1
|
Wang SK, Zhang H, Lin HC, Wang YL, Lin SC, Seymen F, Koruyucu M, Simmer JP, Hu JCC. AMELX Mutations and Genotype-Phenotype Correlation in X-Linked Amelogenesis Imperfecta. Int J Mol Sci 2024; 25:6132. [PMID: 38892321 PMCID: PMC11172428 DOI: 10.3390/ijms25116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop's classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a "snow-capped" appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype-phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5' truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3' truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by "toxic" cellular effects of the mutant proteins.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Hua-Chieh Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Figen Seymen
- Department of Pediatric Dentistry, Faculty of Dentistry, Altinbas University, Istanbul 34147, Turkey;
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey;
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| |
Collapse
|
2
|
Shemirani R, Le M, Nakano Y. Mutations Causing X-Linked Amelogenesis Imperfecta Alter miRNA Formation from Amelogenin Exon4. J Dent Res 2023; 102:1210-1219. [PMID: 37563801 PMCID: PMC10548775 DOI: 10.1177/00220345231180572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Amelogenin plays a crucial role in tooth enamel formation, and mutations on X-chromosomal amelogenin cause X-linked amelogenesis imperfecta (AI). Amelogenin pre-messenger RNA (mRNA) is highly alternatively spliced, and during alternative splicing, exon4 is mostly skipped, leading to the formation of a microRNA (miR-exon4) that has been suggested to function in enamel and bone formation. While delivering the functional variation of amelogenin proteins, alternative splicing of exon4 is the decisive first step to producing miR-exon4. However, the factors that regulate the splicing of exon4 are not well understood. This study aimed to investigate the association between known mutations in exon4 and exon5 of X chromosome amelogenin that causes X-linked AI, the splicing of exon4, and miR-exon4 formation. Our results showed mutations in exon4 and exon5 of the amelogenin gene, including c.120T>C, c.152C>T, c.155C>G, and c.155delC, significantly affected the splicing of exon4 and subsequent miR-exon4 production. Using an amelogenin minigene transfected in HEK-293 cells, we observed increased inclusion of exon4 in amelogenin mRNA and reduced miR-exon4 production with these mutations. In silico analysis predicted that Ser/Arg-rich RNA splicing factor (SRSF) 2 and SRSF5 were the regulatory factors for exon4 and exon5 splicing, respectively. Electrophoretic mobility shift assay confirmed that SRSF2 binds to exon4 and SRSF5 binds to exon5, and mutations in each exon can alter SRSF binding. Transfection of the amelogenin minigene to LS8 ameloblastic cells suppressed expression of the known miR-exon4 direct targets, Nfia and Prkch, related to multiple pathways. Given the mutations on the minigene, the expression of Prkch has been significantly upregulated with c.155C>G and c.155delC mutations. Together, we confirmed that exon4 splicing is critical for miR-exon4 production, and mutations causing X-linked AI in exon4 and exon5 significantly affect exon4 splicing and following miR-exon4 production. The change in miR-exon4 would be an additional etiology of enamel defects seen in some X-linked AI.
Collapse
Affiliation(s)
- R. Shemirani
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
- Oral and Craniofacial Science, Graduate Division, University of California, San Francisco, CA, USA
| | - M.H. Le
- Oral and Craniofacial Science, Graduate Division, University of California, San Francisco, CA, USA
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, USA
- College of Dental Medicine, California Northstate University, Elk Grove, CA, USA
| | - Y. Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
- Center for Children’s Oral Health Research, School of Dentistry, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
An Intron c.103-3T>C Variant of the AMELX Gene Causes Combined Hypomineralized and Hypoplastic Type of Amelogenesis Imperfecta: Case Series and Review of the Literature. Genes (Basel) 2022; 13:genes13071272. [PMID: 35886055 PMCID: PMC9321068 DOI: 10.3390/genes13071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders of dental enamel. X-linked AI results from disease-causing variants in the AMELX gene. In this paper, we characterise the genetic aetiology and enamel histology of female AI patients from two unrelated families with similar clinical and radiographic findings. All three probands were carefully selected from 40 patients with AI. In probands from both families, scanning electron microscopy confirmed hypoplastic and hypomineralised enamel. A neonatal line separated prenatally and postnatally formed enamel of distinctly different mineralisation qualities. In both families, whole exome analysis revealed the intron variant NM_182680.1: c.103-3T>C, located three nucleotides before exon 4 of the AMELX gene. In family I, an additional variant, c.2363G>A, was found in exon 5 of the FAM83H gene. This report illustrates a variant in the AMELX gene that was not previously reported to be causative for AI as well as an additional variant in the FAM83H gene with probably limited clinical significance.
Collapse
|
4
|
Bidlack FB, Xia Y, Pugach MK. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo. Front Physiol 2017; 8:932. [PMID: 29201008 PMCID: PMC5696357 DOI: 10.3389/fphys.2017.00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023] Open
Abstract
Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05). The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most abundant splice variants and cleavage product can rescue abnormal enamel properties and structure, but only up to a maximum of ~80% that of molar and ~40% that of incisor wild-type enamel.
Collapse
Affiliation(s)
- Felicitas B Bidlack
- Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Yan Xia
- Forsyth Institute, Cambridge, MA, United States
| | - Megan K Pugach
- Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Yin K, Guo J, Lin W, Robertson SYT, Soleimani M, Paine ML. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice. Front Physiol 2017; 8:307. [PMID: 28559854 PMCID: PMC5432648 DOI: 10.3389/fphys.2017.00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7), which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA.,Department of Orthodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Jing Guo
- Department of Endodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Wenting Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical CenterCincinnati, OH, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
6
|
Abstract
Amelogenin is the major organic component in the enamel matrix of developing teeth and plays an important role in enamel biomineralization. Amelogenin has been reported to be a specific secretory product of ameloblasts. In this study, we examined amelogenin gene expression in various cell layers prepared from a porcine permanent tooth germ using reverse transcription-polymerase chain-reaction (RT-PCR). Amelogenin amplification products were detected only in the secretory ameloblast layer after 20 cycles of PCR. After 30 cycles of PCR, amelogenin amplification products were detected in secretory and maturation-stage ameloblasts and in odontoblasts. The relative levels of amelogenin gene expression in secretory and maturation-stage ameloblasts and odontoblasts were determined. Secretory ameloblasts expressed over 1000 times the level of amelogenin mRNA found in odontoblasts. Amelogenin gene expression in odontoblasts was confirmed in an erupted porcine permanent first molar, which has no ameloblasts. Amelogenin PCR amplification products were identified from 4 different alternatively spliced transcripts in the ameloblast samples, and the same spliced forms were detected in the odontoblast samples.
Collapse
|
7
|
MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies. Sci Rep 2017; 7:44118. [PMID: 28287144 PMCID: PMC5347039 DOI: 10.1038/srep44118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.
Collapse
|
8
|
Kida M, Sakiyama Y, Matsuda A, Takabayashi S, Ochi H, Sekiguchi H, Minamitake S, Ariga T. A Novel Missense Mutation (p.P52R) in Amelogenin Gene Causing X-linked Amelogenesis Imperfecta. J Dent Res 2016; 86:69-72. [PMID: 17189466 DOI: 10.1177/154405910708600111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a hereditary disease with abnormal dental enamel formation. Here we report a Japanese family with X-linked AI transmitted over at least four generations. Mutation analysis revealed a novel mutation (p.P52R) in exon 5 of the amelogenin gene. The mutation was detected as heterozygous in affected females and as hemizygous in their affected father. The affected sisters exhibited vertical ridges on the enamel surfaces, whereas the affected father had thin, smooth, yellowish enamel with distinct widening of inter-dental spaces. To study the pathological cause underlying the disease in this family, we synthesized the mutant amelogenin p.P52R protein and evaluated it in vitro. Furthermore, we studied differences in the chemical composition between normal and affected teeth by x-ray diffraction analysis and x-ray fluorescence analysis. We believe that these results will greatly aid our understanding of the pathogenesis of X-linked AI.
Collapse
Affiliation(s)
- M Kida
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Noh HJ, Koh DI, Lee KO, Jeon BN, Kim MK, Snead ML, Hur MW. Role of MIZ-1 in AMELX gene expression. Biochem Biophys Rep 2016; 8:340-345. [PMID: 28955974 PMCID: PMC5614537 DOI: 10.1016/j.bbrep.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/13/2016] [Accepted: 10/09/2016] [Indexed: 11/18/2022] Open
Abstract
Amelogenin (AMELX) is the main component of the developing tooth enamel matrix and is essential for enamel thickness and structure. However, little is known about its transcriptional regulation. Using gene expression analysis, we found that MIZ-1, a potent transcriptional activator of CDKN1A, is expressed during odontoblastic differentiation of hDPSCs (human dental pulp stem cells), and is essential for odontoblast differentiation and mineralization. We also investigated how MIZ-1 regulates gene expression of AMELX. Oligonucleotide-pull down assays showed that MIZ-1 binds to an MRE (MIZ-1 binding element) of the AMELX proximal promoter region (bp, −170 to −25). Combined, our ChIP, transient transcription assays, and promoter mutagenesis revealed that MIZ-1 directly binds to the MRE of the Amelx promoter recruits p300 and induces Amelx gene transcription. Finally, we show that the zinc finger protein MIZ-1 is an essential transcriptional activator of Amelx, which is critical in odontogenesis and matrix mineralization in the developing tooth. MIZ-1is expressed during odontoblast differentiation. MIZ-1 activates transcription of theAmelxgene. MIZ-1 binds to the proximal promoter MRE (bp, −70 to −49). MIZ-1 is a critical factor of odontogenesis and matrix mineralization of hDPSCs.
Collapse
Affiliation(s)
- Hee-Jin Noh
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 134 ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | - Dong-In Koh
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 134 ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | - Kon-O Lee
- Kanagawa Dental University, 82 Inaooka-Chou, Yokosuka-Shikanagawa-Ken, Japan
| | - Bu-Nam Jeon
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 134 ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | - Min-Kyeong Kim
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 134 ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | - Malcom L Snead
- The Center for Craniofacial Molecular Biology, The Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | - Man-Wook Hur
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 134 ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Korea
| |
Collapse
|
10
|
Hu Y, Smith CE, Cai Z, Donnelly LAJ, Yang J, Hu JCC, Simmer JP. Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx-/- mice and Amelx+/- lyonization. Mol Genet Genomic Med 2016; 4:641-661. [PMID: 27896287 PMCID: PMC5118209 DOI: 10.1002/mgg3.252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Amelogenin is required for normal enamel formation and is the most abundant protein in developing enamel. METHODS Amelx+/+, Amelx+/- , and Amelx-/- molars and incisors from C57BL/6 mice were characterized using RT-PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and X-ray diffraction. RESULTS No amelogenin protein was detected by Western blot analyses of enamel extracts from Amelx-/- mice. Amelx-/- incisor enamel averaged 20.3 ± 3.3 μm in thickness, or only 1/6th that of the wild type (122.3 ± 7.9 μm). Amelx-/- incisor enamel nanohardness was 1.6 Gpa, less than half that of wild-type enamel (3.6 Gpa). Amelx+/- incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelx-/- enamel and varied levels of amelogenin in Amelx+/- incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx+/+ and Amelx-/- enamel extending from mineralized dentin collagen to the ameloblast. The Amelx-/- enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. X-ray diffraction determined that the predominant mineral in Amelx-/- enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelx-/- ameloblasts were similar to wild-type ameloblasts except no Tomes' processes extended into the thin enamel. Amelx-/- and Amelx+/- molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage. CONCLUSION Amelogenin forms a resorbable matrix that separates and supports, but does not shape early secretory-stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomes' process.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Charles E Smith
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Facility for Electron Microscopy ResearchDepartment of Anatomy and Cell BiologyFaculty of DentistryMcGill UniversityMontrealQuebecH3A 2B2Canada
| | - Zhonghou Cai
- Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave Building 431-B005 Argonne Illinois 60439
| | - Lorenza A-J Donnelly
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| |
Collapse
|
11
|
Pyrosequencing of Plaque Microflora In Twin Children with Discordant Caries Phenotypes. PLoS One 2015; 10:e0141310. [PMID: 26524687 PMCID: PMC4629883 DOI: 10.1371/journal.pone.0141310] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022] Open
Abstract
Despite recent successes in the control of dental caries, the mechanism of caries development remains unclear. To investigate the causes of dental decay, especially in early childhood caries, the supragingival microflora composition of 20 twins with discordant caries phenotypes were analyzed using high-throughput pyrosequencing. In addition, the parents completed a lifestyle questionnaire. A total of 228,789 sequencing reads revealed 10 phyla, 84 genera, and 155 species of microflora, the relative abundances of these strains varied dramatically among the children, Comparative analysis between groups revealed that Veillonella, Corynebacterium and Actinomyces were presumed to be caries-related genera, Fusobacterium, Kingella and Leptotrichia were presumed to be healthy-related genus, yet this six genera were not statistically significant (P>0.05). Moreover, a cluster analysis revealed that the microbial composition of samples in the same group was often dissimilar but that the microbial composition observed in twins was usually similar. Although the genetic and environmental factors that strongly influence the microbial composition of dental caries remains unknown, we speculate that genetic factors primarily influence the individual's susceptibility to dental caries and that environmental factors primarily regulate the microbial composition of the dental plaque and the progression to caries. By using improved twins models and increased sample sizes, our study can be extended to analyze the specific genetic and environmental factors that affect the development of caries.
Collapse
|
12
|
Li Y, Konicki WS, Wright JT, Suggs C, Xue H, Kuehl MA, Kulkarni AB, Gibson CW. Mouse genetic background influences the dental phenotype. Cells Tissues Organs 2014; 198:448-56. [PMID: 24732779 DOI: 10.1159/000360157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
Dental enamel covers the crown of the vertebrate tooth and is considered to be the hardest tissue in the body. Enamel develops during secretion of an extracellular matrix by ameloblast cells in the tooth germ, prior to eruption of the tooth into the oral cavity. Secreted enamel proteins direct mineralization patterns during the maturation stage of amelogenesis as the tooth prepares to erupt. The amelogenins are the most abundant enamel proteins and are required for normal enamel development. Phenotypic differences were observed between incisors from individual Amelx (amelogenin) null mice that had a mixed 129xC57BL/6J genetic background and between inbred wild-type (WT) mice with different genetic backgrounds (C57BL/6J, C3H/HeJ, FVB/NJ). We hypothesized that this could be due to modifier genes, as human patients with a mutation in an enamel protein gene causing the enamel defect amelogenesis imperfecta (AI) can also have varied appearance of dentitions within a kindred. Enamel density measurements varied for all WT inbred strains midway during incisor development. Enamel thickness varied between some WT strains, and, unexpectedly, dentin density varied extensively between incisors and molars of all WT and Amelx null strains studied. WTFVB/NJ incisors were more similar to those of Amelx null mice than to those of the other WT strains in terms of incisor height/width ratio and pattern of enamel mineralization. Strain-specific differences led to the conclusion that modifier genes may be implicated in determining both normal development and severity of enamel appearance in AI mouse models and may in future studies be related to phenotypic heterogeneity within human AI kindreds reported in the literature.
Collapse
Affiliation(s)
- Yong Li
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa., USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Muto T, Miyoshi K, Horiguchi T, Hagita H, Noma T. Novel genetic linkage of rat Sp6 mutation to Amelogenesis imperfecta. Orphanet J Rare Dis 2012; 7:34. [PMID: 22676574 PMCID: PMC3464675 DOI: 10.1186/1750-1172-7-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Background Amelogenesis imperfecta (AI) is an inherited disorder characterized by abnormal formation of tooth enamel. Although several genes responsible for AI have been reported, not all causative genes for human AI have been identified to date. AMI rat has been reported as an autosomal recessive mutant with hypoplastic AI isolated from a colony of stroke-prone spontaneously hypertensive rat strain, but the causative gene has not yet been clarified. Through a genetic screen, we identified the causative gene of autosomal recessive AI in AMI and analyzed its role in amelogenesis. Methods cDNA sequencing of possible AI-candidate genes so far identified using total RNA of day 6 AMI rat molars identified a novel responsible mutation in specificity protein 6 (Sp6). Genetic linkage analysis was performed between Sp6 and AI phenotype in AMI. To understand a role of SP6 in AI, we generated the transgenic rats harboring Sp6 transgene in AMI (Ami/Ami + Tg). Histological analyses were performed using the thin sections of control rats, AMI, and Ami/Ami + Tg incisors in maxillae, respectively. Results We found the novel genetic linkage between a 2-bp insertional mutation of Sp6 gene and the AI phenotype in AMI rats. The position of mutation was located in the coding region of Sp6, which caused frameshift mutation and disruption of the third zinc finger domain of SP6 with 11 cryptic amino acid residues and a stop codon. Transfection studies showed that the mutant protein can be translated and localized in the nucleus in the same manner as the wild-type SP6 protein. When we introduced the CMV promoter-driven wild-type Sp6 transgene into AMI rats, the SP6 protein was ectopically expressed in the maturation stage of ameloblasts associated with the extended maturation stage and the shortened reduced stage without any other phenotypical changes. Conclusion We propose the addition of Sp6 mutation as a new molecular diagnostic criterion for the autosomal recessive AI patients. Our findings expand the spectrum of genetic causes of autosomal recessive AI and sheds light on the molecular diagnosis for the classification of AI. Furthermore, tight regulation of the temporospatial expression of SP6 may have critical roles in completing amelogenesis.
Collapse
Affiliation(s)
- Taro Muto
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Japan
| | | | | | | | | |
Collapse
|
14
|
Lee KE, Lee SK, Jung SE, Song SJ, Cho SH, Lee ZH, Kim JW. A novel mutation in the AMELX gene and multiple crown resorptions. Eur J Oral Sci 2012; 119 Suppl 1:324-8. [DOI: 10.1111/j.1600-0722.2011.00858.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Chan HC, Estrella NMRP, Milkovich RN, Kim JW, Simmer JP, Hu JCC. Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur J Oral Sci 2011; 119 Suppl 1:311-23. [PMID: 22243262 PMCID: PMC3292789 DOI: 10.1111/j.1600-0722.2011.00857.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred.
Collapse
Affiliation(s)
- Hui-Chen Chan
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ninna M. R. P. Estrella
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rachel N. Milkovich
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Urzúa B, Ortega-Pinto A, Morales-Bozo I, Rojas-Alcayaga G, Cifuentes V. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry. Biochem Genet 2010; 49:104-21. [PMID: 21127961 DOI: 10.1007/s10528-010-9392-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/23/2010] [Indexed: 10/18/2022]
Abstract
Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.
Collapse
Affiliation(s)
- Blanca Urzúa
- Department of Physical and Chemical Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
17
|
Wright JT, Hart PS, Aldred MJ, Seow K, Crawford PJM, Hong SP, Gibson CW, Hart TC. Relationship of Phenotype and Genotype in X-Linked Amelogenesis Imperfecta. Connect Tissue Res 2009. [DOI: 10.1080/03008200390152124] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
18
|
Hu JCC, Chun YHP, Al Hazzazzi T, Simmer JP. Enamel formation and amelogenesis imperfecta. Cells Tissues Organs 2007; 186:78-85. [PMID: 17627121 DOI: 10.1159/000102683] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel.
Collapse
Affiliation(s)
- Jan C-C Hu
- University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA
| | | | | | | |
Collapse
|
19
|
Abstract
The synthesis of tooth development biology with human studies focusing on inherited conditions that specifically interfere with tooth development is improving our understanding of normal and pathological tooth formation. The type of inherited dental malformations observed in a given kindred relate to when, during odontogenesis, the defective gene is critically expressed. Information about the protein encoded by the defective gene and the resulting dental phenotype helps us understand the major processes underway at different stages during tooth development. Genes affecting early tooth development (PAX9, MSX1, and AXIN2) are associated with familial tooth agenesis or oligodontia. Genes expressed by odontoblasts (COL1A1, COL1A2, and DSPP), and ameloblasts (AMELX, ENAM, MMP20, and KLK4) during the crown formation stage, are associated with dentinogenesis imperfecta, dentin dysplasia, and amelogenesis imperfecta. Late genes expressed during root formation (ALPL and DLX3) are associated with cementum agenesis (hypophosphatasia) and taurodontism. Understanding the relationships between normal tooth development and the dental pathologies associated with inherited diseases improves our ability to diagnose and treat patients suffering the manifestations of inherited dental disorders.
Collapse
Affiliation(s)
- Jan C-C Hu
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | |
Collapse
|
20
|
Gutierrez SJ, Chaves M, Torres DM, Briceño I. Identification of a novel mutation in the enamalin gene in a family with autosomal-dominant amelogenesis imperfecta. Arch Oral Biol 2007; 52:503-6. [PMID: 17316551 DOI: 10.1016/j.archoralbio.2006.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/15/2006] [Accepted: 09/22/2006] [Indexed: 10/23/2022]
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous genetic disorder that affects the formation of the dental enamel matrix. Mutations in the enamelin (ENAM) gene have been found in patients with this disorder. The objective of this research was to identify the mutations reported in exons 4, 7 and 9 of the ENAM gene in a single Colombian family with autosomal-dominant AI and to establish the phenotype. The fragments of exons 4, 7 and 9 of the ENAM gene were amplified by polymerase chain reaction and direct sequencing was performed. A mutation was found in exon 9 where guanine was substituted by thymine in one of the alleles in position 817, generating a change of arginine to methionine in codon 179 of the protein. The mutation was only found in affected members of this family who presented with the severe, generalised hypoplastic phenotype in all teeth. The genotype/phenotype correlation for different AI subtypes has not been established. These results support a possible correlation between hypoplastic AI and mutations in the ENAM gene; however, identification of additional mutations could be helpful in establishing phenotype/genotype relationships.
Collapse
|
21
|
Abstract
The amelogenesis imperfectas (AIs) are a clinically and genetically diverse group of conditions that are caused by mutations in a variety of genes that are critical for normal enamel formation. To date, mutations have been identified in four genes (AMELX, ENAM, KLK4, MMP20) known to be involved in enamel formation. Additional yet to be identified genes also are implicated in the etiology of AI based on linkage studies. The diverse and often unique phenotypes resulting from the different allelic and non-allelic mutations in these genes provide an opportunity to better understand the role of these genes and their related proteins in enamel formation. Understanding the AI phenotypes also provides an aid to clinicians in directing molecular studies aimed at delineating the genetic basis underlying these diverse clinical conditions. Our current knowledge of the known mutations and associated phenotypes of the different AI subtypes are reviewed.
Collapse
Affiliation(s)
- J Timothy Wright
- Department of Pediatric Dentistry, School of Dentistry, The University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
22
|
Hu JCC, Yamakoshi Y, Yamakoshi F, Krebsbach PH, Simmer JP. Proteomics and genetics of dental enamel. Cells Tissues Organs 2006; 181:219-31. [PMID: 16612087 DOI: 10.1159/000091383] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The initiation of enamel crystals at the dentino-enamel junction is associated with the expression of dentin sialophosphoprotein (DSPP, a gene normally linked with dentin formation), three 'structural' enamel proteins--amelogenin (AMELX), enamelin (ENAM), and ameloblastin (AMBN)--and a matrix metalloproteinase, enamelysin (MMP20). Enamel formation proceeds with the steady elongation of the enamel crystals at a mineralization front just beneath the ameloblast distal membrane, where these proteins are secreted. As the crystal ribbons lengthen, enamelysin processes the secreted proteins. Some of the cleavage products accumulate in the matrix, others are reabsorbed back into the ameloblast. Once crystal elongation is complete and the enamel layer reaches its final thickness, kallikrein 4 (KLK4) facilitates the breakdown and reabsorption of accumulated enamel matrix proteins. The importance of the extracellular matrix proteins to proper tooth development is best illustrated by the dramatic dental phenotypes observed in the targeted knockouts of enamel matrix genes in mice (Dspp, Amelx, Ambn, Mmp20) and in human kindreds with defined mutations in the genes (DSPP, AMELX, ENAM, MMP20, KLK4) encoding these matrix proteins. However, ablation studies alone cannot give specific mechanistic information on how enamel matrix proteins combine to catalyze the formation of enamel crystals. The best approach for determining the molecular mechanism of dental enamel formation is to reconstitute the matrix and synthesize enamel crystals in vitro. Here, we report refinements to the procedures used to isolate porcine enamel and dentin proteins, recent advances in the characterization of enamel matrix protein posttranslational modifications, and summarize the results of human genetic studies that associate specific mutations in the genes encoding matrix proteins with a range of dental phenotypes.
Collapse
Affiliation(s)
- Jan C-C Hu
- University of Michigan Dental Research Lab, Ann Arbor, Mich. 48108, USA
| | | | | | | | | |
Collapse
|
23
|
Kim JW, Simmer JP, Lin BPL, Seymen F, Bartlett JD, Hu JCC. Mutational analysis of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci 2006; 114 Suppl 1:3-12; discussion 39-41, 379. [PMID: 16674655 DOI: 10.1111/j.1600-0722.2006.00278.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of inherited defects in dental enamel formation. The malformed enamel can be unusually thin, soft, rough and stained. The strict definition of AI includes only those cases where enamel defects occur in the absence of other symptoms. Currently, there are seven candidate genes for AI: amelogenin, enamelin, ameloblastin, tuftelin, distal-less homeobox 3, enamelysin, and kallikrein 4. To identify sequence variations in AI candidate genes in patients with isolated enamel defects, and to deduce the likely effect of each sequence variation on protein expression and structure, families with isolated enamel defects were recruited. The coding exons and nearby intron sequences were amplified for each of the AI candidate genes by using genomic DNA from the proband as template. The amplification products for the proband were sequenced. Then, other family members were tested to determine their genotype with respect to each sequence variation. All subjects received an oral examination, and intraoral photographs and dental radiographs were obtained. Out of 24 families with isolated enamel defects, only six disease-causing mutations were identified in the AI candidate genes. This finding suggests that many additional genes potentially contribute to the etiology of AI.
Collapse
Affiliation(s)
- Jung-Wook Kim
- University of Michigan School of Dentistry, University of Michigan Dental Research Laboratory, Ann Arbor, MI 48108, USA, and Department of Pediatric Dentistry & Dental Research Institute, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Stephanopoulos G, Garefalaki ME, Lyroudia K. Genes and related proteins involved in amelogenesis imperfecta. J Dent Res 2006; 84:1117-26. [PMID: 16304440 DOI: 10.1177/154405910508401206] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dental enamel formation is a remarkable example of a biomineralization process. The exact mechanisms involved in this process remain partly obscure. Some of the genes encoding specific enamel proteins have been indicated as candidate genes for amelogenesis imperfecta. Mutational analyses within studied families have supported this hypothesis. Mutations in the amelogenin gene (AMELX) cause X-linked amelogenesis imperfecta, while mutations in the enamelin gene (ENAM) cause autosomal-inherited forms of amelogenesis imperfecta. Recent reports involve kallikrein-4 (KLK4), MMP-20, and DLX3 genes in the etiologies of some cases. This paper focuses mainly on the candidate genes involved in amelogenesis imperfecta and the proteins derived from them, and reviews current knowledge on their structure, localization within the tissue, and correlation with the various types of this disorder.
Collapse
Affiliation(s)
- G Stephanopoulos
- Diploma in Dental Science, Aristotle University of Thessaloniki, Greece
| | | | | |
Collapse
|
25
|
Tsujigiwa H, Nagatsuka H, Han PP, Gunduz M, Siar CH, Oida S, Nagai N. Analysis of amelogenin gene (AMGX, AMGY) expression in ameloblastoma. Oral Oncol 2005; 41:843-50. [PMID: 15979380 DOI: 10.1016/j.oraloncology.2005.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Although the amelogenin gene is expressed in ameloblastoma, the precise expression pattern of X and Y amelogenin genes (AMGX, AMGY) in this tumor has not yet been identified. In this study, we analyzed amelogenin gene expression in 19 samples (9 male, 10 female) of oral ameloblastomas by RT-PCR and detect the chromosomal origin of amelogenin mRNA by restriction enzyme digestion of the RT-PCR product. All tumor samples expressed amelogenin mRNA. We could detect increased level of AMGY expression in all male samples, higher than that of AMEX. It is an interesting finding as in normal male tooth development, the expression of AMGY is very much lower than that of AMGX. We postulate that epigenetic change of sex chromosomes may have some correlations with tumorigenesis of ameloblastoma. We also discuss the other possible mechanisms and points for future studies on this change in expression pattern.
Collapse
Affiliation(s)
- Hidetsugu Tsujigiwa
- Department of Oral Pathology and Medicine, Graduate School of Medicine and Dentistry, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Delgado S, Girondot M, Sire JY. Molecular evolution of amelogenin in mammals. J Mol Evol 2005; 60:12-30. [PMID: 15696365 DOI: 10.1007/s00239-003-0070-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 07/21/2004] [Indexed: 10/25/2022]
Abstract
An evolutionary analysis of mammalian amelogenin, the major protein of forming enamel, was conducted by comparison of 26 sequences (including 14 new ones) representative of the main mammalian lineages. Amelogenin shows highly conserved residues in the hydrophilic N- and C-terminal regions. The central hydrophobic region (most of exon 6) is more variable, but it has conserved a high amount of proline and glutamine located in triplets, PXQ, indicating that these residues play an important role. This region evolves more rapidly, and is less constrained, than the other well-conserved regions, which are subjected to strong constraints. The comparison of the substitution rates in relation to the CpG richness confirmed that the highly conserved regions are subjected to strong selective pressures. The amino acids located at important sites and the residues known to lead to amelogenesis imperfecta when substituted were present in all sequences examined. Evolutionary analysis of the variable region of exon 6 points to a particular zone, rich in either amino acid insertion or deletion. We consider this region a hot spot of mutation for the mammalian amelogenin. In this region, numerous triplet repeats (PXQ) have been inserted recently and independently in five lineages, while most of the hydrophobic exon 6 region probably had its origin in several rounds of triplet insertions, early in vertebrate evolution. The putative ancestral DNA sequence of the mammalian amelogenin was calculated using a maximum likelihood approach. The putative ancestral protein was composed of 177 residues. It already contained all important amino acid positions known to date, its hydrophobic variable region was rich in proline and glutamine, and it contained triplet repeats PXQ as in the modern sequences.
Collapse
Affiliation(s)
- Sidney Delgado
- FRE2696, Equipe Evolution & Développement du Squelette, Université Paris 6, Paris, France
| | | | | |
Collapse
|
27
|
Masuya H, Shimizu K, Sezutsu H, Sakuraba Y, Nagano J, Shimizu A, Fujimoto N, Kawai A, Miura I, Kaneda H, Kobayashi K, Ishijima J, Maeda T, Gondo Y, Noda T, Wakana S, Shiroishi T. Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI). Hum Mol Genet 2005; 14:575-83. [PMID: 15649948 DOI: 10.1093/hmg/ddi054] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a group of commonly inherited defects of dental enamel formation, which exhibits marked genetic and clinical heterogeneity. The genetic basis of this heterogeneity is still poorly understood. Enamelin, the affected gene product in one form of AI (AIH2), is an extracellular matrix protein that is one of the components of enamel. We isolated three ENU-induced dominant mouse mutations, M100395, M100514 and M100521, which caused AI-like phenotypes in the incisors and molars of the affected individuals. Linkage analyses mapped each of the three mutations to a region of chromosome 5 that contained the genes encoding enamelin (Enam) and ameloblastin (Ambn). Sequence analysis revealed that each mutation was a single-base substitution in Enam. M100395 (Enam(Rgsc395)) and M100514 (Enam(Rgsc514)) were putative missense mutations that caused S to I and E to G substitutions at positions 55 and 57 of the translated protein, respectively. Enam(Rgsc395) and Enam(Rgsc514) heterozygotes showed severe breakage of the enamel surface, a phenotype that resembled local hypoplastic AI. The M100521 mutation (Enam(Rgsc521)) was a T to A substitution at the splicing donor site in intron 4. This mutation resulted in a frameshift that gave rise to a premature stop codon. The transcript of the Enam(Rgsc521) mutant allele was degraded, indicating that Enam(Rgsc521) is a loss-of-function mutation. Enam(Rgsc521) heterozygotes showed a hypomaturation-type AI phenotype in the incisors, possibly due to haploinsufficiency of Enam. Enam(Rgsc521) homozygotes showed complete loss of enamel on the incisors and the molars. Thus, we report here that the Enam gene is essential for amelogenesis, and that mice with different point mutations at Enam may provide good animal models to study the different clinical subtypes of AI.
Collapse
Affiliation(s)
- Hiroshi Masuya
- Mouse Functional Genomics Research Group, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thyagarajan T, Totey S, Danton MJS, Kulkarni AB. Genetically altered mouse models: the good, the bad, and the ugly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:154-74. [PMID: 12799320 DOI: 10.1177/154411130301400302] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted gene disruption in mice is a powerful tool for generating murine models for human development and disease. While the human genome program has helped to generate numerous candidate genes, few genes have been characterized for their precise in vivo functions. Gene targeting has had an enormous impact on our ability to delineate the functional roles of these genes. Many gene knockout mouse models faithfully mimic the phenotypes of the human diseases. Because some models display an unexpected or no phenotype, controversy has arisen about the value of gene-targeting strategies. We argue in favor of gene-targeting strategies, provided they are used with caution, particularly in interpreting phenotypes in craniofacial and oral biology, where many genes have pleiotropic roles. The potential pitfalls are outweighed by the unique opportunities for developing and testing different therapeutic strategies before they are introduced into the clinic. In the future, we believe that genetically engineered animal models will be indispensable for gaining important insights into the molecular mechanisms underlying development, as well as disease pathogenesis, diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Tamizchelvi Thyagarajan
- Functional Genomics Unit and Gene Targeting Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 527, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
29
|
Yokozeki M, Afanador E, Nishi M, Kaneko K, Shimokawa H, Yokote K, Deng C, Tsuchida K, Sugino H, Moriyama K. Smad3 is required for enamel biomineralization. Biochem Biophys Res Commun 2003; 305:684-90. [PMID: 12763048 DOI: 10.1016/s0006-291x(03)00806-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Smad3 is an intracellular signaling molecule that mediates the signal from transforming growth factor-beta (TGF-beta) and activin receptors. In this study, we reveal hypomineralized enamel in mice with the targeted deletion of the Smad3 gene. The Smad3 (-/-) mice had chalky white incisor enamel, while the enamel of the wild-type or Smad3 (+/-) mice was yellow-brown. Histological analysis of the undecalcified sections showed that the enamel thickness of the maxillary incisors in the Smad3 (-/-) mice was similar to that of the wild-type and Smad3 (+/-) mice while that the enamel of the maxillary molars in Smad3 (-/-) mice was disrupted in places. Microcomputed tomography (microCT) analysis revealed that the mineralization of the maxillary incisors and mandibular molars in the Smad3 (-/-) mice showed significant reduction in the degree of mineralization when compared to that of the wild-type and Smad3 (+/-) mice. Scanning electron microscopic (SEM) analysis of the mandibular incisors revealed that the enamel surface of the Smad3 (-/-) mice was irregular and disrupted in places and showed images similar to decalcified mature enamel. The histological analysis of the decalcified sections showed that distinct morphological changes in the ameloblasts at the secretory and maturational stages were not observed between the Smad3 (-/-) and Smad3 (+/-) or wild-type mice, while the enamel matrix was observed in the decalcified sections of the mandibular molars in the Smad3 (-/-) mice. These results suggested that Smad3 was required for enamel biomineralization, and TGF-beta and activin signaling might be critical for its process.
Collapse
Affiliation(s)
- Masahiko Yokozeki
- Department of Orthodontics, School of Dentistry, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shore RC, Bäckman B, Brookes SJ, Kirkham J, Wood SR, Robinson C. Inheritance pattern and elemental composition of enamel affected by hypomaturation amelogenesis imperfecta. Connect Tissue Res 2003; 43:466-71. [PMID: 12489199 DOI: 10.1080/03008200290000871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hypomaturation amelogenesis imperfecta (AI) is characterized clinically by enamel of normal thickness that is hypomineralized, mottled, and detaches easily from the underlying dentin. Autosomal dominant, autosomal recessive, X-linked, and sporadic modes of inheritance have been documented. The present study investigated the elemental composition of the enamel of teeth from individuals demonstrating clinical hypomaturation AI from families representing three of these patterns of inheritance. The aim of the study was to determine if there was any commonality in microscopic phenotype of this defect between families demonstrating the various inheritance patterns. One section from each tooth was microradiographed and then viewed in a scanning electron microscope (SEM) equipped with an ultrathin window energy-dispersive x-ray spectroscopy (EDX) detector. In the SEM, prisms and constituent crystals in discrete areas appeared to be largely obscured by an amorphous material. EDX analysis showed enamel outside these areas to have a composition indistinguishable from control teeth. However, within these affected areas there was a large increase in carbon content (up to a fivefold increase). In some teeth there was also a detectable but smaller increase in the relative amounts of nitrogen or oxygen. The results suggest the defect in these teeth with a common clinical phenotype, irrespective of the pattern of inheritance, demonstrates a commonality in microscopic phenotype. The large increase in carbon content, not matched by an equivalent increase in nitrogen or oxygen, suggests a possible increased lipid content. In those teeth with elevated nitrogen levels there may also be retained protein.
Collapse
Affiliation(s)
- R C Shore
- Division of Oral Biology, Leeds Dental Institute, Clarendon Way, Leeds LS2 9LU, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Aldred MJ, Hall RK, Kilpatrick N, Bankier A, Savarirayan R, Lamandé SR, Lench NJ, Crawford PJM. Molecular analysis for genetic counselling in amelogenesis imperfecta. Oral Dis 2002; 8:249-53. [PMID: 12363109 DOI: 10.1034/j.1601-0825.2002.02835.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To use molecular genetics to establish the mode of inheritance in a family with amelogenesis imperfecta. MATERIALS AND METHODS The polymerase chain reaction was used to amplify exons of the amelogenin gene on the short arm of the X chromosome. RESULTS A single base deletion mutation in exon 6 of the amelogenin gene was identified. This mutation was a single base deletion of a cytosine residue - 431delC - in codon 96 of exon 6, introducing a stop codon 30 codons downstream of the mutation in codon 126 of the exon. CONCLUSION The firm establishment of an X-linked mode of inheritance affects the genetic counselling for this family.
Collapse
Affiliation(s)
- M J Aldred
- Department of Dentistry, Royal Children's Hospital, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Mutations of the X-chromosome amelogenin gene (AMELX) are associated with amelogenesis imperfecta (AI) phenotypes (OMIM no. 301200). Currently, 12 different AMELX mutations have been identified in individuals with abnormal enamel characteristic of AI. A notable feature of AI is the variable clinical phenotype, spurring interest in genotype-phenotype correlations. It is important that researchers and clinicians have an informative and reliable means of reporting and communicating these molecular defects. Therefore, the purpose here was to present a systematic nosology for reporting the genomic, cDNA and protein consequences of AMELX mutations associated with AI. The proposed nomenclature adheres to conventions proposed for other conditions and can be adopted for the autosomal forms of AI as the molecular basis of these conditions becomes known.
Collapse
Affiliation(s)
- P S Hart
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
33
|
Greene SR, Yuan ZA, Wright JT, Amjad H, Abrams WR, Buchanan JA, Trachtenberg DI, Gibson CW. A new frameshift mutation encoding a truncated amelogenin leads to X-linked amelogenesis imperfecta. Arch Oral Biol 2002; 47:211-7. [PMID: 11839357 DOI: 10.1016/s0003-9969(01)00111-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amelogenin proteins are the most abundant organic components of developing dental enamel. Their importance for the proper mineralization of enamel is evident from the association between previously identified mutations in the X-chromosomal gene that encodes them and the enamel defect amelogenesis imperfecta. In this investigation, an adult male presenting with a severe hypoplastic enamel phenotype was found to have a single base deletion at the codon for amino acid 110 of the X-chromosomal 175-amino acid amelogenin protein. The proband's mother, who also has affected enamel, carries the identical deletion on one of her X-chromosomes, while the father has both normal enamel and DNA sequence. This frameshift mutation deletes part of the coding region for the repetitive portion of amelogenin as well as the hydrophilic tail, replacing them with a 47-amino acid segment containing nine cysteine residues. While greater than 60% of the protein is predicted to be intact, the severity of this phenotype illustrates the importance of the C-terminal region of the amelogenin protein for the formation of enamel with normal thickness.
Collapse
Affiliation(s)
- S R Greene
- Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hu JC, Sun X, Zhang C, Simmer JP. A comparison of enamelin and amelogenin expression in developing mouse molars. Eur J Oral Sci 2001; 109:125-32. [PMID: 11347656 DOI: 10.1034/j.1600-0722.2001.00998.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amelogenin and enamelin are structural proteins in the enamel matrix of developing teeth. The temporal and spatial patterns of enamelin expression in developing mouse molars have not been characterized, while controversy remains with respect to amelogenin expression by odontoblasts and cementoblasts. Here we report the results of in situ hybridization analyses of amelogenin and enamelin expression in mouse molars from postnatal days 1, 2, 3, 7, 9, 14, and 21. Amelogenin and enamelin mRNA in maxillary first molars was first observed in pre-ameloblasts on the cusp slopes at day 2. The onsets of amelogenin and enamelin expression were approximately synchronous with the initial accumulation of predentin matrix. Both proteins were expressed by ameloblasts throughout the secretory, transition, and early maturation stages. Enamelin expression terminated in maturation stage ameloblasts on day 9, while amelogenin expression is still detected in maturation stage ameloblasts on day 14. No amelogenin expression was observed in day 21 mouse molars. Amelogenin and enamelin RNA messages were restricted to ameloblasts. No expression was observed in pulp, bone, or along the developing root. We conclude that amelogenin and enamelin are enamel-specific and do not directly participate in the formation of dentin or cementum in developing mouse molars.
Collapse
Affiliation(s)
- J C Hu
- University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | | | |
Collapse
|
35
|
Gibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T, Sreenath T, Wright JT, Decker S, Piddington R, Harrison G, Kulkarni AB. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2001; 276:31871-5. [PMID: 11406633 DOI: 10.1074/jbc.m104624200] [Citation(s) in RCA: 365] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dental enamel is the hardest tissue in the body and cannot be replaced or repaired, because the enamel secreting cells are lost at tooth eruption. X-linked amelogenesis imperfecta (MIM 301200), a phenotypically diverse hereditary disorder affecting enamel development, is caused by deletions or point mutations in the human X-chromosomal amelogenin gene. Although the precise functions of the amelogenin proteins in enamel formation are not well defined, these proteins constitute 90% of the enamel organic matrix. We have disrupted the amelogenin locus to generate amelogenin null mice, which display distinctly abnormal teeth as early as 2 weeks of age with chalky-white discoloration. Microradiography revealed broken tips of incisors and molars and scanning electron microscopy analysis indicated disorganized hypoplastic enamel. The amelogenin null phenotype reveals that the amelogenins are apparently not required for initiation of mineral crystal formation but rather for the organization of crystal pattern and regulation of enamel thickness. These null mice will be useful for understanding the functions of amelogenin proteins during enamel formation and for developing therapeutic approaches for treating this developmental defect that affects the enamel.
Collapse
Affiliation(s)
- C W Gibson
- Department of Anatomy and Histology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sekiguchi H, Tanakamaru H, Minaguchi K, Machida Y, Yakushiji M. A case of amelogenesis imperfecta of deciduous and all permanent teeth. THE BULLETIN OF TOKYO DENTAL COLLEGE 2001; 42:45-50. [PMID: 11484794 DOI: 10.2209/tdcpublication.42.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We experienced a case with severe enamel defects of both the deciduous teeth and all the permanent teeth. In order to clarify the etiology of enamel defects in this patient, we performed a DNA analysis in addition to conventional examinations. Although we suspected a variety of systemic factors causing enamel defects, there was no evidence suggesting disturbances of amelogenesis. In the present case, we suspected a mutation in the amelogenin gene and performed nucleotide sequencing of the exons of the amelogenin gene, but we could not find any evidence of mutation. We suggest that a mutation of some other gene related to enamel formation or the adventitious factors contributed to the amelogenesis imperfecta in this case.
Collapse
Affiliation(s)
- H Sekiguchi
- Department of Pediatric Dentistry, Tokyo Dental College, Chiba, Japan
| | | | | | | | | |
Collapse
|
37
|
Mårdh CK, Bäckman B, Simmons D, Golovleva I, Gu TT, Holmgren G, MacDougall M, Forsman-Semb K. Human ameloblastin gene: genomic organization and mutation analysis in amelogenesis imperfecta patients. Eur J Oral Sci 2001; 109:8-13. [PMID: 11330937 DOI: 10.1034/j.1600-0722.2001.00979.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A gene encoding the enamel protein ameloblastin (AMBN) was recently localized to a region on chromosome 4q21 containing a gene for the inherited enamel defect local hypoplastic amelogenesis imperfecta (AIH2). Ameloblastin protein is located at the Tomes processes of secretory ameloblasts and in the sheath space between rod-interrod enamel, and the AMBN gene therefore represents a viable candidate gene for local hypoplastic amelogenesis imperfecta (AI). In this study, the genomic organization of human AMBN was characterized. The gene was shown to consist of 13 exons and 12 introns. An alternatively spliced 45 bp sequence was shown not to represent a separate exon and is most likely spliced by the use of a cryptic splice site. The finding that there were no recombinations between an intragenic microsatellite and AIH2 encouraged us to evaluate this gene's potential role as a candidate gene for local hypoplastic AI. Mutation screening was performed on all 13 exons in 20 families and 8 sporadic cases with 6 different forms of AI. DNA variants were found but none that was associated exclusively with local hypoplastic AI or any of the other variants of AI in the identified Swedish families. This study excludes the coding regions and the splice sites of AMBN from a causative role in the pathogenesis of AIH2.
Collapse
Affiliation(s)
- C K Mårdh
- Department of Clinical Genetics, University Hospital, Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kindelan SA, Brook AH, Gangemi L, Lench N, Wong FS, Fearne J, Jackson Z, Foster G, Stringer BM. Detection of a novel mutation in X-linked amelogenesis imperfecta. J Dent Res 2000; 79:1978-82. [PMID: 11201048 DOI: 10.1177/00220345000790120901] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of inherited disorders of defective enamel formation. The major protein involved in enamel formation, amelogenin, is encoded by a gene located at Xp22.1-Xp22.3. This study investigated the molecular defect producing a combined phenotype of hypoplasia and hypomineralization in a family with the clinical features and inheritance pattern of X-linked amelogenesis imperfecta (XAI). Genomic DNA was prepared from buccal cells sampled from family members. The DNA was subjected to the polymerase chain-reaction (PCR) in the presence of a series of oligonucleotide primers designed to amplify all 7 exons of the amelogenin gene. Cloning and sequencing of the purified amplification products identified a cytosine deletion in exon VI at codon 119. The deletion resulted in a frameshift mutation, introducing a premature stop signal at codon 126, producing a truncated protein lacking the terminal 18 amino acids. Identifying mutations assists our understanding of the important functional domains within the gene, and finding another novel mutation emphasizes the need for family-specific diagnosis of amelogenesis imperfecta.
Collapse
Affiliation(s)
- S A Kindelan
- Department of Child Dental Health, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hu CC, Hart TC, Dupont BR, Chen JJ, Sun X, Qian Q, Zhang CH, Jiang H, Mattern VL, Wright JT, Simmer JP. Cloning human enamelin cDNA, chromosomal localization, and analysis of expression during tooth development. J Dent Res 2000; 79:912-9. [PMID: 10831092 DOI: 10.1177/00220345000790040501] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enamelin is the largest protein in the enamel matrix of developing teeth. In the pig, enamelin is secreted as 186-kDa phosphorylated glycoprotein, which is rapidly processed by enamel proteinases into smaller cleavage products. During the secretory stage of enamel formation, enamelin is found among the crystallites in the rod and interrod enamel and comprises roughly 5% of total matrix protein. Although the function of enamelin is unknown, it is thought to participate in enamel crystal nucleation and extension, and the regulation of crystal habit. Here we report the results of enamelin in situ hybridization in a day 1 mouse developing incisor that shows that enamelin is expressed by ameloblasts, but not by odontoblasts or other cells in the dental pulp. The restricted pattern of enamelin expression makes the human enamelin gene a prime candidate in the etiology of amelogenesis imperfecta (AI), a genetic disease in which defects of enamel formation occur in the absence of non-dental symptoms. We have cloned and characterized a full-length human enamelin cDNA and determined by radiation hybrid mapping and fluorescent in situ hybridization (FISH) that the gene is located on chromosome 4q near the ameloblastin gene in a region previously linked to local hypoplastic AI in six families. These findings will facilitate the search for specific mutations in the enamelin gene in kindreds suffering from amelogenesis imperfecta.
Collapse
Affiliation(s)
- C C Hu
- University of Texas Health Science Center at San Antonio, School of Dentistry, Department of Pediatric Dentistry, 78284-7888, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hart TC, Marazita ML, Wright JT. The impact of molecular genetics on oral health paradigms. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 11:26-56. [PMID: 10682900 DOI: 10.1177/10454411000110010201] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a result of our increased understanding of the human genome, and the functional interrelationships of gene products with each other and with the environment, it is becoming increasingly evident that many human diseases are influenced by heritable alterations in the structure or function of genes. Significant advances in research methods and newly emerging partnerships between private and public sector interests are creating new possibilities for utilization of genetic information for the diagnosis and treatment of human diseases. The availability and application of genetic information to the understanding of normal and abnormal human growth and development are fundamentally changing the way we approach the study of human diseases. As a result, the issues and principles of medical genetics are coming to bear across all disciplines of health care. In this review, we discuss some of the potential applications of human molecular genetics for the diagnosis and treatment of oral diseases. This discussion is presented in the context of the ongoing technological advances and conceptual changes that are occurring in the field of medical genetics. To realize the promise of this new molecular genetics, we must be prepared to foresee the possibilities and to incorporate these newly emergent technologies into the evolving discipline of dentistry. By using examples of human conditions, we illustrate the broad application of this emerging technology to the study of simple as well as complex genetic diseases. Throughout this paper, we will use the following terminology: Penetrance--In a population, defined as the proportion of individuals possessing a disease-causing genotype who express the disease phenotype. When this proportion is less than 100%, the disease is said to have reduced or incomplete penetrance. Polymerase chain reaction (PCR)--A technique for amplifying a large number of copies of a specific DNA sequence flanked by two oligonucleotide primers. The DNA is alternately heated and cooled in the presence of DNA polymerase and free nucleotides, so that the specified DNA segment is denatured, hybridized with primers, and extended by DNA polymerase. MIM--Mendelian Inheritance in Man catalogue number from V. McKusick's Mendelian Inheritance in man (OMIM, 1998).
Collapse
Affiliation(s)
- T C Hart
- Wake Forest University School of Medicine, Department of Pediatrics, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
41
|
Bartlett JD, Simmer JP. Proteinases in developing dental enamel. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:425-41. [PMID: 10634581 DOI: 10.1177/10454411990100040101] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For almost three decades, proteinases have been known to reside within developing dental enamel. However, identification and characterization of these proteinases have been slow and difficult, because they are present in very small quantities and they are difficult to purify directly from the mineralizing enamel. Enamel matrix proteins such as amelogenin, ameloblastin, and enamelin are cleaved by proteinases soon after they are secreted, and their cleavage products accumulate in the deeper, more mature enamel layers, while the full-length proteins are observed only at the surface. These results suggest that proteinases are necessary for "activating" enamel proteins so the parent proteins and their cleavage products may perform different functions. A novel matrix metalloproteinase named enamelysin (MMP-20) was recently cloned from tooth tissues and was later shown to localize primarily within the most recently formed enamel. Furthermore, recombinant porcine enamelysin was demonstrated to cleave recombinant porcine amelogenin at virtually all of the sites that have previously been described in vivo. Therefore, enamelysin is at least one enzyme that may be important during early enamel development. As enamel development progresses to the later stages, a profound decrease in the enamel protein content is observed. Proteinases have traditionally been assumed to degrade the organic matrix prior to its removal from the enamel. Recently, a novel serine proteinase named enamel matrix serine proteinase-1 (EMSP1) was cloned from enamel organ epithelia. EMSP1 localizes primarily to the early maturation stage enamel and may, therefore, be involved in the degradation of proteins prior to their removal from the maturing enamel. Other, as yet unidentified, proteinases and proteinase inhibitors are almost certainly present within the forming enamel and await discovery.
Collapse
Affiliation(s)
- J D Bartlett
- Department of Biomineralization, Forsyth Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
42
|
Hart S, Hart T, Gibson C, Wright JT. Mutational analysis of X-linked amelogenesis imperfecta in multiple families. Arch Oral Biol 2000; 45:79-86. [PMID: 10669095 DOI: 10.1016/s0003-9969(99)00106-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Seven mutations in the amelogenin gene are associated with X-linked amelogenesis imperfecta. These mutations can produce reductions in the amount of enamel and the degree of mineralization. Two families have been identified from western North Carolina exhibiting features of amelogenesis imperfecta, characterized by brown enamel in affected males and interposed vertical bands of normal appearing and brown enamel in presumably heterozygous females. Mutational analysis reveals a C-A mutation in exon 6 at codon 41 of the X-chromosomal amelogenin gene, resulting in a pro-thr change in all individuals having the amelogenesis imperfecta phenotype. This mutation was previously reported in a family with X-linked hypomaturation amelogenesis imperfecta. There is no known relationship between any of the three families but the presence of similar phenotypes and common mutations suggests they may be distantly related. For individuals from all three families, the haplotype for six highly polymorphic loci flanking the amelogenin gene was determined. A common haplotype was demonstrated among two of the three families, suggesting that the mutation may have been inherited from a common ancestor. The finding that the third family had a distinct haplotype may indicate that the C-A mutation at codon 41 represents a mutational hotspot that occurs with greater frequency than other known amelogenin gene mutations. The phenotype resulting from this mutation was highly consistent in affected male members of the same family and between families.
Collapse
Affiliation(s)
- S Hart
- Department of Pediatrics, Section on Medical Genetics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
43
|
Zhou HM, Nichols A, Wohlwend A, Bolon I, Vassalli JD. Extracellular proteolysis alters tooth development in transgenic mice expressing urokinase-type plasminogen activator in the enamel organ. Development 1999; 126:903-12. [PMID: 9927592 DOI: 10.1242/dev.126.5.903] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By catalyzing plasmin formation, the urokinase-type plasminogen activator (uPA) can generate widespread extracellular proteolysis and thereby play an important role in physiological and pathological processes. Dysregulated expression of uPA during organogenesis may be a cause of developmental defects. Targeted epithelial expression of a uPA-encoding transgene under the control of the keratin type-5 promoter resulted in enzyme production by the enamel epithelium, which does not normally express uPA, and altered tooth development. The incisors of transgenic mice were fragile, chalky-white and, by scanning electron microscopy, their labial surface appeared granular. This phenotype was attributed to a defect in enamel formation during incisor development, resulting from structural and functional alterations of the ameloblasts that differentiate from the labial enamel epithelium. Immunofluorescence revealed that disorganization of the ameloblast layer was associated with a loss of laminin-5, an extracellular matrix molecule mediating epithelial anchorage. Amelogenin, a key protein in enamel formation, was markedly decreased at the enamel-dentin junction in transgenics, presumably because of an apparent alteration in the polarity of its secretion. In addition, increased levels of active transforming growth factor-beta could be demonstrated in mandibles of transgenic mice. Since the alterations detected could be attributed to uPA catalytic activity, this model provides evidence as to how dysregulated proteolysis, involving uPA or other extracellular proteases, may have developmental consequences such as those leading to enamel defects.
Collapse
Affiliation(s)
- H M Zhou
- Department of Morphology, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Takagi Y, Fujita H, Katano H, Shimokawa H, Kuroda T. Immunochemical and biochemical characteristics of enamel proteins in hypocalcified amelogenesis imperfecta. ORAL SURGERY, ORAL MEDICINE, ORAL PATHOLOGY, ORAL RADIOLOGY, AND ENDODONTICS 1998; 85:424-30. [PMID: 9574951 DOI: 10.1016/s1079-2104(98)90068-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amelogenesis imperfecta is a hereditary disease of the enamel that is unassociated with generalized defects. Cases of the condition are clinically classified into three groups: hypoplastic, hypomaturation, and hypocalcified. In this study, soluble protein fractions of the enamel from three patients with hypocalcified amelogenesis imperfecta were examined through the use of immunochemical and biochemical techniques. In immunochemical analyses done with a polyclonal anti-amelogenin antibody, all samples from enamel in which there was amelogenesis imperfecta were found to contain considerable amounts of amelogenin peptides. When an enamel sample from one patient was examined by Western-blot transfer and immunobinding analysis, the amelogenin fraction was found to consist of a 26-kDa molecule thought to be normally present in the outer layer of secretory-stage enamel. This enamel was also found to contain albumin as one of the major constituents of the protein fraction. These results suggest that hypocalcified amelogenesis imperfecta may in part be caused by a disturbance in matrix protein degradation during the maturation phase.
Collapse
Affiliation(s)
- Y Takagi
- Department of Pediatric Dentistry, School of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | | | | | |
Collapse
|
45
|
Abstract
The development of the tooth at gene level is beginning to be understood. This paper reviews current knowledge and the advances in research on human genes whose defect leads to dental anomalies. Amelogenesis imperfecta (AI) is a diverse group of hereditary disorders characterized by a variety of developmental enamel defects including hypoplasia and hypomineralization, some of which have been revealed to be associated with defective amelogenin genes. The human amelogenin genes on X and Y chromosomes have been cloned and investigated extensively. Although autosomally inherited forms of AI are more common than the X-linked forms, most studies on the genes causing AI have been performed on the genes of X-linked forms. Recently, the gene for the human tuftelin protein (an enamelin) has been cloned as a candidate gene for the autosomal forms of AI with another gene on chromosome 4 involved in some families. Dentinogenesis imperfecta (DI) may be associated with osteogenesis imperfecta (OI), which is an autosomal dominant bone disease. Most patients with OI have mutations in either the COLIA1 or COLIA2 genes, which encode the alpha 1(I) or alpha 2(I) subunits of type I collagen, the major organic component of bone and dentin. Gene defects causing isolated DI have not been identified. Recently, it was demonstrated that a missense mutation of MSXI, a human homeobox gene, causes autosomal dominant agenesis of second premolars and third molars. Data indicating an important function for MSXI, the mouse counterpart of the human MSXI gene, in mouse tooth development have been accumulating since 1991. Knockout mice lacking this gene exhibited multiple craniofacial anomalies including complete tooth agenesis. X-linked anhidrotic ectodermal dysplasia (EDA), characterized by abnormal hair, teeth, and sweat glands, was demonstrated to be caused by a mutation in a novel transmembrane protein gene that is expressed in epithelial cells and in other adult and fetal tissues. The predicted EDA protein may belong to a novel class of proteins with a role in epithelial-mesenchymal signaling. Several mutations have been reported in genes causing hypophosphatasia, which is characterized by defective mineralization of the skeletal and dental structures.
Collapse
Affiliation(s)
- K Kurisu
- Department of Oral Anatomy and Developmental Biology, Osaka University, Faculty of Dentistry, Japan
| | | |
Collapse
|
46
|
Collier PM, Sauk JJ, Rosenbloom SJ, Yuan ZA, Gibson CW. An amelogenin gene defect associated with human X-linked amelogenesis imperfecta. Arch Oral Biol 1997; 42:235-42. [PMID: 9188994 DOI: 10.1016/s0003-9969(96)00099-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dental enamel is a product of ameloblast cells, which secrete a mineralizing organic matrix, composed primarily of amelogenin proteins. The amelogenins are thought to be crucial for development of normal, highly mineralized enamel. The X-chromosomal amelogenin gene is a candidate gene for those cases of amelogenesis imperfecta, resulting in defective enamel, in which inheritance is X-linked. In this report, a kindred is described that has a C to A mutation resulting in a pro to thr change in exon 6 of the X-chromosomal amelogenin gene in three affected individuals, a change not found in unaffected members of the kindred. The proline that is changed by the mutation is conserved in amelogenin genes from all species examined to date.
Collapse
Affiliation(s)
- P M Collier
- Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Mutations in the amelogenin gene, AMGX, are known to cause X-linked amelogenesis imperfecta (AIH1). We have used DNA single-strand conformational polymorphism analysis and DNA sequencing to diagnose this disorder unequivocally in two related boys aged 3 and 7 years, respectively, from a family in which an existing mutation in the amelogenin gene is segregating.
Collapse
Affiliation(s)
- N J Lench
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, West Yorkshire, United Kingdom
| | | |
Collapse
|
48
|
Abstract
This paper describes the clinical, histological and genetic findings in individuals with amelogenesis imperfecta diagnosed in more than 50 families in the county of Västerbotten, northern Sweden. Using pedigree analysis, families with autosomal and X-linked inheritance as well as sporadic cases of amelogenesis imperfecta have been recognized. A clinical subclassification in eight different variants of amelogenesis imperfecta has been made. The gene defects have been identified for two of these variants and the chromosomal location has been established for a third variant.
Collapse
Affiliation(s)
- B Bäckman
- Department of Pedodontics, Faculty of Odontology, Umeå University, Sweden
| |
Collapse
|
49
|
Aldred MJ, Crawford PJ. Molecular biology of hereditary enamel defects. CIBA FOUNDATION SYMPOSIUM 1997; 205:200-5; discussion 205-9. [PMID: 9189626 DOI: 10.1002/9780470515303.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amelogenesis imperfecta is a disfiguring inherited condition affecting tooth enamel. X-Linked and autosomal dominant and recessive inheritance patterns occur. X-Linked amelogenesis imperfecta has been studied extensively at the molecular level. Linkage analysis has shown that there is genetic hetetogeneity in X-linked amelogenesis imperfecta with two identified loci: AIH1 and AIH3. The AIH1 locus corresponds to the location of the amelogenin gene on the distal short arm of the X chromosome; various mutations in the amelogenin gene have been found in families with X-linked amelogenesis imperfecta. The AIH3 locus maps to the Xq24-q27.1 region on the long arm of the X chromosome. Linkage to the long arm of chromosome 4 has been established in three families with autosomal dominant amelogenesis imperfecta. There is as yet no published evidence for genetic heterogeneity in autosomal dominant amelogenesis imperfecta as in X-linked amelogenesis imperfecta. Candidate genes for autosomal dominant amelogenesis imperfecta include tuftelin (1q), albumin (4q) and ameloblastin (4q) but the involvement of these genes in the disease has yet to be demonstrated. In view of the variable clinical appearances within families with autosomal dominant amelogenesis imperfecta and X-linked amelogenesis imperfecta, together with the finding that different X-linked amelogenesis imperfecta phenotypes result from mutations within the same gene, an alternative classification based on the molecular defect and mode of inheritance rather than phenotype has been proposed.
Collapse
Affiliation(s)
- M J Aldred
- Department of Dentistry, University of Queeansland, Brisbane, Australia
| | | |
Collapse
|
50
|
Deutsch D, Chityat E, Hekmati M, Palmon A, Farkash Y, Dafni L. High expression of human amelogenin in E. coli. Adv Dent Res 1996; 10:187-93; discussion 194. [PMID: 9206336 DOI: 10.1177/08959374960100021201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A human cDNA, encoding for the 175-amino-acid human amelogenin, was prepared by RT PCR from tooth bud mRNA and sub-cloned into pGEX-KG expression plasmid for over-expression in E. coli. The expressed protein was characterized by SDS-PAGE Western blotting, and N-terminal amino acid sequencing.
Collapse
Affiliation(s)
- D Deutsch
- Department of Oral Biology, Hebrew University Hadassah, Faculty of Dental Medicine, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|