1
|
Lee YR, Kaya I, Wik E, Baijnath S, Lodén H, Nilsson A, Zhang X, Sehlin D, Syvänen S, Svenningsson P, Andrén PE. Comprehensive Approach for Sequential MALDI-MSI Analysis of Lipids, N-Glycans, and Peptides in Fresh-Frozen Rodent Brain Tissues. Anal Chem 2025; 97:1338-1346. [PMID: 39781894 PMCID: PMC11755403 DOI: 10.1021/acs.analchem.4c05665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Multiomics analysis of single tissue sections using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provides comprehensive molecular insights. However, optimizing tissue sample preparation for MALDI-MSI to achieve high sensitivity and reproducibility for various biomolecules, such as lipids, N-glycans, and tryptic peptides, presents a significant challenge. This study introduces a robust and reproducible protocol for the comprehensive sequential analysis of the latter molecules using MALDI-MSI in fresh-frozen rodent brain tissue samples. The optimization process involved testing multiple organic solvents, which identified serial washing in ice-cold methanol, followed by chloroform as optimal for N-glycan analysis. Integrating this optimized protocol into MALDI-MSI workflows enabled comprehensive sequential analysis of lipids (in dual polarity mode), N-glycans, and tryptic peptides within the same tissue sections, enhancing both the efficiency and reliability. Validation across diverse rodent brain tissue samples confirmed the protocol's robustness and versatility. The optimized methodology was subsequently applied to a transgenic Alzheimer's disease (AD) mouse model (tgArcSwe) as a proof of concept. In the AD model, significant molecular alterations were observed in various sphingolipid and glycerophospholipid species, as well as in biantennary and GlcNAc-bisecting N-glycans, particularly in the cerebral cortex. These region-specific alterations are potentially associated with amyloid-beta (Aβ) plaque accumulation, which may contribute to cognitive and memory impairments. The proposed standardized methodology represents a significant advancement in neurobiological research, providing valuable insights into disease mechanisms and laying the foundation for potential preclinical applications. It could aid the development of diagnostic biomarkers and targeted therapies for AD and other neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Yea-Rin Lee
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| | - Ibrahim Kaya
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| | - Elin Wik
- Department
of Public Health and Caring Sciences, Uppsala
University, SE-75237 Uppsala ,Sweden
| | - Sooraj Baijnath
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
- Integrated
Molecular Physiology Research Initiative, School of Physiology, Faculty
of Health Sciences, University of the Witwatersrand, Johannesburg 2017, South Africa
| | - Henrik Lodén
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| | - Anna Nilsson
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| | - Xiaoqun Zhang
- Department
of Clinical Neuroscience, Karolinska Institute, SE-17177 Stockholm ,Sweden
| | - Dag Sehlin
- Department
of Public Health and Caring Sciences, Uppsala
University, SE-75237 Uppsala ,Sweden
| | - Stina Syvänen
- Department
of Public Health and Caring Sciences, Uppsala
University, SE-75237 Uppsala ,Sweden
| | - Per Svenningsson
- Department
of Clinical Neuroscience, Karolinska Institute, SE-17177 Stockholm ,Sweden
| | - Per E. Andrén
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| |
Collapse
|
2
|
Klarić TS, Gudelj I, Santpere G, Novokmet M, Vučković F, Ma S, Doll HM, Risgaard R, Bathla S, Karger A, Nairn AC, Luria V, Bečeheli I, Sherwood CC, Ely JJ, Hof PR, Sousa AM, Josić D, Lauc G, Sestan N. Human-specific features and developmental dynamics of the brain N-glycome. SCIENCE ADVANCES 2023; 9:eadg2615. [PMID: 38055821 PMCID: PMC10699788 DOI: 10.1126/sciadv.adg2615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. We performed multiregional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry and then integrated these data with complementary glycotranscriptomic data. We found that, in primates, the brain N-glycome has diverged more rapidly than the underlying transcriptomic framework, providing a means for rapidly generating additional interspecies diversity. Our data suggest that brain N-glycome evolution in hominids has been characterized by an overall increase in complexity coupled with a shift toward increased usage of α(2-6)-linked N-acetylneuraminic acid. Moreover, interspecies differences in the cell type expression pattern of key glycogenes were identified, including some human-specific differences, which may underpin this evolutionary divergence. Last, by comparing the prenatal and adult human brain N-glycomes, we uncovered region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain.
Collapse
Affiliation(s)
- Thomas S. Klarić
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Ivan Gudelj
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Hospital del Mar Research Institute, Barcelona, Catalonia, Spain
| | | | | | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Hannah M. Doll
- Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Risgaard
- Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Shveta Bathla
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Amir Karger
- IT Research Computing, Harvard Medical School, Boston, MA, USA
| | - Angus C. Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | | | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - John J. Ely
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
- MAEBIOS, Alamogordo, NM, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - André M. M. Sousa
- Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Departments of Genetics and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Costa J, Hayes C, Lisacek F. Protein glycosylation and glycoinformatics for novel biomarker discovery in neurodegenerative diseases. Ageing Res Rev 2023; 89:101991. [PMID: 37348818 DOI: 10.1016/j.arr.2023.101991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.
Collapse
Affiliation(s)
- Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Catherine Hayes
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland; Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
4
|
Klarić TS, Gudelj I, Santpere G, Sousa AMM, Novokmet M, Vučković F, Ma S, Bečeheli I, Sherwood CC, Ely JJ, Hof PR, Josić D, Lauc G, Sestan N. Human-specific features and developmental dynamics of the brain N-glycome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523525. [PMID: 36711977 PMCID: PMC9882074 DOI: 10.1101/2023.01.11.523525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. Here, we performed multi-regional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry, then integrated these data with complementary glycotranscriptomic data. We found that in primates the brain N-glycome has evolved more rapidly than the underlying transcriptomic framework, providing a mechanism for generating additional diversity. We show that brain N-glycome evolution in hominids has been characterized by an increase in complexity and α(2-6)-linked N-acetylneuraminic acid along with human-specific cell-type expression of key glycogenes. Finally, by comparing the prenatal and adult human brain N-glycome, we identify region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain. One-Sentence Summary Evolution of the human brain N-glycome has been marked by an increase in complexity and a shift in sialic acid linkage.
Collapse
|
5
|
Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J 2022; 39:443-471. [PMID: 35334027 DOI: 10.1007/s10719-022-10055-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023]
Abstract
The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Tondepu C, Karumbaiah L. Glycomaterials to Investigate the Functional Role of Aberrant Glycosylation in Glioblastoma. Adv Healthc Mater 2022; 11:e2101956. [PMID: 34878733 PMCID: PMC9048137 DOI: 10.1002/adhm.202101956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a stage IV astrocytoma that carries a dismal survival rate of ≈10 months postdiagnosis and treatment. The highly invasive capacity of GBM and its ability to escape therapeutic challenges are key factors contributing to the poor overall survival rate. While current treatments aim to target the cancer cell itself, they fail to consider the significant role that the GBM tumor microenvironment (TME) plays in promoting tumor progression and therapeutic resistance. The GBM tumor glycocalyx and glycan-rich extracellular matrix (ECM), which are important constituents of the TME have received little attention as therapeutic targets. A wide array of aberrantly modified glycans in the GBM TME mediate tumor growth, invasion, therapeutic resistance, and immunosuppression. Here, an overview of the landscape of aberrant glycan modifications in GBM is provided, and the design and utility of 3D glycomaterials are discussed as a tool to evaluate glycan-mediated GBM progression and therapeutic efficacy. The development of alternative strategies to target glycans in the TME can potentially unveil broader mechanisms of restricting tumor growth and enhancing the efficacy of tumor-targeting therapeutics.
Collapse
Affiliation(s)
- Chaitanya Tondepu
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
- Division of Neuroscience, Biomedical & Translational Sciences Institute, University of Georgia, Athens, GA, 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
7
|
Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, Scolnick EM, Smoller JW, Cummings RD, Mealer RG. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun 2022; 13:275. [PMID: 35022400 PMCID: PMC8755730 DOI: 10.1038/s41467-021-27781-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
Glycosylation is essential to brain development and function, but prior studies have often been limited to a single analytical technique and excluded region- and sex-specific analyses. Here, using several methodologies, we analyze Asn-linked and Ser/Thr/Tyr-linked protein glycosylation between brain regions and sexes in mice. Brain N-glycans are less complex in sequence and variety compared to other tissues, consisting predominantly of high-mannose and fucosylated/bisected structures. Most brain O-glycans are unbranched, sialylated O-GalNAc and O-mannose structures. A consistent pattern is observed between regions, and sex differences are minimal compared to those in plasma. Brain glycans correlate with RNA expression of their synthetic enzymes, and analysis of glycosylation genes in humans show a global downregulation in the brain compared to other tissues. We hypothesize that this restricted repertoire of protein glycans arises from their tight regulation in the brain. These results provide a roadmap for future studies of glycosylation in neurodevelopment and disease.
Collapse
Affiliation(s)
- Sarah E Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward M Scolnick
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Cancer-Associated Glycosphingolipids as Tumor Markers and Targets for Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22116145. [PMID: 34200284 PMCID: PMC8201009 DOI: 10.3390/ijms22116145] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrant expression of glycosphingolipids is a hallmark of cancer cells and is associated with their malignant properties. Disialylated gangliosides GD2 and GD3 are considered as markers of neuroectoderm origin in tumors, whereas fucosyl-GM1 is expressed in very few normal tissues but overexpressed in a variety of cancers, especially in small cell lung carcinoma. These gangliosides are absent in most normal adult tissues, making them targets of interest in immuno-oncology. Passive and active immunotherapy strategies have been developed, and have shown promising results in clinical trials. In this review, we summarized the current knowledge on GD2, GD3, and fucosyl-GM1 expression in health and cancer, their biosynthesis pathways in the Golgi apparatus, and their biological roles. We described how their overexpression can affect intracellular signaling pathways, increasing the malignant phenotypes of cancer cells, including their metastatic potential and invasiveness. Finally, the different strategies used to target these tumor-associated gangliosides for immunotherapy were discussed, including the use and development of monoclonal antibodies, vaccines, immune system modulators, and immune effector-cell therapy, with a special focus on adoptive cellular therapy with T cells engineered to express chimeric antigen receptors.
Collapse
|
9
|
Nakić N, Tran TH, Novokmet M, Andreoletti O, Lauc G, Legname G. Site-specific analysis of N-glycans from different sheep prion strains. PLoS Pathog 2021; 17:e1009232. [PMID: 33600485 PMCID: PMC7891774 DOI: 10.1371/journal.ppat.1009232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases affecting a wide range of mammalian species, including humans. During the course of the disease, the abnormally folded scrapie prion protein (PrPSc) accumulates in the central nervous system where it causes neurodegeneration. In prion disorders, the diverse spectrum of illnesses exists because of the presence of different isoforms of PrPSc where they occupy distinct conformational states called strains. Strains are biochemically distinguished by a characteristic three-band immunoblot pattern, defined by differences in the occupancy of two glycosylation sites on the prion protein (PrP). Characterization of the exact N-glycan structures attached on either PrPC or PrPSc is lacking. Here we report the characterization and comparison of N-glycans from two different sheep prion strains. PrPSc from both strains was isolated from brain tissue and enzymatically digested with trypsin. By using liquid chromatography coupled to electrospray mass spectrometry, a site-specific analysis was performed. A total of 100 structures were detected on both glycosylation sites. The N-glycan profile was shown to be similar to the one on mouse PrP, however, with additional 40 structures reported. The results presented here show no major differences in glycan composition, suggesting that glycans may not be responsible for the differences in the two analyzed prion strains. To date, prion diseases remain a controversy amongst scientists. Although we know now it is the abnormal form of the prion protein (PrPSc) that causes the disease, many questions are still left unanswered. To understand the cellular mechanism of these diseases, we should first and foremost try to fully understand the prion protein itself. Even though many findings have been made regarding the structure of the protein, a large part of it is still unknown. Since the prion protein is actually a glycoprotein, to resolve its structure we need to put our focus not only on the protein part of the glycoprotein but also on the glycan structures as well. Here we compared two different sheep prion strains and although no major differences have been found between the glycan structures, this analysis may help the understanding of the role glycans have in prion diseases.
Collapse
Affiliation(s)
- Natali Nakić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Thanh Hoa Tran
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,VNUK Institute for Research and Executive Education, The University of Danang, Da Nang, Vietnam
| | | | - Olivier Andreoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,ELETTRA Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| |
Collapse
|
10
|
Klarić TS, Salopek M, Micek V, Gornik Kljaić O, Lauc G. Post-natal developmental changes in the composition of the rat neocortical N-glycome. Glycobiology 2020; 31:636-648. [PMID: 33242084 DOI: 10.1093/glycob/cwaa108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Asparagine-linked glycosylation (N-glycosylation) plays a key role in many neurodevelopmental processes, including neural cell adhesion, neurite outgrowth and axon targeting. However, little is known about the dynamics of N-glycosylation during brain development and, in particular, how the N-glycome of the developing neocortex differs from that of the adult. The aim of this study, therefore, was to perform a thorough characterization of N-glycosylation in both the adult and neonatal rat neocortex in order to gain insights into the types of changes occurring in the N-glycome during neurodevelopment. To this end, we used hydrophilic interaction ultraperformance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry to compare the adult neocortical N-glycome with that of 24- and 48-h neonates. We report that the abundance of complex N-glycans is significantly lower in adults compared with neonates. Furthermore, the proportion of charged complex N-glycans is also greatly reduced. This decrease in the abundance of complex N-glycans is offset by a corresponding increase in the proportion of truncated and, to a lesser extent, hybrid N-glycans. Lastly, we report that although the proportion of oligomannose N-glycans remains constant at around 24%, the distribution of high-mannose subtypes shifts from predominantly large subtypes in neonates to smaller subtypes in the adult. In summary, our findings indicate that N-glycan synthesis in the rat neocortex is fundamentally different in neonates compared with adults with a general shift occurring from large, sialylated N-glycans towards smaller, neutral structures as neonates develop into adults, coupled with a parallel shift towards smaller oligomannose structures.
Collapse
Affiliation(s)
- Thomas S Klarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Matija Salopek
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Vedran Micek
- Laboratory Animals Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Olga Gornik Kljaić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
11
|
Higashi M, Yoshimura T, Usui N, Kano Y, Deguchi A, Tanabe K, Uchimura Y, Kuriyama S, Suzuki Y, Masaki T, Ikenaka K. A Potential Serum N-glycan Biomarker for Hepatitis C Virus-Related Early-Stage Hepatocellular Carcinoma with Liver Cirrhosis. Int J Mol Sci 2020; 21:ijms21238913. [PMID: 33255418 PMCID: PMC7727814 DOI: 10.3390/ijms21238913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
Detection of early-stage hepatocellular carcinoma (HCC) is beneficial for prolonging patient survival. However, the serum markers currently used show limited ability to identify early-stage HCC. In this study, we explored human serum N-glycans as sensitive markers to diagnose HCC in patients with cirrhosis. Using a simplified fluorescence-labeled N-glycan preparation method, we examined non-sialylated and sialylated N-glycan profiles from 71 healthy controls and 111 patients with hepatitis and/or liver cirrhosis (LC) with or without HCC. We found that the level of serum N-glycan A2G1(6)FB, a biantennary N-glycan containing core fucose and bisecting GlcNAc residues, was significantly higher in hepatitis C virus (HCV)-infected cirrhotic patients with HCC than in those without HCC. In addition, A2G1(6)FB was detectable in HCV-infected patients with early-stage HCC and could be a more accurate marker than alpha-fetoprotein (AFP) or protein induced by vitamin K absence or antagonists-II (PIVKA-II). Moreover, there was no apparent correlation between the levels of A2G1(6)FB and those of AFP or PIVKA-II. Thus, simultaneous use of A2G1(6)FB and traditional biomarkers could improve the accuracy of HCC diagnosis in HCV-infected patients with LC, suggesting that A2G1(6)FB may be a reliable biomarker for early-stage HCC patients.
Collapse
Affiliation(s)
- Mikito Higashi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
- Mitsubishi Chemical Group Science and Technology Research Center, Yokohama, Kanagawa 227-8502, Japan;
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan
- Correspondence:
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan;
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yuichiro Kano
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
| | - Akihiro Deguchi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan; (A.D.); (T.M.)
| | - Kazuhiro Tanabe
- Mitsubishi Chemical Group Science and Technology Research Center, Yokohama, Kanagawa 227-8502, Japan;
| | - Youichi Uchimura
- Mitsubishi Chemical Group Science and Technology Research Center, Yokohama, Kanagawa 227-8502, Japan;
| | - Shigeki Kuriyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan; (A.D.); (T.M.)
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan;
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan; (A.D.); (T.M.)
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Correspondence:
| |
Collapse
|
12
|
Spatial and temporal diversity of glycome expression in mammalian brain. Proc Natl Acad Sci U S A 2020; 117:28743-28753. [PMID: 33139572 DOI: 10.1073/pnas.2014207117] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian brain glycome remains a relatively poorly understood area compared to other large-scale "omics" studies, such as genomics and transcriptomics due to the inherent complexity and heterogeneity of glycan structure and properties. Here, we first performed spatial and temporal analysis of glycome expression patterns in the mammalian brain using a cutting-edge experimental tool based on liquid chromatography-mass spectrometry, with the ultimate aim to yield valuable implications on molecular events regarding brain functions and development. We observed an apparent diversity in the glycome expression patterns, which is spatially well-preserved among nine different brain regions in mouse. Next, we explored whether the glycome expression pattern changes temporally during postnatal brain development by examining the prefrontal cortex (PFC) at different time point across six postnatal stages in mouse. We found that glycan expression profiles were dynamically regulated during postnatal developments. A similar result was obtained in PFC samples from humans ranging in age from 39 d to 49 y. Novel glycans unique to the brain were also identified. Interestingly, changes primarily attributed to sialylated and fucosylated glycans were extensively observed during PFC development. Finally, based on the vast heterogeneity of glycans, we constructed a core glyco-synthesis map to delineate the glycosylation pathway responsible for the glycan diversity during the PFC development. Our findings reveal high levels of diversity in a glycosylation program underlying brain region specificity and age dependency, and may lead to new studies exploring the role of glycans in spatiotemporally diverse brain functions.
Collapse
|
13
|
Hu X, Tang F, Liu P, Zhong T, Yuan F, He Q, von Itzstein M, Li H, Weng L, Yu X. Structural and Functional Insight Into the Glycosylation Impact Upon the HGF/c-Met Signaling Pathway. Front Cell Dev Biol 2020; 8:490. [PMID: 32626713 PMCID: PMC7314907 DOI: 10.3389/fcell.2020.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Upon interactions with its specific ligand hepatocyte growth factor (HGF), the c-Met signal is relayed to series of downstream pathways, exerting essential biological roles. Dysregulation of the HGF-c-Met signaling pathway has been implicated in the onset, progression and metastasis of various cancers, making the HGF-c-Met axis a promising therapeutic target. Both c-Met and HGF undergo glycosylation, which appears to be biologically relevant to their function and structural integrity. Different types of glycoconjugates in the local cellular environment can also regulate HGF/c-Met signaling by distinct mechanisms. However, detailed knowledge pertaining to the glycosylation machinery of the HGF-c-Met axis as well as its potential applications in oncology research is yet to be established. This mini review highlights the significance of the HGF-c-Met signaling pathway in physiological and pathological context, and discusses the molecular mechanisms by which affect the glycosylation of the HGF-c-Met axis. Owing to the crucial role played by glycosylation in the regulation of HGF/c-Met activity, better understanding of this less exploited field may contribute to the development of novel therapeutics targeting glycoepitopes.
Collapse
Affiliation(s)
- Xinyue Hu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Feiyu Tang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peilin Liu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Taowei Zhong
- College of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- College of Medicine, Hunan Normal University, Changsha, China
| | - Quanyuan He
- College of Medicine, Hunan Normal University, Changsha, China.,Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liang Weng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology in Hunan Province, Central South University, Changsha, China
| | - Xing Yu
- College of Medicine, Hunan Normal University, Changsha, China.,Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
14
|
Nonomura Y, Sawamura S, Hanzawa K, Nishikaze T, Sekiya S, Higuchi T, Nin F, Uetsuka S, Inohara H, Okuda S, Miyoshi E, Horii A, Takahashi S, Natsuka S, Hibino H. Characterisation of N-glycans in the epithelial-like tissue of the rat cochlea. Sci Rep 2019; 9:1551. [PMID: 30733536 PMCID: PMC6367448 DOI: 10.1038/s41598-018-38079-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
Membrane proteins (such as ion channels, transporters, and receptors) and secreted proteins are essential for cellular activities. N-linked glycosylation is involved in stability and function of these proteins and occurs at Asn residues. In several organs, profiles of N-glycans have been determined by comprehensive analyses. Nevertheless, the cochlea of the mammalian inner ear, a tiny organ mediating hearing, has yet to be examined. Here, we focused on the stria vascularis, an epithelial-like tissue in the cochlea, and characterised N-glycans by liquid chromatography with mass spectrometry. This hypervascular tissue not only expresses several ion transporters and channels to control the electrochemical balance in the cochlea but also harbours different transporters and receptors that maintain structure and activity of the organ. Seventy-nine N-linked glycans were identified in the rat stria vascularis. Among these, in 55 glycans, the complete structures were determined; in the other 24 species, partial glycosidic linkage patterns and full profiles of the monosaccharide composition were identified. In the process of characterisation, several sialylated glycans were subjected sequentially to two different alkylamidation reactions; this derivatisation helped to distinguish α2,3-linkage and α2,6-linkage sialyl isomers with mass spectrometry. These data should accelerate elucidation of the molecular architecture of the cochlea.
Collapse
Affiliation(s)
- Yoriko Nonomura
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Ken Hanzawa
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Taiga Higuchi
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Satoru Uetsuka
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shujiro Okuda
- Bioinformatics Laboratory, Niigata University School of Medicine, Niigata, Japan
| | - Eiji Miyoshi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Arata Horii
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Sugata Takahashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Shunji Natsuka
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan.
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
- AMED-CREST, AMED, Niigata, Japan.
| |
Collapse
|
15
|
Sasaoka N, Imamura H, Kakizuka A. A Trace Amount of Galactose, a Major Component of Milk Sugar, Allows Maturation of Glycoproteins during Sugar Starvation. iScience 2018; 10:211-221. [PMID: 30529953 PMCID: PMC6289946 DOI: 10.1016/j.isci.2018.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023] Open
Abstract
Milk sugar is composed of glucose and galactose. Galactose is less suitable as an energy source than glucose. Thus, it has been a puzzle as to why mammals utilize galactose as a major component of milk sugar. Here we show that in hypoglycemic conditions, the presence of a trace amount of galactose, but not glucose, is able to maintain the production of mature glycoproteins and to abolish cell-death-inducing endoplasmic reticulum stress. In severely sugar-limited conditions, both glucose and galactose enter into the glycolytic pathway, but galactose is not able to raise the phosphofructokinase 1 activity, leading to the accumulation of fructose-6-phosphate, which in turn is utilized for the maturation of glycoproteins (e.g., growth factor receptors) and allows the activation of their intracellular signaling and prevents cell death from hypoglycemic conditions. Thus trace amounts of galactose may play unexpectedly important roles in the growth of infants and their protection during starvation.
Collapse
Affiliation(s)
- Norio Sasaoka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromi Imamura
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Yale AR, Nourse JL, Lee KR, Ahmed SN, Arulmoli J, Jiang AYL, McDonnell LP, Botten GA, Lee AP, Monuki ES, Demetriou M, Flanagan LA. Cell Surface N-Glycans Influence Electrophysiological Properties and Fate Potential of Neural Stem Cells. Stem Cell Reports 2018; 11:869-882. [PMID: 30197120 PMCID: PMC6178213 DOI: 10.1016/j.stemcr.2018.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 01/10/2023] Open
Abstract
Understanding the cellular properties controlling neural stem and progenitor cell (NSPC) fate choice will improve their therapeutic potential. The electrophysiological measure whole-cell membrane capacitance reflects fate bias in the neural lineage but the cellular properties underlying membrane capacitance are poorly understood. We tested the hypothesis that cell surface carbohydrates contribute to NSPC membrane capacitance and fate. We found NSPCs differing in fate potential express distinct patterns of glycosylation enzymes. Screening several glycosylation pathways revealed that the one forming highly branched N-glycans differs between neurogenic and astrogenic populations of cells in vitro and in vivo. Enhancing highly branched N-glycans on NSPCs significantly increases membrane capacitance and leads to the generation of more astrocytes at the expense of neurons with no effect on cell size, viability, or proliferation. These data identify the N-glycan branching pathway as a significant regulator of membrane capacitance and fate choice in the neural lineage.
Collapse
Affiliation(s)
- Andrew R Yale
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Jamison L Nourse
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Kayla R Lee
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Syed N Ahmed
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Janahan Arulmoli
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Alan Y L Jiang
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa P McDonnell
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Giovanni A Botten
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Edwin S Monuki
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa A Flanagan
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Choi JY, Seo J, Park M, Kim MH, Kang K, Choi IS. Multiplexed Metabolic Labeling of Glycoconjugates in Polarized Primary Cerebral Cortical Neurons. Chem Asian J 2018; 13:3480-3484. [PMID: 30204301 DOI: 10.1002/asia.201800996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/07/2018] [Indexed: 12/11/2022]
Abstract
The spatial distribution of cell-surface glycoconjugates in the brain changes continuously, reflecting neurophysiology especially in the developing phase, but their functions and fates mostly remain unexplored. Their spatiotemporal distribution is particularly important in polarized neuronal cells, such as cerebral cortical neurons composed of a soma and neurites. In this work, we dually labeled sialic acid (Sia5Ac) and N-acetylgalactosamine/glucosamine (GalNAc/GlcNAc) by a neurocompatible strategy of metabolic glycan labeling, metabolism-by-tissues (MbT), and obtained the multiplexed information on their spatiotemporal distribution on polarized cortical neurons. The analyses showed the preferentially distinct distribution of each saccharide set at the late developmental stage after randomized, heterogeneous distribution at the early stage, suggesting that Sia5Ac and GalNAc/GlcNAc are translocated anisotropically during neuronal development.
Collapse
Affiliation(s)
- Ji Yu Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Jeongyeon Seo
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
18
|
Heme Oxygenase-1 May Affect Cell Signalling via Modulation of Ganglioside Composition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3845027. [PMID: 30327713 PMCID: PMC6169227 DOI: 10.1155/2018/3845027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 11/17/2022]
Abstract
Heme oxygenase 1 (Hmox1), a ubiquitous enzyme degrading heme to carbon monoxide, iron, and biliverdin, is one of the cytoprotective enzymes induced in response to a variety of stimuli, including cellular oxidative stress. Gangliosides, sialic acid-containing glycosphingolipids expressed in all cells, are involved in cell recognition, signalling, and membrane stabilization. Their expression is often altered under many pathological and physiological conditions including cell death, proliferation, and differentiation. The aim of this study was to assess the possible role of Hmox1 in ganglioside metabolism in relation to oxidative stress. The content of liver and brain gangliosides, their cellular distribution, and mRNA as well as protein expression of key glycosyltransferases were determined in Hmox1 knockout mice as well as their wild-type littermates. To elucidate the possible underlying mechanisms between Hmox1 and ganglioside metabolism, hepatoblastoma HepG2 and neuroblastoma SH-SY5Y cell lines were used for in vitro experiments. Mice lacking Hmox1 exhibited a significant increase in concentrations of liver and brain gangliosides and in mRNA expression of the key enzymes of ganglioside metabolism. A marked shift of GM1 ganglioside from the subsinusoidal part of the intracellular compartment into sinusoidal membranes of hepatocytes was shown in Hmox1 knockout mice. Induction of oxidative stress by chenodeoxycholic acid in vitro resulted in a significant increase in GM3, GM2, and GD1a gangliosides in SH-SY5Y cells and GM3 and GM2 in the HepG2 cell line. These changes were abolished with administration of bilirubin, a potent antioxidant agent. These observations were closely related to oxidative stress-mediated changes in sialyltransferase expression regulated at least partially through the protein kinase C pathway. We conclude that oxidative stress is an important factor modulating synthesis and distribution of gangliosides in vivo and in vitro which might affect ganglioside signalling in higher organisms.
Collapse
|
19
|
Raghunathan R, Polinski NK, Klein JA, Hogan JD, Shao C, Khatri K, Leon D, McComb ME, Manfredsson FP, Sortwell CE, Zaia J. Glycomic and Proteomic Changes in Aging Brain Nigrostriatal Pathway. Mol Cell Proteomics 2018; 17:1778-1787. [PMID: 29915149 PMCID: PMC6126385 DOI: 10.1074/mcp.ra118.000680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by the progressive loss of functional dopaminergic neurons in the nigrostriatal pathway in the brain. Although current treatments provide only symptomatic relief, gene therapy has the potential to slow or halt the degeneration of nigrostriatal dopamine neurons in PD patients. Adeno-associated viruses (AAV) are vectors of choice in gene therapy because of their well-characterized safety and efficacy profiles; however, although gene therapy has been successful in preclinical models of the disease, clinical trials in humans have failed to demonstrate efficacy. Significantly, all primary AAV receptors of the virus are glycans. We thus hypothesize that age related changes in glycan receptors of heparan sulfate (HS) proteoglycans (receptor for rAAV2), and/or N-glycans with terminal galactose (receptor for rAAV9) results in poor adeno-associated virus binding in either the striatum or substantia nigra, or both, affecting transduction and gene delivery. To test our hypothesis we analyzed the striatum and substantia nigra for changes in HS, N-glycans and proteomic signatures in young versus aged rat brain striatum and substantia nigra. We observed different brain region-specific HS disaccharide profiles in aged compared with young adult rats for brain region-specific profiles in striatum versus substantia nigra. We observed brain region- and age-specific N-glycan compositional profiles with respect to the terminal galactose units that serve as receptors for AAV9. We also observed brain region-specific changes in protein expression in the aging nigrostriatal pathway. These studies provide insight into age- and brain region-specific changes in glycan receptors and proteome that will inform design of improved viral vectors for Parkinson Disease (PD) gene therapy.
Collapse
Affiliation(s)
- Rekha Raghunathan
- From the ‡Department of Molecular and Translational Medicine, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Nicole K Polinski
- ‖Department of Translational Science and Molecular Medicine, Michigan State University
| | - Joshua A Klein
- ¶Bioinformatics Program, Boston University, Boston, Massachusetts
| | - John D Hogan
- ¶Bioinformatics Program, Boston University, Boston, Massachusetts
| | - Chun Shao
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Kshitij Khatri
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Deborah Leon
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Mark E McComb
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Fredric P Manfredsson
- ‖Department of Translational Science and Molecular Medicine, Michigan State University
| | - Caryl E Sortwell
- ‖Department of Translational Science and Molecular Medicine, Michigan State University
| | - Joseph Zaia
- From the ‡Department of Molecular and Translational Medicine, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts;
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
- ¶Bioinformatics Program, Boston University, Boston, Massachusetts
| |
Collapse
|
20
|
Benktander JD, Gizaw ST, Gaunitz S, Novotny MV. Analytical Scheme Leading to Integrated High-Sensitivity Profiling of Glycosphingolipids Together with N- and O-Glycans from One Sample. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1125-1137. [PMID: 29744812 PMCID: PMC6226365 DOI: 10.1007/s13361-018-1933-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 05/15/2023]
Abstract
Glycoconjugates are directly or indirectly involved in many biological processes. Due to their complex structures, the structural elucidation of glycans and the exploration of their role in biological systems have been challenging. Glycan pools generated through release from glycoprotein or glycolipid mixtures can often be very complex. For the sake of procedural simplicity, many glycan profiling studies choose to concentrate on a single class of glycoconjugates. In this paper, we demonstrate it feasible to cover glycosphingolipids, N-glycans, and O-glycans isolated from the same sample. Small volumes of human blood serum and ascites fluid as well as small mouse brain tissue samples are sufficient to profile sequentially glycans from all three classes of glycoconjugates and even positively identify some mixture components through MALDI-MS and LC-ESI-MS. The results show that comprehensive glycan profiles can be obtained from the equivalent of 500-μg protein starting material or possibly less. These methodological improvements can help accelerating future glycomic comprehensive studies, especially for precious clinical samples. Graphical Abstract Outline of glycan profiling procedures.
Collapse
Affiliation(s)
- John D Benktander
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Solomon T Gizaw
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Milos V Novotny
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
21
|
Handa-Narumi M, Yoshimura T, Konishi H, Fukata Y, Manabe Y, Tanaka K, Bao GM, Kiyama H, Fukase K, Ikenaka K. Branched Sialylated N-glycans Are Accumulated in Brain Synaptosomes and Interact with Siglec-H. Cell Struct Funct 2018; 43:141-152. [DOI: 10.1247/csf.18009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mai Handa-Narumi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine
| | - Yuko Fukata
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
- Division of Membrane Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research
| | - Guang-ming Bao
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| |
Collapse
|
22
|
ConBr, A Lectin Purified from the Seeds of Canavalia brasiliensis, Protects Against Ischemia in Organotypic Culture of Rat Hippocampus: Potential Implication of Voltage-Gated Calcium Channels. Neurochem Res 2016; 42:347-359. [DOI: 10.1007/s11064-016-2078-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022]
|
23
|
Xu Y, Pang W, Lu J, Shan A, Zhang Y. Polypeptide N-Acetylgalactosaminyltransferase 13 Contributes to Neurogenesis via Stabilizing the Mucin-type O-Glycoprotein Podoplanin. J Biol Chem 2016; 291:23477-23488. [PMID: 27629416 DOI: 10.1074/jbc.m116.743955] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/28/2023] Open
Abstract
Mucin-type O-glycosylation is initiated by an evolutionarily conserved family of polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). Previously, it was reported that ppGalNAc-T13 is restrictively expressed at a high level in the brain. Here we provide evidence for the critical role of ppGalNAc-T13 in neural differentiation. In detail, we show that the expression of ppGalNAc-T13 was dramatically up-regulated during early neurogenesis in mouse embryonic brains. Similar changes were also observed in cell models of neuronal differentiation by using either primary mouse cortical neural precursor cells or murine embryonal carcinoma P19 cells. Knockout of ppGalNAc-T13 in P19 cells suppressed not only neural induction but also neuronal differentiation. These effects are at least partly mediated by the mucin-type O-glycoprotein podoplanin (PDPN), as knockdown of PDPN led to a similar inhibition of neuronal differentiation and PDPN was significantly reduced at the posttranscriptional level after ppGalNAc-T13 knockout. Further data demonstrate that PDPN acts as a substrate of ppGalNAc-T13 and that the ppGalNAc-T13-mediated O-glycosylation on PDPN is important for its stability. Taken together, this study suggests that ppGalNAc-T13 contributes to neuronal differentiation through glycosylating and stabilizing PDPN, which provides insights into the regulatory roles of O-glycosylation in mammalian neural development.
Collapse
Affiliation(s)
- Yingjiao Xu
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Wenjie Pang
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Jishun Lu
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Aidong Shan
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Zhang
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
24
|
Monosaccharide profiling of silkworm (Bombyx mori L.) nervous system during development and aging. INVERTEBRATE NEUROSCIENCE 2016; 16:8. [DOI: 10.1007/s10158-016-0191-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
|
25
|
Firoz A, Malik A, Singh SK, Jha V, Ali A. Identification of hub glycogenes and their nsSNP analysis from mouse RNA-Seq data. Gene 2015; 574:235-46. [PMID: 26260015 DOI: 10.1016/j.gene.2015.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 11/24/2022]
Abstract
Glycogenes regulate a large number of biological processes such as cancer and development. In this work, we created an interaction network of 923 glycogenes to detect potential hubs from different mouse tissues using RNA-Seq data. DAVID functional cluster analysis revealed enrichment of immune response, glycoprotein and cholesterol metabolic processes. We also explored nsSNPs that may modify the expression and function of identified hubs using computational methods. We observe that the number of nsSNPs predicted by any two methods to affect protein function is 4, 7 and 2 for FLT1, NID2 and TNFRSF1B. Residues in the native and mutant proteins were analyzed for solvent accessibility and secondary structure change. Analysis of hubs can help in determining their degree of conservation and understanding their functions in biological processes. The nsSNPs proposed in this work may be further targeted through experimental methods for understanding structural and functional relationships of hub mutants.
Collapse
Affiliation(s)
- Ahmad Firoz
- School of Chemistry and Biochemistry, Thapar University, Patiala, Punjab 147004, India; Biomedical Informatics Center of ICMR, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| | - Adeel Malik
- Perdana University Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, 43400 Serdang, Selangor, Malaysia.
| | - Sanjay Kumar Singh
- Biomedical Informatics Center of ICMR, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Vivekanand Jha
- Biomedical Informatics Center of ICMR, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India; Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Amjad Ali
- School of Chemistry and Biochemistry, Thapar University, Patiala, Punjab 147004, India
| |
Collapse
|
26
|
Torii T, Yoshimura T, Narumi M, Hitoshi S, Takaki Y, Tsuji S, Ikenaka K. Determination of major sialylated N-glycans and identification of branched sialylated N-glycans that dynamically change their content during development in the mouse cerebral cortex. Glycoconj J 2014; 31:671-83. [PMID: 25417067 PMCID: PMC4245497 DOI: 10.1007/s10719-014-9566-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/03/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022]
Abstract
Oligosaccharides of glycoproteins expressed on the cell surface play important roles in cell-cell interactions, particularly sialylated N-glycans having a negative charge, which interact with sialic acid-binding immunoglobulin-like lectins (siglecs). The entire structure of sialylated N-glycans expressed in the mouse brain, particularly the linkage type of sialic acid residues attached to the backbone N-glycans, has not yet been elucidated. An improved method to analyze pyridylaminated sugar chains using high performance liquid chromatography (HPLC) was developed to determine the entire structure of sialylated N-linked sugar chains expressed in the adult and developing mouse cerebral cortices. Three classes of sialylated sugar chains were prevalent: 1) N-glycans containing α(2-3)-sialyl linkages on a type 2 antennary (Galβ(1-4)GlcNAc), 2) sialylated N-glycans with α(2-6)-sialyl linkages on a type 2 antennary, and 3) a branched sialylated N-glycan with a [Galβ(1-3){NeuAcα(2-6)}GlcNAc-] structure, which was absent at embryonic day 12 but then increased during development. This branched type sialylated N-glycan structure comprised approximately 2 % of the total N-glycans in the adult brain. Some N-glycans (containing type 2 antennary) were found to change their type of sialic acid linkage from α(2-6)-Gal to α(2-3)-Gal. Thus, the linkages and expression levels of sialylated N-glycans change dramatically during brain development.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Rieger DK, Cunha RMS, Lopes MW, Costa AP, Budni J, Rodrigues ALS, Walz R, Teixeira EH, Nascimento KS, Cavada BS, Leal RB. ConBr, a lectin fromCanavalia brasiliensisseeds, modulates signaling pathways and increases BDNF expression probably via a glycosylated target. J Mol Recognit 2014; 27:746-54. [DOI: 10.1002/jmr.2401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Débora K. Rieger
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | | | - Mark William Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Ana Paula Costa
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Josiani Budni
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Ana Lúcia S. Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Roger Walz
- Departamento de Clínica Médica, Hospital Universitário (HU), Centro de Ciências da Saúde; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Edson H. Teixeira
- BioMolLab; Universidade Federal do Ceará; Fortaleza CE 60455-970 Brazil
| | | | - Benildo S. Cavada
- BioMolLab; Universidade Federal do Ceará; Fortaleza CE 60455-970 Brazil
| | - Rodrigo B. Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| |
Collapse
|
28
|
Nourse JL, Prieto JL, Dickson AR, Lu J, Pathak MM, Tombola F, Demetriou M, Lee AP, Flanagan LA. Membrane biophysics define neuron and astrocyte progenitors in the neural lineage. Stem Cells 2014; 32:706-16. [PMID: 24105912 DOI: 10.1002/stem.1535] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022]
Abstract
Neural stem and progenitor cells (NSPCs) are heterogeneous populations of self-renewing stem cells and more committed progenitors that differentiate into neurons, astrocytes, and oligodendrocytes. Accurately identifying and characterizing the different progenitor cells in this lineage has continued to be a challenge for the field. We found previously that populations of NSPCs with more neurogenic progenitors (NPs) can be distinguished from those with more astrogenic progenitors (APs) by their inherent biophysical properties, specifically the electrophysiological property of whole cell membrane capacitance, which we characterized with dielectrophoresis (DEP). Here, we hypothesize that inherent electrophysiological properties are sufficient to define NPs and APs and test this by determining whether isolation of cells solely by these properties specifically separates NPs and APs. We found NPs and APs are enriched in distinct fractions after separation by electrophysiological properties using DEP. A single round of DEP isolation provided greater NP enrichment than sorting with PSA-NCAM, which is considered an NP marker. Additionally, cell surface N-linked glycosylation was found to significantly affect cell fate-specific electrophysiological properties, providing a molecular basis for the cell membrane characteristics. Inherent plasma membrane biophysical properties are thus sufficient to define progenitor cells of differing fate potential in the neural lineage, can be used to specifically isolate these cells, and are linked to patterns of glycosylation on the cell surface.
Collapse
Affiliation(s)
- J L Nourse
- Department of Neurology, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Comparative Analysis of Glycogene Expression in Different Mouse Tissues Using RNA-Seq Data. Int J Genomics 2014; 2014:837365. [PMID: 25121089 PMCID: PMC4121153 DOI: 10.1155/2014/837365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022] Open
Abstract
Glycogenes regulate a wide array of biological processes in the development of organisms as well as different diseases such as cancer, primary open-angle glaucoma, and renal dysfunction. The objective of this study was to explore the role of differentially expressed glycogenes (DEGGs) in three major tissues such as brain, muscle, and liver using mouse RNA-seq data, and we identified 579, 501, and 442 DEGGs for brain versus liver (BvL579), brain versus muscle (BvM501), and liver versus muscle (LvM442) groups. DAVID functional analysis suggested inflammatory response, glycosaminoglycan metabolic process, and protein maturation as the enriched biological processes in BvL579, BvM501, and LvM442, respectively. These DEGGs were then used to construct three interaction networks by using GeneMANIA, from which we detected potential hub genes such as PEMT and HPXN (BvL579), IGF2 and NID2 (BvM501), and STAT6 and FLT1 (LvM442), having the highest degree. Additionally, our community analysis results suggest that the significance of immune system related processes in liver, glycosphingolipid metabolic processes in the development of brain, and the processes such as cell proliferation, adhesion, and growth are important for muscle development. Further studies are required to confirm the role of predicted hub genes as well as the significance of biological processes.
Collapse
|
30
|
Vatairea macrocarpa lectin (VML) induces depressive-like behavior and expression of neuroinflammatory markers in mice. Neurochem Res 2013; 38:2375-84. [PMID: 24026569 DOI: 10.1007/s11064-013-1150-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
Lectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates that can regulate many physiological and pathological events. Galectin-1, a β-galactoside-binding lectin, is expressed in the central nervous system (CNS) and exhibits neuroprotective functions. Additionally, lectins isolated from plants have demonstrated beneficial action in the CNS. One example is a lectin with mannose-glucose affinity purified from Canavalia brasiliensis seeds, ConBr, which displays neuroprotective and antidepressant activity. On the other hand, the effects of the galactose-binding lectin isolated from Vatairea macrocarpa seeds (VML) on the CNS are largely unknown. The aim of this study was to verify if VML is able to alter neural function by evaluating signaling enzymes, glial and inflammatory proteins in adult mice hippocampus, as well as behavioral parameters. VML administered by intracerebroventricular (i.c.v) route increased the immobility time in the forced swimming test (FST) 60 min after its injection through a carbohydrate recognition domain-dependent mechanism. Furthermore, under the same conditions, VML caused an enhancement of COX-2, GFAP and S100B levels in mouse hippocampus. However, phosphorylation of Akt, GSK-3β and mitogen-activated protein kinases named ERK1/2, JNK1/2/3 and p38(MAPK), was not changed by VML. The results reported here suggest that VML may trigger neuroinflammatory response in mouse hippocampus and exhibit a depressive-like activity. Taken together, our findings indicate a dual role for galactose binding lectins in the modulation of CNS function.
Collapse
|
31
|
Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 2012; 37:1230-44. [PMID: 22410735 DOI: 10.1007/s11064-012-0744-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nervous system. They are localized primarily in the outer leaflets of plasma membranes and participated in cell-cell recognition, adhesion, and signal transduction and are integral components of cell surface microdomains or lipid rafts along with proteins, sphingomyelin and cholesterol. Ganglioside-rich lipid rafts play an important role in signaling events affecting neural development and the pathogenesis of certain diseases. Disruption of gangloside synthase genes in mice induces developmental defects and neural degeneration. Targeting ganglioside metabolism may represent a novel therapeutic strategy for intervention in certain diseases. In this review, we focus on recent advances on metabolic and functional studies of gangliosides in normal brain development and in certain neurological disorders.
Collapse
|
32
|
Yoshimura T, Yamada G, Narumi M, Koike T, Ishii A, Sela I, Mitrani-Rosenbaum S, Ikenaka K. Detection of N-glycans on small amounts of glycoproteins in tissue samples and sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 2012; 423:253-60. [PMID: 22369894 DOI: 10.1016/j.ab.2012.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 11/30/2022]
Abstract
N-linked glycans harbored on glycoproteins profoundly affect the character of proteins by altering their structure or capacity to bind to other molecules. Specific knowledge of the role of N-glycans in these changes is limited due to difficulties in identifying precise carbohydrate structures on a given glycoprotein, which arises from the large amounts of glycoprotein required for N-glycan structural determination. Here, we refined a simple method to purify and detect trace amounts of N-glycans. During the N-glycan purification step, most contaminants were removed by two kinds of columns: a graphite carbon column and a cellulose column. N-Glycans were identified with a three-dimensional high-performance liquid chromatography (HPLC) system. Using our method, a global analysis of N-glycans from human muscle biopsy samples and mouse brain sections was possible. By combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with our method, we refined analytical procedures for N-glycans from SDS-PAGE gels using hydrazinolysis to achieve a high N-glycan recovery rate. N-Glycans on as little as 1 μg of the target protein transferrin or immunoglobulin G (IgG) were easily detected. These methods allowed us to efficiently determine glycoprotein N-glycans at picomole (pmol) levels.
Collapse
Affiliation(s)
- Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kwak DH, Seo BB, Chang KT, Choo YK. Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation. Exp Mol Med 2011; 43:379-88. [PMID: 21654188 DOI: 10.3858/emm.2011.43.7.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the ma ternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells).
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Department of Biological Science College of Natural Sciences Biotechnology Institute Wonkwang University Iksan, Korea
| | | | | | | |
Collapse
|
34
|
Fukuda T, Hashimoto H, Okayasu N, Kameyama A, Onogi H, Nakagawasai O, Nakazawa T, Kurosawa T, Hao Y, Isaji T, Tadano T, Narimatsu H, Taniguchi N, Gu J. Alpha1,6-fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype: importance of the balance between the dopamine and serotonin systems. J Biol Chem 2011; 286:18434-43. [PMID: 21471224 DOI: 10.1074/jbc.m110.172536] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported that α1,6-fucosyltransferase (Fut8)-deficient (Fut8(-/-)) mice exhibit emphysema-like changes in the lung and severe growth retardation due to dysregulation of TGF-β1 and EGF receptors and to abnormal integrin activation, respectively. To study the role of α1,6-fucosylation in brain tissue where Fut8 is highly expressed, we examined Fut8(-/-) mice using a combination of neurological and behavioral tests. Fut8(-/-) mice exhibited multiple behavioral abnormalities consistent with a schizophrenia-like phenotype. Fut8(-/-) mice displayed increased locomotion compared with wild-type (Fut8(+/+)) and heterozygous (Fut8(+/-)) mice. In particular, Fut8(-/-) mice showed strenuous hopping behavior in a novel environment. Working memory performance was impaired in Fut8(-/-) mice as evidenced by the Y-maze tests. Furthermore, Fut8(-/-) mice showed prepulse inhibition (PPI) deficiency. Intriguingly, although there was no significant difference between Fut8(+/+) and Fut8(+/-) mice in the PPI test under normal conditions, Fut8(+/-) mice showed impaired PPI after exposure to a restraint stress. This result suggests that reduced expression of Fut8 is a plausible cause of schizophrenia and related disorders. The levels of serotonin metabolites were significantly decreased in both the striatum and nucleus accumbens of the Fut8(-/-) mice. Likewise, treatment with haloperidol, which is an antipsychotic drug that antagonizes dopaminergic and serotonergic receptors, significantly reduced hopping behaviors. The present study is the first to clearly demonstrate that α1,6-fucosylation plays an important role in the brain, and that it might be related to schizophrenia-like behaviors. Thus, the results of the present study provide new insights into the underlying mechanisms responsible for schizophrenia and related disorders.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Division of Regulatory Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsusima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu RK, Tsai YT, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci 2011; 60:537-544. [PMID: 21937853 PMCID: PMC3684167 DOI: 10.5650/jos.60.537] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nervous system. Heterogeneity and diversity of the structures in their carbohydrate chains are characteristic hallmarks of these lipids; so far, 188 gangliosides with different carbohydrate structures have been identified in vertebrates. The molecular structural complexity increases manifold if one considers heterogeneity in the lipophilic components. The expression levels and patterns of brain gangliosides are known to change drastically during development. In cells, gangliosides are primarily, but not exclusively, localized in the outer leaflets of plasma membranes and are integral components of cell surface microdomains with sphingomyelin and cholesterol from which they participate in cell-cell recognition, adhesion, and signal transduction. In this brief review, we discuss the structures, metabolism and functions of gangliosides.
Collapse
Affiliation(s)
- Robert K Yu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Health Sciences University, Agusta 30912, USA.
| | | | | | | |
Collapse
|
36
|
|
37
|
Petit D, Mir AM, Petit JM, Thisse C, Delannoy P, Oriol R, Thisse B, Harduin-Lepers A. Molecular phylogeny and functional genomics of beta-galactoside alpha2,6-sialyltransferases that explain ubiquitous expression of st6gal1 gene in amniotes. J Biol Chem 2010; 285:38399-414. [PMID: 20855889 DOI: 10.1074/jbc.m110.163931] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sialyltransferases are key enzymes in the biosynthesis of sialoglycoconjugates that catalyze the transfer of sialic residue from its activated form to an oligosaccharidic acceptor. β-Galactoside α2,6-sialyltransferases ST6Gal I and ST6Gal II are the two unique members of the ST6Gal family described in higher vertebrates. The availability of genome sequences enabled the identification of more distantly related invertebrates' st6gal gene sequences and allowed us to propose a scenario of their evolution. Using a phylogenomic approach, we present further evidence of an accelerated evolution of the st6gal1 genes both in their genomic regulatory sequences and in their coding sequence in reptiles, birds, and mammals known as amniotes, whereas st6gal2 genes conserve an ancestral profile of expression throughout vertebrate evolution.
Collapse
Affiliation(s)
- Daniel Petit
- Unité de Génétique Moléculaire Animale, Université de Limoges Faculté des Sciences et Techniques, INRA UMR 1061, 123 Avenue Albert Thomas, 87060 Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu YH, Barnes S, Sun Y, Grabowski GA. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 2010; 51:1643-75. [PMID: 20211931 DOI: 10.1194/jlr.r003996] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review.
Collapse
Affiliation(s)
- You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
39
|
Kim PJ, Lee DY, Jeong H. Centralized modularity of N-linked glycosylation pathways in mammalian cells. PLoS One 2009; 4:e7317. [PMID: 19802388 PMCID: PMC2750756 DOI: 10.1371/journal.pone.0007317] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 09/15/2009] [Indexed: 12/02/2022] Open
Abstract
Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are attached to proteins and lipids. Glycans are involved in fundamental biological processes, including protein folding and clearance, cell proliferation and apoptosis, development, immune responses, and pathogenesis. One of the major types of glycans, N-linked glycans, is formed by sequential attachments of monosaccharides to proteins by a limited number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thereby generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigated the large-scale organization of such N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation pathways are extremely modular, and are composed of cohesive topological modules that directly branch from a common upstream pathway of glycan synthesis. This unique structural property allows the glycan production between modules to be controlled by the upstream region. Although the enzymes act on multiple glycan substrates, indicating cross-talk between modules, the impact of the cross-talk on the module-specific enhancement of glycan synthesis may be confined within a moderate range by transcription-level control. The findings of the present study provide experimentally-testable predictions for glycosylation processes, and may be applicable to therapeutic glycoprotein engineering.
Collapse
Affiliation(s)
- Pan-Jun Kim
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (DYL); (HJ)
| | - Hawoong Jeong
- Institute for the BioCentury, KAIST, Daejeon, South Korea
- Department of Physics, KAIST, Daejeon, South Korea
- * E-mail: (DYL); (HJ)
| |
Collapse
|
40
|
Lehoux S, Groux-Degroote S, Cazet A, Dhaenens CM, Maurage CA, Caillet-Boudin ML, Delannoy P, Krzewinski-Recchi MA. Transcriptional regulation of the human ST6GAL2 gene in cerebral cortex and neuronal cells. Glycoconj J 2009; 27:99-114. [PMID: 19768537 DOI: 10.1007/s10719-009-9260-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/26/2009] [Accepted: 09/01/2009] [Indexed: 11/27/2022]
Abstract
The second human beta-galactoside alpha-2,6-sialyltransferase (hST6Gal II) differs from hST6Gal I, the first member of ST6Gal family, in substrate specificity and tissue expression pattern. While ST6GAL1 gene is expressed in almost all human tissues, ST6GAL2 shows a restricted tissue-specific pattern of expression, mostly expressed in embryonic and adult brain. In order to understand the mechanisms involved in the transcriptional regulation of ST6GAL2, we first characterized the transcription start sites (TSS) in SH-SY5Y neuroblastoma cells. 5' RACE experiments revealed multiple TSS located on three first alternative 5' exons, termed EX, EY and EZ, which are unusually close on the genomic sequence and are all located more than 42 kbp upstream of the first common coding exon. Using Taqman duplex Q-PCR, we showed that the ST6GAL2 transcripts initiated by EX or EY are mainly expressed in both brain-related cell lines and human cerebral cortex, testifying for the use of a similar transcriptional regulation in vivo. Furthermore, we also showed for the first time hST6Gal II protein expression in the different lobes of the human cortex. Luciferase reporter assays allowed us to define two sequences upstream EX and EY with a high and moderate promoter activity, respectively. Bioinformatics analysis and site-directed mutagenesis showed that NF-kappaB and NRSF are likely to act as transcriptional repressors, whereas neuronal-related development factors Sox5, Puralpha and Olf1, are likely to act as transcriptional activators of ST6GAL2. This suggests that ST6GAL2 transcription could be potentially activated for specific neuronal functions.
Collapse
Affiliation(s)
- Sylvain Lehoux
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shiozaki K, Koseki K, Yamaguchi K, Shiozaki M, Narimatsu H, Miyagi T. Developmental change of sialidase neu4 expression in murine brain and its involvement in the regulation of neuronal cell differentiation. J Biol Chem 2009; 284:21157-64. [PMID: 19506080 DOI: 10.1074/jbc.m109.012708] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sialidase Neu4 is reported to be dominantly expressed in the mouse brain, but its functional significance is not fully understood. We previously demonstrated that sialidase Neu3, also rich in mouse brain, is up-regulated during neuronal differentiation with involvement in acceleration of neurite formation. To elucidate physiological functions of Neu4, as well as Neu3, we determined expression during mouse brain development by quantitative RT-PCR. Expression was relatively low in the embryonic stage and then rapidly increased at 3-14 days after birth, whereas Neu3 demonstrated high levels in the embryonic stage and down-regulation after birth. Murine Neu4 was found to possess two isoforms differing in expression levels, developmental pattern, and enzymatic character. Distinct from the human isoforms, the murine forms, to a different extent, both catalyzed the removal of sialic acid from gangliosides as well as glycoproteins, and one isoform seemed to act on polysialylated NCAM efficiently, despite the low activity toward ordinary substrates. In situ hybridization demonstrated Neu4 mRNA to be present mainly in the hippocampus in which NCAM is rich and decreases after birth. During retinoic acid-induced differentiation, Neu4 expression was down-regulated in Neuro2a cells. Overexpression of Neu4 resulted in suppression of neurite formation, and its knockdown showed the acceleration. Thin layer chromatography of the glycolipids from Neu4-transfected cells showed ganglioside compositions to be only slightly affected, although lectin blot analysis revealed increased binding to Ricinus communis agglutinin (RCA) lectin of a approximately 95-kDa glycoprotein, which decreased with cell differentiation. These results suggest that mouse Neu4 plays an important regulatory role in neurite formation, possibly through desialylation of glycoproteins.
Collapse
Affiliation(s)
- Kazuhiro Shiozaki
- Division of Biochemistry, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Martino S, di Girolamo I, Cavazzin C, Tiribuzi R, Galli R, Rivaroli A, Valsecchi M, Sandhoff K, Sonnino S, Vescovi A, Gritti A, Orlacchio A. Neural precursor cell cultures from GM2 gangliosidosis animal models recapitulate the biochemical and molecular hallmarks of the brain pathology. J Neurochem 2009; 109:135-47. [PMID: 19166507 DOI: 10.1111/j.1471-4159.2009.05919.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work we showed that genotype-related patterns of hexosaminidase activity, isoenzyme composition, gene expression and ganglioside metabolism observed during embryonic and postnatal brain development are recapitulated during the progressive stages of neural precursor cell (NPC) differentiation to mature glia and neurons in vitro. Further, by comparing NPCs and their differentiated progeny established from Tay-Sachs (TS) and Sandhoff (SD) animal models with the wild-type counterparts, we studied the events linking the accumulation of undegraded substrates to hexosaminidase activity. We showed that similarly to what observed in brain tissues in TS NPCs and progeny, the stored GM2 was partially converted by sialidase to GA2, which can be then degraded in the lysosomes to its components. The latter can be used in a salvage pathway for the formation of GM3. Interestingly, results obtained from ganglioside feeding assays and from measurement of lysosomal sialidase activity suggest that a similar pathway might work also in the SD model.
Collapse
Affiliation(s)
- Sabata Martino
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, Università di Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yagi H, Kato K. Multidimensional HPLC mapping method for the structural analysis of anionic N-glycans. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Yu RK, Nakatani Y, Yanagisawa M. The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 2008; 50 Suppl:S440-5. [PMID: 18845618 DOI: 10.1194/jlr.r800028-jlr200] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycosphingolipids (GSLs) are amphipathic lipids ubiquitously expressed in all vertebrate cells and body fluids, but they are especially abundant in the nervous system. The synthesis of GSLs generally is initiated in the endoplasmic reticulum and completed in the Golgi apparatus, followed by transportation to the plasma membrane surface as an integral component. The amount and expression patterns of GSLs change drastically in brains during the embryonic to postnatal stages. Recent studies have revealed that GSLs are highly localized in cell surface microdomains and function as important components that mediate signal transduction and cell adhesion. Also in developing brains, GSLs are suggested to play important roles in nervous system formation. Disturbance of GSL expression and metabolism affects brain function, resulting in a variety of diseases, particularly lysosomal storage diseases. In this review, we describe some aspects of the roles of GSLs, especially of gangliosides, in brain development.
Collapse
Affiliation(s)
- Robert K Yu
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.
| | | | | |
Collapse
|
45
|
Human fucosyltransferase IX: Specificity towards N-linked glycoproteins and relevance of the cytoplasmic domain in intra-Golgi localization. Biochimie 2008; 90:1279-90. [DOI: 10.1016/j.biochi.2008.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 03/05/2008] [Indexed: 11/17/2022]
|
46
|
Muinelo-Romay L, Vázquez-Martín C, Villar-Portela S, Cuevas E, Gil-Martín E, Fernández-Briera A. Expression and enzyme activity of alpha(1,6)fucosyltransferase in human colorectal cancer. Int J Cancer 2008; 123:641-6. [PMID: 18491404 DOI: 10.1002/ijc.23521] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Changes in enzyme activity and the expression levels of alpha(1,6)fucosyltransferase [alpha(1,6)FT] have been reported in certain types of malignant transformations. To develop a better understanding of the role of alpha(1,6)FT in human colorectal carcinoma (CRC), we analysed the enzyme activity in healthy and tumour tissues. alpha(1,6)FT activity was considerably higher in tumour tissue than in healthy tissue and was related to gender, lymph node metastasis, type of growth and tumour stage. We also observed a significant increase in the alpha(1,6)FT expression in tumour tissues as compared to healthy and transitional tissues, inflammatory lesions and adenomas. The immunohistochemical expression in tumour tissues was correlated with the degree of infiltration through the intestinal wall. Finally, a statistical correlation was found between enzyme activity and expression obtained by Western blot in colorectal tumours when compared in the same patient. All these findings demonstrate an alteration of alpha(1,6)FT activity and expression in CRC.
Collapse
Affiliation(s)
- Laura Muinelo-Romay
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Nairn AV, York WS, Harris K, Hall EM, Pierce JM, Moremen KW. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J Biol Chem 2008; 283:17298-313. [PMID: 18411279 DOI: 10.1074/jbc.m801964200] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycan structures covalently attached to proteins and lipids play numerous roles in mammalian cells, including protein folding, targeting, recognition, and adhesion at the molecular or cellular level. Regulating the abundance of glycan structures on cellular glycoproteins and glycolipids is a complex process that depends on numerous factors. Most models for glycan regulation hypothesize that transcriptional control of the enzymes involved in glycan synthesis, modification, and catabolism determines glycan abundance and diversity. However, few broad-based studies have examined correlations between glycan structures and transcripts encoding the relevant biosynthetic and catabolic enzymes. Low transcript abundance for many glycan-related genes has hampered broad-based transcript profiling for comparison with glycan structural data. In an effort to facilitate comparison with glycan structural data and to identify the molecular basis of alterations in glycan structures, we have developed a medium-throughput quantitative real time reverse transcriptase-PCR platform for the analysis of transcripts encoding glycan-related enzymes and proteins in mouse tissues and cells. The method employs a comprehensive list of >700 genes, including enzymes involved in sugar-nucleotide biosynthesis, transporters, glycan extension, modification, recognition, catabolism, and numerous glycosylated core proteins. Comparison with parallel microarray analyses indicates a significantly greater sensitivity and dynamic range for our quantitative real time reverse transcriptase-PCR approach, particularly for the numerous low abundance glycan-related enzymes. Mapping of the genes and transcript levels to their respective biosynthetic pathway steps allowed a comparison with glycan structural data and provides support for a model where many, but not all, changes in glycan abundance result from alterations in transcript expression of corresponding biosynthetic enzymes.
Collapse
Affiliation(s)
- Alison V Nairn
- Complex Carbohydrate Research Center and the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
48
|
Ishii A, Ikenaka K, Pfeiffer SE. The N-glycan profile of mouse myelin, a specialized central nervous system membrane. J Neurochem 2008; 103 Suppl 1:25-31. [PMID: 17986136 DOI: 10.1111/j.1471-4159.2007.04823.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the rich complement of sugar chains found in cellular membranes is impeded by the complexity of cell types and membrane diversity. To overcome this, we have analyzed the N-linked sugar chain composition of the glycoproteins of CNS myelin, an elaboration of the plasma membranes of oligodendrocytes (OLs) that result in a multilamellar wrapping of neuronal axons, facilitating nerve conduction with dramatic savings of space and energy. Due to an usually high lipid to protein ratio, myelin can be separated readily from other heavier membranes on sucrose gradients and further fractionated into subdomains related to myelin structure and function, including compact myelin and myelin-associated axolemmal membrane (Menon et al. 2003). We analyzed these fractions for N-linked sugar chains, using 2D HPLC following hydrazinolysis and pyridylamination. Our results indicate that compared with total brain homogenate, the amount of N-glycans is 1.3-fold higher in the myelin-associated axolemmal membranes, but it is 0.5-fold less in CM. M5 [Manalpha1-3((Manalpha1-3)(Manalpha1-6)Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc] is the most abundant sugar chain in total brain homogenate, compact myelin, and myelin-associated axolemma, constituting approximately 20% of sugar chains. Although the types of sugar chains are similar among the fractions, their expression levels vary significantly. In addition to high mannose type oligosaccharides, the core fucosylated, biantennary N-glycans with bisecting N-acetylglucosamine (GlcNAc) residue, A2G1(3)FB [Galbeta1-4GlcNAcbeta1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc], A2G1(6)FB [GlcNAcbeta1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4 (Fucalpha1-6)GlcNAc] and BA-1 [Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc], and A1(6)G0F [Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6) GlcNAc] are also present in relatively large proportions in compact myelin. We suggest that these differences may be related to myelin-axolemmal function.
Collapse
Affiliation(s)
- Akihiro Ishii
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | | | | |
Collapse
|
49
|
Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK. Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 2007; 103:2327-41. [PMID: 17883393 DOI: 10.1111/j.1471-4159.2007.04910.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosphingolipids (GSLs) and their sialic acid-containing derivatives, gangliosides, are important cellular components and are abundant in the nervous system. They are known to undergo dramatic changes during brain development. However, knowledge on the mechanisms underlying their qualitative and qualitative changes is still fragmentary. In this investigation, we have provided a detailed study on the developmental changes of the expression patterns of GSLs, GM3, GM1, GD3, GD1a, GD2, GD1b, GT1b, GQ1b, A2B5 antigens (c-series gangliosides such as GT3 and GQ1c), Chol-1alpha (GT1aalpha and GQ1balpha), glucosylceramide, galactosylceramide (O1 antigen), sulfatide (O4 antigen), stage-specific embryonic antigen-1 (Lewis x) glycolipids, and human natural killer-1 glycolipid (sulfoglucuronosyl paragloboside) in developing mouse brains [embryonic day 12 (E12) to adult]. In E12-E14 brains, GD3 was a predominant ganglioside. After E16, the concentrations of GD3 and GM3 markedly decreased, and the concentrations of a-series gangliosides, such as GD1a, increased. GT3, glucosylceramide, and stage-specific embryonic antigen-1 were expressed in embryonic brains. Human natural killer-1 glycolipid was expressed transiently in embryonic brains. On the other hand, Chol-1alpha, galactosylceramide, and sulfatide were exclusively found after birth. To provide a better understanding of the metabolic basis for these changes, we analyzed glycogene expression patterns in the developing brains and found that GSL expression is regulated primarily by glycosyltransferases, and not by glycosidases. In parallel studies using primary neural precursor cells in culture as a tool for studying developmental events, dramatic changes in ganglioside and glycosyltransferase gene expression were also detected in neurons induced to differentiate from neural precursor cells, including the expression of GD3, followed by up-regulation of complex a- and b-series gangliosides. These changes in cell culture systems resemble that occurring in brain. We conclude that the dramatic changes in GSL pattern and content can serve as useful markers in neural development and that these changes are regulated primarily at the level of glycosyltransferase gene expression.
Collapse
Affiliation(s)
- Sathaporn Ngamukote
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|