung function, inflammation, coagulopathy, and kidney function in CP patients. CP patients treated with tocilizumab had reduced levels of FL-Gal9, Tr-Gal9, and Ud-OPN. It was suggested that OPN is cleaved by interleukin-6-dependent proteases. These findings suggest that the cleaved forms of OPN and galectin-9 can be used to monitor the severity of pathological inflammation and the therapeutic effects of tocilizumab in CP patients.
Collapse
Affiliation(s)
- Gaowa Bai
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
| | - Daisuke Furushima
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Kagawa 761-0793, Japan;
| | - Takashi Matsuba
- Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan;
- Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Yosuke Maeda
- Viral Section, Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Atsushi Takahashi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
- Correspondence: (T.H.); (Y.A.); Tel.: +81-866-22-9469 (T.H.); +81-22-308-7111 (Y.A.); Fax: +81-866-22-9469 (T.H.); +81-22-308-9921 (Y.A.)
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Miyagi 982-8502, Japan
- Correspondence: (T.H.); (Y.A.); Tel.: +81-866-22-9469 (T.H.); +81-22-308-7111 (Y.A.); Fax: +81-866-22-9469 (T.H.); +81-22-308-9921 (Y.A.)
| |
Collapse
|
14
|
Iwasaki-Hozumi H, Chagan-Yasutan H, Ashino Y, Hattori T. Blood Levels of Galectin-9, an Immuno-Regulating Molecule, Reflect the Severity for the Acute and Chronic Infectious Diseases. Biomolecules 2021; 11:biom11030430. [PMID: 33804076 PMCID: PMC7998537 DOI: 10.3390/biom11030430] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Galectin-9 (Gal-9) is a β-galactoside-binding lectin capable of promoting or suppressing the progression of infectious diseases. This protein is susceptible to cleavage of its linker-peptides by several proteases, and the resulting cleaved forms, N-terminal carbohydrate recognition domain (CRD) and C-terminal CRD, bind to various glycans. It has been suggested that full-length (FL)-Gal-9 and the truncated (Tr)-Gal-9s could exert different functions from one another via their different glycan-binding activities. We propose that FL-Gal-9 regulates the pathogenesis of infectious diseases, including human immunodeficiency virus (HIV) infection, HIV co-infected with opportunistic infection (HIV/OI), dengue, malaria, leptospirosis, and tuberculosis (TB). We also suggest that the blood levels of FL-Gal-9 reflect the severity of dengue, malaria, and HIV/OI, and those of Tr-Gal-9 markedly reflect the severity of HIV/OI. Recently, matrix metallopeptidase-9 (MMP-9) was suggested to be an indicator of respiratory failure from coronavirus disease 2019 (COVID-19) as well as useful for differentiating pulmonary from extrapulmonary TB. The protease cleavage of FL-Gal-9 may lead to uncontrolled hyper-immune activation, including a cytokine storm. In summary, Gal-9 has potential to reflect the disease severity for the acute and chronic infectious diseases.
Collapse
Affiliation(s)
- Hiroko Iwasaki-Hozumi
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
| | - Haorile Chagan-Yasutan
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
- Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Hohhot 010065, China
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Sendai 982-8502, Japan;
| | - Toshio Hattori
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
- Correspondence: ; Tel.: +81-866-22-9454
| |
Collapse
|
15
|
Wu SC, Paul A, Ho A, Patel KR, Allen JWL, Verkerke H, Arthur CM, Stowell SR. Generation and Use of Recombinant Galectins. Curr Protoc 2021; 1:e63. [PMID: 33656274 DOI: 10.1002/cpz1.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Galectins are soluble carbohydrate binding proteins that can bind β-galactose-containing glycoconjugates by means of a conserved carbohydrate recognition domain (CRD). In mammalian systems, galectins have been shown to mediate very important roles in innate and adaptive immunity as well as facilitating host-pathogen relationships. Many of these studies have relied on purified recombinant galectins to uncover key features of galectin biology. A major limitation to this approach is that certain recombinant galectins purified using standard protocols are easily susceptible to loss of glycan-binding activity. As a result, biochemical studies that employ recombinant galectins can be misleading if the overall activity of a galectin remains unknown in a given assay condition. This article examines fundamental considerations when purifying galectins by lactosyl-sepharose and nickel-NTA affinity chromatography using human galectin-4N and -7 as examples, respectively. As other approaches are also commonly applied to galectin purification, we also discuss alternative strategies to galectin purification, using human galectin-1 and -9 as examples. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Purification of galectins using lactosyl-sepharose affinity chromatography Basic Protocol 2: Purification of human galectin-7 using a nickel-NTA affinity chromatography column Alternate Protocol 1: Iodoacetamide alkylation of free sulfhydryls on galectin-1 Alternate Protocol 2: Purification of human galectin-9 using lactosyl-sepharose column chromatography.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anu Paul
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alex Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jerry William Lynn Allen
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hans Verkerke
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Munson MJ, O'Driscoll G, Silva AM, Lázaro-Ibáñez E, Gallud A, Wilson JT, Collén A, Esbjörner EK, Sabirsh A. A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Commun Biol 2021; 4:211. [PMID: 33594247 PMCID: PMC7887203 DOI: 10.1038/s42003-021-01728-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
RNA-based therapies have great potential to treat many undruggable human diseases. However, their efficacy, in particular for mRNA, remains hampered by poor cellular delivery and limited endosomal escape. Development and optimisation of delivery vectors, such as lipid nanoparticles (LNPs), are impeded by limited screening methods to probe the intracellular processing of LNPs in sufficient detail. We have developed a high-throughput imaging-based endosomal escape assay utilising a Galectin-9 reporter and fluorescently labelled mRNA to probe correlations between nanoparticle-mediated uptake, endosomal escape frequency, and mRNA translation. Furthermore, this assay has been integrated within a screening platform for optimisation of lipid nanoparticle formulations. We show that Galectin-9 recruitment is a robust, quantitative reporter of endosomal escape events induced by different mRNA delivery nanoparticles and small molecules. We identify nanoparticles with superior escape properties and demonstrate cell line variances in endosomal escape response, highlighting the need for fine-tuning of delivery formulations for specific applications.
Collapse
Affiliation(s)
- Michael J Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Gwen O'Driscoll
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andreia M Silva
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisa Lázaro-Ibáñez
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Audrey Gallud
- Division of Chemical and Biomolecular Engineering, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anna Collén
- Projects, Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Division of Chemical and Biomolecular Engineering, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
17
|
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol 2021; 361:104287. [PMID: 33494007 DOI: 10.1016/j.cellimm.2021.104287] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
Galectin-9 (Gal-9) is a β-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
18
|
Cagnoni AJ, Troncoso MF, Rabinovich GA, Mariño KV, Elola MT. Full-length galectin-8 and separate carbohydrate recognition domains: the whole is greater than the sum of its parts? Biochem Soc Trans 2020; 48:1255-1268. [PMID: 32597487 DOI: 10.1042/bst20200311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Galectin-8 (Gal-8) is a tandem-repeat type galectin with affinity for β-galactosides, bearing two carbohydrate recognition domains (CRD) connected by a linker peptide. The N- and C-terminal domains (Gal-8N and Gal-8C) share 35% homology, and their glycan ligand specificity is notably dissimilar: while Gal-8N shows strong affinity for α(2-3)-sialylated oligosaccharides, Gal-8C has higher affinity for non-sialylated oligosaccharides, including poly-N-acetyllactosamine and/ or A and B blood group structures. Particularly relevant for understanding the biological role of this lectin, full-length Gal-8 can bind cell surface glycoconjugates with broader affinity than the isolated Gal-8N and Gal-8C domains, a trait also described for other tandem-repeat galectins. Herein, we aim to discuss the potential use of separate CRDs in modelling tandem-repeat galectin-8 and its biological functions. For this purpose, we will cover several aspects of the structure-function relationship of this protein including crystallographic structures, glycan specificity, cell function and biological roles, with the ultimate goal of understanding the potential role of each CRD in predicting full-length Gal-8 involvement in relevant biological processes.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
| | - María F Troncoso
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
| | - María T Elola
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Shimada C, Xu R, Al-Alem L, Stasenko M, Spriggs DR, Rueda BR. Galectins and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061421. [PMID: 32486344 PMCID: PMC7352943 DOI: 10.3390/cancers12061421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is known for its aggressive pathological features, including the capacity to undergo epithelial to mesenchymal transition, promoting angiogenesis, metastatic potential, chemoresistance, inhibiting apoptosis, immunosuppression and promoting stem-like features. Galectins, a family of glycan-binding proteins defined by a conserved carbohydrate recognition domain, can modulate many of these processes, enabling them to contribute to the pathology of ovarian cancer. Our goal herein was to review specific galectin members identified in the context of ovarian cancer, with emphasis on their association with clinical and pathological features, implied functions, diagnostic or prognostic potential and strategies being developed to disrupt their negative actions.
Collapse
Affiliation(s)
- Chisa Shimada
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Xu
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Linah Al-Alem
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Stasenko
- Gynecology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York City, NY 10065, USA;
| | - David R. Spriggs
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Department of Hematology/Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
20
|
Robinson BS, Arthur CM, Evavold B, Roback E, Kamili NA, Stowell CS, Vallecillo-Zúniga ML, Van Ry PM, Dias-Baruffi M, Cummings RD, Stowell SR. The Sweet-Side of Leukocytes: Galectins as Master Regulators of Neutrophil Function. Front Immunol 2019; 10:1762. [PMID: 31440233 PMCID: PMC6693361 DOI: 10.3389/fimmu.2019.01762] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Among responders to microbial invasion, neutrophils represent one of the earliest and perhaps most important factors that contribute to initial host defense. Effective neutrophil immunity requires their rapid mobilization to the site of infection, which requires efficient extravasation, activation, chemotaxis, phagocytosis, and eventual killing of potential microbial pathogens. Following pathogen elimination, neutrophils must be eliminated to prevent additional host injury and subsequent exacerbation of the inflammatory response. Galectins, expressed in nearly every tissue and regulated by unique sensitivity to oxidative and proteolytic inactivation, appear to influence nearly every aspect of neutrophil function. In this review, we will examine the impact of galectins on neutrophils, with a particular focus on the unique biochemical traits that allow galectin family members to spatially and temporally regulate neutrophil function.
Collapse
Affiliation(s)
- Brian S Robinson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Birk Evavold
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ethan Roback
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Caleb S Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Pam M Van Ry
- Department of Biochemistry, Brigham Young University, Provo, UT, United States
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
21
|
Weinmann D, Kenn M, Schmidt S, Schmidt K, Walzer SM, Kubista B, Windhager R, Schreiner W, Toegel S, Gabius HJ. Galectin-8 induces functional disease markers in human osteoarthritis and cooperates with galectins-1 and -3. Cell Mol Life Sci 2018; 75:4187-4205. [PMID: 29934665 PMCID: PMC6182346 DOI: 10.1007/s00018-018-2856-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/24/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
The reading of glycan-encoded signals by tissue lectins is considered a major route of the flow of biological information in many (patho)physiological processes. The arising challenge for current research is to proceed from work on a distinct protein to family-wide testing of lectin function. Having previously identified homodimeric galectin-1 and chimera-type galectin-3 as molecular switches in osteoarthritis progression, we here provide proof-of-principle evidence for an intra-network cooperation of galectins with three types of modular architecture. We show that the presence of tandem-repeat-type galectin-8 significantly correlated with cartilage degeneration and that it is secreted by osteoarthritic chondrocytes. Glycan-inhibitable surface binding of galectin-8 to these cells increased gene transcription and the secretion of functional disease markers. The natural variant galectin-8 (F19Y) was less active than the prevalent form. Genome-wide array analysis revealed induction of a pro-degradative/inflammatory gene signature, largely under control of NF-κB signaling. This signature overlapped with respective gene-expression patterns elicited by galectins-1 and -3, but also presented supplementary features. Functional assays with mixtures of galectins that mimic the pathophysiological status unveiled cooperation between the three galectins. Our findings shape the novel concept to consider individual galectins as part of a so far not realized teamwork in osteoarthritis pathogenesis, with relevance beyond this disease.
Collapse
Affiliation(s)
- Daniela Weinmann
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Kenn
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Department for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Sonja M Walzer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Bernd Kubista
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Schreiner
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Ludwig Boltzmann Cluster for Arthritis and Rehabilitation, Vienna, Austria.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
22
|
Aanhane E, Schulkens IA, Heusschen R, Castricum K, Leffler H, Griffioen AW, Thijssen VL. Different angioregulatory activity of monovalent galectin-9 isoforms. Angiogenesis 2018; 21:545-555. [PMID: 29500586 DOI: 10.1007/s10456-018-9607-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
Galectin-9 consists of two peptide-linked carbohydrate recognition domains (CRDs), but alternative splicing and proteolytic processing can give rise to multiple galectin-9 isoforms. Some of these consist of a single CRD and can exert different functions in cell biology. Here, we explored the role of these galectin-9 isoforms in endothelial cell function and angiogenesis. For this, we compared the effects of the two separate CRDs (Gal-9N and Gal-9C) with the tandem repeat galectin-9M on endothelial cell proliferation, migration, sprouting and tube formation in vitro as well as on angiogenesis in vivo using the chicken chorioallantoic membrane (CAM) assay. Galectin-9 isoforms significantly affected proliferation in quiescent endothelial cells and migration in activated endothelial cells. Interestingly, both monovalent gal-9 CRDs displayed opposite effects compared to gal-9M on proliferation and migration. Sprouting was significantly inhibited by gal-9C, while all isoforms appeared to stimulate tube formation. Angiogenesis in vivo was hampered by all three isoforms with predominant effects on vessel length. In general, the isoforms induced only subtle concentration-dependent effects in vitro as well as in vivo. Collectively, the effects of different galectin-9 isoforms in endothelial cell biology depend on the cellular activation status. While opposing effects can be observed on a cellular level in vitro, all galectin-9 isoforms hamper angiogenesis in vivo. This warrants further investigation of the regulatory mechanisms that underlie the diverging roles of galectin-9 isoforms in endothelial cell biology since this could provide therapeutic opportunities.
Collapse
Affiliation(s)
- Ed Aanhane
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Iris A Schulkens
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.,Angiogenesis Laboratory, Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Roy Heusschen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.,Laboratory of Hematology, GIGA-Research, University of Liège, Liege, Belgium
| | - Kitty Castricum
- Angiogenesis Laboratory, Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Hakon Leffler
- Section Microbiology, Immunology, Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands. .,Angiogenesis Laboratory, Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc Natl Acad Sci U S A 2018; 115:E2509-E2518. [PMID: 29382751 PMCID: PMC5856548 DOI: 10.1073/pnas.1720055115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells are decorated with charged and uncharged carbohydrate ligands known as glycans, which are responsible for several key functions, including their interactions with proteins known as lectins. Here, a platform consisting of synthetic nanoscale vesicles, known as glycodendrimersomes, which can be programmed with cell surface-like structural and topological complexity, is employed to dissect design aspects of glycan presentation, with specificity for lectin-mediated bridging. Aggregation assays reveal the extent of cross-linking of these biomimetic nanoscale vesicles—presenting both anionic and neutral ligands in a bioactive manner—with disease-related human and other galectins, thus offering the possibility of unraveling the nature of these fundamental interactions. Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity.
Collapse
|
24
|
Schulz H, Kuhn C, Hofmann S, Mayr D, Mahner S, Jeschke U, Schmoeckel E. Overall Survival of Ovarian Cancer Patients Is Determined by Expression of Galectins-8 and -9. Int J Mol Sci 2018; 19:ijms19010323. [PMID: 29361803 PMCID: PMC5796266 DOI: 10.3390/ijms19010323] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/24/2022] Open
Abstract
The evaluation of new prognostic factors that can be targeted in ovarian cancer diagnosis and therapy is of the utmost importance. Galectins are a family of carbohydrate binding proteins with various implications in cancer biology. In this study, the presence of galectin (Gal)-8 and -9 was investigated in 156 ovarian cancer samples using immunohistochemistry (IHC). Staining was evaluated using semi-quantitative immunoreactivity (IR) scores and correlated to clinical and pathological data. Different types of galectin expression were compared with respect to disease-free survival (DFS) and overall survival (OS). Gal-8 served as a new positive prognostic factor for the OS and DFS of ovarian cancer patients. Gal-9 expression determined the DFS and OS of ovarian cancer patients in two opposing ways—moderate Gal-9 expression was correlated with a reduced outcome as compared to Gal-9 negative cases, while patients with high Gal-9 expression showed the best outcome.
Collapse
Affiliation(s)
- Heiko Schulz
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany.
| | - Christina Kuhn
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany.
| | - Simone Hofmann
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany.
| | - Doris Mayr
- LMU Munich, Department of Pathology, Ludwig Maximilians University of Munich, Thalkirchner Str. 142, 80337 Munich, Germany.
| | - Sven Mahner
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany.
| | - Udo Jeschke
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany.
| | - Elisa Schmoeckel
- LMU Munich, Department of Pathology, Ludwig Maximilians University of Munich, Thalkirchner Str. 142, 80337 Munich, Germany.
| |
Collapse
|
25
|
Brubel R, Bokor A, Pohl A, Schilli GK, Szereday L, Bacher-Szamuel R, Rigo J, Polgar B. Serum galectin-9 as a noninvasive biomarker for the detection of endometriosis and pelvic pain or infertility-related gynecologic disorders. Fertil Steril 2017; 108:1016-1025.e2. [PMID: 29202955 DOI: 10.1016/j.fertnstert.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the usefulness of soluble galectin-9 (Gal-9) in the noninvasive laboratory diagnosis of endometriosis and various gynecologic disorders. DESIGN Prospective case-control study. SETTING University medical centers. PATIENT(S) A total of 135 women of reproductive age were involved in the study, 77 endometriosis patients, 28 gynecologic controls, and 30 healthy women. INTERVENTION(S) Diagnostic laparoscopy and collection of tissue biopsies, peritoneal cells, and native peripheral blood from different case groups of gynecology patients and healthy women. MAIN OUTCOME MEASURE(S) The expression of mRNA and serum concentration of Gal-9. RESULT(S) Semiquantitative reverse transcription-polymerase chain reaction analysis and serum soluble Gal-9 ELISA were performed on three different cohorts of patients: those with endometriosis, those with benign gynecologic disorders, and healthy controls. Differences in the Gal-9 concentrations between the investigated groups and the stability of Gal-9 in the serum and diagnostic characteristics of Gal-9 ELISA were determined by statistical evaluation and receiver operating characteristic (ROC) curve analysis. Significantly elevated Gal-9 levels were found in both minimal-mild (I-II) and moderate-severe (III-IV) stages of endometriosis in comparison with healthy controls. At a cutoff of 132 pg/mL, ROC analysis revealed an excellent diagnostic value of Gal-9 ELISA in endometriosis (area under the curve = 0.973) with a sensitivity of 94% and specificity of 93.75%, indicating better diagnostic potential than that of other endometriosis biomarkers. Furthermore, various pelvic pain or infertility-associated benign gynecologic conditions were also associated with increased serum Gal-9 levels. CONCLUSION(S) Our results suggest that Gal-9 could be a promising noninvasive biomarker of endometriosis and a predictor of various infertility or pelvic pain-related gynecologic disorders.
Collapse
Affiliation(s)
- Reka Brubel
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Attila Bokor
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Akos Pohl
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Gabriella Krisztina Schilli
- Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Centre, Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Centre, Pecs, Hungary
| | - Reka Bacher-Szamuel
- Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Centre, Pecs, Hungary
| | - Janos Rigo
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Centre, Pecs, Hungary.
| |
Collapse
|
26
|
Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR. Key regulators of galectin-glycan interactions. Proteomics 2017; 16:3111-3125. [PMID: 27582340 DOI: 10.1002/pmic.201600116] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
Protein-ligand interactions serve as fundamental regulators of numerous biological processes. Among protein-ligand pairs, glycan binding proteins (GBPs) and the glycans they recognize represent unique and highly complex interactions implicated in a broad range of regulatory activities. With few exceptions, cell surface receptors and secreted proteins are heavily glycosylated. As these glycans often represent highly regulatable post-translational modifications, alterations in glycosylation can fundamentally impact GBP recognition. Among GBPs, galectins in particular appear to engage a diverse set of glycan determinants to impact a broad range of biological processes. In this review, we will explore factors that impact galectin activity, including the effect of glycan modification on galectin-glycan interactions.
Collapse
Affiliation(s)
- Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Gerner-Smidt
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eden Tafesse
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Blenda
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biology, Erskine College, Due West, SC, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
27
|
Abstract
Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.
Collapse
Affiliation(s)
- Sebastian John
- Department of Neurobiology and Genetics, Division of Disease Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695014, India
| | | |
Collapse
|
28
|
Abstract
The past two decades have witnessed major advancements in the clinical management of inflammatory arthritis, with new treatment strategies in some cases providing a marked improvement in patient outcomes. However, it is widely accepted that current strategies do not provide the 'total therapeutic solution', in view of the proportion of patients who do not respond to therapy, the important incidence of adverse effects and the development of an immune response against antibodies or fusion proteins used therapeutically. Moreover, although some therapeutic approaches can effectively bring about an end to inflammation, mechanisms to promote the recovery and/or repair of damage are required. Harnessing the concepts and mechanisms of the resolution of inflammation is a new approach to the treatment of inflammatory pathologies; this approach could help address the unmet need for new therapeutic approaches that not only control but also revert the course of inflammatory rheumatic diseases.
Collapse
|
29
|
Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker. Int J Mol Sci 2016; 17:ijms17122088. [PMID: 27973456 PMCID: PMC5187888 DOI: 10.3390/ijms17122088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Galectin-8 (Gal-8) plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD) connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay.
Collapse
|
30
|
Metz C, Döger R, Riquelme E, Cortés P, Holmes C, Shaughnessy R, Oyanadel C, Grabowski C, González A, Soza A. Galectin-8 promotes migration and proliferation and prevents apoptosis in U87 glioblastoma cells. Biol Res 2016; 49:33. [PMID: 27459991 PMCID: PMC4962418 DOI: 10.1186/s40659-016-0091-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/10/2016] [Indexed: 12/19/2022] Open
Abstract
Background Glioblastoma is one of the most aggressive cancers of the brain. Malignant traits of glioblastoma cells include elevated migration, proliferation and survival capabilities. Galectins are unconventionally secreted glycan-binding proteins that modulate processes of cell adhesion, migration, proliferation and apoptosis by interacting with beta-galactosides of cell surface glycoproteins and the extracellular matrix. Galectin-8 is one of the galectins highly expressed in glioblastoma cells. It has a unique selectivity for terminally sialylated glycans recently found enhanced in these highly malignant cells. A previous study in glioblastoma cell lines reported that Gal-8 coating a plastic surface stimulates two-dimensional motility. Because in other cells Gal-8 arrests proliferation and induces apoptosis, here we extend its study by analyzing all of these processes in a U87 glioblastoma cell model. Methods We used immunoblot and RT-PCR for Gal-8 expression analysis, recombinant Gal-8 produced in a bacteria system for Gal-8 treatment of the cells, and shRNA in lentivirus transduction for Gal-8 silencing. Cell migration as assessed in transwell filters. Cell proliferation, cell cycle and apoptosis were analyzed by FACS. Results Gal-8 as a soluble stimulus triggered chemotactic migration of U87 cells across the polycarbonate filter of transwell chambers, almost as intensively as fetal bovine serum. Unexpectedly, Gal-8 also enhanced U87 cell growth. Co-incubation of Gal-8 with lactose, which blocks galectin–glycan interactions, abrogated both effects. Immunoblot showed Gal-8 in conditioned media reflecting its secretion. U87 cells transduced with silencing shRNA in a lentiviral vector expressed and secreted 30–40 % of their normal Gal-8 levels. These cells maintained their migratory capabilities, but decreased their proliferation rate and underwent higher levels of apoptosis, as revealed by flow cytometry analysis of cell cycle, CFSE and activated caspase-3 staining. Proliferation seemed to be more sensitive than migration to Gal-8 expression levels. Conclusions Gal-8, either secreted or exogenously enriched in the media, and acting through extracellular glycan interactions, constitutes a strong stimulus of directional migration in glioblastoma U87 cells and for the first time emerges as a factor that promotes proliferation and prevents apoptosis in cancerous cells. These properties could potentially contribute to the exaggerated malignancy of glioblastoma cells.
Collapse
Affiliation(s)
- Claudia Metz
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Remziye Döger
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Elizabeth Riquelme
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Priscilla Cortés
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Christopher Holmes
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Ronan Shaughnessy
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Claudia Oyanadel
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Fundación Ciencia y Vida, Av. Zañartu 1482, 77803444, Santiago, Chile
| | - Catalina Grabowski
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Alfonso González
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Andrea Soza
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile. .,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.
| |
Collapse
|
31
|
Unraveling functional significance of natural variations of a human galectin by glycodendrimersomes with programmable glycan surface. Proc Natl Acad Sci U S A 2015; 112:5585-90. [PMID: 25902539 DOI: 10.1073/pnas.1506220112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surface-presented glycans (complex carbohydrates) are docking sites for adhesion/growth-regulatory galectins within cell-cell/matrix interactions. Alteration of the linker length in human galectin-8 and single-site mutation (F19Y) are used herein to illustrate the potential of glycodendrimersomes with programmable glycan displays as a model system to reveal the functional impact of natural sequence variations in trans recognition. Extension of the linker length slightly reduces lectin capacity as agglutinin and slows down aggregate formation at low ligand surface density. The mutant protein is considerably less active as agglutinin and less sensitive to low-level ligand presentation. The present results suggest that mimicking glycan complexity and microdomain occurrence on the glycodendrimersome surface can provide key insights into mechanisms to accomplish natural selectivity and specificity of lectins in structural and topological terms.
Collapse
|
32
|
Abstract
Galectins are an evolutionarily ancient family of glycan-binding proteins (GBPs) and are found in all animals. Although they were discovered over 30 years ago, ideas about their biological functions continue to evolve. Current evidence indicates that galectins, which are the only known GBPs that occur free in the cytoplasm and extracellularly, are involved in a variety of intracellular and extracellular pathways contributing to homeostasis, cellular turnover, cell adhesion, and immunity. Here we review evolving insights into galectin biology from a historical perspective and explore current evidence regarding biological roles of galectins.
Collapse
|
33
|
Griffioen AW, Thijssen VL. Galectins in tumor angiogenesis. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:90. [PMID: 25405165 DOI: 10.3978/j.issn.2305-5839.2014.09.01] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/09/2014] [Indexed: 11/14/2022]
Abstract
The expansion of solid tumors depends on the continuous ingrowth of new blood vessels out of pre-existing capillaries. Consequently, tumor neovascularization or tumor angiogenesis is considered a hallmark of cancer and an attractive target for cancer therapy. Tumor angiogenesis is mainly carried out by endothelial cells (EC), i.e., the cells lining the luminal vessel wall. These cells have to take on different functional activities in order to successfully make new tumor blood vessels. In the last decade it has become apparent that galectins are important regulators of tumor angiogenesis. In the present review we summarize the current knowledge regarding the role galectins in tumor angiogenesis focussing on the endothelial galectins, i.e., gal-1/-3/-8/-9.
Collapse
Affiliation(s)
- Arjan W Griffioen
- 1 Department of Medical Oncology, 2 Department of Radiation Oncology, Angiogenesis Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | - Victor L Thijssen
- 1 Department of Medical Oncology, 2 Department of Radiation Oncology, Angiogenesis Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Troncoso MF, Ferragut F, Bacigalupo ML, Cárdenas Delgado VM, Nugnes LG, Gentilini L, Laderach D, Wolfenstein-Todel C, Compagno D, Rabinovich GA, Elola MT. Galectin-8: a matricellular lectin with key roles in angiogenesis. Glycobiology 2014; 24:907-914. [PMID: 24939370 DOI: 10.1093/glycob/cwu054] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Galectin-8 (gal-8) is a "tandem-repeat"-type galectin, containing two carbohydrate recognition domains connected by a linker peptide. gal-8 is expressed both in the cytoplasm and nucleus in vascular endothelial cells (ECs) from normal and tumor-associated blood vessels, and in lymphatic endothelial cells. Herein, we describe a novel role for gal-8 in the regulation of vascular and lymphatic angiogenesis and provide evidence of its critical implications in tumor biology. Functional assays revealed central roles for gal-8 in the control of capillary-tube formation, EC migration and in vivo angiogenesis. So far, two endothelial ligands have been described for gal-8, namely podoplanin in lymphatic vessels and CD166 (ALCAM, activated leukocyte cell adhesion molecule) in vascular ECs. Other related gal-8 functions are also summarized here, including cell adhesion and migration, which collectively demonstrate the multi-functionality of this complex lectin. Thus, gal-8 is an important component of the angiogenesis network, and an essential molecule in the extracellular matrix by providing molecular anchoring to this surrounding matrix. The implications of gal-8 in tumor angiogenesis remain to be further explored, but it is exciting to speculate that modulating gal-8-glycan interactions could be used to block lymphatic-vascular connections vital for metastasis.
Collapse
Affiliation(s)
- María F Troncoso
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Fátima Ferragut
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - María L Bacigalupo
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Víctor M Cárdenas Delgado
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Lorena G Nugnes
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Lucas Gentilini
- Laboratorio de Glicómica Funcional, IQUIBICEN-CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Laderach
- Laboratorio de Glicómica Funcional, IQUIBICEN-CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlota Wolfenstein-Todel
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Daniel Compagno
- Laboratorio de Glicómica Funcional, IQUIBICEN-CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicómica Funcional, IQUIBICEN-CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
| | - María T Elola
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| |
Collapse
|
35
|
Pineda MA, Corvo L, Soto M, Fresno M, Bonay P. Interactions of human galectins with Trypanosoma cruzi: Binding profile correlate with genetic clustering of lineages. Glycobiology 2014; 25:197-210. [DOI: 10.1093/glycob/cwu103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
36
|
Thijssen VL, Griffioen AW. Galectin-1 and -9 in angiogenesis: A sweet couple. Glycobiology 2014; 24:915-20. [DOI: 10.1093/glycob/cwu048] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
37
|
Zhu LP, Wang PJ, Liu J, Li LJ, Li ZG, Jiang HY, Feng BS. Galectin-9 and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2014; 22:515-520. [DOI: 10.11569/wcjd.v22.i4.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Galectin-9 (Gal-9), a beta-galactoside binding lectin, is a tandem-repeat-type member of the galectin family which can specifically recognize and bind to galactosidase associated with diverse biological processes. Gal-9 is widely expressed in various tissues, plays a role in cell growth, polarization, adhesion, aggregation, and apoptosis, and has important functions in inflammatory diseases, autoimmune diseases, tumors, and infections. Our recent studies showed that Gal-9 is strongly associated with the genesis and development of inflammatory bowel disease. Here we will review the progress in understanding the role of Gal-9 in the pathogenesis of inflammatory bowel disease.
Collapse
|
38
|
Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:284-92. [DOI: 10.1016/j.bbadis.2013.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022]
|
39
|
Blanchard H, Bum-Erdene K, Hugo MW. Inhibitors of Galectins and Implications for Structure-Based Design of Galectin-Specific Therapeutics. Aust J Chem 2014. [DOI: 10.1071/ch14362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Galectins are a family of galactoside-specific lectins that are involved in a myriad of metabolic and disease processes. Due to roles in cancer and inflammatory and heart diseases, galectins are attractive targets for drug development. Over the last two decades, various strategies have been used to inhibit galectins, including polysaccharide-based therapeutics, multivalent display of saccharides, peptides, peptidomimetics, and saccharide-modifications. Primarily due to galectin carbohydrate binding sites having high sequence identities, the design and development of selective inhibitors targeting particular galectins, thereby addressing specific disease states, is challenging. Furthermore, the use of different inhibition assays by research groups has hindered systematic assessment of the relative selectivity and affinity of inhibitors. This review summarises the status of current inhibitors, strategies, and novel scaffolds that exploit subtle differences in galectin structures that, in conjunction with increasing available data on multiple galectins, is enabling the feasible design of effective and specific inhibitors of galectins.
Collapse
|
40
|
Heusschen R, Griffioen AW, Thijssen VL. Galectin-9 in tumor biology: a jack of multiple trades. Biochim Biophys Acta Rev Cancer 2013; 1836:177-85. [PMID: 23648450 DOI: 10.1016/j.bbcan.2013.04.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Abstract
Galectin family members have been shown to exert multiple roles in the context of tumor biology. Several recent findings support a similar multi-faceted role for galectin-9. Galectin-9 expression is frequently altered in cancer as compared to normal tissues. In addition, an increasing amount of evidence suggests that galectin-9 is involved in several aspects of tumor progression, including tumor cell adhesion and survival, immune escape and angiogenesis. Also, galectin-9 shows potential as a prognostic marker and a therapeutic target for several malignancies. In this review we summarize both the established and the emerging roles of galectin-9 in tumor biology and discuss the potential application of galectin-9 in anti-cancer therapy.
Collapse
Affiliation(s)
- Roy Heusschen
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Heusschen R, Freitag N, Tirado-González I, Barrientos G, Moschansky P, Muñoz-Fernández R, Leno-Durán E, Klapp BF, Thijssen VLJL, Blois SM. Profiling Lgals9 splice variant expression at the fetal-maternal interface: implications in normal and pathological human pregnancy. Biol Reprod 2013; 88:22. [PMID: 23242525 DOI: 10.1095/biolreprod.112.105460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Disruption of fetal-maternal tolerance mechanisms can contribute to pregnancy complications, including spontaneous abortion. Galectin-9 (LGALS9), a tandem repeat lectin associated with immune modulation, is expressed in the endometrium during the mid and late secretory phases and in decidua during human early pregnancy. However, the role of LGALS9 during pregnancy remains poorly understood. We used real-time PCR and immunohistochemical staining to analyze the expression of Lgals9/LGALS9 during mouse gestation as well as in human tissues obtained from normal pregnancy and spontaneous abortions. In mice, three Lgals9 splice variants were detected, the expression of which was differentially regulated during gestation. Furthermore, decidual Lgals9 expression was deregulated in a mouse model of spontaneous abortion, whereas placental levels did not change. We further found that the LGALS9 D5 isoform suppresses interferon gamma production by decidual natural killer cells. In human patients, six Lgals9 splice variants were detected, and a decrease in Lgals9 D5/10 was associated with spontaneous abortion. Altogether, these results show a differential regulation of Lgals9 isoform expression during normal and pathological pregnancies and designate Lgals9 as a potential marker for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Roy Heusschen
- Departments of Radiation Oncology and Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yoshida H, Yamashita S, Teraoka M, Itoh A, Nakakita SI, Nishi N, Kamitori S. X-ray structure of a protease-resistant mutant form of human galectin-8 with two carbohydrate recognition domains. FEBS J 2012; 279:3937-51. [PMID: 22913484 DOI: 10.1111/j.1742-4658.2012.08753.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 11/28/2022]
Abstract
Galectin-8 is a tandem-repeat-type β-galactoside-specific animal lectin possessing N-terminal and C-terminal carbohydrate recognition domains (N-CRD and C-CRD, respectively), with a difference in carbohydrate-binding specificity, involved in cell-matrix interaction, malignant transformation, and cell adhesion. N-CRD shows strong affinity for α2-3-sialylated oligosaccharides, a feature unique to galectin-8. C-CRD usually shows lower affinity for oligosaccharides but higher affinity for N-glycan-type branched oligosaccharides than does N-CRD. There have been many structural studies on galectins with a single carbohydrate recognition domain (CRD), but no X-ray structure of a galectin containing both CRDs has been reported. Here, the X-ray structure of a protease-resistant mutant form of human galectin-8 possessing both CRDs and the novel pseudodimer structure of galectin-8 N-CRD in complexes with α2-3-sialylated oligosaccharide ligands were determined. The results revealed a difference in specificity between N-CRD and C-CRD, and provided new insights into the association of CRDs and/or molecules of galectin-8.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P. The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 2012; 29:609-18. [PMID: 22476631 DOI: 10.1007/s10719-012-9373-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/11/2012] [Indexed: 11/30/2022]
Abstract
The bisecting GlcNAc is transferred to the core mannose residue of complex or hybrid N-glycans on glycoproteins by the β1,4-N-acetylglucosaminyltransferase III (GlcNAcT-III) or MGAT3. The addition of the bisecting GlcNAc confers unique lectin recognition properties to N-glycans. Thus, LEC10 gain-of-function Chinese hamster ovary (CHO) cells selected for the acquisition of ricin resistance, carry N-glycans with a bisecting GlcNAc, which enhances the binding of the erythroagglutinin E-PHA, but reduces the binding of ricin and galectins-1, -3 and -8. The altered interaction with galactose-binding lectins suggests that the bisecting GlcNAc affects N-glycan conformation. LEC10 mutants expressing polyoma middle T antigen (PyMT) exhibit reduced growth factor signaling. Furthermore, PyMT-induced mammary tumors lacking MGAT3, progress more rapidly than tumors with the bisecting GlcNAc on N-glycans of cell surface glycoproteins. In recent years, evidence for a new paradigm of cell growth control has emerged involving regulation of cell surface residency of growth factor and cytokine receptors via interactions and cross-linking of their branched N-glycans with a lattice of galectin(s). Specific cross-linking of glycoprotein receptors in the lattice regulates their endocytosis, leading to effects on growth factor-induced signaling. This review will describe evidence that the bisecting GlcNAc of N-glycans regulates cellular signaling and tumor progression, apparently through modulating N-glycan/galectin interactions.
Collapse
Affiliation(s)
- Hazuki E Miwa
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | | |
Collapse
|
44
|
Stancic M, van Horssen J, Thijssen VL, Gabius HJ, van der Valk P, Hoekstra D, Baron W. Increased expression of distinct galectins in multiple sclerosis lesions. Neuropathol Appl Neurobiol 2011; 37:654-71. [DOI: 10.1111/j.1365-2990.2011.01184.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Tsai CM, Guan CH, Hsieh HW, Hsu TL, Tu Z, Wu KJ, Lin CH, Lin KI. Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. THE JOURNAL OF IMMUNOLOGY 2011; 187:1643-52. [PMID: 21753146 DOI: 10.4049/jimmunol.1100297] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Galectin (Gal) family members are a type of soluble lectin, and they play important roles in immunomodulation. Their redundant roles have been proposed. We previously found that Gal-1 promotes the formation of Ab-secreting plasma cells, but B cells from Gal-1-deficient and control animals produce comparable amounts of Abs. In the current study, we used synthetic sulfomodified N-acetyllactosamine (LacNAc) analogs and short hairpin RNAs for Gal-8 to demonstrate a redundancy in the effects of Gal-1 and Gal-8 on plasma cell formation. Gal-1 and Gal-8 were both expressed during plasma cell differentiation, and both Gals promoted the formation of plasma cells. Gal-1 and Gal-8 bound better to mature B cells than to plasma cells, and the expression of glycosyltransferase enzymes changed during differentiation, with a decrease in mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetyl-glucosaminyltransferase and N-acetylglucosaminyltransferase-1 mRNAs in plasma cells. Synthetic sulfomodified Galβ1-3GlcNAc disaccharides (type 1 LacNAcs) selectively prevented Gal-8 binding, leading to a blockade of Ab production in Gal-1-deficient B cells. Furthermore, synthetic type 1 LacNAcs that were able to block the binding of both Gals greatly reduced the effect of exogenously added recombinant Gal-1 and Gal-8 on promoting Ab production. These results reveal a novel role for Gal-8 in collaboration with Gal-1 in plasma cell formation, and suggest the possibility of using distinct LacNAc ligands to modulate the function of Gals.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Institute and Department of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 2008; 113:1957-66. [PMID: 19005181 DOI: 10.1182/blood-2008-02-142596] [Citation(s) in RCA: 342] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is the third most frequent virus-associated human malignancy. How this tumor escapes immune recognition despite the expression of several viral antigens has remained poorly understood. Our previous in vitro studies have shown that NPC cells release exosomes containing high amounts of galectin-9, a ligand of the membrane receptor Tim-3, which is able to induce apoptosis in mature Th1 lymphocytes. Here, we sought to determine whether galectin-9-carrying exosomes were produced in NPC patients and whether such exosomes might play a role in the immune evasion of NPC cells. We report that galectin-9-containing exosomes are selectively detected in plasma samples from NPC patients and mice xenografted with NPC tumors. The incorporation into exosomes protects galectin-9 against proteolytic cleavage but retains its Tim-3-binding capacity. Importantly, NPC exosomes induce massive apoptosis in EBV-specific CD4(+) cells used as a model of target T cells. This effect is inhibited by both anti-Tim-3 and antigalectin-9 blocking antibodies. These results indicate that blocking galectin-9/Tim-3 interaction in vivo might alleviate the Th1-suppressive effect of NPC exosomes and sustain antitumoral T-cell responses and thereby improve clinical efficacy of immunotherapeutic approaches against NPC.
Collapse
|
47
|
Shimizu Y, Kabir-Salmani M, Azadbakht M, Sugihara K, Sakai K, Iwashita M. Expression and localization of galectin-9 in the human uterodome. Endocr J 2008; 55:879-87. [PMID: 18506087 DOI: 10.1507/endocrj.k08e-111] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Galectin-9 has been recently considered as a novel marker for the mid- and late-secretory phases of human endometrium and decidua. The aim of this study was to investigate the subcellular distribution of galectin-9 in the endometrial epithelium, especially during the frame of the implantation window. Endometrial biopsies in the proliferative, early, and mid-secretory phases from women with regular menstrual cycle were studied using several approaches, including scanning electron microscopy, immunostaining for light and transmission electron microscopies (TEM), immunoblotting, and statistical analysis of the area-related numerical densities of galectin-9-bound nanogold. Images of immunostaining for light microscopy demonstrated a strong expression of galectin-9 at the luminal and glandular endometrial epithelium in the mid-secretory phase compared to the proliferative and early secretory phases. Data of immunoblotting revealed a molecular weight of 36 kDa band with high intensity in the mid-secretory samples. Photomicrographs of immunogold staining for TEM illustrated the localization of galectin-9 in the uterodomes. Statistical and morphometric analysis showed a significantly higher area-related numerical density of galectin-9-bound nano-golds in the uterodomes compared to that of the uterodome-free areas of the luminal epithelium (p<0.001). This is the first demonstration of the molecular localization of galectin-9 in the bulbous ultrastructure of the human endometrial epithelium, called uterodomes. High expression of galectin-9 at uterodomes during the frame of implantation window suggests that galectin-9 can be considered as a marker of endometrial receptivity and should play an important role during the initial events of human embryo implantation.
Collapse
Affiliation(s)
- Yuji Shimizu
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Stowell SR, Arthur CM, Slanina KA, Horton JR, Smith DF, Cummings RD. Dimeric Galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem 2008; 283:20547-59. [PMID: 18456665 DOI: 10.1074/jbc.m802495200] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human galectins have distinct and overlapping biological roles in immunological homeostasis. However, the underlying differences among galectins in glycan binding specificity regulating these functions are unclear. Galectin-8 (Gal-8), a tandem repeat galectin, has two distinct carbohydrate recognition domains (CRDs) that may cross-link cell surface counter receptors. Here we report that each Gal-8 CRD has differential glycan binding specificity and that cell signaling activity resides in the C-terminal CRD. Full-length Gal-8 and recombinant individual domains (Gal-8N and Gal-8C) bound to human HL60 cells, but only full-length Gal-8 signaled phosphatidylserine (PS) exposure in cells, which occurred independently of apoptosis. Although desialylation of cells did not alter Gal-8 binding, it enhanced cellular sensitivity to Gal-8-induced PS exposure. By contrast, HL60 cell desialylation increased binding by Gal-8C but reduced Gal-8N binding. Enzymatic reduction in surface poly-N-acetyllactosamine (polyLacNAc) glycans in HL60 cells reduced cell surface binding by Gal-8C but did not alter Gal-8N binding. Cross-linking and light scattering studies showed that Gal-8 is dimeric, and studies on individual subunits indicate that dimerization occurs through the Gal-8N domain. Mutations of individual domains within full-length Gal-8 showed that signaling activity toward HL60 cells resides in the C-terminal domain. In glycan microarray analyses, each CRD of Gal-8 showed different binding, with Gal-8N recognizing sulfated and sialylated glycans and Gal-8C recognizing blood group antigens and polyLacNAc glycans. These results demonstrate that Gal-8 dimerization promotes functional bivalency of each CRD, which allows Gal-8 to signal PS exposure in leukocytes entirely through C-terminal domain recognition of polyLacNAc glycans.
Collapse
Affiliation(s)
- Sean R Stowell
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
49
|
Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H. Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 2007; 17:663-76. [PMID: 17339281 DOI: 10.1093/glycob/cwm026] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Galectin-8 has two different carbohydrate recognition domains (CRDs), the N-terminal Gal-8N and the C-terminal Gal-8C linked by a peptide, and has various effects on cell adhesion and signaling. To understand the mechanism for these effects further, we compared the binding activities of galectin-8 in solution with its binding and activation of cells. We used glycan array analysis to broaden the specificity profile of the two galectin-8 CRDs, as well as intact galectin-8s (short and long linker), confirming the unique preference for sulfated and sialylated glycans of Gal-8N. Using a fluorescence anisotropy assay, we examined the solution affinities for a subset of these glycans, the highest being 50 nM for NeuAcalpha2,3Lac by Gal-8N. Thus, carbohydrate-protein interactions can be of high affinity without requiring multivalency. More importantly, using fluorescence polarization, we also gained information on how the affinity is built by multiple weak interactions between different fragments of the glycan and its carrier molecule and the galectin CRD subsites (A-E). In intact galectin-8 proteins, the two domains act independently of each other in solution, whereas at a surface they act together. Ligands with moderate or weak affinity for the isolated CRDs on the array are bound strongly by intact galectin-8s. Also galectin-8 binding and signaling at cell surfaces can be explained by combined binding of the two CRDs to low or medium affinity ligands, and their highest affinity ligands, such as sialylated galactosides, are not required.
Collapse
Affiliation(s)
- Susanne Carlsson
- Section of Microbiology Immunology and Glycobiology (MIG), Sölvegatan 23, 223 62, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|