1
|
Cheng JJ, Matsumoto Y, Dombek GE, Stackhouse KA, Ore AS, Glickman JN, Heimburg-Molinaro J, Cummings RD. Differential expression of CD175 and CA19-9 in pancreatic adenocarcinoma. Sci Rep 2025; 15:4177. [PMID: 39905057 PMCID: PMC11794684 DOI: 10.1038/s41598-025-86988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Alterations in protein glycosylation are observed in many solid tumor types leading to formation of tumor-associated carbohydrate antigens (TACAs). The most common TACA is the Tn antigen (CD175), which is a mucin-type O-GalNAc-Ser/Thr/Tyr glycan in membrane and secreted glycoproteins. In addition, two other TACAs are CA19-9 (sialyl-Lewis a), which is used as a prognostic serum marker for pancreatic cancer, and its isomer sialyl-Lewis x (SLex, CD15s), which is overexpressed in many cancer types and associated with metastasis. While CD175 and other TACAs may be expressed by many human carcinomas, little is known about their differential expression patterns in tumors, thus limiting their use as tissue biomarkers or therapeutic targets. Here we address the clinicopathological relevance of the expression of CA19-9, CD15s, and CD175 in pancreatic ductal adenocarcinoma (PDAC) tissues. Semi-quantitative IHC staining with well-defined monoclonal antibodies demonstrates that CD175 is expressed in all PDAC specimens analyzed. Unexpectedly, however, these TACAs are differentially expressed within PDAC specimens and their glycoproteins, but not significantly expressed in adjacent normal tissues. These data provide avenues for novel therapeutic approaches that could combine CD175- and CA19-9-targeting therapies for PDAC patients.
Collapse
Affiliation(s)
- Jane J Cheng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
- FDA/CDER/OBQ/OBP/DBRRIII, Silver Spring, MD, USA
| | - Gabrielle E Dombek
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Kathryn A Stackhouse
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
- Department of Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Ana Sofia Ore
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, E106, Boston, MA, 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Jaroentomeechai T, Karlsson R, Goerdeler F, Teoh FKY, Grønset MN, de Wit D, Chen YH, Furukawa S, Psomiadou V, Hurtado-Guerrero R, Vidal-Calvo EE, Salanti A, Boltje TJ, van den Bos LJ, Wunder C, Johannes L, Schjoldager KT, Joshi HJ, Miller RL, Clausen H, Vakhrushev SY, Narimatsu Y. Mammalian cell-based production of glycans, glycopeptides and glycomodules. Nat Commun 2024; 15:9668. [PMID: 39516489 PMCID: PMC11549445 DOI: 10.1038/s41467-024-53738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Access to defined glycans and glycoconjugates is pivotal for discovery, dissection, and harnessing of a range of biological functions orchestrated by cellular glycosylation processes and the glycome. We previously employed genetic glycoengineering by nuclease-based gene editing to develop sustainable production of designer glycoprotein therapeutics and cell-based glycan arrays that display glycans in their natural context at the cell surface. However, access to human glycans in formats and quantities that allow structural studies of molecular interactions and use of glycans in biomedical applications currently rely on chemical and chemoenzymatic syntheses associated with considerable labor, waste, and costs. Here, we develop a sustainable and scalable method for production of glycans in glycoengineered mammalian cells by employing secreted Glycocarriers with repeat glycosylation acceptor sequence motifs for different glycans. The Glycocarrier technology provides a flexible production platform for glycans in different formats, including oligosaccharides, glycopeptides, and multimeric glycomodules, and offers wide opportunities for use in bioassays and biomedical applications.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fallen Kai Yik Teoh
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Nørregaard Grønset
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dylan de Wit
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Venetia Psomiadou
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Christian Wunder
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Ludger Johannes
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
3
|
Verhassel A, Kimani M, Gidwani K, Sandholm J, Gawlitza K, Rurack K, Härkönen P. Detection of Tn-antigen in breast and prostate cancer models by VVL-labeled red dye-doped nanoparticles. Nanomedicine (Lond) 2024; 19:2463-2478. [PMID: 39382009 PMCID: PMC11520574 DOI: 10.1080/17435889.2024.2405454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Aim: Fluorescence detection of breast and prostate cancer cells expressing Tn-antigen, a tumor marker, with Vicia villosa lectin (VVL)-labeled nanoparticles.Materials & methods: Breast and prostate cancer cells engineered to express high levels of Tn-antigen and non-engineered controls were incubated with VVL-labeled or unlabeled red dye-doped silica-coated polystyrene nanoparticles. The binding to cells was studied with flow cytometry, confocal microscopy, and electron microscopy.Results: Flow cytometry showed that the binding of VVL-labeled nanoparticles was significantly higher to Tn-antigen-expressing cancer cells than controls. Confocal microscopy demonstrated that particles bound to the cell surface. According to the correlative light and electron microscopy the particles bound mostly as aggregates.Conclusion: VVL-labeled nanoparticles could provide a new tool for the detection of Tn-antigen-expressing breast and prostate cancer cells.
Collapse
Affiliation(s)
- Alejandra Verhassel
- Institute of Biomedicine, University of Turku, Turku, 20520, Finland
- Western Cancer Centre FICAN West, Turku, 20521, Finland
| | - Martha Kimani
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin,12489, Germany
| | - Kamlesh Gidwani
- Western Cancer Centre FICAN West, Turku, 20521, Finland
- Department of Biochemistry, University of Turku, Turku, 20520, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Kornelia Gawlitza
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin,12489, Germany
| | - Knut Rurack
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin,12489, Germany
| | - Pirkko Härkönen
- Institute of Biomedicine, University of Turku, Turku, 20520, Finland
- Western Cancer Centre FICAN West, Turku, 20521, Finland
| |
Collapse
|
4
|
Aryal RP, Noel M, Zeng J, Matsumoto Y, Sinard R, Waki H, Erger F, Reusch B, Beck BB, Cummings RD. Cosmc regulates O-glycan extension in murine hepatocytes. Glycobiology 2024; 34:cwae069. [PMID: 39216105 PMCID: PMC11398974 DOI: 10.1093/glycob/cwae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galβ1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Rachael Sinard
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Hannah Waki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
5
|
Erger F, Aryal RP, Reusch B, Matsumoto Y, Meyer R, Zeng J, Knopp C, Noel M, Muerner L, Wenzel A, Kohl S, Tschernoster N, Rappl G, Rouvet I, Schröder-Braunstein J, Seibert FS, Thiele H, Häusler MG, Weber LT, Büttner-Herold M, Elbracht M, Cummings SF, Altmüller J, Habbig S, Cummings RD, Beck BB. Germline C1GALT1C1 mutation causes a multisystem chaperonopathy. Proc Natl Acad Sci U S A 2023; 120:e2211087120. [PMID: 37216524 PMCID: PMC10235935 DOI: 10.1073/pnas.2211087120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
Mutations in genes encoding molecular chaperones can lead to chaperonopathies, but none have so far been identified causing congenital disorders of glycosylation. Here we identified two maternal half-brothers with a novel chaperonopathy, causing impaired protein O-glycosylation. The patients have a decreased activity of T-synthase (C1GALT1), an enzyme that exclusively synthesizes the T-antigen, a ubiquitous O-glycan core structure and precursor for all extended O-glycans. The T-synthase function is dependent on its specific molecular chaperone Cosmc, which is encoded by X-chromosomal C1GALT1C1. Both patients carry the hemizygous variant c.59C>A (p.Ala20Asp; A20D-Cosmc) in C1GALT1C1. They exhibit developmental delay, immunodeficiency, short stature, thrombocytopenia, and acute kidney injury (AKI) resembling atypical hemolytic uremic syndrome. Their heterozygous mother and maternal grandmother show an attenuated phenotype with skewed X-inactivation in blood. AKI in the male patients proved fully responsive to treatment with the complement inhibitor Eculizumab. This germline variant occurs within the transmembrane domain of Cosmc, resulting in dramatically reduced expression of the Cosmc protein. Although A20D-Cosmc is functional, its decreased expression, though in a cell or tissue-specific manner, causes a large reduction of T-synthase protein and activity, which accordingly leads to expression of varied amounts of pathological Tn-antigen (GalNAcα1-O-Ser/Thr/Tyr) on multiple glycoproteins. Transient transfection of patient lymphoblastoid cells with wild-type C1GALT1C1 partially rescued the T-synthase and glycosylation defect. Interestingly, all four affected individuals have high levels of galactose-deficient IgA1 in sera. These results demonstrate that the A20D-Cosmc mutation defines a novel O-glycan chaperonopathy and causes the altered O-glycosylation status in these patients.
Collapse
Affiliation(s)
- Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| | - Rajindra P. Aryal
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| | - Yasuyuki Matsumoto
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Robert Meyer
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Junwei Zeng
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080Guangzhou, China
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Maxence Noel
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Lukas Muerner
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Institute of Pharmacology, University of Bern, 3010Bern, Switzerland
| | - Andrea Wenzel
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| | - Stefan Kohl
- Children’s and Adolescents’ Hospital, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937Cologne, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
- Cologne Center for Genomics, University of Cologne, 50931Cologne, Germany
| | - Gunter Rappl
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| | - Isabelle Rouvet
- Centre de Biotechnologie Cellulaire and CBC BioTec Biobank, Centre de Ressources Biologiques, Hospices Civils de Lyon, 69229Lyon, France
| | | | - Felix S. Seibert
- Medical Department I, University Hospital Marien Hospital Herne, Ruhr-University Bochum, 44625Herne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, 50931Cologne, Germany
| | - Martin G. Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Lutz T. Weber
- Children’s and Adolescents’ Hospital, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937Cologne, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054Erlangen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Sandra F. Cummings
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Janine Altmüller
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
- Cologne Center for Genomics, University of Cologne, 50931Cologne, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, 10178Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125Berlin, Germany
| | - Sandra Habbig
- Children’s and Adolescents’ Hospital, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937Cologne, Germany
| | - Richard D. Cummings
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Bodo B. Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931Cologne, Germany
| |
Collapse
|
6
|
Wang Z, Fang Z, Liu L, Zhu H, Wang Y, Zhao C, Guo Z, Qin H, Nie Y, Liang X, Dong M, Ye M. Development of an Integrated Platform for the Simultaneous Enrichment and Characterization of N- and O-Linked Intact Glycopeptides. Anal Chem 2023; 95:7448-7457. [PMID: 37146305 DOI: 10.1021/acs.analchem.2c04305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Both N-linked glycosylation and O-linked glycosylation play essential roles in the onset and progression of various diseases including cancer, and N-/O-linked site-specific glycans have been proven to be promising biomarkers for the discrimination of cancer. However, the micro-heterogeneity and low abundance nature of N-/O-linked glycosylation, as well as the time-consuming and tedious procedures for the enrichment of O-linked intact glycopeptides, pose great challenges for their efficient and accurate characterization. In this study, we developed an integrated platform for the simultaneous enrichment and characterization of N- and O-linked intact glycopeptides from the same serum sample. By fine-tuning the experimental conditions, we demonstrated that this platform allowed the selective separation of N- and O-linked intact glycopeptides into two fractions, with 85.1% O-linked intact glycopeptides presented in the first fraction and 93.4% N-linked intact glycopeptides presented in the second fraction. Determined with high reproducibility, this platform was further applied to the differential analysis of serum samples of gastric cancer and health control, which revealed 17 and 181 significantly changed O-linked and N-linked intact glycopeptides. Interestingly, five glycoproteins containing both significant regulation of N- and O-glycosylation were observed, hinting potential co-regulation of different types of glycosylation during tumor progress. In summary, this integrated platform opened a potentially useful avenue for the global analysis of protein glycosylation and can serve as a useful tool for the characterization of N-/O-linked intact glycopeptides at the proteomics scale.
Collapse
Affiliation(s)
- Zhongyu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| | - Changrui Zhao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| | - Mingming Dong
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| |
Collapse
|
7
|
Matsumoto Y, Jia N, Heimburg-Molinaro J, Cummings RD. Targeting Tn-positive tumors with an afucosylated recombinant anti-Tn IgG. Sci Rep 2023; 13:5027. [PMID: 36977722 PMCID: PMC10050417 DOI: 10.1038/s41598-023-31195-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The aberrant expression of the Tn antigen (CD175) on surface glycoproteins of human carcinomas is associated with tumorigenesis, metastasis, and poor survival. To target this antigen, we developed Remab6, a recombinant, human chimeric anti-Tn-specific monoclonal IgG. However, this antibody lacks antibody-dependent cell cytotoxicity (ADCC) effector activity, due to core fucosylation of its N-glycans. Here we describe the generation of an afucosylated Remab6 (Remab6-AF) in HEK293 cells in which the FX gene is deleted (FXKO). These cells cannot synthesize GDP-fucose through the de novo pathway, and lack fucosylated glycans, although they can incorporate extracellularly-supplied fucose through their intact salvage pathway. Remab6-AF has strong ADCC activity against Tn+ colorectal and breast cancer cell lines in vitro, and is effective in reducing tumor size in an in vivo xenotransplant mouse model. Thus, Remab6-AF should be considered as a potential therapeutic anti-tumor antibody against Tn+ tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA.
- Department of Surgery, Surgical Sciences, Beth Israel Deaconess Medical Center, CLS 11087, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Dombek GE, Ore AS, Cheng J, Matsumoto Y, Glickman JN, Fleishman A, Heimburg-Molinaro J, Poylin VY, Fabrizio A, Cataldo T, Messaris E, Cummings RD. Immunohistochemical analysis of Tn antigen expression in colorectal adenocarcinoma and precursor lesions. BMC Cancer 2022; 22:1281. [PMID: 36476111 PMCID: PMC9730631 DOI: 10.1186/s12885-022-10376-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The Tn antigen (CD175) is an O-glycan expressed in various types of human adenocarcinomas, including colorectal cancer (CRC), though prior studies have relied heavily upon poorly characterized in-house generated antibodies and lectins. In this study, we explored Tn expression in CRC using ReBaGs6, a well-characterized recombinant murine antibody with high specificity for clustered Tn antigen. METHODS Using well-defined monoclonal antibodies, expression patterns of Tn and sialylated Tn (STn) antigens were characterized by immunostaining in CRC, in matched peritumoral [transitional margin (TM)] mucosa, and in normal colonic mucosa distant from the tumor, as well as in adenomas. Vicia villosa agglutinin lectin was used to detect terminal GalNAc expression. Histo-scoring (H scoring) of staining was carried out, and pairwise comparisons of staining levels between tissue types were performed using paired samples Wilcoxon rank sum tests, with statistical significance set at 0.05. RESULTS While minimal intracellular Tn staining was seen in normal mucosa, significantly higher expression was observed in both TM mucosa (p < 0.001) and adenocarcinoma (p < 0.001). This pattern was reflected to a lesser degree by STn expression in these tissue types. Interestingly, TM mucosa demonstrates a Tn expression level even higher than that of the adenocarcinoma itself (p = 0.019). Colorectal adenomas demonstrated greater Tn and STn expression relative to normal mucosa (p < 0.001 and p = 0.012, respectively). CONCLUSIONS In summary, CRC is characterized by alterations in Tn/STn antigen expression in neoplastic epithelium as well as peritumoral benign mucosa. Tn/STn antigens are seldom expressed in normal mucosa. This suggests that TM mucosa, in addition to CRC itself, represents a source of glycoproteins rich in Tn that may offer future biomarker targets.
Collapse
Affiliation(s)
- Gabrielle E Dombek
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Ana Sofia Ore
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Jane Cheng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, E106, Boston, MA, 02115, USA
| | - Aaron Fleishman
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Deaconess 207, Boston, MA, 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Vitaliy Y Poylin
- Department of Surgery, Northwestern Medical Group, Feinberg School of Medicine, Arkes Family Pavilion, 676 North St Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Anne Fabrizio
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Gryzmish 6, Boston, MA, 02215, USA
| | - Thomas Cataldo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Gryzmish 6, Boston, MA, 02215, USA
| | - Evangelos Messaris
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Gryzmish 6, Boston, MA, 02215, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Zhang Y, Sun L, Lei C, Li W, Han J, Zhang J, Zhang Y. A Sweet Warning: Mucin-Type O-Glycans in Cancer. Cells 2022; 11:cells11223666. [PMID: 36429094 PMCID: PMC9688771 DOI: 10.3390/cells11223666] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosylation is a common post-translational modification process of proteins. Mucin-type O-glycosylation is an O-glycosylation that starts from protein serine/threonine residues. Normally, it is involved in the normal development and differentiation of cells and tissues, abnormal glycosylation can lead to a variety of diseases, especially cancer. This paper reviews the normal biosynthesis of mucin-type O-glycans and their role in the maintenance of body health, followed by the mechanisms of abnormal mucin-type O-glycosylation in the development of diseases, especially tumors, including the effects of Tn, STn, T antigen, and different glycosyltransferases, with special emphasis on their role in the development of gastric cancer. Finally, tumor immunotherapy targeting mucin-type O-glycans was discussed.
Collapse
Affiliation(s)
- Yuhan Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Lingbo Sun
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
- Correspondence: (L.S.); (Y.Z.)
| | - Changda Lei
- Department of Gastroenterology, Ninth Hospital of Xi‘an, Xi’an 710054, China
| | - Wenyan Li
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Jiaqi Han
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Jing Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China
- Correspondence: (L.S.); (Y.Z.)
| |
Collapse
|
10
|
Matsumoto Y, Aryal RP, Heimburg-Molinaro J, Park SS, Wever WJ, Lehoux S, Stavenhagen K, van Wijk JAE, Van Die I, Chapman AB, Chaikof EL, Cummings RD. Identification and characterization of circulating immune complexes in IgA nephropathy. SCIENCE ADVANCES 2022; 8:eabm8783. [PMID: 36306365 PMCID: PMC9616497 DOI: 10.1126/sciadv.abm8783] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/12/2022] [Indexed: 05/14/2023]
Abstract
The underlying pathology of immunoglobulin A (IgA) nephropathy (IgAN), the most common glomerulonephritis worldwide, is driven by the deposition of immune complexes containing galactose-deficient IgA1 [Tn(+)IgA1] in the glomerular mesangium. Here, we report that novel anti-Tn circulating immune complexes (anti-Tn CICs) contain predominantly IgM, representing large macromolecular complexes of ~1.2 megadaltons to several megadalton sizes together with Tn(+)IgA1 and some IgG. These complexes are significantly elevated in sera of patients with IgAN, which contains higher levels of complement C3, compared to healthy individuals. Anti-Tn CICs are bioactive and induce specific proliferation of human renal mesangial cells. We found that these anti-Tn CICs can be dissociated with small glycomimetic compounds, which mimic the Tn antigen of Tn(+)IgA1, releasing IgA1 from anti-Tn CICs. This glycomimetic compound can also significantly inhibit the proliferative activity of anti-Tn CICs of patients with IgAN. These findings could enhance both the diagnosis of IgAN and its treatment, as specific drug treatments are now unavailable.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon S. Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Walter J. Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joanna A. E. van Wijk
- Department of Pediatric Nephrology, Amsterdam University Medical Centre, location VUmc, Amsterdam, Netherlands
| | - Irma Van Die
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Arlene B. Chapman
- Department of Medicine, Section of Nephrology, University of Chicago School of Medicine, Chicago, IL, USA
| | - Elliot L. Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
12
|
Li Y, Li D, Chen Y, Lu Y, Zhou F, Li C, Zeng Z, Cai W, Lin L, Li Q, Ye M, Dong J, Yin L, Tang D, Zhang G, Dai Y. Robust Glycogene-Based Prognostic Signature for Proficient Mismatch Repair Colorectal Adenocarcinoma. Front Oncol 2021; 11:727752. [PMID: 34692502 PMCID: PMC8529276 DOI: 10.3389/fonc.2021.727752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Proficient mismatch repair (pMMR) colorectal adenocarcinoma (CRAC) metastasizes to a greater extent than MMR-deficient CRAC. Prognostic biomarkers are preferred in clinical practice. However, traditional biomarkers screened directly from sequencing are often not robust and thus cannot be confidently utilized. Methods To circumvent the drawbacks of blind screening, we established a new strategy to identify prognostic biomarkers in the conserved and specific oncogenic pathway and its regulatory RNA network. We performed RNA sequencing (RNA-seq) for messenger RNA (mRNA) and noncoding RNA in six pMMR CRAC patients and constructed a glycosylation-related RNA regulatory network. Biomarkers were selected based on the network and their correlation with the clinicopathologic information and were validated in multiple centers (n = 775). Results We constructed a competing endogenous RNA (ceRNA) regulatory network using RNA-seq. Genes associated with glycosylation pathways were embedded within this scale-free network. Moreover, we further developed and validated a seven-glycogene prognosis signature, GlycoSig (B3GNT6, GALNT3, GALNT8, ALG8, STT3B, SRD5A3, and ALG6) that prognosticate poor-prognostic subtype for pMMR CRAC patients. This biomarker set was validated in multicenter datasets, demonstrating its robustness and wide applicability. We constructed a simple-to-use nomogram that integrated the risk score of GlycoSig and clinicopathological features of pMMR CRAC patients. Conclusions The seven-glycogene signature served as a novel and robust prognostic biomarker set for pMMR CRAC, highlighting the role of a dysregulated glycosylation network in poor prognosis.
Collapse
Affiliation(s)
- Yixi Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China.,Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Dehua Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yongping Lu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fangbin Zhou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Chunhong Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Liewen Lin
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Qiang Li
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, China
| | - Mingjun Ye
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jingjing Dong
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin, China
| |
Collapse
|
13
|
Zeng J, Aryal RP, Stavenhagen K, Luo C, Liu R, Wang X, Chen J, Li H, Matsumoto Y, Wang Y, Wang J, Ju T, Cummings RD. Cosmc deficiency causes spontaneous autoimmunity by breaking B cell tolerance. SCIENCE ADVANCES 2021; 7:eabg9118. [PMID: 34613773 PMCID: PMC8494437 DOI: 10.1126/sciadv.abg9118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/17/2021] [Indexed: 05/12/2023]
Abstract
Factors regulating the induction and development of B cell–mediated autoimmunity are not well understood. Here, we report that targeted deletion in murine B cells of X-linked Cosmc, encoding the chaperone required for expression of core 1 O-glycans, causes the spontaneous development of autoimmune pathologies due to a breakdown of B cell tolerance. BC-CosmcKO mice display multiple phenotypic abnormalities, including severe weight loss, ocular manifestations, lymphadenopathy, and increased female-associated mortality. Disruption of B cell tolerance in BC-CosmcKO mice is manifested as elevated self-reactive IgM and IgG autoantibodies. Cosmc-deficient B cells exhibit enhanced basal activation and responsiveness to stimuli. There is also an elevated frequency of spontaneous germinal center B cells in BC-CosmcKO mice. Mechanistically, loss of Cosmc confers enhanced B cell receptor (BCR) signaling through diminished BCR internalization. The results demonstrate that Cosmc, through control of core 1 O-glycans, is a previously unidentified immune checkpoint gene in maintaining B cell tolerance.
Collapse
Affiliation(s)
- Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Renyan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Jianmei Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Rømer TB, Aasted MKM, Dabelsteen S, Groen A, Schnabel J, Tan E, Pedersen JW, Haue AD, Wandall HH. Mapping of truncated O-glycans in cancers of epithelial and non-epithelial origin. Br J Cancer 2021; 125:1239-1250. [PMID: 34526666 DOI: 10.1038/s41416-021-01530-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Novel immunotherapies targeting cancer-associated truncated O-glycans Tn (GalNAcα-Ser/Thr) and STn (Neu5Acα2-6GalNacα-Ser/Thr) are promising strategies for cancer treatment. However, no comprehensive, antibody-based mapping of truncated O-glycans in tumours exist to guide drug development. METHODS We used monoclonal antibodies to map the expression of truncated O-glycans in >700 tissue cores representing healthy and tumour tissues originating from breast, colon, lung, pancreas, skin, CNS and mesenchymal tissue. Patient-derived xenografts were used to evaluate Tn expression upon tumour engraftment. RESULTS The Tn-antigen was highly expressed in breast (57%, n = 64), colorectal (51%, n = 140) and pancreatic (53%, n = 108) tumours, while STn was mainly observed in colorectal (80%, n = 140) and pancreatic (56%, n = 108) tumours. We observed no truncated O-glycans in mesenchymal tumours (n = 32) and low expression of Tn (5%, n = 87) and STn (1%, n = 75) in CNS tumours. No Tn-antigen was found in normal tissue (n = 124) while STn was occasionally observed in healthy gastrointestinal tissue. Surface expression of Tn-antigen was identified across several cancers. Tn and STn expression decreased with tumour grade, but not with cancer stage. Numerous xenografts maintained Tn expression. CONCLUSIONS Surface expression of truncated O-glycans is limited to cancers of epithelial origin, making Tn and STn attractive immunological targets in the treatment of human carcinomas.
Collapse
Affiliation(s)
- Troels Boldt Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Mikkel Koed Møller Aasted
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Sally Dabelsteen
- Department of Pathology and Medicine, School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | - Johannes Wirenfeldt Pedersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Amalie Dahl Haue
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Hans Heugh Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
15
|
Towards structure-focused glycoproteomics. Biochem Soc Trans 2021; 49:161-186. [PMID: 33439247 PMCID: PMC7925015 DOI: 10.1042/bst20200222] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018–2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.
Collapse
|
16
|
Borgert A, Foley BL, Live D. Contrasting the conformational effects of α-O-GalNAc and α-O-Man glycan protein modifications and their impact on the mucin-like region of alpha-dystroglycan. Glycobiology 2020; 31:649-661. [PMID: 33295623 DOI: 10.1093/glycob/cwaa112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
We have carried out a comparative study of the conformational impact of modifications to threonine residues of either α-O-Man or α-O-GalNAc in the context of a sequence from the mucin-like region of α-dystroglycan. Both such modifications can coexist in this domain of the glycoprotein. Solution NMR experiments and molecular dynamics calculations were employed. Comparing the results for an unmodified peptide Ac- PPTTTTKKP-NH2 sequence from α-dystroglycan, and glycoconjugates with either modification on the Ts, we find that the impact of the α-O-Man modification on the peptide scaffold is quite limited, while that of the α-O-GalNAc is more profound. The results for the α-O-GalNAc glycoconjugate are consistent with what has been seen earlier in other systems. Further examination of the NMR-based structure and the MD results suggest a more extensive network of hydrogen bond interactions within the α-O-GalNAc-threonine residue than has been previously appreciated, which influences the properties of the protein backbone. The conformational effects are relevant to the mechanical properties of α-dystroglycan.
Collapse
Affiliation(s)
- Andrew Borgert
- Department of Medical Research, Gundersen Health System, 1900 South Ave., La Crosse, WI 54601, USA
| | - B Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - David Live
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
O-glycan recognition and function in mice and human cancers. Biochem J 2020; 477:1541-1564. [PMID: 32348475 DOI: 10.1042/bcj20180103] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation represents a nearly ubiquitous post-translational modification, and altered glycosylation can result in clinically significant pathological consequences. Here we focus on O-glycosylation in tumor cells of mice and humans. O-glycans are those linked to serine and threonine (Ser/Thr) residues via N-acetylgalactosamine (GalNAc), which are oligosaccharides that occur widely in glycoproteins, such as those expressed on the surfaces and in secretions of all cell types. The structure and expression of O-glycans are dependent on the cell type and disease state of the cells. There is a great interest in O-glycosylation of tumor cells, as they typically express many altered types of O-glycans compared with untransformed cells. Such altered expression of glycans, quantitatively and/or qualitatively on different glycoproteins, is used as circulating tumor biomarkers, such as CA19-9 and CA-125. Other tumor-associated carbohydrate antigens (TACAs), such as the Tn antigen and sialyl-Tn antigen (STn), are truncated O-glycans commonly expressed by carcinomas on multiple glycoproteins; they contribute to tumor development and serve as potential biomarkers for tumor presence and stage, both in immunohistochemistry and in serum diagnostics. Here we discuss O-glycosylation in murine and human cells with a focus on colorectal, breast, and pancreatic cancers, centering on the structure, function and recognition of O-glycans. There are enormous opportunities to exploit our knowledge of O-glycosylation in tumor cells to develop new diagnostics and therapeutics.
Collapse
|
18
|
Mehta AY, Veeraiah RKH, Dutta S, Goth CK, Hanes MS, Gao C, Stavenhagen K, Kardish R, Matsumoto Y, Heimburg-Molinaro J, Boyce M, Pohl NLB, Cummings RD. Parallel Glyco-SPOT Synthesis of Glycopeptide Libraries. Cell Chem Biol 2020; 27:1207-1219.e9. [PMID: 32610041 PMCID: PMC7556346 DOI: 10.1016/j.chembiol.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Glycan recognition is typically studied using free glycans, but glycopeptide presentations represent more physiological conditions for glycoproteins. To facilitate studies of glycopeptide recognition, we developed Glyco-SPOT synthesis, which enables the parallel production of diverse glycopeptide libraries at microgram scales. The method uses a closed system for prolonged reactions required for coupling Fmoc-protected glycoamino acids, including O-, N-, and S-linked glycosides, and release conditions to prevent side reactions. To optimize reaction conditions and sample reaction progress, we devised a biopsy testing method. We demonstrate the efficient utilization of such microscale glycopeptide libraries to determine the specificity of glycan-recognizing antibodies (e.g., CTD110.6) using microarrays, enzyme specificity on-array and in-solution (e.g., ST6GalNAc1, GCNT1, and T-synthase), and binding kinetics using fluorescence polarization. We demonstrated that the glycosylation on these peptides can be expanded using glycosyltransferases both in-solution and on-array. This technology will promote the discovery of biological functions of peptide modifications by glycans.
Collapse
Affiliation(s)
- Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ravi Kumar H Veeraiah
- Department of Chemistry, Indiana University, 120A Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Sucharita Dutta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Robert Kardish
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael Boyce
- Department of Biochemistry and Program in Cell and Molecular Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, 120A Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405, USA.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Zeng J, Eljalby M, Aryal RP, Lehoux S, Stavenhagen K, Kudelka MR, Wang Y, Wang J, Ju T, von Andrian UH, Cummings RD. Cosmc controls B cell homing. Nat Commun 2020; 11:3990. [PMID: 32778659 PMCID: PMC7417590 DOI: 10.1038/s41467-020-17765-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms regulating lymphocyte homing into lymph nodes are only partly understood. Here, we report that B cell-specific deletion of the X-linked gene, Cosmc, and the consequent decrease of protein O-glycosylation, induces developmental blocks of mouse B cells. After transfer into wild-type recipient, Cosmc-null B cells fail to home to lymph nodes as well as non-lymphoid organs. Enzymatic desialylation of wild-type B cells blocks their migration into lymph nodes, indicating a requirement of sialylated O-glycans for proper trafficking. Mechanistically, Cosmc-deficient B cells have normal rolling and firm arrest on high endothelium venules (HEV), thereby attributing their inefficient trafficking to alterations in the subsequent transendothelial migration step. Finally, Cosmc-null B cells have defective chemokine signaling responses. Our results thus demonstrate that Cosmc and its effects on O-glycosylation are important for controlling B cell homing.
Collapse
Affiliation(s)
- Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mahmoud Eljalby
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Jianmei Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA, USA
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ulrich H von Andrian
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Gao C, Zeng J, Jia N, Stavenhagen K, Matsumoto Y, Zhang H, Li J, Hume AJ, Mühlberger E, van Die I, Kwan J, Tantisira K, Emili A, Cummings RD. SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.29.227462. [PMID: 32766577 PMCID: PMC7402034 DOI: 10.1101/2020.07.29.227462] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spike (S) glycoprotein in the envelope of SARS-CoV-2 is densely glycosylated but the functions of its glycosylation are unknown. Here we demonstrate that S is recognized in a glycan-dependent manner by multiple innate immune receptors including the mannose receptor MR/CD206, DC-SIGN/CD209, L-SIGN/CD209L, and MGL/CLEC10A/CD301. Single-cell RNA sequencing analyses indicate that such receptors are highly expressed in innate immune cells in tissues susceptible to SARS-CoV-2 infection. Binding of the above receptors to S is characterized by affinities in the picomolar range and consistent with S glycosylation analysis demonstrating a variety of N- and O-glycans as receptor ligands. These results indicate multiple routes for SARS-CoV-2 to interact with human cells and suggest alternative strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Jiang Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam J. Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Julian Kwan
- Center for Network Systems Biology, Departments of Biochemistry and Biology, Boston University, Boston, MA, 02118 USA
| | - Kelan Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Departments of Biochemistry and Biology, Boston University, Boston, MA, 02118 USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|