1
|
Vitry S, Mendia C, Maudoux A, El-Amraoui A. Advancing precision ear medicine: leveraging animal models for disease insights and therapeutic innovations. Mamm Genome 2025:10.1007/s00335-025-10126-y. [PMID: 40263131 DOI: 10.1007/s00335-025-10126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Gene therapy offers significant promise for treating inner ear disorders, but its clinical translation requires robust preclinical validation, often reliant on animal models. This review examines the role of these models in advancing gene therapeutics for inherited inner ear disorders, focusing on successes, challenges, and treatment solutions. By providing a precise understanding of disease mechanisms, these models offer a versatile preclinical platform that is essential for assessing and validating therapies. Successful gene supplementation and editing have shown potential in restoring hearing and balance functions and preventing their decline. However, challenges such as limitations in gene delivery methods, surgical access, immune responses, and discrepancies in disease manifestation between animal models and humans hinder clinical translation. Current efforts are dedicated to developing innovative strategies aimed at enhancing the efficiency of gene delivery, overcoming physical barriers such as the blood-labyrinth barrier, improving target specificity, and maximizing therapeutic efficacy while minimizing adverse immune responses. Diverse gene supplementation and editing strategies, along with evolving technologies, hold promise for maximizing therapeutic outcomes using disease relevant models. The future of inner ear gene therapeutics will hinge on personalized therapies and team science fueling interdisciplinary collaborations among researchers, clinicians, companies, and regulatory agencies to expedite the translation from bench to bedside and unlock the immense potential of precision medicine in the inner ear.
Collapse
Affiliation(s)
- Sandrine Vitry
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| | - Clara Mendia
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Collège Doctoral, Sorbonne Université, 75005, Paris, France
| | - Audrey Maudoux
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert Debré University Hospital-APHP, Paris, France
| | - Aziz El-Amraoui
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| |
Collapse
|
2
|
Dong K, Gould SI, Li M, Rivera FJS. Computational modeling of human genetic variants in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639784. [PMID: 40060429 PMCID: PMC11888284 DOI: 10.1101/2025.02.23.639784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Mouse models represent a powerful platform to study genes and variants associated with human diseases. While genome editing technologies have increased the rate and precision of model development, predicting and installing specific types of mutations in mice that mimic the native human genetic context is complicated. Computational tools can identify and align orthologous wild-type genetic sequences from different species; however, predictive modeling and engineering of equivalent mouse variants that mirror the nucleotide and/or polypeptide change effects of human variants remains challenging. Here, we present H2M (human-to-mouse), a computational pipeline to analyze human genetic variation data to systematically model and predict the functional consequences of equivalent mouse variants. We show that H2M can integrate mouse-to-human and paralog-to-paralog variant mapping analyses with precision genome editing pipelines to devise strategies tailored to model specific variants in mice. We leveraged these analyses to establish a database containing > 3 million human-mouse equivalent mutation pairs, as well as in silico-designed base and prime editing libraries to engineer 4,944 recurrent variant pairs. Using H2M, we also found that predicted pathogenicity and immunogenicity scores were highly correlated between human-mouse variant pairs, suggesting that variants with similar sequence change effects may also exhibit broad interspecies functional conservation. Overall, H2M fills a gap in the field by establishing a robust and versatile computational framework to identify and model homologous variants across species while providing key experimental resources to augment functional genetics and precision medicine applications. The H2M database (including software package and documentation) can be accessed at https://human2mouse.com.
Collapse
Affiliation(s)
- Kexin Dong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Minghang Li
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Francisco J Sánchez Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang Q, Walkley CR. Mouse models for understanding physiological functions of ADARs. Methods Enzymol 2025; 710:153-185. [PMID: 39870443 DOI: 10.1016/bs.mie.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS). Mouse models have played an important role in our current understanding of the physiology of ADAR proteins. With the advancement of genetic engineering technologies, a number of new mouse models have been recently generated, each providing additional insight into ADAR function. This review highlights both past and current mouse models, exploring the methodologies used in their generation, their respective discoveries, and the significance of these findings in relation to human ADAR physiology.
Collapse
Affiliation(s)
- Qinyi Zhang
- St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Carl R Walkley
- St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Choe JY, Jones HP. Methods for Modeling Early Life Stress in Rodents. Methods Mol Biol 2025; 2868:205-219. [PMID: 39546232 DOI: 10.1007/978-1-0716-4200-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Animal models of early life stress/adversity (ELS) have provided a foundation from which our understanding of the psychoneuroimmunology of childhood trauma has expanded over recent decades. Rodent models are a cornerstone of the ELS literature with many studies utilizing paradigms based on early life separation/deprivation protocols and manipulating the cage environment. However, no animal model is perfect. In particular, the lack of standardization across ELS models has led to inconsistent results and raised questions regarding the translational value of common preclinical models. In this chapter, we present an overview of the history of ELS rodent models and discuss considerations relevant to the ongoing efforts to both improve existing models and generate novel paradigms to meet the evolving needs of molecular- and mechanism-based ELS research.
Collapse
Affiliation(s)
- Jamie Y Choe
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Institute for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
5
|
Paz A, Midlej K, Zohud O, Lone IM, Iraqi FA. The collaborative cross mouse for studying the effect of host genetic background on memory impairments due to obesity and diabetes. Animal Model Exp Med 2025; 8:126-141. [PMID: 39468690 PMCID: PMC11798739 DOI: 10.1002/ame2.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/07/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Over the past few decades, a threefold increase in obesity and type 2 diabetes (T2D) has placed a heavy burden on the health-care system and society. Previous studies have shown correlations between obesity, T2D, and neurodegenerative diseases, including dementia. It is imperative to further understand the relationship between obesity, T2D, and cognitive deficits. METHODS This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet (HFD) and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross (CC) mice. The CC mice are a genetically diverse panel derived from eight inbred strains. RESULTS Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line, C57BL/6J. CC037 line exhibited a substantial increase in body weight on HFD, whereas line CC005 exhibited differing responses based on sex. Glucose tolerance tests revealed significant variations, with some lines like CC005 showing a marked increase in area under the curve (AUC) values on HFD. Organ weights, including brain, spleen, liver, and kidney, varied significantly among the lines and sexes in response to HFD. Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background. CONCLUSIONS Our study establishes a foundation for future quantitative trait loci mapping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease (AD), caused by obesity and T2D. The genetic components may offer new tools for early prediction and prevention.
Collapse
Affiliation(s)
- Avia Paz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
6
|
Tettey-Matey A, Donati V, Cimmino C, Di Pietro C, Buratto D, Panarelli M, Reale A, Calistri A, Fornaini MV, Zhou R, Yang G, Zonta F, Marazziti D, Mammano F. A fully human IgG1 antibody targeting connexin 32 extracellular domain blocks CMTX1 hemichannel dysfunction in an in vitro model. Cell Commun Signal 2024; 22:589. [PMID: 39639332 PMCID: PMC11619691 DOI: 10.1186/s12964-024-01969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Connexins (Cxs) are fundamental in cell-cell communication, functioning as gap junction channels (GJCs) that facilitate solute exchange between adjacent cells and as hemichannels (HCs) that mediate solute exchange between the cytoplasm and the extracellular environment. Mutations in the GJB1 gene, which encodes Cx32, lead to X-linked Charcot-Marie-Tooth type 1 (CMTX1), a rare hereditary demyelinating disorder of the peripheral nervous system (PNS) without an effective cure or treatment. In Schwann cells, Cx32 HCs are thought to play a role in myelination by enhancing intracellular and intercellular Ca2+ signaling, which is crucial for proper PNS myelination. Single-point mutations (p.S85C, p.D178Y, p.F235C) generate pathological Cx32 HCs characterized by increased permeability ("leaky") or excessive activity ("hyperactive").We investigated the effects of abEC1.1-hIgG1, a fully human immunoglobulin G1 (hIgG1) monoclonal antibody, on wild-type (WT) and mutant Cx32D178Y HCs. Using HeLa DH cells conditionally co-expressing Cx and a genetically encoded Ca2+ biosensor (GCaMP6s), we demonstrated that mutant HCs facilitated 58% greater Ca2+ uptake in response to elevated extracellular Ca2+ concentrations ([Ca2+]ex) compared to WT HCs. abEC1.1-hIgG1 dose-dependently inhibited Ca2+ uptake, achieving a 50% inhibitory concentration (EC50) of ~ 10 nM for WT HCs and ~ 80 nM for mutant HCs. Additionally, the antibody suppressed DAPI uptake and ATP release. An atomistic computational model revealed that serine 56 (S56) of the antibody interacts with aspartate 178 (D178) of WT Cx32 HCs, contributing to binding affinity. Despite the p.D178Y mutation weakening this interaction, the antibody maintained binding to the mutant HC epitope at sub-micromolar concentrations.In conclusion, our study shows that abEC1.1-hIgG1 effectively inhibits both WT and mutant Cx32 HCs, highlighting its potential as a therapeutic approach for CMTX1. These findings expand the antibody's applicability for treating diseases associated with Cx HCs and inform the rational design of next-generation antibodies with enhanced affinity and efficacy against mutant HCs.
Collapse
Affiliation(s)
- Abraham Tettey-Matey
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Present Address, CNR Institute of Biophysics, Genoa, 16149, Italy
| | - Viola Donati
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Chiara Cimmino
- CNR Institute of Endocrinology and Experimental Oncology "G. Salvatore", Naples, 80131, Italy
- Present Address: Interdisciplinary Research Centre On Biomaterials, University of Naples Federico II, Naples, 80125, Italy
| | - Chiara Di Pietro
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
| | - Damiano Buratto
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | | | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Francesco Zonta
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China.
| | - Daniela Marazziti
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, 35131, Italy.
| |
Collapse
|
7
|
Tchio C, Williams J, Taylor H, Ollila H, Saxena R. An integrative approach prioritizes the orphan GPR61 genomic region in tissue-specific regulation of chronotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624721. [PMID: 39651283 PMCID: PMC11623522 DOI: 10.1101/2024.11.22.624721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Objectives Chronotype, a manifestation of circadian rhythms, affects morning or evening preferences and ease of getting-up. This study explores the genetic basis of morning chronotype and ease of getting-up, focusing on the G protein-coupled receptor locus, GPR61. Methods We analyzed the genetic correlation between chronotype and ease of getting-up using linkage disequilibrium score regression with summary statistics from the UK Biobank (n=453,379). We prioritized shared signals between chronotype and ease of getting-up using the Human Genetic Evidence (HuGE) score. We assessed the significance of GPR61 and the lead variant rs12044778 through colocalization and in-silico analyses from ENCODE, Genotype-Tissue Expression, Hi-C, and Knockout Mouse Project databases to explore potential regulatory roles of causal genes. Results We identified a strong genetic correlation (Rg=0.80, P=4.9 x10 324 ) between chronotype and ease of getting-up. Twenty-three genes, including three circadian core clock components, had high HuGE scores for both traits. Lead variant rs12044778 in GPR61 was prioritized for its high HuGE score (45) and causal pleiotropy (posterior probability=0.98). This morningness variant influenced gene expression in key tissues: decreasing GPR61 in tibial nerve, increasing AMIGO1 in subcutaneous adipose, and increasing ATXN7L2 in the cerebellum. Functional knockout models showed GPR61 knockout increased fat mass and activity, AMIGO1 knockout increased activity, and ATXN7L2 knockout reduced body weight without affecting activity. Conclusions Our findings reveal pleiotropic genetic factors influencing chronotype and ease of getting-up, emphasizing GPR61 's rs12044778 and nearby genes like AMIGO1 and ATXN7L2 . These insights advance understanding of circadian preferences and suggest potential therapeutic interventions. SIGNIFICANCE This study investigates the genetic underpinnings of chronotype preferences and ease of getting up, with a focus on the orphan G protein-coupled receptor GPR61 and the locus lead variant rs12044778. By combining genomic data with in silico functional analysis, we provide mechanistic insight into a locus for morning chronotype and ease of getting in the morning. We identified the variant rs12044778 as a key regulator of GPR61 and nearby genes AMIGO1 and ATXN7L2 influencing circadian and metabolic traits. Our findings shed light on the intricate genetic networks governing circadian rhythms, suggesting potential therapeutic targets for disorders of the circadian rhythm.
Collapse
|
8
|
Zohud O, Lone IM, Midlej K, Nashef A, Iraqi FA. Smad4 Heterozygous Knockout Effect on Pancreatic and Body Weight in F1 Population Using Collaborative Cross Lines. BIOLOGY 2024; 13:918. [PMID: 39596873 PMCID: PMC11592182 DOI: 10.3390/biology13110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Smad4, a critical tumor suppressor gene, plays a significant role in pancreatic biology and tumorigenesis. Genetic background and sex are known to influence phenotypic outcomes, but their impact on pancreatic weight in Smad4-deficient mice remains unclear. This study investigates the impact of Smad4 deficiency on pancreatic weight in first-generation (F1) mice from diverse collaborative cross (CC) lines, focusing on the influence of genetic background and sex. F1 mice were generated by crossbreeding female CC mice with C57BL/6J-Smad4tm1Mak males. Genotyping confirmed the presence of Smad4 knockout alleles. Mice were housed under standard conditions, euthanized at 80 weeks, and their pancreatic weights were measured, adjusted for body weight, and analyzed for effects of Smad4 deficiency, sex, and genetic background. The overall population of F1 mice showed a slight but non-significant increase in adjusted pancreatic weights in heterozygous knockout mice compared to wild-type mice. Sex-specific analysis revealed no significant difference in males but a significant increase in adjusted pancreatic weights in heterozygous knockout females. Genetic background analysis showed that lines CC018 and CC025 substantially increased adjusted pancreatic weights in heterozygous knockout mice. In contrast, other lines showed no significant difference or varied non-significant changes. The interplay between genetic background and sex further influenced these outcomes. Smad4 deficiency affects pancreatic weight in a manner significantly modulated by genetic background and sex. This study highlights the necessity of considering these factors in genetic research and therapeutic development, demonstrating the value of the collaborative cross mouse population in dissecting complex genetic interactions.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel; (O.Z.); (I.M.L.); (K.M.)
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel; (O.Z.); (I.M.L.); (K.M.)
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel; (O.Z.); (I.M.L.); (K.M.)
| | - Aysar Nashef
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya 1528001, Israel;
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan 5290002, Israel
- Department of Oral and Maxillofacial Surgery, Meir Medical Center, Kfar Saba Affiliated to the Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel; (O.Z.); (I.M.L.); (K.M.)
| |
Collapse
|
9
|
Kiaris H. Nontraditional models as research tools: the road not taken. Trends Mol Med 2024; 30:924-931. [PMID: 39069395 PMCID: PMC11466687 DOI: 10.1016/j.molmed.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Historical reasons resulted in the almost exclusive use of a few species, most prominently Mus musculus, as the mainstream models in biomedical research. This selection was not based on Mus's distinctive relevance to human disease but rather to the pre-existing availability of resources and tools for the species that were used as models, which has enabled their adoption for research in health sciences. Unless the utilization and range of nontraditional research models expand considerably, progress in biomedical research will remain restricted within the trajectory that has been set by the existing models and their ability to provide clinically relevant information.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
10
|
Mackay TFC, Anholt RRH. Pleiotropy, epistasis and the genetic architecture of quantitative traits. Nat Rev Genet 2024; 25:639-657. [PMID: 38565962 PMCID: PMC11330371 DOI: 10.1038/s41576-024-00711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| | - Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
11
|
Cacheiro P, Lawson S, Van den Veyver IB, Marengo G, Zocche D, Murray SA, Duyzend M, Robinson PN, Smedley D. Lethal phenotypes in Mendelian disorders. Genet Med 2024; 26:101141. [PMID: 38629401 PMCID: PMC11232373 DOI: 10.1016/j.gim.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE Existing resources that characterize the essentiality status of genes are based on either proliferation assessment in human cell lines, viability evaluation in mouse knockouts, or constraint metrics derived from human population sequencing studies. Several repositories document phenotypic annotations for rare disorders; however, there is a lack of comprehensive reporting on lethal phenotypes. METHODS We queried Online Mendelian Inheritance in Man for terms related to lethality and classified all Mendelian genes according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. We characterized the genes across these lethality categories, examined the evidence on viability from mouse models and explored how this information could be used for novel gene discovery. RESULTS We developed the Lethal Phenotypes Portal to showcase this curated catalog of human essential genes. Differences in the mode of inheritance, physiological systems affected, and disease class were found for genes in different lethality categories, as well as discrepancies between the lethal phenotypes observed in mouse and human. CONCLUSION We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Samantha Lawson
- ITS Research, Queen Mary University of London, London, United Kingdom
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Gabriel Marengo
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park and St Mark's Hospitals, London, United Kingdom
| | | | - Michael Duyzend
- Massachusetts General Hospital, Boston, MA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Peter N Robinson
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
12
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
13
|
Thöny B, Ng J, Kurian MA, Mills P, Martinez A. Mouse models for inherited monoamine neurotransmitter disorders. J Inherit Metab Dis 2024; 47:533-550. [PMID: 38168036 DOI: 10.1002/jimd.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Joanne Ng
- Genetic Therapy Accelerator Centre, University College London, Queen Square Institute of Neurology, London, UK
| | - Manju A Kurian
- Zayed Centre for Research into Rare Disease in Children, GOS Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Philippa Mills
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aurora Martinez
- Department of Biomedicine and Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Cacheiro P, Lawson S, Van den Veyver IB, Marengo G, Zocche D, Murray SA, Duyzend M, Robinson PN, Smedley D. Lethal phenotypes in Mendelian disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301168. [PMID: 38260283 PMCID: PMC10802756 DOI: 10.1101/2024.01.12.24301168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Essential genes are those whose function is required for cell proliferation and/or organism survival. A gene's intolerance to loss-of-function can be allocated within a spectrum, as opposed to being considered a binary feature, since this function might be essential at different stages of development, genetic backgrounds or other contexts. Existing resources that collect and characterise the essentiality status of genes are based on either proliferation assessment in human cell lines, embryonic and postnatal viability evaluation in different model organisms, and gene metrics such as intolerance to variation scores derived from human population sequencing studies. There are also several repositories available that document phenotypic annotations for rare disorders in humans such as the Online Mendelian Inheritance in Man (OMIM) and the Human Phenotype Ontology (HPO) knowledgebases. This raises the prospect of being able to use clinical data, including lethality as the most severe phenotypic manifestation, to further our characterisation of gene essentiality. Here we queried OMIM for terms related to lethality and classified all Mendelian genes into categories, according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. To showcase this curated catalogue of human essential genes, we developed the Lethal Phenotypes Portal (https://lethalphenotypes.research.its.qmul.ac.uk), where we also explore the relationships between these lethality categories, constraint metrics and viability in cell lines and mouse. Further analysis of the genes in these categories reveals differences in the mode of inheritance of the associated disorders, physiological systems affected and disease class. We highlight how the phenotypic similarity between genes in the same lethality category combined with gene family/group information can be used for novel disease gene discovery. Finally, we explore the overlaps and discrepancies between the lethal phenotypes observed in mouse and human and discuss potential explanations that include differences in transcriptional regulation, functional compensation and molecular disease mechanisms. We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Ignatia B. Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel Marengo
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park & St Mark’s Hospitals, London, UK
| | | | | | - Peter N. Robinson
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Hu Y, Lian Q, Cao F, Hou X, Li H, Xing L, Wang M, Tian F, Zhang L. Estrogen deficiency impedes fracture healing despite eliminating the excessive absorption of the posterior callus in a semi-fixed distal tibial fracture mouse model. BMC Musculoskelet Disord 2023; 24:803. [PMID: 37817119 PMCID: PMC10563296 DOI: 10.1186/s12891-023-06929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Treatment of distal tibial fractures is a challenge due to their specific anatomical location. However, there is no appropriate mouse model to simulate a clinical distal tibial fracture for basic research. The aim of this investigation was to evaluate the feasibility of simulating a clinical fracture of the distal tibia of mice and to investigate the effect of ovariectomy (OVX)-induced osteoporosis on fracture healing in this model. METHODS Sixty female 8-week-old C57BL/6 mice were randomly divided into two groups, either sham or OVX. A semi-fixation distal tibia fracture was established in the right tibia after 8 weeks of OVX. The right tibias were collected at 7, 14, 21, and 28 days post fracture. RESULTS In the semi-fixation distal tibia fracture model, the posterior callus in the sham group showed excessive bone resorption and lower bone mass phenotype compared with the anterior site; a similar trend was not found in the OVX group. At 28 days post fracture, the posterior callus was more mineralized than the anterior callus in the OVX group. Although the fracture healing of the sham group showed a special phenotype in this mode, the progress and quality of fracture healing were still better than those of the OVX group. CONCLUSION A semi-fixed distal tibial closed fracture mouse model was successfully established. In this model, excess bone resorption of the posterior callus impaired normal fracture healing, but not in OVX-induced osteoporotic bone. Although the stress shielding effect was not observed in the OVX group, impaired bone healing caused by OVX was still present. Our results suggest that this fracture model may have potential for studies on distal tibial fractures and stress shielding.
Collapse
Affiliation(s)
- Yunpeng Hu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Qiangqiang Lian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China
| | - Fuyuan Cao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China
| | - Xiaoli Hou
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China
| | - Hetong Li
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Lei Xing
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China
| | - Mengqin Wang
- Emergency Department, JST, The Fourth Clinical Hospital of Peking University, Beijing, P. R. China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China.
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P. R. China.
- Department of Orthopedic Surgery, Emergency General Hospital, Xibahenanli29, Chaoyang Dis, Beijing, 100028, P. R. China.
| |
Collapse
|
16
|
Larson DR, Kimber AJ, Meyer KJ, Anderson MG. Anterior chamber depth in mice is controlled by several quantitative trait loci. PLoS One 2023; 18:e0286897. [PMID: 37624784 PMCID: PMC10456175 DOI: 10.1371/journal.pone.0286897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Anterior chamber depth (ACD) is a quantitative trait associated with primary angle closure glaucoma (PACG). Although ACD is highly heritable, known genetic variations explain a small fraction of the phenotypic variability. The purpose of this study was to identify additional ACD-influencing loci using strains of mice. Cohorts of 86 N2 and 111 F2 mice were generated from crosses between recombinant inbred BXD24/TyJ and wild-derived CAST/EiJ mice. Using anterior chamber optical coherence tomography, mice were phenotyped at 10-12 weeks of age, genotyped based on 93 genome-wide SNPs, and subjected to quantitative trait locus (QTL) analysis. In an analysis of ACD among all mice, six loci passed the significance threshold of p = 0.05 and persisted after multiple regression analysis. These were on chromosomes 6, 7, 11, 12, 15 and 17 (named Acdq6, Acdq7, Acdq11, Acdq12, Acdq15, and Acdq17, respectively). Our findings demonstrate a quantitative multi-genic pattern of ACD inheritance in mice and identify six previously unrecognized ACD-influencing loci. We have taken a unique approach to studying the anterior chamber depth phenotype by using mice as genetic tool to examine this continuously distributed trait.
Collapse
Affiliation(s)
- Demelza R. Larson
- Department of Biology, College of Saint Benedict & Saint John’s University, Collegeville, Minnesota, United States of America
| | - Allysa J. Kimber
- Department of Biology, College of Saint Benedict & Saint John’s University, Collegeville, Minnesota, United States of America
| | - Kacie J. Meyer
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, Iowa, United States of America
| |
Collapse
|
17
|
Ruberte J, Schofield PN, Sundberg JP, Rodriguez-Baeza A, Carretero A, McKerlie C. Bridging mouse and human anatomies; a knowledge-based approach to comparative anatomy for disease model phenotyping. Mamm Genome 2023:10.1007/s00335-023-10005-4. [PMID: 37421464 PMCID: PMC10382392 DOI: 10.1007/s00335-023-10005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
The laboratory mouse is the foremost mammalian model used for studying human diseases and is closely anatomically related to humans. Whilst knowledge about human anatomy has been collected throughout the history of mankind, the first comprehensive study of the mouse anatomy was published less than 60 years ago. This has been followed by the more recent publication of several books and resources on mouse anatomy. Nevertheless, to date, our understanding and knowledge of mouse anatomy is far from being at the same level as that of humans. In addition, the alignment between current mouse and human anatomy nomenclatures is far from being as developed as those existing between other species, such as domestic animals and humans. To close this gap, more in depth mouse anatomical research is needed and it will be necessary to extent and refine the current vocabulary of mouse anatomical terms.
Collapse
Affiliation(s)
- Jesús Ruberte
- Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Paul N Schofield
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Ana Carretero
- Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Colin McKerlie
- The Hospital for Sick Children, Toronto, Canada
- Department of Lab Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
da Silva-Buttkus P, Spielmann N, Klein-Rodewald T, Schütt C, Aguilar-Pimentel A, Amarie OV, Becker L, Calzada-Wack J, Garrett L, Gerlini R, Kraiger M, Leuchtenberger S, Östereicher MA, Rathkolb B, Sanz-Moreno A, Stöger C, Hölter SM, Seisenberger C, Marschall S, Fuchs H, Gailus-Durner V, Hrabě de Angelis M. Knockout mouse models as a resource for the study of rare diseases. Mamm Genome 2023; 34:244-261. [PMID: 37160609 PMCID: PMC10290595 DOI: 10.1007/s00335-023-09986-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/07/2023] [Indexed: 05/11/2023]
Abstract
Rare diseases (RDs) are a challenge for medicine due to their heterogeneous clinical manifestations and low prevalence. There is a lack of specific treatments and only a few hundred of the approximately 7,000 RDs have an approved regime. Rapid technological development in genome sequencing enables the mass identification of potential candidates that in their mutated form could trigger diseases but are often not confirmed to be causal. Knockout (KO) mouse models are essential to understand the causality of genes by allowing highly standardized research into the pathogenesis of diseases. The German Mouse Clinic (GMC) is one of the pioneers in mouse research and successfully uses (preclinical) data obtained from single-gene KO mutants for research into monogenic RDs. As part of the International Mouse Phenotyping Consortium (IMPC) and INFRAFRONTIER, the pan-European consortium for modeling human diseases, the GMC expands these preclinical data toward global collaborative approaches with researchers, clinicians, and patient groups.Here, we highlight proprietary genes that when deleted mimic clinical phenotypes associated with known RD targets (Nacc1, Bach2, Klotho alpha). We focus on recognized RD genes with no pre-existing KO mouse models (Kansl1l, Acsf3, Pcdhgb2, Rabgap1, Cox7a2) which highlight novel phenotypes capable of optimizing clinical diagnosis. In addition, we present genes with intriguing phenotypic data (Zdhhc5, Wsb2) that are not presently associated with known human RDs.This report provides comprehensive evidence for genes that when deleted cause differences in the KO mouse across multiple organs, providing a huge translational potential for further understanding monogenic RDs and their clinical spectrum. Genetic KO studies in mice are valuable to further explore the underlying physiological mechanisms and their overall therapeutic potential.
Collapse
Affiliation(s)
- Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Christine Schütt
- Institute of Experimental Genetics, Applied Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Manuela A Östereicher
- Institute of Experimental Genetics, Applied Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 25, 81377, Munich, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Claudia Stöger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany.
| |
Collapse
|
19
|
Medrano M, Allaoui W, Van Bulck M, Thys S, Makrini-Maleville L, Seuntjens E, De Vos WH, Valjent E, Gaszner B, Van Eeckhaut A, Smolders I, De Bundel D. Neuroanatomical characterization of the Nmu-Cre knock-in mice reveals an interconnected network of unique neuropeptidergic cells. Open Biol 2023; 13:220353. [PMID: 37311538 PMCID: PMC10264104 DOI: 10.1098/rsob.220353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under the Nmu promoter. We have validated the model using a multi-level approach based on quantitative reverse-transcription polymerase chain reactions, in situ hybridization, a reporter mouse line and an adenoviral vector driving Cre-dependent expression of a fluorescent protein. Using the Nmu-Cre mouse, we performed a complete characterization of NMU expression in adult mouse brain, unveiling a potential midline NMU modulatory circuit with the ventromedial hypothalamic nucleus (VMH) as a key node. Moreover, immunohistochemical analysis suggested that NMU neurons in the VMH mainly constitute a unique population of hypothalamic cells. Taken together, our results suggest that Cre expression in the Nmu-Cre mouse model largely reflects NMU expression in the adult mouse brain, without altering endogenous NMU expression. Thus, the Nmu-Cre mouse model is a powerful and sensitive tool to explore the role of NMU neurons in mice.
Collapse
Affiliation(s)
- Mireia Medrano
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Wissal Allaoui
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathias Van Bulck
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sofie Thys
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
| | | | - Eve Seuntjens
- Department of Biology, Laboratory of Developmental Neurobiology, KU Leuven, 3000 Leuven, Belgium
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), 2610 Wilrijk, Belgium
| | - Emmanuel Valjent
- IGF, Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Bálazs Gaszner
- Medical School, Research Group for Mood Disorders, Department of Anatomy and Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Ann Van Eeckhaut
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
20
|
Bosenberg M, Liu ET, Yu CI, Palucka K. Mouse models for immuno-oncology. Trends Cancer 2023:S2405-8033(23)00041-9. [PMID: 37087398 DOI: 10.1016/j.trecan.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/24/2023]
Abstract
Realizing the clinical promise of cancer immunotherapy is hindered by gaps in our knowledge of in vivo mechanisms underlying treatment response as well as treatment limiting toxicity. Preclinical in vivo model systems and technologies are required to address these knowledge gaps and to surmount the challenges faced in the clinical application of immunotherapy. Mice are commonly used for basic and translational research to support development and testing of immune interventions, including for cancer. Here, we discuss the advantages and the limitations of current models as well as future developments.
Collapse
Affiliation(s)
- Marcus Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA.
| | - Chun I Yu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA.
| |
Collapse
|
21
|
LaLonde-Paul D, Mouttham L, Promislow DEL, Castelhano MG. Banking on a new understanding: translational opportunities from veterinary biobanks. GeroScience 2023:10.1007/s11357-023-00763-z. [PMID: 36890420 PMCID: PMC10400517 DOI: 10.1007/s11357-023-00763-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023] Open
Abstract
Current advances in geroscience are due in part to the discovery of biomarkers with high predictive ability in short-lived laboratory animals such as flies and mice. These model species, however, do not always adequately reflect human physiology and disease, highlighting the need for a more comprehensive and relevant model of human aging. Domestic dogs offer a solution to this obstacle, as they share many aspects not only of the physiological and pathological trajectories of their human counterpart, but also of their environment. Furthermore, they age at a considerably faster rate. Studying aging in the companion dog provides an opportunity to better understand the biological and environmental determinants of healthy lifespan in our pets, and to translate those findings to human aging. Biobanking, the systematic collection, processing, storage, and distribution of biological material and associated data has contributed to basic, clinical, and translational research by streamlining the management of high-quality biospecimens for biomarker discovery and validation. In this review, we discuss how veterinary biobanks can support research on aging, particularly when integrated into large-scale longitudinal studies. As an example of this concept, we introduce the Dog Aging Project Biobank.
Collapse
Affiliation(s)
- D LaLonde-Paul
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - L Mouttham
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - D E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - M G Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
22
|
Clasen F, Nunes PM, Bidkhori G, Bah N, Boeing S, Shoaie S, Anastasiou D. Systematic diet composition swap in a mouse genome-scale metabolic model reveals determinants of obesogenic diet metabolism in liver cancer. iScience 2023; 26:106040. [PMID: 36844450 PMCID: PMC9947310 DOI: 10.1016/j.isci.2023.106040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/08/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Dietary nutrient availability and gene expression, together, influence tissue metabolic activity. Here, we explore whether altering dietary nutrient composition in the context of mouse liver cancer suffices to overcome chronic gene expression changes that arise from tumorigenesis and western-style diet (WD). We construct a mouse genome-scale metabolic model and estimate metabolic fluxes in liver tumors and non-tumoral tissue after computationally varying the composition of input diet. This approach, called Systematic Diet Composition Swap (SyDiCoS), revealed that, compared to a control diet, WD increases production of glycerol and succinate irrespective of specific tissue gene expression patterns. Conversely, differences in fatty acid utilization pathways between tumor and non-tumor liver are amplified with WD by both dietary carbohydrates and lipids together. Our data suggest that combined dietary component modifications may be required to normalize the distinctive metabolic patterns that underlie selective targeting of tumor metabolism.
Collapse
Affiliation(s)
- Frederick Clasen
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | - Patrícia M. Nunes
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gholamreza Bidkhori
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | - Nourdine Bah
- Bioinformatics and Biostatistics Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK
- Science for Life Laboratory (SciLifeLab), KTH - Royal Institute of Technology, Tomtebodavägen 23, 171 65 Solna, Stockholm, Sweden
| | - Dimitrios Anastasiou
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
23
|
Reactive gene curation to support interpretation and reporting of a clinical genome test for rare disease: Experience from over 1,000 cases. CELL GENOMICS 2023; 3:100258. [PMID: 36819666 PMCID: PMC9932986 DOI: 10.1016/j.xgen.2023.100258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/13/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Current standards in clinical genetics recognize the need to establish the validity of gene-disease relationships as a first step in the interpretation of sequence variants. We describe our experience incorporating the ClinGen Gene-Disease Clinical Validity framework in our interpretation and reporting workflow for a clinical genome sequencing (cGS) test for individuals with rare and undiagnosed genetic diseases. This "reactive" gene curation is completed upon identification of candidate variants during active case analysis and within the test turn-around time by focusing on the most impactful evidence and taking advantage of the broad applicability of the framework to cover a wide range of disease areas. We demonstrate that reactive gene curation can be successfully implemented in support of cGS in a clinical laboratory environment, enabling robust clinical decision making and allowing all variants to be fully and appropriately considered and their clinical significance confidently interpreted.
Collapse
|
24
|
Beck T, Rowlands T, Shorter T, Brookes AJ. GWAS Central: an expanding resource for finding and visualising genotype and phenotype data from genome-wide association studies. Nucleic Acids Res 2023; 51:D986-D993. [PMID: 36350644 PMCID: PMC9825503 DOI: 10.1093/nar/gkac1017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The GWAS Central resource gathers and curates extensive summary-level genome-wide association study (GWAS) data and puts a range of user-friendly but powerful website tools for the comparison and visualisation of GWAS data at the fingertips of researchers. Through our continued efforts to harmonise and import data received from GWAS authors and consortia, and data sets actively collected from public sources, the database now contains over 72.5 million P-values for over 5000 studies testing over 7.4 million unique genetic markers investigating over 1700 unique phenotypes. Here, we describe an update to integrate this extensive data collection with mouse disease model data to support insights into the functional impact of human genetic variation. GWAS Central has expanded to include mouse gene-phenotype associations observed during mouse gene knockout screens. To allow similar cross-species phenotypes to be compared, terms from mammalian and human phenotype ontologies have been mapped. New interactive interfaces to find, correlate and view human and mouse genotype-phenotype associations are included in the website toolkit. Additionally, the integrated browser for interrogating multiple association data sets has been updated and a GA4GH Beacon API endpoint has been added for discovering variants tested in GWAS. The GWAS Central resource is accessible at https://www.gwascentral.org/.
Collapse
Affiliation(s)
- Tim Beck
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- Health Data Research UK (HDR UK), London, UK
| | - Thomas Rowlands
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Tom Shorter
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Anthony J Brookes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- Health Data Research UK (HDR UK), London, UK
| |
Collapse
|
25
|
Abdolkarimi D, Cunha DL, Lahne1 M, Moosajee M. PAX6 disease models for aniridia. Indian J Ophthalmol 2022; 70:4119-4129. [PMID: 36453299 PMCID: PMC9940591 DOI: 10.4103/ijo.ijo_316_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Aniridia is a pan-ocular genetic developmental eye disorder characterized by complete or partial iris and foveal hypoplasia, for which there is no treatment currently. Progressive sight loss can arise from cataracts, glaucoma, and aniridia-related keratopathy, which can be managed conservatively or through surgical intervention. The vast majority of patients harbor heterozygous mutations involving the PAX6 gene, which is considered the master transcription factor of early eye development. Over the past decades, several disease models have been investigated to gain a better understanding of the molecular pathophysiology, including several mouse and zebrafish strains and, more recently, human-induced pluripotent stem cells (hiPSCs) derived from aniridia patients. The latter provides a more faithful cellular system to study early human eye development. This review outlines the main aniridia-related animal and cellular models used to study aniridia and highlights the key discoveries that are bringing us closer to a therapy for patients.
Collapse
Affiliation(s)
| | - Dulce Lima Cunha
- UCL Institute of Ophthalmology, London, UK
- Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
26
|
Lin SJ, Vona B, Porter HM, Izadi M, Huang K, Lacassie Y, Rosenfeld JA, Khan S, Petree C, Ali TA, Muhammad N, Khan SA, Muhammad N, Liu P, Haymon ML, Rüschendorf F, Kong IK, Schnapp L, Shur N, Chorich L, Layman L, Haaf T, Pourkarimi E, Kim HG, Varshney GK. Biallelic variants in WARS1 cause a highly variable neurodevelopmental syndrome and implicate a critical exon for normal auditory function. Hum Mutat 2022; 43:1472-1489. [PMID: 35815345 DOI: 10.1002/humu.24435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for faithful assignment of amino acids to their cognate tRNA. Variants in ARS genes are frequently associated with clinically heterogeneous phenotypes in humans and follow both autosomal dominant or recessive inheritance patterns in many instances. Variants in tryptophanyl-tRNA synthetase 1 (WARS1) cause autosomal dominantly inherited distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Presently, only one family with biallelic WARS1 variants has been described. We present three affected individuals from two families with biallelic variants (p.Met1? and p.(Asp419Asn)) in WARS1, showing varying severities of developmental delay and intellectual disability. Hearing impairment and microcephaly, as well as abnormalities of the brain, skeletal system, movement/gait, and behavior were variable features. Phenotyping of knocked down wars-1 in a C. elegans model showed depletion is associated with defects in germ cell development. A wars1 knockout vertebrate model recapitulates the human clinical phenotypes, confirms variant pathogenicity and uncovers evidence implicating the p.Met1? variant as potentially impacting an exon critical for normal hearing. Together, our findings provide consolidating evidence for biallelic disruption of WARS1 as causal for an autosomal recessive neurodevelopmental syndrome and present a vertebrate model that recapitulates key phenotypes observed in patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Hillary M Porter
- Children's National Hospital, Rare Disease Institute, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Mahmoud Izadi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Yves Lacassie
- Department of Pediatrics, Louisiana State University Health Sciences Center, Head Division of Clinical Genetics and Dept. of Genetics Children's Hospital 1986-2016, 200 Henry Clay Avenue, New Orleans, LA, 70118, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Baylor Genetics Laboratories, Houston, TX, USA
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Tayyiba Akbar Ali
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Nazif Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Baylor Genetics Laboratories, Houston, TX, USA
| | - Marie-Louise Haymon
- Children Hospital New Orleans Louisiana, Pediatric Radiology, Tulane Associate Professor of Radiology, New Orleans, LA, 70118, USA
| | - Franz Rüschendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Il-Keun Kong
- Department of Animal Sciences, Division of Applied Life Science (BK21 Four), Gyeongsang National University, 52828, Jinju, South Korea
| | - Linda Schnapp
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Natasha Shur
- Children's National Hospital, Rare Disease Institute, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Lynn Chorich
- Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics and Gynecology, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 30912, Augusta, USA
| | - Lawrence Layman
- Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics and Gynecology, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 30912, Augusta, USA
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Ehsan Pourkarimi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, 34110, Doha, Qatar
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
27
|
Alghamdi SM, Schofield PN, Hoehndorf R. How much do model organism phenotypes contribute to the computational identification of human disease genes? Dis Model Mech 2022; 15:275986. [PMID: 35758016 PMCID: PMC9366895 DOI: 10.1242/dmm.049441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Computing phenotypic similarity helps identify new disease genes and diagnose rare diseases. Genotype–phenotype data from orthologous genes in model organisms can compensate for lack of human data and increase genome coverage. In the past decade, cross-species phenotype comparisons have proven valuble, and several ontologies have been developed for this purpose. The relative contribution of different model organisms to computational identification of disease-associated genes is not fully explored. We used phenotype ontologies to semantically relate phenotypes resulting from loss-of-function mutations in model organisms to disease-associated phenotypes in humans. Semantic machine learning methods were used to measure the contribution of different model organisms to the identification of known human gene–disease associations. We found that mouse genotype–phenotype data provided the most important dataset in the identification of human disease genes by semantic similarity and machine learning over phenotype ontologies. Other model organisms' data did not improve identification over that obtained using the mouse alone, and therefore did not contribute significantly to this task. Our work impacts on the development of integrated phenotype ontologies, as well as for the use of model organism phenotypes in human genetic variant interpretation. This article has an associated First Person interview with the first author of the paper. Editor's choice: We investigated the use of model organism phenotypes in the computational identification of disease genes, identifying several data biases and concluding that mouse model phenotypes contribute most to computational disease gene identification.
Collapse
Affiliation(s)
- Sarah M Alghamdi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, 23955 Thuwal, Saudi Arabia
| | - Paul N Schofield
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, CB2 3EG, Cambridge, UK
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, 23955 Thuwal, Saudi Arabia
| |
Collapse
|
28
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
29
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
30
|
Abstract
For many years, the laboratory mouse has been the favored model organism to study mammalian development, biology and disease. Among its advantages for these studies are its close concordance with human biology, the syntenic relationship between the mouse and other mammalian genomes, the existence of many inbred strains, its short gestation period, its relatively low cost for housing and husbandry, and the wide array of tools for genome modification, mutagenesis, and for cryopreserving embryos, sperm and eggs. The advent of CRISPR genome modification techniques has considerably broadened the landscape of model organisms available for study, including other mammalian species. However, the mouse remains the most popular and utilized system to model human development, biology, and disease processes. In this review, we will briefly summarize the long history of mice as a preferred mammalian genetic and model system, and review current large-scale mutagenesis efforts using genome modification to produce improved models for mammalian development and disease.
Collapse
Affiliation(s)
- Thomas Gridley
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States.
| | | |
Collapse
|
31
|
Ju C, Liang J, Zhang M, Zhao J, Li L, Chen S, Zhao J, Gao X. The mouse resource at National Resource Center for Mutant Mice. Mamm Genome 2022; 33:143-156. [PMID: 35138443 DOI: 10.1007/s00335-021-09940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Mouse models are essential for dissecting disease mechanisms and defining potential drug targets. There are more than 18,500 mouse strains available for research communities in National Resource Center for Mutant Mice (NRCMM) of China, affiliated with Model Animal Research Center of Nanjing University and Gempharmatech Company. In 2019, Gempharmatech launched the Knockout All Project (KOAP) aiming to generate null mutants and gene floxed strains for all protein-coding genes in mouse genome within 5 years. So far, KOAP has generated 8,004 floxed strains and 9,769 KO (knockout) strains (updated to Oct, 2021). NRCMM also created hundreds of Cre transgenic lines, mutant knock-in models, immuno-deficient models, and humanized mouse models. As a member of the international mouse phenotyping consortium (IMPC), NRCMM provides comprehensive phenotyping services for mouse models. In summary, NRCMM will continue to support biomedical community with new mouse models as well as related services.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuai Chen
- Model Animal Research Center of Nanjing University, Nanjing, China.,Nanjing Biomedical Research Institute of Nanjing University, Nanjing, China
| | - Jing Zhao
- GemPharmatech Co., Ltd, Nanjing, China.
| | - Xiang Gao
- National Resource Center for Mutant Mice, Nanjing, China. .,GemPharmatech Co., Ltd, Nanjing, China. .,Model Animal Research Center of Nanjing University, Nanjing, China.
| |
Collapse
|