1
|
Huang C, Honda A, Suzuki T. Free oligosaccharides in serum. BBA ADVANCES 2025; 7:100139. [PMID: 39897077 PMCID: PMC11786756 DOI: 10.1016/j.bbadva.2025.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Glycans are sugars/sugar chains that are usually linked to proteins or lipids. The attachment of glycans often results in alterations of physicochemical/physiological properties of the carrier molecules, e.g., glycosylation of proteins can modulate their fate, intracellular localization, or interaction with cells/other proteins. On the other hand, unconjugated N-glycans (free N-glycans; FNGs) have been identified in the cytosol of eukaryotic cells. The processing pathway of intracellular FNGs has been clarified in recent years, but their biological functions remain unclear. Free oligosaccharides have also been identified in the sera of various animals. Structurally, these extracellular free glycans can be classified into three types: sialyl FNGs, oligomannose-type FNGs, and sialyl lactose/N-acetyllactosamine-type glycans. The extracellular FNGs show different structural features from intracellular FNGs, implying that their mechanism of formation is distinct. This mini-review summarizes current knowledge about the structures and formation mechanisms of free oligosaccharides in serum, and suggests their possible biological functions.
Collapse
Affiliation(s)
- Chengcheng Huang
- Chemical Glycobiology Laboratory, Institute for Glyco-core (iGOCRE), Tokai National Higher Education and Research System Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Akinobu Honda
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Sugiura K, Kawai Y, Yamamoto A, Yoshioka H, Kiyohara Y, Iida A, Ozawa Y, Nishikawa M, Miura N, Hanamatsu H, Furukawa JI, Shinohara Y. Exposure to brefeldin A induces unusual expression of hybrid- and complex-type free N-glycans in HepG2 cells. Biochim Biophys Acta Gen Subj 2023; 1867:130331. [PMID: 36804277 DOI: 10.1016/j.bbagen.2023.130331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
This study determined the effect of brefeldin A (BFA) on the free N-glycomic profile of HepG2 cells to better understand the effect of blocking intracellular vesicle formation and transport of proteins from the endoplasmic reticulum to the Golgi apparatus. A series of exoglycosidase- and endoglycosidase-assisted analyses clarified the complex nature of altered glycomic profiles. A key feature of BFA-mediated alterations in Gn2-type glycans was the expression of unusual hybrid-, monoantennary- and complex-type free N-glycans (FNGs). BFA-mediated alterations in Gn1-type glycans were characterized by the expression of unusual hybrid- and monoantennary-FNGs, without significant expression of complex-type FNGs. A time course analysis revealed that sialylated hybrid- and complex-type Gn2-type FNGs were generated later than asialo-Gn2-type FNGs, and the expression profiles of Gn2-type FNGs and N-glycans were found to be similar, suggesting that the metabolic flux of FNGs is the same as that of protein-bound N-glycans. Subcellular glycomic analysis revealed that almost all FNGs were detected in the cytoplasmic extracts. Our data suggest that hybrid-, monoantennary- and complex-type Gn2-type FNGs were cleaved from glycoproteins in the cytosol by cytosolic PNGase, and subsequently digested by cytosolic endo-β-N-acetylglucosaminidase (ENGase) to generate Gn1-type FNGs. The substrate specificity of ENGase explains the limited expression of complex Gn1 type FNGs.
Collapse
Affiliation(s)
- Kanako Sugiura
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yuho Kawai
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Arisa Yamamoto
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Yuika Kiyohara
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Ayaka Iida
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yurika Ozawa
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Mai Nishikawa
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Hisatoshi Hanamatsu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Yasuro Shinohara
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan; Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya 463-8521, Japan.
| |
Collapse
|
3
|
Morikawa C, Sugiura K, Kondo K, Yamamoto Y, Kojima Y, Ozawa Y, Yoshioka H, Miura N, Piao J, Okada K, Hanamatsu H, Tsuda M, Tanaka S, Furukawa JI, Shinohara Y. Evaluation of the context of downstream N- and free N-glycomic alterations induced by swainsonine in HepG2 cells. Biochim Biophys Acta Gen Subj 2022; 1866:130168. [PMID: 35594965 DOI: 10.1016/j.bbagen.2022.130168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
Swainsonine (SWA), a potent inhibitor of class II α-mannosidases, is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. The mechanisms underlying SWA-induced animal poisoning are not fully understood. In this study, we analyzed the alterations that occur in N- and free N-glycomic upon addition of SWA to HepG2 cells to understand better SWA-induced glycomic alterations. After SWA addition, we observed the appearance of SWA-specific glycomic alterations, such as unique fucosylated hybrid-type and fucosylated M5 (M5F) N-glycans, and a remarkable increase in all classes of Gn1 FNGs. Further analysis of the context of these glycomic alterations showed that (fucosylated) hybrid type N-glycans were not the precursors of these Gn1 FNGs and vice versa. Time course analysis revealed the dynamic nature of glycomic alterations upon exposure of SWA and suggested that accumulation of free N-glycans occurred earlier than that of hybrid-type N-glycans. Hybrid-type N-glycans, of which most were uniquely core fucosylated, tended to increase slowly over time, as was observed for M5F N-glycans. Inhibition of swainsonine-induced unique fucosylation of hybrid N-glycans and M5 by coaddition of 2-fluorofucose caused significant increases in paucimannose- and fucosylated paucimannose-type N-glycans, as well as paucimannose-type free N-glycans. The results not only revealed the gross glycomic alterations in HepG2 cells induced by swainsonine, but also provide information on the global interrelationships between glycomic alterations.
Collapse
Affiliation(s)
- Chie Morikawa
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Kanako Sugiura
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Keina Kondo
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yurie Yamamoto
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yuma Kojima
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yurika Ozawa
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Jinhua Piao
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Kazue Okada
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan.
| |
Collapse
|
4
|
Miao X, Wu J, Chen H, Lu G. Comprehensive Analysis of the Structure and Function of Peptide:N-Glycanase 1 and Relationship with Congenital Disorder of Deglycosylation. Nutrients 2022; 14:nu14091690. [PMID: 35565658 PMCID: PMC9102325 DOI: 10.3390/nu14091690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
The cytosolic PNGase (peptide:N-glycanase), also known as peptide-N4-(N-acetyl-β-glucosaminyl)-asparagine amidase, is a well-conserved deglycosylation enzyme (EC 3.5.1.52) which catalyzes the non-lysosomal hydrolysis of an N(4)-(acetyl-β-d-glucosaminyl) asparagine residue (Asn, N) into a N-acetyl-β-d-glucosaminyl-amine and a peptide containing an aspartate residue (Asp, D). This enzyme (NGLY1) plays an essential role in the clearance of misfolded or unassembled glycoproteins through a process named ER-associated degradation (ERAD). Accumulating evidence also points out that NGLY1 deficiency can cause an autosomal recessive (AR) human genetic disorder associated with abnormal development and congenital disorder of deglycosylation. In addition, the loss of NGLY1 can affect multiple cellular pathways, including but not limited to NFE2L1 pathway, Creb1/Atf1-AQP pathway, BMP pathway, AMPK pathway, and SLC12A2 ion transporter, which might be the underlying reasons for a constellation of clinical phenotypes of NGLY1 deficiency. The current comprehensive review uncovers the NGLY1’ssdetailed structure and its important roles for participation in ERAD, involvement in CDDG and potential treatment for NGLY1 deficiency.
Collapse
Affiliation(s)
- Xiangguang Miao
- Queen Mary School, Nanchang University, No. 1299 Xuefu Avenue, Honggutan New District, Nanchang 330036, China;
| | - Jin Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang 330006, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| | - Guanting Lu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| |
Collapse
|
5
|
Maia N, Potelle S, Yildirim H, Duvet S, Akula SK, Schulz C, Wiame E, Gheldof A, O'Kane K, Lai A, Sermon K, Proisy M, Loget P, Attié-Bitach T, Quelin C, Fortuna AM, Soares AR, de Brouwer APM, Van Schaftingen E, Nassogne MC, Walsh CA, Stouffs K, Jorge P, Jansen AC, Foulquier F. Impaired catabolism of free oligosaccharides due to MAN2C1 variants causes a neurodevelopmental disorder. Am J Hum Genet 2022; 109:345-360. [PMID: 35045343 PMCID: PMC8874227 DOI: 10.1016/j.ajhg.2021.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023] Open
Abstract
Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.
Collapse
Affiliation(s)
- Nuno Maia
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Sven Potelle
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Hamide Yildirim
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sandrine Duvet
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Celine Schulz
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Elsa Wiame
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Alexander Gheldof
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Katherine O'Kane
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Abbe Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen Sermon
- Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Maïa Proisy
- CHU Brest, Radiology Department, Brest University, 29609 Brest Cedex, France
| | - Philippe Loget
- Department of Pathology, Rennes University Hospital, 35000 Rennes, France
| | - Tania Attié-Bitach
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France; Université de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Chloé Quelin
- Clinical Genetics Department, Rennes University Hospital, 35000 Rennes, France
| | - Ana Maria Fortuna
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Rita Soares
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 Nijmegen, the Netherlands
| | - Emile Van Schaftingen
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Marie-Cécile Nassogne
- Department of Pediatric Neurology, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; Institute Of NeuroScience, Clinical Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Katrien Stouffs
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Paula Jorge
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, 1090 Brussels, Belgium.
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France.
| |
Collapse
|
6
|
Fujitani N, Ariki S, Hasegawa Y, Uehara Y, Saito A, Takahashi M. Integrated Structural Analysis of N-Glycans and Free Oligosaccharides Allows for a Quantitative Evaluation of ER Stress. Biochemistry 2021; 60:1708-1721. [PMID: 33983715 DOI: 10.1021/acs.biochem.0c00969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress has been reported in a variety of diseases. Although ER stress can be detected using specific markers, it is still difficult to quantitatively evaluate the degree of stress and to identify the cause of the stress. The ER is the primary site for folding of secretory or transmembrane proteins as well as the site where glycosylation is initiated. This study therefore postulates that tracing the biosynthetic pathway of asparagine-linked glycans (N-glycans) would be a reporter for reflecting the state of the ER and serve as a quantitative descriptor of ER stress. Glycoblotting-assisted mass spectrometric analysis of the HeLa cell line enabled quantitative determination of the changes in the structures of N-glycans and degraded free oligosaccharides (fOSs) in response to tunicamycin- or thapsigargin-induced ER stress. The integrated analysis of neutral and sialylated N-glycans and fOSs showed the potential to elucidate the cause of ER stress, which cannot be readily done by protein markers alone. Changes in the total amount of glycans, increase in the ratio of high-mannose type N-glycans, increase in fOSs, and changes in the ratio of sialylated N-glycans in response to ER stress were shown to be potential descriptors of ER stress. Additionally, drastic clearance of accumulated N-glycans was observed in thapsigargin-treated cells, which may suggest the observation of ER stress-mediated autophagy or ER-phagy in terms of glycomics. Quantitative analysis of N-glycoforms composed of N-glycans and fOSs provides the dynamic indicators reflecting the ER status and the promising strategies for quantitative evaluation of ER stress.
Collapse
Affiliation(s)
- Naoki Fujitani
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.,Department of Chemistry, Sapporo Medical University Center for Medical Education, Sapporo 060-8556, Japan
| | - Yoshihiro Hasegawa
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.,Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Yasuaki Uehara
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.,Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
7
|
Yamasaki T, Kohda D. Uncoupling the hydrolysis of lipid-linked oligosaccharide from the oligosaccharyl transfer reaction by point mutations in yeast oligosaccharyltransferase. J Biol Chem 2020; 295:16072-16085. [PMID: 32938717 PMCID: PMC7681024 DOI: 10.1074/jbc.ra120.015013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Indexed: 11/06/2022] Open
Abstract
Oligosaccharyltransferase (OST) is responsible for the first step in the N-linked glycosylation, transferring an oligosaccharide chain onto asparagine residues to create glycoproteins. In the absence of an acceptor asparagine, OST hydrolyzes the oligosaccharide donor, releasing free N-glycans (FNGs) into the lumen of the endoplasmic reticulum (ER). Here, we established a purification method for mutated OSTs using a high-affinity epitope tag attached to the catalytic subunit Stt3, from yeast cells co-expressing the WT OST to support growth. The purified OST protein with mutations is useful for wide-ranging biochemical experiments. We assessed the effects of mutations in the Stt3 subunit on the two enzymatic activities in vitro, as well as their effects on the N-glycan attachment and FNG content levels in yeast cells. We found that mutations in the first DXD motif increased the FNG generation activity relative to the oligosaccharyl transfer activity, both in vitro and in vivo, whereas mutations in the DK motif had the opposite effect; the decoupling of the two activities may facilitate future deconvolution of the reaction mechanism. The isolation of the mutated OSTs also enabled us to identify different enzymatic properties in OST complexes containing either the Ost3 or Ost6 subunit and to find a 15-residue peptide as a better-quality substrate than shorter peptides. This toolbox of mutants, substrates, and methods will be useful for investigations of the molecular basis and physiological roles of the OST enzymes in yeast and other organisms.
Collapse
Affiliation(s)
- Takahiro Yamasaki
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Hirayama H, Matsuda T, Tsuchiya Y, Oka R, Seino J, Huang C, Nakajima K, Noda Y, Shichino Y, Iwasaki S, Suzuki T. Free glycans derived from O-mannosylated glycoproteins suggest the presence of an O-glycoprotein degradation pathway in yeast. J Biol Chem 2019; 294:15900-15911. [PMID: 31311856 DOI: 10.1074/jbc.ra119.009491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, unconjugated oligosaccharides that are structurally related to N-glycans (i.e. free N-glycans) are generated either from misfolded N-glycoproteins destined for the endoplasmic reticulum-associated degradation or from lipid-linked oligosaccharides, donor substrates for N-glycosylation of proteins. The mechanism responsible for the generation of free N-glycans is now well-understood, but the issue of whether other types of free glycans are present remains unclear. Here, we report on the accumulation of free, O-mannosylated glycans in budding yeast that were cultured in medium containing mannose as the carbon source. A structural analysis of these glycans revealed that their structures are identical to those of O-mannosyl glycans that are attached to glycoproteins. Deletion of the cyc8 gene, which encodes for a general transcription repressor, resulted in the accumulation of excessive amounts of free O-glycans, concomitant with a severe growth defect, a reduction in the level of an O-mannosylated protein, and compromised cell wall integrity. Our findings provide evidence in support of a regulated pathway for the degradation of O-glycoproteins in yeast and offer critical insights into the catabolic mechanisms that control the fate of O-glycosylated proteins.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Tsugiyo Matsuda
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yae Tsuchiya
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Ritsuko Oka
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kazuki Nakajima
- Department of Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoichi Noda
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis. Proc Natl Acad Sci U S A 2018; 115:9557-9562. [PMID: 30181269 DOI: 10.1073/pnas.1806034115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oligosaccharyltransferases (OSTs) N-glycosylate proteins by transferring oligosaccharides from lipid-linked oligosaccharides (LLOs) to asparaginyl residues of Asn-Xaa-Ser/Thr acceptor sequons. Mammals have OST isoforms with STT3A or STT3B catalytic subunits for cotranslational or posttranslational N-glycosylation, respectively. OSTs also hydrolyze LLOs, forming free oligosaccharides (fOSs). It has been unclear whether hydrolysis is due to one or both OSTs, segregated from N-glycosylation, and/or regulated. Transfer and hydrolysis were assayed in permeabilized HEK293 kidney and Huh7.5.1 liver cells lacking STT3A or STT3B. Transfer by both STT3A-OST and STT3B-OST with synthetic acceptors was robust. LLO hydrolysis by STT3B-OST was readily detected and surprisingly modulated: Without acceptors, STT3B-OST hydrolyzed Glc3Man9GlcNAc2-LLO but not Man9GlcNAc2-LLO, yet it hydrolyzed both LLOs with acceptors present. In contrast, LLO hydrolysis by STT3A-OST was negligible. STT3A-OST however may be regulatory, because it suppressed STT3B-OST-dependent fOSs. TREX1, a negative innate immunity factor that diminishes immunogenic fOSs derived from LLOs, acted through STT3B-OST as well. In summary, only STT3B-OST hydrolyzes LLOs, depending upon LLO quality and acceptor site occupancy. TREX1 and STT3A suppress STT3B-OST-dependent fOSs. Without strict kinetic limitations during posttranslational N-glycosylation, STT3B-OST can thus moonlight for LLO hydrolysis. In contrast, the STT3A-OST/translocon complex preserves LLOs for temporally fastidious cotranslational N-glycosylation.
Collapse
|
10
|
Ishii N, Sunaga C, Sano K, Huang C, Iino K, Matsuzaki Y, Suzuki T, Matsuo I. A New Fluorogenic Probe for the Detection of endo-β-N-Acetylglucosaminidase. Chembiochem 2018; 19:660-663. [PMID: 29323460 DOI: 10.1002/cbic.201700662] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 01/31/2023]
Abstract
We developed a fluorescence-quenching-based assay system to determine the hydrolysis activity of endo-β-N-acetylglucosaminidases (ENGases). The pentasaccharide derivative 1 was labeled with an N-methylanthraniloyl group as a reporter dye at the non-reducing end and with a 2,4-dinitrophenyl group as a quencher molecule at the reducing end. This derivative is hydrolyzed by ENGase, resulting in an increase in fluorescence intensity. Thus, the fluorescence signal is directly proportional to the amount of the tetrasaccharide derivative, hence allowing ENGase activity to be evaluated easily and quantitatively. Using this system, we succeeded in measuring the hydrolysis activities of ENGases and thus the inhibitory activities of known inhibitors. We confirmed that this assay system is suitable for high-throughput screening for potential inhibitors of human ENGase that might serve as therapeutic agents for the treatment of N-glycanase 1 (NGLY1) deficiency.
Collapse
Affiliation(s)
- Nozomi Ishii
- Department Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Chie Sunaga
- Department Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kanae Sano
- Department Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Chengcheng Huang
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan
| | - Kenta Iino
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Yuji Matsuzaki
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan
| | - Ichiro Matsuo
- Department Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
11
|
Kohda D. Structural Basis of Protein Asn-Glycosylation by Oligosaccharyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:171-199. [PMID: 30484249 DOI: 10.1007/978-981-13-2158-0_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Glycosylation of asparagine residues is a ubiquitous protein modification. This N-glycosylation is essential in Eukaryotes, but principally nonessential in Prokaryotes (Archaea and Eubacteria), although it facilitates their survival and pathogenicity. In many reviews, Archaea have received far less attention than Eubacteria, but this review will cover the N-glycosylation in the three domains of life. The oligosaccharide chain is preassembled on a lipid-phospho carrier to form a donor substrate, lipid-linked oligosaccharide (LLO). The en bloc transfer of an oligosaccharide from LLO to selected Asn residues in the Asn-X-Ser/Thr (X≠Pro) sequons in a polypeptide chain is catalyzed by a membrane-bound enzyme, oligosaccharyltransferase (OST). Over the last 10 years, the three-dimensional structures of the catalytic subunits of the Stt3/AglB/PglB proteins, with an acceptor peptide and a donor LLO, have been determined by X-ray crystallography, and recently the complex structures with other subunits have been determined by cryo-electron microscopy . Structural comparisons within the same species and across the different domains of life yielded a unified view of the structures and functions of OSTs. A catalytic structure in the TM region accounts for the amide bond twisting, which increases the reactivity of the side-chain nitrogen atom of the acceptor Asn residue in the sequon. The Ser/Thr-binding pocket in the C-terminal domain explains the requirement for hydroxy amino acid residues in the sequon. As expected, the two functional structures are formed by the involvement of short amino acid motifs conserved across the three domains of life.
Collapse
Affiliation(s)
- Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
12
|
Kong J, Peng M, Ostrovsky J, Kwon YJ, Oretsky O, McCormick EM, He M, Argon Y, Falk MJ. Mitochondrial function requires NGLY1. Mitochondrion 2017; 38:6-16. [PMID: 28750948 DOI: 10.1016/j.mito.2017.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/05/2023]
Abstract
Mitochondrial respiratory chain (RC) diseases and congenital disorders of glycosylation (CDG) share extensive clinical overlap but are considered to have distinct cellular pathophysiology. Here, we demonstrate that an essential physiologic connection exists between cellular N-linked deglycosylation capacity and mitochondrial function. Following identification of altered muscle and liver mitochondrial amount and function in two children with a CDG subtype caused by NGLY1 deficiency, we evaluated mitochondrial physiology in NGLY1 disease human fibroblasts, and in NGLY1-knockout mouse embryonic fibroblasts and C. elegans. Across these distinct evolutionary models of cytosolic NGLY1 deficiency, a consistent disruption of mitochondrial physiology was present involving modestly reduced mitochondrial content with more pronounced impairment of mitochondrial membrane potential, increased mitochondrial matrix oxidant burden, and reduced cellular respiratory capacity. Lentiviral rescue restored NGLY1 expression and mitochondrial physiology in human and mouse fibroblasts, confirming that NGLY1 directly influences mitochondrial function. Overall, cellular deglycosylation capacity is shown to be a significant factor in mitochondrial RC disease pathogenesis across divergent evolutionary species.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Min Peng
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julian Ostrovsky
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Young Joon Kwon
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Olga Oretsky
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth M McCormick
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miao He
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Occurrence of complex type free N-glycans with a single GlcNAc residue at the reducing termini in the fresh-water plant, Egeria densa. Glycoconj J 2017; 34:229-240. [DOI: 10.1007/s10719-016-9758-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/26/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
14
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
15
|
N-Glycosylation influences transport, but not cellular trafficking, of a neuronal amino acid transporter SNAT1. Biochem J 2016; 473:4227-4242. [DOI: 10.1042/bcj20160724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 11/17/2022]
Abstract
SNAT1 is a system N/A neutral amino acid transporter that primarily expresses in neurons and mediates the transport of l-glutamine (Gln). Gln is an important amino acid involved in multiple cellular functions and also is a precursor for neurotransmitters, glutamate and GABA. In the present study, we demonstrated that SNAT1 is an N-glycoprotein expressed in neurons. We identified three glycosylation sites at asparagine residues 251, 257 and 310 in SNAT1 protein, and that the first two are the primary sites. The biotinylation and confocal immunofluorescence analysis showed that the glycosylation-impaired mutants and deglycosylated SNAT1 were equally capable of expressing on the cell surface. However, l-Gln and 3H-labeled methyl amino isobutyrate (MeAIB) was significantly compromised in N-glycosylation-impaired mutants and deglycosylated SNAT1 when compared with the wild-type control. Taken together, these results suggest that SNAT1 is an N-glycosylated protein with three de novo glycosylation sites and N-glycosylation of SNAT1 may play an important role in the transport of substrates across the cell membrane.
Collapse
|
16
|
Seino J, Fujihira H, Nakakita SI, Masahara-Negishi Y, Miyoshi E, Hirabayashi J, Suzuki T. Occurrence of free sialyl oligosaccharides related to N-glycans (sialyl free N-glycans) in animal sera. Glycobiology 2016; 26:1072-1085. [PMID: 27102284 DOI: 10.1093/glycob/cww048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 12/23/2022] Open
Abstract
Free oligosaccharides that are structurally related to N-glycans [free N-glycans (FNGs)] are widely distributed in the cytosol of animal cells. The diverse molecular mechanisms responsible for the formation of these FNGs have been well clarified. In this study we demonstrate the wide occurrence of sialylated FNGs in sera of various animals. The features of these extracellular FNGs are quite distinct from the cytosolic FNGs, as they are Gn2-type glycans, bearing an N,N'-diacetylchitobiose unit at their reducing termini, while the cytosolic FNGs are predominantly Gn1-type, with a single GlcNAc at their reducing termini. The major structures observed varied from species to species, and the structures of the FNGs appear to be correlated with the major sialyl N-glycans on serum glycoproteins, suggesting that the serum FNGs are produced by hepatocytes. Interestingly, glycan-profiles of the FNGs indicated that they are altered in a developmental stage-dependent manner. Sialyl FNGs in the sera may not only be of biological relevance, in that they might reflect the functionality of the liver, but also can be attractive sources for obtaining uniform sialyl FNGs in the chemoenzymatic synthesis of glycoproteins.
Collapse
Affiliation(s)
- Junichi Seino
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shin-Ichi Nakakita
- Division of Functional Glycomics, Life Science Research Center, Institute of Research Promotion, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yuki Masahara-Negishi
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University School of Medicine, 1-7 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jun Hirabayashi
- Division of Functional Glycomics, Life Science Research Center, Institute of Research Promotion, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Katoh T, Katayama T, Tomabechi Y, Nishikawa Y, Kumada J, Matsuzaki Y, Yamamoto K. Generation of a Mutant Mucor hiemalis Endoglycosidase That Acts on Core-fucosylated N-Glycans. J Biol Chem 2016; 291:23305-23317. [PMID: 27629418 DOI: 10.1074/jbc.m116.737395] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
Endo-β-N-acetylglucosaminidase M (Endo-M), an endoglycosidase from the fungus Mucor hiemalis, is a useful tool for chemoenzymatic synthesis of glycoconjugates, including glycoprotein-based therapeutics having a precisely defined glycoform, by virtue of its transglycosylation activity. Although Endo-M has been known to act on various N-glycans, it does not act on core-fucosylated N-glycans, which exist widely in mammalian glycoproteins, thus limiting its application. Therefore, we performed site-directed mutagenesis on Endo-M to isolate mutant enzymes that are able to act on mammalian-type core-α1,6-fucosylated glycans. Among the Endo-M mutant enzymes generated, those in which the tryptophan at position 251 was substituted with alanine or asparagine showed altered substrate specificities. Such mutant enzymes exhibited increased hydrolysis of a synthetic α1,6-fucosylated trimannosyl core structure, whereas their activity on the afucosylated form decreased. In addition, among the Trp-251 mutants, the W251N mutant was most efficient in hydrolyzing the core-fucosylated substrate. W251N mutants could act on the immunoglobulin G-derived core-fucosylated glycopeptides and human lactoferrin glycoproteins. This mutant was also capable of transferring the sialyl glycan from an activated substrate intermediate (sialyl glyco-oxazoline) onto an α1,6-fucosyl-N-acetylglucosaminyl biotin. Furthermore, the W251N mutant gained a glycosynthase-like activity when a N175Q substitution was introduced and it caused accumulation of the transglycosylation products. These findings not only give insights into the substrate recognition mechanism of glycoside hydrolase family 85 enzymes but also widen their scope of application in preparing homogeneous glycoforms of core-fucosylated glycoproteins for the production of potent glycoprotein-based therapeutics.
Collapse
Affiliation(s)
- Toshihiko Katoh
- From the Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan,
| | - Takane Katayama
- From the Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.,the Host-Microbe Interaction Research Laboratory and
| | - Yusuke Tomabechi
- the Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan, and
| | - Yoshihide Nishikawa
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo 114-0003, Japan
| | - Jyunichi Kumada
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo 114-0003, Japan
| | - Yuji Matsuzaki
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo 114-0003, Japan
| | - Kenji Yamamoto
- the Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan, and
| |
Collapse
|
18
|
Dwivedi R, Nothaft H, Reiz B, Whittal RM, Szymanski CM. Generation of free oligosaccharides from bacterial protein N-linked glycosylation systems. Biopolymers 2016; 99:772-83. [PMID: 23749285 DOI: 10.1002/bip.22296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/10/2022]
Abstract
All Campylobacter species are capable of N-glycosylating their proteins and releasing the same oligosaccharides into the periplasm as free oligosaccharides (fOS). Previously, analysis of fOS production in Campylobacter required fOS derivatization or large culture volumes and several chromatography steps prior to fOS analysis. In this study, label-free fOS extraction and purification methods were developed and coupled with quantitative analysis techniques. Our method follows three simple steps: (1) fOS extraction from the periplasmic space, (2) fOS purification using silica gel chromatography followed by porous graphitized carbon purification and (3) fOS analysis and accurate quantitation using a combination of thin-layer chromatography, mass spectrometry, NMR, and high performance anion exchange chromatography with pulsed amperometric detection. We applied our techniques to analyze fOS from C. jejuni, C. lari, C. rectus, and C. fetus fetus that produce different fOS structures. We accurately quantified fOS in Campylobacter species that ranged from 7.80 (±0.84) to 49.82 (±0.46) nmoles per gram of wet cell pellet and determined that the C. jejuni fOS comprises 2.5% of the dry cell weight. In addition, a novel di-phosphorylated fOS species was identified in C. lari. This method provides a sensitive and quantitative method to investigate the genesis, biology and breakdown of fOS in the bacterial N-glycosylation systems.
Collapse
Affiliation(s)
- Ritika Dwivedi
- Alberta Glycomics Center and Department of Biological Sciences, University of Alberta, Canada
| | | | | | | | | |
Collapse
|
19
|
Harada Y, Masahara-Negishi Y, Suzuki T. Cytosolic-free oligosaccharides are predominantly generated by the degradation of dolichol-linked oligosaccharides in mammalian cells. Glycobiology 2015. [DOI: 10.1093/glycob/cwv055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Harada Y, Hirayama H, Suzuki T. Generation and degradation of free asparagine-linked glycans. Cell Mol Life Sci 2015; 72:2509-33. [PMID: 25772500 PMCID: PMC11113800 DOI: 10.1007/s00018-015-1881-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Asparagine (N)-linked protein glycosylation, which takes place in the eukaryotic endoplasmic reticulum (ER), is important for protein folding, quality control and the intracellular trafficking of secretory and membrane proteins. It is known that, during N-glycosylation, considerable amounts of lipid-linked oligosaccharides (LLOs), the glycan donor substrates for N-glycosylation, are hydrolyzed to form free N-glycans (FNGs) by unidentified mechanisms. FNGs are also generated in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins during ER-associated degradation. FNGs derived from LLOs and misfolded glycoproteins are eventually merged into one pool in the cytosol and the various glycan structures are processed to a near homogenous glycoform. This article summarizes the current state of our knowledge concerning the formation and catabolism of FNGs.
Collapse
Affiliation(s)
- Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
21
|
Suzuki T. The cytoplasmic peptide:N-glycanase (Ngly1)--basic science encounters a human genetic disorder. J Biochem 2014; 157:23-34. [DOI: 10.1093/jb/mvu068] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Sharma V, Ichikawa M, Freeze HH. Mannose metabolism: more than meets the eye. Biochem Biophys Res Commun 2014; 453:220-8. [PMID: 24931670 PMCID: PMC4252654 DOI: 10.1016/j.bbrc.2014.06.021] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 12/29/2022]
Abstract
Mannose is a simple sugar with a complex life. It is a welcome therapy for genetic and acquired human diseases, but it kills honeybees and blinds baby mice. It could cause diabetic complications. Mannose chemistry, metabolism, and metabolomics in cells, tissues and mammals can help explain these multiple systemic effects. Mannose has good, bad or ugly outcomes depending on its steady state levels and metabolic flux. This review describes the role of mannose at cellular level and its impact on organisms.
Collapse
Affiliation(s)
- Vandana Sharma
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Mie Ichikawa
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Paciotti S, Persichetti E, Klein K, Tasegian A, Duvet S, Hartmann D, Gieselmann V, Beccari T. Accumulation of free oligosaccharides and tissue damage in cytosolic α-mannosidase (Man2c1)-deficient mice. J Biol Chem 2014; 289:9611-22. [PMID: 24550399 DOI: 10.1074/jbc.m114.550509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Free Man(7-9)GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man(8-9)GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man(8-9)GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides.
Collapse
Affiliation(s)
- Silvia Paciotti
- From the Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chantret I, Couvineau A, Moore S. [Novel deglycosylation-independent roles for peptide N-glycanase]. Med Sci (Paris) 2014; 30:47-54. [PMID: 24472459 DOI: 10.1051/medsci/20143001013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The primary function of peptide N-glycanase (PNGase) is thought to be the deglycosylation of endoplasmic reticulum associated degradation (ERAD) substrates. However, inhibition of PNGase appears to have little effect upon the destruction rate of many ERAD substrates, and recent data demonstrate deglycosylation-independent functions for PNGase. Whatever the roles of PNGase turn out to be, the identification of a patient presenting with PNGase deficiency will advance our understanding of the importance of this multifunctional protein in human physiology.
Collapse
Affiliation(s)
- Isabelle Chantret
- Inserm U773, centre de recherche Bichat Beaujon CRB3, Faculté de médecine Xavier Bichat, 75018 Paris, France - Université Paris 7 Denis Diderot, site Bichat, 16, rue Henri Huchard, 75018, Paris, France
| | - Alain Couvineau
- Inserm U773, centre de recherche Bichat Beaujon CRB3, Faculté de médecine Xavier Bichat, 75018 Paris, France - Université Paris 7 Denis Diderot, site Bichat, 16, rue Henri Huchard, 75018, Paris, France
| | - Stuart Moore
- Inserm U773, centre de recherche Bichat Beaujon CRB3, Faculté de médecine Xavier Bichat, 75018 Paris, France - Université Paris 7 Denis Diderot, site Bichat, 16, rue Henri Huchard, 75018, Paris, France
| |
Collapse
|
25
|
Mathieu-Rivet E, Scholz M, Arias C, Dardelle F, Schulze S, Le Mauff F, Teo G, Hochmal AK, Blanco-Rivero A, Loutelier-Bourhis C, Kiefer-Meyer MC, Fufezan C, Burel C, Lerouge P, Martinez F, Bardor M, Hippler M. Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures. Mol Cell Proteomics 2013; 12:3160-3183. [PMID: 23912651 PMCID: PMC3820931 DOI: 10.1074/mcp.m113.028191] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/01/2013] [Indexed: 01/13/2023] Open
Abstract
Chlamydomonas reinhardtii is a green unicellular eukaryotic model organism for studying relevant biological and biotechnological questions. The availability of genomic resources and the growing interest in C. reinhardtii as an emerging cell factory for the industrial production of biopharmaceuticals require an in-depth analysis of protein N-glycosylation in this organism. Accordingly, we used a comprehensive approach including genomic, glycomic, and glycoproteomic techniques to unravel the N-glycosylation pathway of C. reinhardtii. Using mass-spectrometry-based approaches, we found that both endogenous soluble and membrane-bound proteins carry predominantly oligomannosides ranging from Man-2 to Man-5. In addition, minor complex N-linked glycans were identified as being composed of partially 6-O-methylated Man-3 to Man-5 carrying one or two xylose residues. These findings were supported by results from a glycoproteomic approach that led to the identification of 86 glycoproteins. Here, a combination of in-source collision-induced dissodiation (CID) for glycan fragmentation followed by mass tag-triggered CID for peptide sequencing and PNGase F treatment of glycopeptides in the presence of (18)O-labeled water in conjunction with CID mass spectrometric analyses were employed. In conclusion, our data support the notion that the biosynthesis and maturation of N-linked glycans in the endoplasmic reticulum and Golgi apparatus occur via a GnT I-independent pathway yielding novel complex N-linked glycans that maturate differently from their counterparts in land plants.
Collapse
Affiliation(s)
- Elodie Mathieu-Rivet
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Martin Scholz
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Carolina Arias
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Flavien Dardelle
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Stefan Schulze
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - François Le Mauff
- ‡‡Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668
| | - Gavin Teo
- ‡‡Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668
| | - Ana Karina Hochmal
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Amaya Blanco-Rivero
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Corinne Loutelier-Bourhis
- §§Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, INSA de Rouen, 1 Rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Marie-Christine Kiefer-Meyer
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Christian Fufezan
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Carole Burel
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Patrice Lerouge
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Flor Martinez
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Muriel Bardor
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Michael Hippler
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| |
Collapse
|
26
|
Alonzi DS, Kukushkin NV, Allman SA, Hakki Z, Williams SJ, Pierce L, Dwek RA, Butters TD. Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins. Cell Mol Life Sci 2013; 70:2799-814. [PMID: 23503623 PMCID: PMC11113499 DOI: 10.1007/s00018-013-1304-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process whereby misfolded proteins are removed from the endoplasmic reticulum (ER) for subsequent degradation by the ubiquitin/proteasome system. In the present work, analysis of the released, free oligosaccharides (FOS) derived from all glycoproteins undergoing ERAD, has allowed a global estimation of the mechanisms of this pathway rather than following model proteins through degradative routes. Examining the FOS produced in endomannosidase-compromised cells following α-glucosidase inhibition has revealed a mechanism for clearing Golgi-retrieved glycoproteins that have failed to enter the ER quality control cycle. The Glc3Man7GlcNAc2 FOS species has been shown to be produced in the ER lumen by a mechanism involving a peptide: N-glycanase-like activity, and its production was sensitive to disruption of Golgi-ER trafficking. The detection of this oligosaccharide was unaffected by the overexpression of EDEM1 or cytosolic mannosidase, both of which increased the production of previously characterised cytosolically localised FOS. The lumenal FOS identified are therefore distinct in their production and regulation compared to FOS produced by the conventional route of misfolded glycoproteins directly removed from the ER. The production of such lumenal FOS is indicative of a novel degradative route for cellular glycoproteins that may exist under certain conditions.
Collapse
Affiliation(s)
- Dominic S. Alonzi
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Nikolay V. Kukushkin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Sarah A. Allman
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Zalihe Hakki
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Lorna Pierce
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Raymond A. Dwek
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Terry D. Butters
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
27
|
Katoh T, Takase J, Tani Y, Amamoto R, Aoshima N, Tiemeyer M, Yamamoto K, Ashida H. Deficiency of α-glucosidase I alters glycoprotein glycosylation and lifespan in Caenorhabditis elegans. Glycobiology 2013; 23:1142-51. [PMID: 23836288 DOI: 10.1093/glycob/cwt051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) α-glucosidase I is an enzyme that trims the distal α1,2-linked glucose (Glc) residue from the Glc3Man9GlcNAc2 oligosaccharide following its addition to nascent glycoproteins in the initial step of processing. This reaction is critical to the subsequent processing of N-glycans and thus defects in α-glucosidase I gene in human cause congenital disorder of glycosylation (CDG) type IIb. We identified the Caenorhabditis elegans α-glucosidase I gene (F13H10.4, designated agl-1) that encodes a polypeptide with 36% identity to human α-glucosidase I. The agl-1 cDNA restored the expression of complex-type N-glycans on the cell surface of α-glucosidase I-defective Chinese hamster ovary Lec23 cells. RNAi knockdown of agl-1 [agl-1(RNAi)] produced worms that were visibly similar to wild-type, but lifespan was reduced to about half of the control. Analyses of N-glycosylation in agl-1(RNAi) animals by western blotting and mass spectrometry showed reduction of paucimannose and complex-type glycans and dramatic increase of glucosylated oligomannose glycans. In addition, a significant amount of unusual terminally fucosylated N-glycans were found in agl-1(RNAi) animals. ER stress response was also provoked, leading to the accumulation of large amounts of triglucosylated free oligosaccharides (FOSs) (Glc3Man4-5GlcNAc1-2) in agl-1(RNAi) animals. Acceleration of ER-associated degradation in response to the accumulation of unfolded glycoproteins and insufficient interaction with calnexin/calreticulin in the ER lumen likely accounts for the increase of FOSs. Taken together, these studies in C. elegans demonstrate that decreased ER α-glucosidase I affects the entire N-glycan profile and induces chronic ER stress, which may contribute to the pathophysiology of CDG-IIb in humans.
Collapse
Affiliation(s)
- Toshihiko Katoh
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Iwatsuka K, Watanabe S, Kinoshita M, Kamisue K, Yamada K, Hayakawa T, Suzuki T, Kakehi K. Free glycans derived from glycoproteins present in human sera. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 928:16-21. [PMID: 23584042 DOI: 10.1016/j.jchromb.2013.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/09/2013] [Accepted: 03/12/2013] [Indexed: 11/28/2022]
Abstract
During the course of studies on the analysis of O-glycans in biological samples, we found that significant amount of free glycans are present in normal human serum samples. The most abundant free glycan was disialo-biantennary glycan typically observed in transferrin which is one of the abundant glycoproteins found in sera. Minor glycans were also considered to be mainly due to transferrin, but some glycans were derived from mucin-type O-glycans, although the amount was quite minute. However, high mannose-type glycans could not be detected at all. Although there have been many reports on the presence of intracellular "free" N-glycans (mainly derived from high mannose-type glycans) generated either from lipid-linked oligosaccharides or from misfolded glycoproteins through endoplasmic-reticulum associated protein degradation pathway, there is little information on the presence of free glycans in extracellular matrix and biological fluids such as serum. This report is the first one which demonstrates the presence of free glycans due to glycoproteins in sera.
Collapse
Affiliation(s)
- Kinya Iwatsuka
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang L, Suzuki T. Dual functions for cytosolic α-mannosidase (Man2C1): its down-regulation causes mitochondria-dependent apoptosis independently of its α-mannosidase activity. J Biol Chem 2013; 288:11887-96. [PMID: 23486476 DOI: 10.1074/jbc.m112.425702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytosolic α-mannosidase (Man2C1) trims free oligosaccharides in mammalian cells, and its down-regulation reportedly delays cancer growth by inducing mitotic arrest or apoptosis. However, the mechanism by which Man2C1 down-regulation induces apoptosis is unknown. Here, we demonstrated that silencing of Man2C1 via small hairpin RNAs induced mitochondria-dependent apoptosis in HeLa cells. Expression of CHOP (C/EBP homologous protein), a transcription factor critical to endoplasmic reticulum stress-induced apoptosis, was significantly up-regulated in Man2C1 knockdown cells. However, this enhanced CHOP expression was not caused by endoplasmic reticulum stress. Interestingly, Man2C1 catalytic activity was not required for this regulation of apoptosis; introduction of mutant, enzymatically inactive Man2C1 rescued apoptotic phenotypes of Man2C1 knockdown cells. These results show that Man2C1 has dual functions: one in glycan catabolism and another in apoptotic signaling.
Collapse
Affiliation(s)
- Li Wang
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
30
|
Murakami S, Takaoka Y, Ashida H, Yamamoto K, Narimatsu H, Chiba Y. Identification and characterization of endo-β-N-acetylglucosaminidase from methylotrophic yeast Ogataea minuta. Glycobiology 2013; 23:736-44. [PMID: 23436287 DOI: 10.1093/glycob/cwt012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In four yeast strains, Ogataea minuta, Candida parapolymorpha, Pichia anomala and Zygosaccharomyces rouxii, we identified endo-β-N-acetylglucosaminidase (ENGase) homologous sequences by database searches; in each of the four species, a corresponding enzyme activity was also confirmed in crude cell extract obtained from each strain. The O. minuta ENGase (Endo-Om)-encoding gene was directly amplified from O. minuta genomic DNA and sequenced. The Endo-Om-encoding gene contained a 2319-bp open-reading frame; the deduced amino acid sequence indicated that the putative protein belonged to glycoside hydrolase family 85. The gene was introduced into O. minuta, and the recombinant Endo-Om was overexpressed and purified. When the enzyme assay was performed using an agalacto-biantennary oligosaccharide as a substrate, Endo-Om exhibited both hydrolysis and transglycosylation activities. Endo-Om exhibited hydrolytic activity for high-mannose, hybrid, biantennary and (2,6)-branched triantennary N-linked oligosaccharides, but not for tetraantennary, (2,4)-branched triantennary, bisecting N-acetylglucosamine structure and core-fucosylated biantennary N-linked oligosaccharides. Endo-Om also was able to hydrolyze N-glycans attached to RNase B and human transferrin under both denaturing and nondenaturing conditions. Thus, the present study reports the detection and characterization of a novel yeast ENGase.
Collapse
Affiliation(s)
- Satoshi Murakami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Kim YC, Jahren N, Stone MD, Udeshi ND, Markowski TW, Witthuhn BA, Shabanowitz J, Hunt DF, Olszewski NE. Identification and origin of N-linked β-D-N-acetylglucosamine monosaccharide modifications on Arabidopsis proteins. PLANT PHYSIOLOGY 2013; 161:455-64. [PMID: 23144189 PMCID: PMC3532274 DOI: 10.1104/pp.112.208900] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/05/2012] [Indexed: 05/20/2023]
Abstract
Many plant proteins are modified with N-linked oligosaccharides at asparagine-X-serine/threonine sites during transit through the endoplasmic reticulum and the Golgi. We have identified a number of Arabidopsis (Arabidopsis thaliana) proteins with modifications consisting of an N-linked N-acetyl-D-glucosamine monosaccharide (N-GlcNAc). Electron transfer dissociation mass spectrometry analysis of peptides bearing this modification mapped the modification to asparagine-X-serine/threonine sites on proteins that are predicted to transit through the endoplasmic reticulum and Golgi. A mass labeling method was developed and used to study N-GlcNAc modification of two thioglucoside glucohydrolases (myrosinases), TGG1 and TGG2 (for thioglucoside glucohydrolase). These myrosinases are also modified with high-mannose (Man)-type glycans. We found that N-GlcNAc and high-Man-type glycans can occur at the same site. It has been hypothesized that N-GlcNAc modifications are generated when endo-β-N-acetylglucosaminidase (ENGase) cleaves N-linked glycans. We examined the effects of mutations affecting the two known Arabidopsis ENGases on N-GlcNAc modification of myrosinase and found that modification of TGG2 was greatly reduced in one of the single mutants and absent in the double mutant. Surprisingly, N-GlcNAc modification of TGG1 was not affected in any of the mutants. These data support the hypothesis that ENGases hydrolyze high-Man glycans to produce some of the N-GlcNAc modifications but also suggest that some N-GlcNAc modifications are generated by another mechanism. Since N-GlcNAc modification was detected at only one site on each myrosinase, the production of the N-GlcNAc modification may be regulated.
Collapse
|
32
|
Kubota Y, Hori H, Sawa R, Seki H, Uzawa J. Structural analyses of mannose pentasaccharide of high mannose type oligosaccharides by 1D and 2D NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50:659-664. [PMID: 22930529 DOI: 10.1002/mrc.3859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
NMR spectroscopy is a very important and useful method for the structural analysis of oligosaccharides, despite its low sensitivity. We first applied conventional measuring methods, 2D DQF COSY, (1)H-(13)C HSQC, and (1)H-(13)C HMBC, and also the Double Pulsed Field Gradient Spin Echo (DPFGSE)-TOCSY and DPFGSE-NOESY/ROESY techniques to analyze a branched mannose pentasaccharide as a model of high mannose type N-glycans in natural abundance. The NMR spectra of the model compound are very complex and difficult to analyze owing to overlapping signals. The superior selective irradiation capability of the DPFGSE technique is useful for fine structural and conformational analyses of such complex oligosaccharides. We here introduce a novel technique called DPFGSE-Double-Selective Population Transfer (SPT)-Difference and DPFGSE-NOE/ROE-SPT-Difference spectroscopy. The DPFGSE-Double-SPT-Difference method involves irradiation of two peaks from one proton and the subtraction of higher and lower peaks from each spectrum. The DPFGSE-NOE/ROE-SPT-Difference method involves the transfer of the magnetization polarized by NOE/ROE from the nuclei to the spin-coupled nuclei through scalar spin-spin interaction using the SPT method. Even if the signals in the NMR spectra overlap, each signal can be accurately assigned. In particular, DPFGSE-NOE/ROE-SPT-Difference is very useful for identifying sugar connectivity.
Collapse
Affiliation(s)
- Yumiko Kubota
- Institute of Microbial Chemistry, Tokyo, Shinagawa, Tokyo, Japan
| | | | | | | | | |
Collapse
|
33
|
Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability. PLoS One 2012; 7:e36152. [PMID: 22586463 PMCID: PMC3346758 DOI: 10.1371/journal.pone.0036152] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/27/2012] [Indexed: 02/07/2023] Open
Abstract
The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with mannosyl glycoprotein endo-N-acetyl-β-D-glucosaminidase (ENGase)-type activity. Intracellular ENGase activity is associated with the endoplasmic reticulum associated protein degradation pathway (ERAD) of misfolded glycoproteins, although the biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure predicts a typical glycoside hydrolase family 18 (αβ)8 barrel architecture. Gene expression analysis shows that Eng18B is induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein degradation pathway of endogenous glycoproteins in T. atroviride is discussed in relation to the observed phenotypes.
Collapse
|
34
|
Chantret I, Kodali VP, Lahmouich C, Harvey DJ, Moore SEH. Endoplasmic reticulum-associated degradation (ERAD) and free oligosaccharide generation in Saccharomyces cerevisiae. J Biol Chem 2011; 286:41786-41800. [PMID: 21979948 DOI: 10.1074/jbc.m111.251371] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, proteins with misfolded lumenal, membrane, and cytoplasmic domains are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L, -M, and -C, respectively. ERAD-L is N-glycan-dependent and is characterized by ER mannosidase (Mns1p) and ER mannosidase-like protein (Mnl1p), which generate Man(7)GlcNAc(2) (d1) N-glycans with non-reducing α1,6-mannosyl residues. Glycoproteins bearing this motif bind Yos9p and are dislocated into the cytoplasm and then deglycosylated by peptide N-glycanase (Png1p) to yield free oligosaccharides (fOS). Here, we examined yeast fOS metabolism as a function of cell growth in order to obtain quantitative and mechanistic insights into ERAD. We demonstrate that both Png1p-dependent generation of Man(7-10)GlcNAc(2) fOS and vacuolar α-mannosidase (Ams1p)-dependent fOS demannosylation to yield Man(1)GlcNAc(2) are strikingly up-regulated during post-diauxic growth which occurs when the culture medium is depleted of glucose. Gene deletions in the ams1Δ background revealed that, as anticipated, Mns1p and Mnl1p are required for efficient generation of the Man(7)GlcNAc(2) (d1) fOS, but for the first time, we demonstrate that small amounts of this fOS are generated in an Mnl1p-independent, Mns1p-dependent pathway and that a Man(8)GlcNAc(2) fOS that is known to bind Yos9p is generated in an Mnl1p-dependent, Mns1p-independent manner. This latter observation adds mechanistic insight into a recently described Mnl1p-dependent, Mns1p-independent ERAD pathway. Finally, we show that 50% of fOS generation is independent of ERAD-L, and because our data indicate that ERAD-M and ERAD-C contribute little to fOS levels, other important processes underlie fOS generation in S. cerevisiae.
Collapse
Affiliation(s)
- Isabelle Chantret
- INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France
| | - Vidya P Kodali
- INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France
| | - Chaïmaâ Lahmouich
- INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France
| | - David J Harvey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Stuart E H Moore
- INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France.
| |
Collapse
|
35
|
Protein Glycosylation in Aspergillus fumigatus Is Essential for Cell Wall Synthesis and Serves as a Promising Model of Multicellular Eukaryotic Development. Int J Microbiol 2011; 2012:654251. [PMID: 21977037 PMCID: PMC3184424 DOI: 10.1155/2012/654251] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/19/2011] [Indexed: 02/05/2023] Open
Abstract
Glycosylation is a conserved posttranslational modification that is found in all eukaryotes, which helps generate proteins with multiple functions. Our knowledge of glycosylation mainly comes from the investigation of the yeast Saccharomyces cerevisiae and mammalian cells. However, during the last decade, glycosylation in the human pathogenic mold Aspergillus fumigatus has drawn significant attention. It has been revealed that glycosylation in A. fumigatus is crucial for its growth, cell wall synthesis, and development and that the process is more complicated than that found in the budding yeast S. cerevisiae. The present paper implies that the investigation of glycosylation in A. fumigatus is not only vital for elucidating the mechanism of fungal cell wall synthesis, which will benefit the design of new antifungal therapies, but also helps to understand the role of protein glycosylation in the development of multicellular eukaryotes. This paper describes the advances in functional analysis of protein glycosylation in A. fumigatus.
Collapse
|
36
|
Gao N, Shang J, Huynh D, Manthati VL, Arias C, Harding HP, Kaufman RJ, Mohr I, Ron D, Falck JR, Lehrman MA. Mannose-6-phosphate regulates destruction of lipid-linked oligosaccharides. Mol Biol Cell 2011; 22:2994-3009. [PMID: 21737679 PMCID: PMC3164449 DOI: 10.1091/mbc.e11-04-0286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/08/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022] Open
Abstract
Mannose-6-phosphate (M6P) is an essential precursor for mannosyl glycoconjugates, including lipid-linked oligosaccharides (LLO; glucose(3)mannose(9)GlcNAc(2)-P-P-dolichol) used for protein N-glycosylation. In permeabilized mammalian cells, M6P also causes specific LLO cleavage. However, the context and purpose of this paradoxical reaction are unknown. In this study, we used intact mouse embryonic fibroblasts to show that endoplasmic reticulum (ER) stress elevates M6P concentrations, leading to cleavage of the LLO pyrophosphate linkage with recovery of its lipid and lumenal glycan components. We demonstrate that this M6P originates from glycogen, with glycogenolysis activated by the kinase domain of the stress sensor IRE1-α. The apparent futility of M6P causing destruction of its LLO product was resolved by experiments with another stress sensor, PKR-like ER kinase (PERK), which attenuates translation. PERK's reduction of N-glycoprotein synthesis (which consumes LLOs) stabilized steady-state LLO levels despite continuous LLO destruction. However, infection with herpes simplex virus 1, an N-glycoprotein-bearing pathogen that impairs PERK signaling, not only caused LLO destruction but depleted LLO levels as well. In conclusion, the common metabolite M6P is also part of a novel mammalian stress-signaling pathway, responding to viral stress by depleting host LLOs required for N-glycosylation of virus-associated polypeptides. Apparently conserved throughout evolution, LLO destruction may be a response to a variety of environmental stresses.
Collapse
Affiliation(s)
- Ningguo Gao
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Jie Shang
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Dang Huynh
- Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Vijaya L. Manthati
- Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Carolina Arias
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Heather P. Harding
- University of Cambridge Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| | - Randal J. Kaufman
- Departments of Internal Medicine and Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - David Ron
- University of Cambridge Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| | - John R. Falck
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
- Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Mark A. Lehrman
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| |
Collapse
|
37
|
Hirayama H, Suzuki T. Metabolism of free oligosaccharides is facilitated in the och1Δ mutant of Saccharomyces cerevisiae. Glycobiology 2011; 21:1341-8. [PMID: 21622726 DOI: 10.1093/glycob/cwr073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic cells, it is known that N-glycans play a pivotal role in quality control of carrier proteins. Although "free" forms of oligosaccharides (fOSs) are known to be accumulated in the cytosol, the precise mechanism of their formation, degradation and biological relevance remains poorly understood. It has been shown that, in budding yeast, almost all fOSs are formed from misfolded glycoproteins. Precise structural analysis of fOSs revealed that several yeast fOSs bear a yeast-specific modification by Golgi-resident α-1,6-mannosyltransferase, Och1. In this study, structural diversity of fOSs in och1Δ cells was analyzed. To our surprise, several fOSs in och1Δ cells have unusual α-1,3-linked mannose residues at their non-reducing termini. These mannose residues were not observed in wild-type cells, suggesting that the addition of these unique mannoses occurred as a compensation of Och1 defect. A significant increase in the amount of fOSs modified by Golgi-localized mannosyltransferases was also observed in och1Δ cells. Moreover, the amount of processed fOSs and intracellular α-mannosidase (Ams1) both increased in this mutant. Up-regulation of Ams1 activity was also apparent for cells treated with cell wall perturbation reagent. These results provide an insight into a possible link between catabolism of fOSs and cell wall stress.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | | |
Collapse
|
38
|
Double-knockout of putative endo-β-N-acetylglucosaminidase (ENGase) genes in Arabidopsis thaliana: loss of ENGase activity induced accumulation of high-mannose type free N-glycans bearing N,N'-acetylchitobiosyl unit. Biosci Biotechnol Biochem 2011; 75:1019-21. [PMID: 21597164 DOI: 10.1271/bbb.110148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endo-β-N-acetylglucosaminidase (ENGase) is involved in the production of high-mannose type free N-glycans during plant development and fruit maturation. In a previous study (K. Nakamura et al. Biosci. Biotechnol. Biochem., 73, 461-464 (2009)), we identified the tomato ENGase gene and found that gene expression remained relatively constant. In the present study, we constructed an Arabidopsis thaliana mutant in which the expression of two putative ENGase genes was suppressed. The mutant showed no ENGase activity, but produced high-mannose type free N-glycans carrying the N,N'-acetylchitobiosyl unit that is produced by peptide:N-glycanase, indicating that both these genes encode Arabidopsis ENGase.
Collapse
|
39
|
Kato A, Wang L, Ishii K, Seino J, Asano N, Suzuki T. Calystegine B3 as a specific inhibitor for cytoplasmic alpha-mannosidase, Man2C1. J Biochem 2011; 149:415-22. [PMID: 21217149 DOI: 10.1093/jb/mvq153] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cytoplasmic α-mannosidase (Man2C1) has been implicated in non-lysosomal catabolism of free oligosaccharides derived from N-linked glycans accumulated in the cytosol. Suppression of Man2C1 expression reportedly induces apoptosis in various cell lines, but its molecular mechanism remains unclear. Development of a specific inhibitor for Man2C1 is critical to understanding its biological significance. In this study, we identified a plant-derived alkaloid, calystegine B(3), as a potent specific inhibitor for Man2C1 activity. Biochemical enzyme assay revealed that calystegine B(3) was a highly specific inhibitor for Man2C1 among various α-mannosidases prepared from rat liver. Consistent with this in vitro result, an in vivo experiment also showed that treatment of mammalian-derived cultured cells with this compound resulted in drastic change in both structure and quantity of free oligosaccharides in the cytosol, whereas no apparent change was seen in cell-surface oligosaccharides. Calystegine B(3) could thus serve as a potent tool for the development of a highly specific in vivo inhibitor for Man2C1.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Xu SB, Yu HT, Yan LF, Wang T. Integrated proteomic and cytological study of rice endosperms at the storage phase. J Proteome Res 2010; 9:4906-18. [PMID: 20712379 DOI: 10.1021/pr900954p] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The endosperm at the storage phase undergoes a series of coordinated cellular and metabolic events, including starchy endosperm cell death, starch synthesis, and starch granule packaging, which leads to efficient accumulation of starch. However, the mechanism underlying the interconnections remains unknown. We used integrated proteomic and cytological approaches to probe the interconnections in rice (Oryza sativa) endosperm at the storage phase from 12 to 18 days after flowering (DAF). Starch granule packaging was completed first in the inner part of endosperm at 15 DAF and spread to almost the entire endosperm at 18 DAF. Programmed starchy endosperm cell death occurred after the starch granule packaging. Endogenous H(2)O(2) was detectable in the inner part of endosperm at 12 DAF and the region beyond the inner part at 15 DAF, with an H(2)O(2) burst at 15 DAF. Proteomics analysis with 2-D fluorescent difference gel electrophoresis and matrix-assisted laser-desorption ionization time-of-flight/time-of-flight mass spectrometry revealed 317 proteins, including almost all known antioxidants, differentially expressed throughout the 3 stages of the developmental phase. More than two-thirds of the 317 proteins were potential thioredoxin targets, with a preferential skew toward central carbon metabolism, alcoholic fermentation, starch metabolism, amino acid metabolism, and protein synthesis or folding. These proteins implicated in starch synthesis and gluconeogenesis were upregulated, whereas those involved in anabolism of biomacromolecules such as proteins, lipids, and cell wall components were downregulated, with upregulated expression of proteins involved in catabolism of these biomacromolecules, which suggests remobilization of nutrients for starch synthesis. These data suggested important roles of the H(2)O(2)-antioxidant interface in coordinating starch accumulation, programmed cell death of starchy endosperm, and remobilization of nutrients during the cell death.
Collapse
Affiliation(s)
- Sheng Bao Xu
- Research Center for Molecular & Developmental Biology, Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, China
| | | | | | | |
Collapse
|
41
|
Bernon C, Carré Y, Kuokkanen E, Slomianny MC, Mir AM, Krzewinski F, Cacan R, Heikinheimo P, Morelle W, Michalski JC, Foulquier F, Duvet S. Overexpression of Man2C1 leads to protein underglycosylation and upregulation of endoplasmic reticulum-associated degradation pathway. Glycobiology 2010; 21:363-75. [PMID: 20978011 DOI: 10.1093/glycob/cwq169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unfolded glycoproteins retained in the endoplasmic reticulum (ER) are degraded via the ER-associated degradation (ERAD) pathway. These proteins are subsequently transported to the cytosol and degraded by the proteasomal complex. Although the sequential events of ERAD are well described, its regulation remains poorly understood. The cytosolic mannosidase, Man2C1, plays an essential role in the catabolism of cytosolic free oligomannosides, which are released from the degraded proteins. We have investigated the impact of Man2C1 overexpression on protein glycosylation and the ERAD process. We demonstrated that overexpression of Man2C1 led to modifications of the cytosolic pool of free oligomannosides and resulted in accumulation of small Man(2-4)GlcNAc(1) glycans in the cytosol. We further correlated this accumulation with incomplete protein glycosylation and truncated lipid-linked glycosylation precursors, which yields an increase in N-glycoprotein en route to the ERAD. We propose a model in which high mannose levels in the cytosol interfere with glucose metabolism and compromise N-glycan synthesis in the ER. Our results show a clear link between the intracellular mannose-6-phosphate level and synthesis of the lipid-linked precursors for protein glycosylation. Disturbance in these pathways interferes with protein glycosylation and upregulated ERAD. Our findings support a new concept that regulation of Man2C1 expression is essential for maintaining efficient protein N-glycosylation.
Collapse
Affiliation(s)
- Coralie Bernon
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, IFR 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Maeda M, Kimura M, Kimura Y. Intracellular and extracellular free N-glycans produced by plant cells: occurrence of unusual plant complex-type free N-glycans in extracellular spaces. J Biochem 2010; 148:681-92. [DOI: 10.1093/jb/mvq102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Chantret I, Fasseu M, Zaoui K, Le Bizec C, Sadou Yayé H, Dupré T, Moore SEH. Identification of roles for peptide: N-glycanase and endo-beta-N-acetylglucosaminidase (Engase1p) during protein N-glycosylation in human HepG2 cells. PLoS One 2010; 5:e11734. [PMID: 20668520 PMCID: PMC2909182 DOI: 10.1371/journal.pone.0011734] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 06/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo β-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. Methods/Principal Findings During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Δ deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man8GlcNAc2, corresponding to ∼70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc1Man9GlcNAc2 and Man9GlcNAc2 that corresponds to ∼30% of total fOS. Conclusions/Significance As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming.
Collapse
Affiliation(s)
- Isabelle Chantret
- INSERM, U773, Centre de Recherche Bichat Beaujon, Paris, France; Université Paris 7 Denis Diderot, site Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Funakoshi Y, Negishi Y, Gergen JP, Seino J, Ishii K, Lennarz WJ, Matsuo I, Ito Y, Taniguchi N, Suzuki T. Evidence for an essential deglycosylation-independent activity of PNGase in Drosophila melanogaster. PLoS One 2010; 5:e10545. [PMID: 20479940 PMCID: PMC2866665 DOI: 10.1371/journal.pone.0010545] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 04/12/2010] [Indexed: 12/03/2022] Open
Abstract
Background Peptide:N-glycanase (PNGase) is an enzyme which releases N-linked glycans from glycopeptides/glycoproteins. This enzyme plays a role in the ER-associated degradation (ERAD) pathway in yeast and mice, but the biological importance of this activity remains unknown. Principal Findings In this study, we characterized the ortholog of cytoplasmic PNGases, PNGase-like (Pngl), in Drosophila melanogaster. Pngl was found to have a molecular weight of ∼74K and was mainly localized in the cytosol. Pngl lacks a CXXC motif that is critical for enzymatic activity in other species and accordingly did not appear to possess PNGase activity, though it still retains carbohydrate-binding activity. We generated microdeletions in the Pngl locus in order to investigate the functional importance of this protein in vivo. Elimination of Pngl led to a serious developmental delay or arrest during the larval and pupal stages, and surviving mutant adult males and females were frequently sterile. Most importantly, these phenotypes were rescued by ubiquitous expression of Pngl, clearly indicating that those phenotypic consequences were indeed due to the lack of functional Pngl. Interestingly, a putative “catalytic-inactive” mutant could not rescue the growth-delay phenotype, indicating that a biochemical activity of this protein is important for its biological function. Conclusion Pngl was shown to be inevitable for the proper developmental transition and the biochemical properties other than deglycosylation activity is important for its biological function.
Collapse
Affiliation(s)
- Yoko Funakoshi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- * E-mail: (YF); (TS)
| | - Yuki Negishi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Junichi Seino
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Kumiko Ishii
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - William J. Lennarz
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ichiro Matsuo
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- Glycotrilogy Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Naoyuki Taniguchi
- Department of Disease Glycomics, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
- Disease Glycomics Team, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
- * E-mail: (YF); (TS)
| |
Collapse
|
46
|
Hirayama H, Seino J, Kitajima T, Jigami Y, Suzuki T. Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae. J Biol Chem 2010; 285:12390-404. [PMID: 20150426 DOI: 10.1074/jbc.m109.082081] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In eukaryotic cells, N-glycosylation has been recognized as one of the most common and functionally important co- or post-translational modifications of proteins. "Free" forms of N-glycans accumulate in the cytosol of mammalian cells, but the precise mechanism for their formation and degradation remains unknown. Here, we report a method for the isolation of yeast free oligosaccharides (fOSs) using endo-beta-1,6-glucanase digestion. fOSs were undetectable in cells lacking PNG1, coding the cytoplasmic peptide:N-glycanase gene, suggesting that almost all fOSs were formed from misfolded glycoproteins by Png1p. Structural studies revealed that the most abundant fOS was M8B, which is not recognized well by the endoplasmic reticulum-associated degradation (ERAD)-related lectin, Yos9p. In addition, we provide evidence that some of the ERAD substrates reached the Golgi apparatus prior to retrotranslocation to the cytosol. N-Glycan structures on misfolded glycoproteins in cells lacking the cytosol/vacuole alpha-mannosidase, Ams1p, was still quite diverse, indicating that processing of N-glycans on misfolded glycoproteins was more complex than currently envisaged. Under ER stress, an increase in fOSs was observed, whereas levels of M7C, a key glycan structure recognized by Yos9p, were unchanged. Our method can thus provide valuable information on the molecular mechanism of glycoprotein ERAD in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
47
|
Hosokawa N, Kamiya Y, Kato K. The role of MRH domain-containing lectins in ERAD. Glycobiology 2010; 20:651-60. [PMID: 20118070 DOI: 10.1093/glycob/cwq013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The endoplasmic reticulum (ER) quality control system ensures that newly synthesized proteins in the early secretory pathway are in the correct conformation. Polypeptides that have failed to fold into native conformers are subsequently retrotranslocated and degraded by the cytosolic ubiquitin-proteasome system, a process known as endoplasmic reticulum-associated degradation (ERAD). Most of the polypeptides that enter the ER are modified by the addition of N-linked oligosaccharides, and quality control of these glycoproteins is assisted by lectins that recognize specific sugar moieties and molecular chaperones that recognize unfolded proteins, resulting in proper protein folding and ERAD substrate selection. In Saccharomyces cerevisiae, Yos9p, a lectin that contains a mannose 6-phosphate receptor homology (MRH) domain, was identified as an important component of ERAD. Yos9p was shown to associate with the membrane-embedded ubiquitin ligase complex, Hrd1p-Hrd3p, and provide a proofreading mechanism for ERAD. Meanwhile, the function of the mammalian homologues of Yos9p, OS-9 and XTP3-B remained elusive until recently. Recent studies have determined that both OS-9 and XTP3-B are ER resident proteins that associate with the HRD1-SEL1L ubiquitin ligase complex and are important for the regulation of ERAD. Moreover, recent studies have identified the N-glycan species with which both yeast Yos9p and mammalian OS-9 associate as M7A, a Man(7)GlcNAc(2) isomer that lacks the alpha1,2-linked terminal mannose from both the B and C branches. M7A has since been demonstrated to be a degradation signal in both yeast and mammals.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.
| | | | | |
Collapse
|
48
|
Rind N, Schmeiser V, Thiel C, Absmanner B, Lübbehusen J, Hocks J, Apeshiotis N, Wilichowski E, Lehle L, Körner C. A severe human metabolic disease caused by deficiency of the endoplasmatic mannosyltransferase hALG11 leads to congenital disorder of glycosylation-Ip. Hum Mol Genet 2010; 19:1413-24. [PMID: 20080937 DOI: 10.1093/hmg/ddq016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new type of congenital disorders of glycosylation, designated CDG-Ip, is caused by the deficiency of GDP-Man:Man3GlcNAc2-PP-dolichol-alpha1,2-mannosyltransferase, encoded by the human ortholog of ALG11 from yeast. The patient presented with a multisystemic disorder characterized by muscular hypotonia, seizures, developmental retardation and death at the age of 2 years. The isoelectric focusing pattern of the patient's serum transferrin showed the partial loss of complete N-glycan side chains, which is a characteristic sign for CDG-I. Analysis of dolichol-linked oligosaccharides in patient-derived fibroblasts revealed an accumulation of Man3GlcNAc2-PP-dolichol and Man4GlcNAc2-PP-dolichol. Determination of mannosyltransferase activities of early steps of lipid-linked oligosaccharide biosynthesis in fibroblasts indicated that the patient was deficient in elongating Man3GlcNAc2-PP-dolichol. These findings gave rise to genetic analysis of the hALG11 cDNA, in which homozygosity for mutation c.T257C (p.L86S) was identified. Verification of the mutation as a primary cause for the genetic defect was proved by retroviral expression of human wild-type and mutated ALG11 cDNA in patient-derived fibroblasts as well as using a yeast alg11 deletion strain as a heterologous expression system for hALG11 variants. Immunofluorescence examinations combined with western blotting showed no differences of intracellular localization or expression of ALG11 between control and patient fibroblasts, respectively, indicating no mislocalization or degradation of the mutated transferase.
Collapse
Affiliation(s)
- Nina Rind
- Center for Child and Adolescent Medicine, Center for Metabolic Diseases Heidelberg, Department I, Im Neuenheimer Feld 153, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Impaired lysosomal trimming of N-linked oligosaccharides leads to hyperglycosylation of native lysosomal proteins in mice with alpha-mannosidosis. Mol Cell Biol 2010; 30:273-83. [PMID: 19884343 DOI: 10.1128/mcb.01143-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alpha-mannosidosis is caused by the genetic defect of the lysosomal alpha-d-mannosidase (LAMAN), which is involved in the breakdown of free alpha-linked mannose-containing oligosaccharides originating from glycoproteins with N-linked glycans, and thus manifests itself in an extensive storage of mannose-containing oligosaccharides. Here we demonstrate in a model of mice with alpha-mannosidosis that native lysosomal proteins exhibit elongated N-linked oligosaccharides as shown by two-dimensional difference gel electrophoresis, deglycosylation assays, and mass spectrometry. The analysis of cathepsin B-derived oligosaccharides revealed a hypermannosylation of glycoproteins in mice with alpha-mannosidosis as indicated by the predominance of extended Man3GlcNAc2 oligosaccharides. Treatment with recombinant human alpha-mannosidase partially corrected the hyperglycosylation of lysosomal proteins in vivo and in vitro. These data clearly demonstrate that LAMAN is involved not only in the lysosomal catabolism of free oligosaccharides but also in the trimming of asparagine-linked oligosaccharides on native lysosomal proteins.
Collapse
|
50
|
Wang Z, Udeshi ND, Slawson C, Compton PD, Sakabe K, Cheung WD, Shabanowitz J, Hunt DF, Hart GW. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 2010; 3:ra2. [PMID: 20068230 DOI: 10.1126/scisignal.2000526] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Like phosphorylation, the addition of O-linked beta-N-acetylglucosamine (O-GlcNAcylation) is a ubiquitous, reversible process that modifies serine and threonine residues on nuclear and cytoplasmic proteins. Overexpression of the enzyme that adds O-GlcNAc to target proteins, O-GlcNAc transferase (OGT), perturbs cytokinesis and promotes polyploidy, but the molecular targets of OGT that are important for its cell cycle functions are unknown. Here, we identify 141 previously unknown O-GlcNAc sites on proteins that function in spindle assembly and cytokinesis. Many of these O-GlcNAcylation sites are either identical to known phosphorylation sites or in close proximity to them. Furthermore, we found that O-GlcNAcylation altered the phosphorylation of key proteins associated with the mitotic spindle and midbody. Forced overexpression of OGT increased the inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1) and reduced the phosphorylation of CDK1 target proteins. The increased phosphorylation of CDK1 is explained by increased activation of its upstream kinase, MYT1, and by a concomitant reduction in the transcript for the CDK1 phosphatase, CDC25C. OGT overexpression also caused a reduction in both messenger RNA expression and protein abundance of Polo-like kinase 1, which is upstream of both MYT1 and CDC25C. The data not only illustrate the crosstalk between O-GlcNAcylation and phosphorylation of proteins that are regulators of crucial signaling pathways but also uncover a mechanism for the role of O-GlcNAcylation in regulation of cell division.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|