1
|
Pan J, Teng H, Liu F, Chen S, Liu Y, Teng Y, Liang D, Li Z, Wu L. Oligogenic effect is associated with the clinical heterogeneity of autosomal dominant deafness-15. Sci Rep 2025; 15:1981. [PMID: 39809934 PMCID: PMC11733205 DOI: 10.1038/s41598-025-85881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Autosomal dominant deafness-15 which is caused by mutation in the POU4F3 gene, has been reported with a wide degree of clinical heterogeneity, even between intrafamilial members. However, the reason is still elusive. In this study, A four-generation Chinese family with 11 patients manifesting late-onset progressive non-syndromic hearing loss was recruited. The phenotype of hearing loss in this family showed a large variability in terms of onset age and progression speed. A novel mutation (c.706 C > T, p.L236F) was identified by the whole exome sequencing, and its pathogenicity was confirmed by altering the subcellular localization of POU4F3. In addition, we found that two individuals with earlier age of onset and more rapid progression of hearing loss carry additional pathogenic variants in other deafness genes (III-7, STRC:c.4057 C > T; IV-1, GJB2:c.109G > A; CDC14A:c.935G > A). By using the real time quantitative PCR, western blot, luciferase assays and electrophoretic mobility-shift assay, POU4F3 was proved to directly regulate the expression of STRC, GJB2 and CDC14A respectively. ChIP-seq further revealed that POU4F3 can also bind to a series of deafness genes. In summary we expanded the mutation spectrum of POU4F3 by identifying a novel mutation and its pathogenicity. Meanwhile, three genes STRC, GJB2 and CDC14A were validated as POU4F3 new targets, implicating that the variants in the three genes may play a role of genetic modifier to generate a synergistic and enhancement effect on the progression of DFNA15.
Collapse
Affiliation(s)
- Jianyan Pan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
- Department of Birth Health and Genetics, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, Guangxi, China
| | - Hua Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
| | - Fang Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
| | - Siyi Chen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
| | - Yaning Liu
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410000, Hunan, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410000, Hunan, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410000, Hunan, China.
- Bright Prosperity Institute, Room 1006-2, 10th Floor, Building 1, No. 180 Kecheng Street, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Yalcouyé A, Schrauwen I, Traoré O, Bamba S, Aboagye ET, Acharya A, Bharadwaj T, Latanich R, Esoh K, Fortes-Lima CA, de Kock C, Jonas M, Maiga ADB, Cissé CAK, Sangaré MA, Guinto CO, Landouré G, Leal SM, Wonkam A. Whole-exome sequencing reveals known and candidate genes for hearing impairment in Mali. HGG ADVANCES 2025; 6:100391. [PMID: 39663698 PMCID: PMC11730241 DOI: 10.1016/j.xhgg.2024.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Hearing impairment (HI) is the most common neurosensory disorder globally and is reported to be more prevalent in low-income countries. In high-income countries, up to 50% of congenital childhood HI is of genetic origin. However, there are limited genetic data on HI from sub-Saharan African populations. In this study, we investigated the genetic causes of HI in the Malian populations, using whole-exome sequencing. Furthermore, cDNA was transfected into HEK293T cells for localization and expression analysis in a candidate gene. Twenty-four multiplex families were enrolled, 50% (12/24) of which are consanguineous. Clustering methods showed patterns of admixture from non-African sources in some Malian populations. Variants were found in six known nonsyndromic HI (NSHI) genes, four genes that can underlie either syndromic HI (SHI) or NSHI, one SHI gene, and one novel candidate HI gene. Overall, 75% of families (18/24) were solved, and 94.4% (17/18) had variants in known HI genes including MYO15A, CDH23, MYO7A, GJB2, SLC26A4, PJVK, OTOGL, TMC1, CIB2, GAS2, PDCH15, and EYA1. A digenic inheritance (CDH23 and PDCH15) was found in one family. Most variants (59.1%, 13/22) in known HI genes were not previously reported or associated with HI. The UBFD1 candidate HI gene, which was identified in one consanguineous family, is expressed in human inner ear organoids. Cell-based experiments in HEK293T showed that mutants UBFD1 had a lower expression, compared to wild type. We report the profile of known genes and the UBFD1 candidate gene for HI in Mali and emphasize the potential of gene discovery in African populations.
Collapse
Affiliation(s)
- Abdoulaye Yalcouyé
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali; Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; McKusick-Nathans Institute, and Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Oumou Traoré
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Salia Bamba
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Elvis Twumasi Aboagye
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rachel Latanich
- McKusick-Nathans Institute, and Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Kevin Esoh
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; McKusick-Nathans Institute, and Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Cesar A Fortes-Lima
- McKusick-Nathans Institute, and Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Carmen de Kock
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mario Jonas
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Cheick A K Cissé
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Moussa A Sangaré
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Cheick O Guinto
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali; Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| | - Guida Landouré
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali; Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; McKusick-Nathans Institute, and Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Tom WA, Chandel DS, Jiang C, Krzyzanowski G, Fernando N, Olou A, Fernando MR. Genotype Characterization and MiRNA Expression Profiling in Usher Syndrome Cell Lines. Int J Mol Sci 2024; 25:9993. [PMID: 39337481 PMCID: PMC11432263 DOI: 10.3390/ijms25189993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Usher syndrome (USH) is an inherited disorder characterized by sensorineural hearing loss (SNHL), retinitis pigmentosa (RP)-related vision loss, and vestibular dysfunction. USH presents itself as three distinct clinical types, 1, 2, and 3, with no biomarker for early detection. This study aimed to explore whether microRNA (miRNA) expression in USH cell lines is dysregulated compared to the miRNA expression pattern in a cell line derived from a healthy human subject. Lymphocytes from USH patients and healthy individuals were isolated and transformed into stable cell lines using Epstein-Barr virus (EBV). DNA from these cell lines was sequenced using a targeted panel to identify gene variants associated with USH types 1, 2, and 3. Microarray analysis was performed on RNA from both USH and control cell lines using NanoString miRNA microarray technology. Dysregulated miRNAs identified by the microarray were validated using droplet digital PCR technology. DNA sequencing revealed that two USH patients had USH type 1 with gene variants in USH1B (MYO7A) and USH1D (CDH23), while the other two patients were classified as USH type 2 (USH2A) and USH type 3 (CLRN-1), respectively. The NanoString miRNA microarray detected 92 differentially expressed miRNAs in USH cell lines compared to controls. Significantly altered miRNAs exhibited at least a twofold increase or decrease with a p value below 0.05. Among these miRNAs, 20 were specific to USH1, 14 to USH2, and 5 to USH3. Three miRNAs that are known as miRNA-183 family which are crucial for inner ear and retina development, have been significantly downregulated as compared to control cells. Subsequently, droplet digital PCR assays confirmed the dysregulation of the 12 most prominent miRNAs in USH cell lines. This study identifies several miRNA signatures in USH cell lines which may have potential utility in Usher syndrome identification.
Collapse
Affiliation(s)
- Wesley A Tom
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Dinesh S Chandel
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Chao Jiang
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Gary Krzyzanowski
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Nirmalee Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Appolinaire Olou
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - M Rohan Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| |
Collapse
|
4
|
Serra R, Rallo V, Steri M, Olla S, Piras MG, Marongiu M, Gorospe M, Schlessinger D, Pinna A, Fiorillo E, Cucca F, Angius A. A large-scale screening identified in USH2A gene the P3272L founder pathogenic variant explaining familial Usher syndrome in Sardinia, Italy. BMC Ophthalmol 2024; 24:306. [PMID: 39044131 PMCID: PMC11265335 DOI: 10.1186/s12886-024-03578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Usher syndrome (USH) encompasses a group of disorders characterized by congenital sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP). We described the clinical findings, natural history, and molecular analyses of USH patients identified during a large-scale screening to identify quantitative traits related to ocular disorders in the SardiNIA project cohort. METHODS We identified 3 USH-affected families out of a cohort of 6,148 healthy subjects. 9 subjects presented a pathological phenotype, with SNHL and RP. All patients and their family members underwent a complete ophthalmic examination including best-corrected visual acuity, slit-lamp biomicroscopy, fundoscopy, fundus autofluorescence, spectral-domain optical coherence tomography, and electrophysiological testing. Audiological evaluation was performed with a clinical audiometer. Genotyping was performed using several arrays integrated with whole genome sequence data providing approximately 22 million markers equally distributed for each subject analyzed. Molecular diagnostics focused on analysis of the following candidate genes: MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31, CLRN1, and PDZD7. RESULTS A single missense causal variant in USH2A gene was identified in homozygous status in all patients and in heterozygous status in unaffected parents. The presence of multiple homozygous patients with the same phenotypic severity of the syndromic form suggests that the Sardinian USH phenotype is the result of a founder effect on a specific pathogenic variant related haplotype. The frequency of heterozygotes in general Sardinian population is 1.89. Additionally, to provide new insights into the structure of usherin and the pathological mechanisms caused by small pathogenic in-frame variants, like p.Pro3272Leu, molecular dynamics simulations of native and mutant protein-protein and protein-ligand complexes were performed that predicted a destabilization of the protein with a decrease in the free energy change. CONCLUSIONS Our results suggest that our approach is effective for the genetic diagnosis of USH. Based on the heterozygous frequency, targeted screening of this variant in the general population and in families at risk or with familial USH can be suggested. This can lead to more accurate molecular diagnosis, better genetic counseling, and improved molecular epidemiology data that are critical for future intervention plans. TRIAL REGISTRATION We did not perform any health-related interventions for the participants.
Collapse
Affiliation(s)
- Rita Serra
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria Di Cagliari, C/O S.S 554 Bivio Per Sestu Km 4, 500, 09042, Monserrato, CA, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria Di Cagliari, C/O S.S 554 Bivio Per Sestu Km 4, 500, 09042, Monserrato, CA, Italy
| | - Maristella Steri
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria Di Cagliari, C/O S.S 554 Bivio Per Sestu Km 4, 500, 09042, Monserrato, CA, Italy
| | - Stefania Olla
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria Di Cagliari, C/O S.S 554 Bivio Per Sestu Km 4, 500, 09042, Monserrato, CA, Italy
| | - Maria Grazia Piras
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria Di Cagliari, C/O S.S 554 Bivio Per Sestu Km 4, 500, 09042, Monserrato, CA, Italy
| | - Michele Marongiu
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria Di Cagliari, C/O S.S 554 Bivio Per Sestu Km 4, 500, 09042, Monserrato, CA, Italy
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute On Aging, Baltimore, MD, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute On Aging, Baltimore, MD, USA
| | - Antonio Pinna
- Department of Medicine, Surgery and Pharmacy Ophthalmology Unit, University of Sassari, Sassari, Italy
| | - Edoardo Fiorillo
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria Di Cagliari, C/O S.S 554 Bivio Per Sestu Km 4, 500, 09042, Monserrato, CA, Italy
| | - Francesco Cucca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Andrea Angius
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria Di Cagliari, C/O S.S 554 Bivio Per Sestu Km 4, 500, 09042, Monserrato, CA, Italy.
| |
Collapse
|
5
|
Tlili A, Mahfood M, Al Mutery A, Chouchen J. Genetic analysis of 106 sporadic cases with hearing loss in the UAE population. Hum Genomics 2024; 18:59. [PMID: 38844983 PMCID: PMC11157727 DOI: 10.1186/s40246-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Hereditary hearing loss is a rare hereditary condition that has a significant presence in consanguineous populations. Despite its prevalence, hearing loss is marked by substantial genetic diversity, which poses challenges for diagnosis and screening, particularly in cases with no clear family history or when the impact of the genetic variant requires functional analysis, such as in the case of missense mutations and UTR variants. The advent of next-generation sequencing (NGS) has transformed the identification of genes and variants linked to various conditions, including hearing loss. However, there remains a high proportion of undiagnosed patients, attributable to various factors, including limitations in sequencing coverage and gaps in our knowledge of the entire genome, among other factors. In this study, our objective was to comprehensively identify the spectrum of genes and variants associated with hearing loss in a cohort of 106 affected individuals from the UAE. RESULTS In this study, we investigated 106 sporadic cases of hearing impairment and performed genetic analyses to identify causative mutations. Screening of the GJB2 gene in these cases revealed its involvement in 24 affected individuals, with specific mutations identified. For individuals without GJB2 mutations, whole exome sequencing (WES) was conducted. WES revealed 33 genetic variants, including 6 homozygous and 27 heterozygous DNA changes, two of which were previously implicated in hearing loss, while 25 variants were novel. We also observed multiple potential pathogenic heterozygous variants across different genes in some cases. Notably, a significant proportion of cases remained without potential pathogenic variants. CONCLUSIONS Our findings confirm the complex genetic landscape of hearing loss and the limitations of WES in achieving a 100% diagnostic rate, especially in conditions characterized by genetic heterogeneity. These results contribute to our understanding of the genetic basis of hearing loss and emphasize the need for further research and comprehensive genetic analyses to elucidate the underlying causes of this condition.
Collapse
Affiliation(s)
- Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 Room 107, P.O. Box: 27272, Sharjah, United Arab Emirates.
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 Room 107, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 Room 107, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Jihen Chouchen
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Ma P, Zhou B, Kang Q, Chen X, Tian X, Hui L, Hao S, Wu H, Zhang C. Mutation spectrum of hearing loss patients in Northwest China: Identification of 20 novel variants. Mol Genet Genomic Med 2024; 12:e2434. [PMID: 38860500 PMCID: PMC11165335 DOI: 10.1002/mgg3.2434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Hearing loss (HL) is the most frequent sensory deficit in humans, with strong genetic heterogeneity. The genetic diagnosis of HL is very important to aid treatment decisions and to provide prognostic information and genetic counselling for the patient's family. METHODS We detected and analysed 362 Chinese non-syndromic HL patients by screening of variants in 15 hot spot mutations. Subsequently, 40 patients underwent further whole-exome sequencing (WES) to determine genetic aetiology. The candidate variants were verified using Sanger sequencing. Twenty-three carrier couples with pathogenic variants or likely pathogenic variants chose to proceed with prenatal diagnosis using Sanger sequencing. RESULTS Among the 362 HL patients, 102 were assigned a molecular diagnosis with 52 different variants in 22 deafness genes. A total of 41 (11.33%) cases with the biallelic GJB2 (OMIM # 220290) gene mutations were detected, and 21 (5.80%) had biallelic SLC26A4 (OMIM # 605646) mutations. Mitochondrial gene (OMIM # 561000) mutations were detected in seven (1.93%) patients. Twenty of the variants in 15 deafness genes were novel. SOX10 (OMIM # 602229), MYO15A (OMIM # 602666) and WFS1 (OMIM # 606201) were each detected in two patients. Meanwhile, OSBPL2 (OMIM # 606731), RRM2B (OMIM # 604712), OTOG (OMIM # 604487), STRC (OMIM # 606440), PCDH15 (OMIM # 605514), LOXHD1 (OMIM # 613072), CDH23 (OMIM # 605516), TMC1 (OMIM # 606706), CHD7 (OMIM # 608892), DIAPH3 (OMIM # 614567), TBC1D24 (OMIM # 613577), TIMM8A (OMIM # 300356), PTPRQ (OMIM # 603317), SALL1 (OMIM # 602218), and GSDME (OMIM # 608798) were each detected in one patient. In addition, as regards one couple with a heterozygous variant of CDH23 and PCDH15, respectively, prenatal diagnosis results suggest that the foetus had double heterozygous (DH) variants of CDH23 and PCDH15, which has a high risk to cause ID/F type Usher syndrome. CONCLUSION Our study expanded the spectrum of deafness gene variation, which will contribute to the genetic diagnosis, prenatal diagnosis and the procreation guidance of deaf couple. In addition, the deafness caused by two genes should be paid attention to in the prenatal diagnosis of families with both deaf patients.
Collapse
Affiliation(s)
- Panpan Ma
- Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases LanzhouGansu Provincial Maternity and Child‐Care HospitalGansuChina
| | - Bingbo Zhou
- Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases LanzhouGansu Provincial Maternity and Child‐Care HospitalGansuChina
| | - Qichao Kang
- Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases LanzhouGansu Provincial Maternity and Child‐Care HospitalGansuChina
| | - Xue Chen
- Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases LanzhouGansu Provincial Maternity and Child‐Care HospitalGansuChina
| | - Xinyuan Tian
- Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases LanzhouGansu Provincial Maternity and Child‐Care HospitalGansuChina
| | - Ling Hui
- Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases LanzhouGansu Provincial Maternity and Child‐Care HospitalGansuChina
| | - Shengju Hao
- Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases LanzhouGansu Provincial Maternity and Child‐Care HospitalGansuChina
| | - Huiyan Wu
- Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases LanzhouGansu Provincial Maternity and Child‐Care HospitalGansuChina
| | - Chuan Zhang
- Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases LanzhouGansu Provincial Maternity and Child‐Care HospitalGansuChina
| |
Collapse
|
7
|
Ullah F, Zeeshan Ali M, Ahmad S, Muzammal M, Khan S, Khan J, Ahmad Khan M. Current updates on genetic spectrum of usher syndrome. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:337-360. [PMID: 38718411 DOI: 10.1080/15257770.2024.2344194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/01/2025]
Abstract
Usher syndrome (USH) is a genetic disorder that is characterized by sensorineural hearing loss (HL) and visual abnormality, i.e., loss of night vision and side (peripheral) vision. Usher syndrome is categorized into four subtypes (USH1, USH2, USH3, USH4) on the basis of phenotypic spectrum. Profound hearing loss (HL), vestibular are flexia and language disturbance are typically associated with Usher type 1, while USH2 is linked with moderate to severe level of congenital HL. USH3 has late onset of deafness in life (referred to as "postlingual"), inconstant vestibular abnormality and onset of retinitis pigmentosa (RP) typically in 2nd decade of life. Patients with USH4 have no vestibular impairment and have late onset of retinitis pigmentosa (RP) and sensorineural hearing loss. Until now, 15 genetic loci have been reported to be linked with all types of USH. Among reported USH loci, nine are related to be involved in USH1, three in USH2, two in USH3 and one locus in USH4, respectively. Current review has described different types of Usher syndrome and their molecular genetics, and role of usher proteins in sensory organs. Moreover, we also suggested certain candidate genes for uncharacterized loci that may help the molecular geneticist to reach their target easily. Conclusion: The current catalogue of USH genetic data may assist in genetic counseling, genetic diagnosis, and genotype-phenotype correlation.
Collapse
Affiliation(s)
- Farman Ullah
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Pakistan
| | | | - Safeer Ahmad
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Pakistan
| | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Pakistan
| | - Jabbar Khan
- Institute of Biological Sciences, Gomal University, D.I. Khan, Pakistan
| | | |
Collapse
|
8
|
Neuhofer CM, Prokisch H. Digenic Inheritance in Rare Disorders and Mitochondrial Disease-Crossing the Frontier to a More Comprehensive Understanding of Etiology. Int J Mol Sci 2024; 25:4602. [PMID: 38731822 PMCID: PMC11083678 DOI: 10.3390/ijms25094602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Our understanding of rare disease genetics has been shaped by a monogenic disease model. While the traditional monogenic disease model has been successful in identifying numerous disease-associated genes and significantly enlarged our knowledge in the field of human genetics, it has limitations in explaining phenomena like phenotypic variability and reduced penetrance. Widening the perspective beyond Mendelian inheritance has the potential to enable a better understanding of disease complexity in rare disorders. Digenic inheritance is the simplest instance of a non-Mendelian disorder, characterized by the functional interplay of variants in two disease-contributing genes. Known digenic disease causes show a range of pathomechanisms underlying digenic interplay, including direct and indirect gene product interactions as well as epigenetic modifications. This review aims to systematically explore the background of digenic inheritance in rare disorders, the approaches and challenges when investigating digenic inheritance, and the current evidence for digenic inheritance in mitochondrial disorders.
Collapse
Affiliation(s)
- Christiane M. Neuhofer
- Institute of Human Genetics, University Medical Center, Technical University of Munich, Trogerstr. 32, 81675 Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre Munich Neuherberg, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
- Institute of Human Genetics, Salzburger Landeskliniken, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Holger Prokisch
- Institute of Human Genetics, University Medical Center, Technical University of Munich, Trogerstr. 32, 81675 Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre Munich Neuherberg, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
9
|
Jiao J, Yu S, Gu G, Chen G, Zhang H, Zheng Y. Variations in the Cadherin 23 Gene Associated With Noise-Induced Hearing Loss. J Multidiscip Healthc 2024; 17:1473-1482. [PMID: 38605856 PMCID: PMC11007390 DOI: 10.2147/jmdh.s453417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background The relationship between CDH23 gene variants and NIHL is unclear. This study investigates the association between cadherin 23 (CDH23) gene variants and noise-induced hearing loss (NIHL). Methods This is a case-control study. Workers who were exposed to noise from a steel factory in North China were recruited and divided into two groups: the case group (both ears' high-frequency threshold average [BHFTA] ≥40dB) and the control group (BHFTA ≤25 dB). This study used the generalised multifactor dimensionality reduction method to analyse the association among 18 single-nucleotide polymorphisms (SNPs) in CDH23 and NIHL. Logistic regression was performed to investigate the main effects of SNPs and the interactions between cumulative noise exposure (CNE) and SNPs. Furthermore, CNE was adjusted for age, gender, smoking, drinking, physical exercise and hypertension. Results This study recruited 1,117 participants. The results showed that for rs11592462, participants who carried the GG genotype showed an association with NIHL greater than that of those who carried the CC genotype. Accordingly, genetic variation in the CDH23 gene could play an essential role in determining individual susceptibility to NIHL. Conclusion Genetic variations in the CDH23 gene may play an important role in determining individual susceptibility to NIHL. These results provide new insight into the pathogenesis and early prevention of NIHL.
Collapse
Affiliation(s)
- Jie Jiao
- The Third People’s Hospital of Henan Province (Henan Hospital for Occupational Diseases), Zhengzhou, Henan, People’s Republic of China
| | - Shanfa Yu
- Henan Medical College, Zhengzhou, Henan, People’s Republic of China
| | - Guizhen Gu
- The Third People’s Hospital of Henan Province (Henan Hospital for Occupational Diseases), Zhengzhou, Henan, People’s Republic of China
| | - Guoshun Chen
- Wugang Institute for Occupational Health, Wugang, Henan, People’s Republic of China
| | - Huanling Zhang
- Wugang Institute for Occupational Health, Wugang, Henan, People’s Republic of China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
10
|
Munir A, Afsar S, Rehman AU. A systematic review of inherited retinal dystrophies in Pakistan: updates from 1999 to April 2023. BMC Ophthalmol 2024; 24:55. [PMID: 38317096 PMCID: PMC10840256 DOI: 10.1186/s12886-024-03319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Inherited retinal degenerations (IRDs) are a group of rare genetic conditions affecting retina of the eye that range in prevalence from 1 in 2000 to 1 in 4000 people globally. This review is based on a retrospective analysis of research articles reporting IRDs associated genetic findings in Pakistani families between 1999 and April 2023. METHODS Articles were retrieved through survey of online sources, notably, PubMed, Google Scholar, and Web of Science. Following a stringent selection criterion, a total of 126 research articles and conference abstracts were considered. All reported variants were cross-checked and validated for their correct genomic nomenclature using different online resources/databases, and their pathogenicity scores were explained as per ACMG guidelines. RESULTS A total of 277 unique sequence variants in 87 distinct genes, previously known to cause IRDs, were uncovered. In around 70% cases, parents of the index patient were consanguineously married, and approximately 88.81% of the detected variants were found in a homozygous state. Overall, more than 95% of the IRDs cases were recessively inherited. Missense variants were predominant (41.88%), followed by Indels/frameshift (26.35%), nonsense (19.13%), splice site (12.27%) and synonymous change (0.36%). Non-syndromic IRDs were significantly higher than syndromic IRDs (77.32% vs. 22.68%). Retinitis pigmentosa (RP) was the most frequently observed IRD followed by Leber's congenital amaurosis (LCA). Altogether, mutations in PDE6A gene was the leading cause of IRDs in Pakistani families followed by mutations in TULP1 gene. CONCLUSION In summary, Pakistani families are notable in expressing recessively inherited monogenic disorders including IRDs likely due to the highest prevalence of consanguinity in the country that leads to expression of rare pathogenic variants in homozygous state.
Collapse
Affiliation(s)
- Asad Munir
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Salma Afsar
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
11
|
Cuzzuol BR, Apolonio JS, da Silva Júnior RT, de Carvalho LS, Santos LKDS, Malheiro LH, Silva Luz M, Calmon MS, Crivellaro HDL, Lemos FFB, Freire de Melo F. Usher syndrome: Genetic diagnosis and current therapeutic approaches. World J Otorhinolaryngol 2024; 11:1-17. [DOI: 10.5319/wjo.v11.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Usher Syndrome (USH) is the most common deaf-blind syndrome, affecting approximately 1 in 6000 people in the deaf population. This genetic condition is characterized by a combination of hearing loss (HL), retinitis pigmentosa, and, in some cases, vestibular areflexia. Among the subtypes of USH, USH type 1 is considered the most severe form, presenting profound bilateral congenital deafness, vestibular areflexia, and early onset RP. USH type 2 is the most common form, exhibiting congenital moderate to severe HL for low frequencies and severe to profound HL for high frequencies. Conversely, type 3 is the rarest, initially manifesting mild symptoms during childhood that become more prominent in the first decades of life. The dual impact of USH on both visual and auditory senses significantly impairs patients’ quality of life, restricting their daily activities and interactions with society. To date, 9 genes have been confirmed so far for USH: MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, ADGRV1, WHRN and CLRN1. These genes are inherited in an autosomal recessive manner and encode proteins expressed in the inner ear and retina, leading to functional loss. Although non-genetic methods can assist in patient triage and disease extension evaluation, genetic and molecular tests play a pivotal role in providing genetic counseling, enabling appropriate gene therapy, and facilitating timely cochlear implantation (CI). The CRISPR/Cas9 system and viral-based gene replacement therapy have recently emerged as highly promising techniques for treating USH. Regarding drug therapy, PTC-124 and Nb54 have been identified as promising drug interventions for genetic HL in USH. Simultaneously, CI has proven to be critical in the restoration of hearing. This review aims to summarize the genetic and molecular diagnosis of USH and highlight the importance of early diagnosis in guiding appropriate treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luciano Hasimoto Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
12
|
Tao Y, Lamas V, Du W, Zhu W, Li Y, Whittaker MN, Zuris JA, Thompson DB, Rameshbabu AP, Shu Y, Gao X, Hu JH, Pei C, Kong WJ, Liu X, Wu H, Kleinstiver BP, Liu DR, Chen ZY. Treatment of monogenic and digenic dominant genetic hearing loss by CRISPR-Cas9 ribonucleoprotein delivery in vivo. Nat Commun 2023; 14:4928. [PMID: 37582836 PMCID: PMC10427623 DOI: 10.1038/s41467-023-40476-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Mutations in Atp2b2, an outer hair cell gene, cause dominant hearing loss in humans. Using a mouse model Atp2b2Obl/+, with a dominant hearing loss mutation (Oblivion), we show that liposome-mediated in vivo delivery of CRISPR-Cas9 ribonucleoprotein complexes leads to specific editing of the Obl allele. Large deletions encompassing the Obl locus and indels were identified as the result of editing. In vivo genome editing promotes outer hair cell survival and restores their function, leading to hearing recovery. We further show that in a double-dominant mutant mouse model, in which the Tmc1 Beethoven mutation and the Atp2b2 Oblivion mutation cause digenic genetic hearing loss, Cas9/sgRNA delivery targeting both mutations leads to partial hearing recovery. These findings suggest that liposome-RNP delivery can be used as a strategy to recover hearing with dominant mutations in OHC genes and with digenic mutations in the auditory hair cells, potentially expanding therapeutics of gene editing to treat hearing loss.
Collapse
Affiliation(s)
- Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Veronica Lamas
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Wan Du
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Wenliang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Yiran Li
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- C.S. Mott Children's Hospital, Ann Harbor, MI, USA
| | - Madelynn N Whittaker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General hospital, Boston, MA, 02114, USA
| | - John A Zuris
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David B Thompson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Yilai Shu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, China
| | - Xue Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Johnny H Hu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Charles Pei
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA.
| |
Collapse
|
13
|
Sen P, Srikrupa N, Maitra P, Srilekha S, Porkodi P, Gnanasekaran H, Bhende M, Khetan V, Mathavan S, Bhende P, Ratra D, Raman R, Rao C, Sripriya S. Next-generation sequencing--based genetic testing and phenotype correlation in retinitis pigmentosa patients from India. Indian J Ophthalmol 2023; 71:2512-2520. [PMID: 37322672 PMCID: PMC10417947 DOI: 10.4103/ijo.ijo_2579_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 06/17/2023] Open
Abstract
Purpose Inherited retinal dystrophies (IRD) are a heterogeneous group of retinal diseases leading to progressive loss of photoreceptors through apoptosis. Retinitis pigmentosa (RP) is considered the most common form of IRD. Panel-based testing in RP has proven effective in identifying the causative genetic mutations in 70% and 80% of the patients. This is a retrospective, observational, single-center study of 107 RP patients who had undergone next-generation sequencing-based targeted gene panel testing for IRD genes. These patients were inspected for common phenotypic features to arrive at meaningful genotype-phenotype correlation. Methods Patients underwent complete ophthalmic examination, and blood was collected from the proband for DNA extraction after documenting the pedigree. Targeted Next Generation Sequencing (NGS) was done by panel-based testing for IRD genes followed by co-segregation analysis wherever applicable. Results Of the 107 patients, 72 patients had pathogenic mutations. The mean age of onset of symptoms was 14 ± 12 years (range: 5-55). Mean (Best Corrected Visual Acuity) BCVA was 6/48 (0.9 logMAR) (range 0.0-3.0). At presentation, over one-third of eyes had BCVA worse than 6/60 (<1 logMAR). Phenotype analysis with the gene defects showed overlapping features, such as peripheral well-defined chorioretinal atrophic patches in patients with CERKL, PROM1, and RPE65 gene mutations and large macular lesions in patients with RDH12 and CRX gene mutations, respectively. Nummular or clump-like pigmentation was noted in CRB1, TTC8, PDE6A, and PDE6B. Conclusion NGS-based genetic testing can help clinicians to diagnose RP more accurately, and phenotypic correlations can also help in better patient counselling with respect to prognosis and guidance regarding ongoing newer gene-based therapies.
Collapse
Affiliation(s)
- Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Natarajan Srikrupa
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Puja Maitra
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Sundaramurthy Srilekha
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Periyasamy Porkodi
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Harshavardhini Gnanasekaran
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Muna Bhende
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Sinnakaruppan Mathavan
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Pramod Bhende
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Dhanashree Ratra
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Chetan Rao
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Sarangapani Sripriya
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Calcium signaling and genetic rare diseases: An auditory perspective. Cell Calcium 2023; 110:102702. [PMID: 36791536 DOI: 10.1016/j.ceca.2023.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Deafness is a highly heterogeneous disorder which stems, for 50%, from genetic origins. Sensory transduction relies mainly on sensory hair cells of the cochlea, in the inner ear. Calcium is key for the function of these cells and acts as a fundamental signal transduction. Its homeostasis depends on three factors: the calcium influx, through the mechanotransduction channel at the apical pole of the hair cell as well as the voltage-gated calcium channel at the base of the cells; the calcium buffering via Ca2+-binding proteins in the cytoplasm, but also in organelles such as mitochondria and the reticulum endoplasmic mitochondria-associated membranes with specialized proteins; and the calcium extrusion through the Ca-ATPase pump, located all over the plasma membrane. In addition, the synaptic transmission to the central nervous system is also controlled by calcium. Genetic studies of inherited deafness have tremendously helped understand the underlying molecular pathways of calcium signaling. In this review, we discuss these different factors in light of the associated genetic diseases (syndromic and non-syndromic deafness) and the causative genes.
Collapse
|
15
|
Al-Bradie R, Uzair M, Bashir S. Sensorineural hearing loss due to a novel mutation in the PCDH15 gene: A case study. BRAIN DISORDERS 2023. [DOI: 10.1016/j.dscb.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
16
|
Jaffal L, Akhdar H, Joumaa H, Ibrahim M, Chhouri Z, Assi A, Helou C, Lee H, Seo GH, Joumaa WH, El Shamieh S. Novel Missense and Splice Site Mutations in USH2A, CDH23, PCDH15, and ADGRV1 Are Associated With Usher Syndrome in Lebanon. Front Genet 2022; 13:864228. [PMID: 35651951 PMCID: PMC9149366 DOI: 10.3389/fgene.2022.864228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to expand the mutation spectrum by searching the causative mutations in nine Lebanese families with Usher syndrome (USH) using whole-exome sequencing. The pathogenicity of candidate mutations was first evaluated according to their frequency, conservation, and in silico prediction tools. Then, it was confirmed via Sanger sequencing, followed by segregation analysis. Finally, a meta-analysis was conducted to calculate the prevalence of USH genes in the Lebanese population. Three missense mutations, two splice site mutations, and one insertion/deletion were detected in eight of the families. Four of these variants were novel: c.5535C > A; p.(Asn1845Lys) in exon 41 of CDH23, c.7130G > A; p.(Arg2377Gln) in exon 32 of ADGRV1, c.11390-1G > A in USH2A, and c.3999–6A > G in PCDH15. All the identified mutations were shown to be likely disease-causing through our bioinformatics analysis and co-segregated with the USH phenotype. The mutations were classified according to the ACMG standards. Finally, our meta-analysis showed that the mutations in ADGRV1, USH2A, and CLRN1 are the most prevalent and responsible for approximately 75% of USH cases in Lebanon. Of note, the frequency USH type 3 showed a relatively high incidence (23%) compared to the worldwide prevalence, which is around 2–4%. In conclusion, our study has broadened the mutational spectrum of USH and showed a high heterogeneity of this disease in the Lebanese population.
Collapse
Affiliation(s)
- Lama Jaffal
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Hanane Akhdar
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Hawraa Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Mariam Ibrahim
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Zahraa Chhouri
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Alexandre Assi
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut, Lebanon
| | - Charles Helou
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut, Lebanon
| | - Hane Lee
- Rare Genetic Disease Research Center, 3billion Inc, Seoul, South Korea
| | - Go Hun Seo
- Rare Genetic Disease Research Center, 3billion Inc, Seoul, South Korea
| | - Wissam H Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Said El Shamieh
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
17
|
Abstract
Usher syndrome (USH) is the most common genetic condition responsible for combined loss of hearing and vision. Balance disorders and bilateral vestibular areflexia are also observed in some cases. The syndrome was first described by Albrecht von Graefe in 1858, but later named by Charles Usher, who presented a large number of cases with hearing loss and retinopathy in 1914. USH has been grouped into three main clinical types: 1, 2, and 3, which are caused by mutations in different genes and are further divided into different subtypes. To date, nine causative genes have been identified and confirmed as responsible for the syndrome when mutated: MYO7A, USH1C, CDH23, PCDH15, and USH1G (SANS) for Usher type 1; USH2A, ADGRV1, and WHRN for Usher type 2; CLRN1 for Usher type 3. USH is inherited in an autosomal recessive pattern. Digenic, bi-allelic, and polygenic forms have also been reported, in addition to dominant or nonsyndromic forms of genetic mutations. This narrative review reports the causative forms, diagnosis, prognosis, epidemiology, rehabilitation, research, and new treatments of USH.
Collapse
|
18
|
Yusuf IH, Garrett A, MacLaren RE, Issa PC. Retinal cadherins and the retinal cadherinopathies: Current concepts and future directions. Prog Retin Eye Res 2022; 90:101038. [DOI: 10.1016/j.preteyeres.2021.101038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
|
19
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
20
|
Roman-Naranjo P, Gallego-Martinez A, Soto-Varela A, Aran I, Moleon MDC, Espinosa-Sanchez JM, Amor-Dorado JC, Batuecas-Caletrio A, Perez-Vazquez P, Lopez-Escamez JA. Burden of Rare Variants in the OTOG Gene in Familial Meniere's Disease. Ear Hear 2021; 41:1598-1605. [PMID: 33136635 DOI: 10.1097/aud.0000000000000878] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Meniere's disease (MD) is a rare inner ear disorder characterized by sensorineural hearing loss, episodic vertigo, and tinnitus. Familial MD has been reported in 6 to 9% of sporadic cases, and few genes including FAM136A, DTNA, PRKCB, SEMA3D, and DPT have been involved in single families, suggesting genetic heterogeneity. In this study, the authors recruited 46 families with MD to search for relevant candidate genes for hearing loss in familial MD. DESIGN Exome sequencing data from MD patients were analyzed to search for rare variants in hearing loss genes in a case-control study. A total of 109 patients with MD (73 familial cases and 36 early-onset sporadic patients) diagnosed according to the diagnostic criteria defined by the Barany Society were recruited in 11 hospitals. The allelic frequencies of rare variants in hearing loss genes were calculated in individuals with familial MD. A single rare variant analysis and a gene burden analysis (GBA) were conducted in the dataset selecting 1 patient from each family. Allelic frequencies from European and Spanish reference datasets were used as controls. RESULTS A total of 5136 single-nucleotide variants in hearing loss genes were considered for single rare variant analysis in familial MD cases, but only 1 heterozygous likely pathogenic variant in the OTOG gene (rs552304627) was found in 2 unrelated families. The gene burden analysis found an enrichment of rare missense variants in the OTOG gene in familial MD. So, 15 of 46 families (33%) showed at least 1 rare missense variant in the OTOG gene, suggesting a key role in familial MD. CONCLUSIONS The authors found an enrichment of multiplex rare missense variants in the OTOG gene in familial MD. This finding supports OTOG as a relevant gene in familial MD and set the groundwork for genetic testing in MD.
Collapse
Affiliation(s)
- Pablo Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Andrés Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | - Maria Del Carmen Moleon
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Juan Manuel Espinosa-Sanchez
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Angel Batuecas-Caletrio
- Department of Otolaryngology, Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Paz Perez-Vazquez
- Department of Otorhinolaryngology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Department of Surgery, Division of Otolaryngology, Universidad de Granada, Granada, Spain
| |
Collapse
|
21
|
Identification of Novel Candidate Genes and Variants for Hearing Loss and Temporal Bone Anomalies. Genes (Basel) 2021; 12:genes12040566. [PMID: 33924653 PMCID: PMC8069784 DOI: 10.3390/genes12040566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Hearing loss remains an important global health problem that is potentially addressed through early identification of a genetic etiology, which helps to predict outcomes of hearing rehabilitation such as cochlear implantation and also to mitigate the long-term effects of comorbidities. The identification of variants for hearing loss and detailed descriptions of clinical phenotypes in patients from various populations are needed to improve the utility of clinical genetic screening for hearing loss. Methods: Clinical and exome data from 15 children with hearing loss were reviewed. Standard tools for annotating variants were used and rare, putatively deleterious variants were selected from the exome data. Results: In 15 children, 21 rare damaging variants in 17 genes were identified, including: 14 known hearing loss or neurodevelopmental genes, 11 of which had novel variants; and three candidate genes IST1, CBLN3 and GDPD5, two of which were identified in children with both hearing loss and enlarged vestibular aqueducts. Patients with variants within IST1 and MYO18B had poorer outcomes after cochlear implantation. Conclusion: Our findings highlight the importance of identifying novel variants and genes in ethnic groups that are understudied for hearing loss.
Collapse
|
22
|
Ultrarare heterozygous pathogenic variants of genes causing dominant forms of early-onset deafness underlie severe presbycusis. Proc Natl Acad Sci U S A 2020; 117:31278-31289. [PMID: 33229591 DOI: 10.1073/pnas.2010782117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Presbycusis, or age-related hearing loss (ARHL), is a major public health issue. About half the phenotypic variance has been attributed to genetic factors. Here, we assessed the contribution to presbycusis of ultrarare pathogenic variants, considered indicative of Mendelian forms. We focused on severe presbycusis without environmental or comorbidity risk factors and studied multiplex family age-related hearing loss (mARHL) and simplex/sporadic age-related hearing loss (sARHL) cases and controls with normal hearing by whole-exome sequencing. Ultrarare variants (allele frequency [AF] < 0.0001) of 35 genes responsible for autosomal dominant early-onset forms of deafness, predicted to be pathogenic, were detected in 25.7% of mARHL and 22.7% of sARHL cases vs. 7.5% of controls (P = 0.001); half were previously unknown (AF < 0.000002). MYO6, MYO7A, PTPRQ, and TECTA variants were present in 8.9% of ARHL cases but less than 1% of controls. Evidence for a causal role of variants in presbycusis was provided by pathogenicity prediction programs, documented haploinsufficiency, three-dimensional structure/function analyses, cell biology experiments, and reported early effects. We also established Tmc1 N321I/+ mice, carrying the TMC1:p.(Asn327Ile) variant detected in an mARHL case, as a mouse model for a monogenic form of presbycusis. Deafness gene variants can thus result in a continuum of auditory phenotypes. Our findings demonstrate that the genetics of presbycusis is shaped by not only well-studied polygenic risk factors of small effect size revealed by common variants but also, ultrarare variants likely resulting in monogenic forms, thereby paving the way for treatment with emerging inner ear gene therapy.
Collapse
|
23
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
24
|
Vona B, Doll J, Hofrichter MA, Haaf T. Non-syndromic hearing loss: clinical and diagnostic challenges. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Hereditary hearing loss is clinically and genetically heterogeneous. There are presently over 120 genes that have been associated with non-syndromic hearing loss and many more that are associated with syndromic forms. Despite an increasing number of genes that have been implemented into routine molecular genetic diagnostic testing, the diagnostic yield from European patient cohorts with hereditary hearing loss remains around the 50 % mark. This attests to the many gaps of knowledge the field is currently working toward resolving. It can be expected that many more genes await identification. However, it can also be expected, for example, that the mutational signatures of the known genes are still unclear, especially variants in non-coding or regulatory regions influencing gene expression. This review summarizes several challenges in the clinical and diagnostic setting for hereditary hearing loss with emphasis on syndromes that mimic non-syndromic forms of hearing loss in young children and other factors that heavily influence diagnostic rates. A molecular genetic diagnosis for patients with hearing loss opens several additional avenues, such as patient tailored selection of the best currently available treatment modalities, an understanding of the prognosis, and supporting family planning decisions. In the near future, a genetic diagnosis may enable patients to engage in preclinical trials for the development of therapeutics.
Collapse
Affiliation(s)
- Barbara Vona
- Tübingen Hearing Research Centre, Department of Otolaryngology – Head & Neck Surgery , Eberhard Karls University , Elfriede-Aulhorn-Strasse 5 , Tübingen , Germany
| | - Julia Doll
- Institute of Human Genetics , Julius Maximilians University , Würzburg , Germany
| | | | - Thomas Haaf
- Institute of Human Genetics , Julius-Maximilians University Würzburg , Biozentrum, Am Hubland , Würzburg , Germany
| |
Collapse
|
25
|
Pyott SJ, van Tuinen M, Screven LA, Schrode KM, Bai JP, Barone CM, Price SD, Lysakowski A, Sanderford M, Kumar S, Santos-Sacchi J, Lauer AM, Park TJ. Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats. Curr Biol 2020; 30:4329-4341.e4. [PMID: 32888484 DOI: 10.1016/j.cub.2020.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Naked mole-rats are highly vocal, eusocial, subterranean rodents with, counterintuitively, poor hearing. The causes underlying their altered hearing are unknown. Moreover, whether altered hearing is degenerate or adaptive to their unique lifestyles is controversial. We used various methods to identify the factors contributing to altered hearing in naked and the related Damaraland mole-rats and to examine whether these alterations result from relaxed or adaptive selection. Remarkably, we found that cochlear amplification was absent from both species despite normal prestin function in outer hair cells isolated from naked mole-rats. Instead, loss of cochlear amplification appears to result from abnormal hair bundle morphologies observed in both species. By exploiting a well-curated deafness phenotype-genotype database, we identified amino acid substitutions consistent with abnormal hair bundle morphology and reduced hearing sensitivity. Amino acid substitutions were found in unique groups of six hair bundle link proteins. Molecular evolutionary analyses revealed shifts in selection pressure at both the gene and the codon level for five of these six hair bundle link proteins. Substitutions in three of these proteins are associated exclusively with altered hearing. Altogether, our findings identify the likely mechanism of altered hearing in African mole-rats, making them the only identified mammals naturally lacking cochlear amplification. Moreover, our findings suggest that altered hearing in African mole-rats is adaptive, perhaps tailoring hearing to eusocial and subterranean lifestyles. Finally, our work reveals multiple, unique evolutionary trajectories in African mole-rat hearing and establishes species members as naturally occurring disease models to investigate human hearing loss.
Collapse
Affiliation(s)
- Sonja J Pyott
- University Medical Center Groningen and University of Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713GZ Groningen, the Netherlands.
| | - Marcel van Tuinen
- University Medical Center Groningen and University of Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713GZ Groningen, the Netherlands
| | - Laurel A Screven
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Katrina M Schrode
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Jun-Ping Bai
- Yale University School of Medicine, Department of Neurology, 333 Cedar Street, New Haven, CT 06510, USA
| | - Catherine M Barone
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60612, USA
| | - Steven D Price
- University of Illinois at Chicago, Department of Anatomy and Cell Biology, Chicago, IL 60612, USA
| | - Anna Lysakowski
- University of Illinois at Chicago, Department of Anatomy and Cell Biology, Chicago, IL 60612, USA
| | - Maxwell Sanderford
- Temple University, Institute for Genomics and Evolutionary Medicine and Department of Biology, Philadelphia, PA 19122, USA
| | - Sudhir Kumar
- Temple University, Institute for Genomics and Evolutionary Medicine and Department of Biology, Philadelphia, PA 19122, USA; King Abdulaziz University, Center for Excellence in Genome Medicine and Research, Jeddah, Saudi Arabia
| | - Joseph Santos-Sacchi
- Yale University School of Medicine, Department of Surgery (Otolaryngology) and Department of Neuroscience and Cellular and Molecular Physiology, 333 Cedar Street, New Haven, CT 06510, USA
| | - Amanda M Lauer
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Thomas J Park
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60612, USA
| |
Collapse
|
26
|
Niggemann P, György B, Chen ZY. Genome and base editing for genetic hearing loss. Hear Res 2020; 394:107958. [PMID: 32334889 PMCID: PMC7415640 DOI: 10.1016/j.heares.2020.107958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Genome editing opens up a new frontier in developing personalized therapeutic solutions. With the unprecedented advance in the discovery and engineering of gene editing nucleases, it has now become potentially feasible to therapeutically influence up to 90% of all human genetic mutations. Hearing loss is one of the most well studied fields from the genetics perspective, with more than one hundred identified deafness genes. Novel viral and non-viral vectors have been established as safe and efficient modalities to deliver transgenes into cells of the cochlea and to the vestibular system in animal models. Recent studies demonstrated proof-of-concept for therapeutic genome and base editing in the mammalian inner ear and preclinical development is ongoing. This review summarizes important advances and future challenges for this transformative therapeutic modality for genetic and non-genetic hearing loss.
Collapse
Affiliation(s)
- Philipp Niggemann
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland.
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA.
| |
Collapse
|
27
|
Zheng C, Ren X, Xing D, Bu S, Wen D, He Y, Zhang J, Dong L, Li X. A novel missense mutation locus of cadherin 23 and the interaction of cadherin 23 and protocadherin 15 in a patient with usher syndrome. Ophthalmic Genet 2020; 41:501-504. [PMID: 32835555 DOI: 10.1080/13816810.2020.1768554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chuanzhen Zheng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital , Tianjin, China
| | - Xinjun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital , Tianjin, China
| | - Dongjun Xing
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital , Tianjin, China
| | - Shaochong Bu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital , Tianjin, China
| | - Dejia Wen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital , Tianjin, China
| | - Ye He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital , Tianjin, China
| | - Jinping Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital , Tianjin, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital , Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital , Tianjin, China
| |
Collapse
|
28
|
French LS, Mellough CB, Chen FK, Carvalho LS. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front Cell Neurosci 2020; 14:183. [PMID: 32733204 PMCID: PMC7363968 DOI: 10.3389/fncel.2020.00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Usher syndrome is a genetic disorder causing neurosensory hearing loss and blindness from retinitis pigmentosa (RP). Adaptive techniques such as braille, digital and optical magnifiers, mobility training, cochlear implants, or other assistive listening devices are indispensable for reducing disability. However, there is currently no treatment to reduce or arrest sensory cell degeneration. There are several classes of treatments for Usher syndrome being investigated. The present article reviews the progress this research has made towards delivering commercial options for patients with Usher syndrome.
Collapse
Affiliation(s)
- Lucy S French
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
29
|
Bowen Z, Winkowski DE, Kanold PO. Functional organization of mouse primary auditory cortex in adult C57BL/6 and F1 (CBAxC57) mice. Sci Rep 2020; 10:10905. [PMID: 32616766 PMCID: PMC7331716 DOI: 10.1038/s41598-020-67819-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/05/2022] Open
Abstract
The primary auditory cortex (A1) plays a key role for sound perception since it represents one of the first cortical processing stations for sounds. Recent studies have shown that on the cellular level the frequency organization of A1 is more heterogeneous than previously appreciated. However, many of these studies were performed in mice on the C57BL/6 background which develop high frequency hearing loss with age making them a less optimal choice for auditory research. In contrast, mice on the CBA background retain better hearing sensitivity in old age. Since potential strain differences could exist in A1 organization between strains, we performed comparative analysis of neuronal populations in A1 of adult (~ 10 weeks) C57BL/6 mice and F1 (CBAxC57) mice. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of awake mouse primary auditory cortex (A1) to characterize the populations of neurons that were active to tonal stimuli. Pure tones recruited neurons of widely ranging frequency preference in both layers and strains with neurons in F1 (CBAxC57) mice exhibiting a wider range of frequency preference particularly to higher frequencies. Frequency selectivity was slightly higher in C57BL/6 mice while neurons in F1 (CBAxC57) mice showed a greater sound-level sensitivity. The spatial heterogeneity of frequency preference was present in both strains with F1 (CBAxC57) mice exhibiting higher tuning diversity across all measured length scales. Our results demonstrate that the tone evoked responses and frequency representation in A1 of adult C57BL/6 and F1 (CBAxC57) mice are largely similar.
Collapse
Affiliation(s)
- Zac Bowen
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA.
| |
Collapse
|
30
|
Yao Q, Wang L, Mittal R, Yan D, Richmond MT, Denyer S, Requena T, Liu K, Varshney GK, Lu Z, Liu XZ. Transcriptomic Analyses of Inner Ear Sensory Epithelia in Zebrafish. Anat Rec (Hoboken) 2019; 303:527-543. [PMID: 31883312 DOI: 10.1002/ar.24331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Analysis of gene expression has the potential to assist in the understanding of multiple cellular processes including proliferation, cell-fate specification, senesence, and activity in both healthy and disease states. Zebrafish model has been increasingly used to understand the process of hearing and the development of the vertebrate auditory system. Within the zebrafish inner ear, there are three otolith organs, each containing a sensory macula of hair cells. The saccular macula is primarily involved in hearing, the utricular macula is primarily involved in balance and the function of the lagenar macula is not completely understood. The goal of this study is to understand the transcriptional differences in the sensory macula associated with different otolith organs with the intention of understanding the genetic mechanisms responsible for the distinct role each organ plays in sensory perception. The sensory maculae of the saccule, utricle, and lagena were dissected out of adult Et(krt4:GFP)sqet4 zebrafish expressing green fluorescent protein in hair cells for transcriptional analysis. The total RNAs of the maculae were isolated and analyzed by RNA GeneChip microarray. Several of the differentially expressed genes are known to be involved in deafness, otolith development and balance. Gene expression among these otolith organs was very well conserved with less than 10% of genes showing differential expression. Data from this study will help to elucidate which genes are involved in hearing and balance. Furthermore, the findings of this study will assist in the development of the zebrafish model for human hearing and balance disorders. Anat Rec, 303:527-543, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Qi Yao
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Biology, University of Miami, Miami, Florida
| | - Lingyu Wang
- Department of Biology, University of Miami, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Steven Denyer
- Department of Biology, University of Miami, Miami, Florida
| | - Teresa Requena
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Kaili Liu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Zhongmin Lu
- Department of Biology, University of Miami, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Identification of a novel CDH23 gene variant associated with non-syndromic progressive hearing loss in a Chinese family: Individualized hearing rehabilitation guided by genetic diagnosis. Int J Pediatr Otorhinolaryngol 2019; 127:109649. [PMID: 31445392 DOI: 10.1016/j.ijporl.2019.109649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/20/2023]
|
32
|
Abstract
OBJECTIVE Literature review of the genetic etiology of hearing loss (HL) in the African American (AA) population. DATA SOURCES PubMed, EBSCO, and CINAHL were accessed from 1966 to 2018. REVIEW METHODS PRISMA guidelines were followed. Search terms included permutations of "hearing loss," "African American," "black," and "genetic"; "African American" was then cross-referenced against documented HL genes. AA subjects included in multiethnic cohorts of genetic HL testing were identified by searching the key terms "hearing loss" and "ethnic cohort" and "genetic." The Q-Genie tool was used in the quality assessment of included studies. An allele frequency meta-analysis of pathogenic GJB2 variants in the AA population was performed and stratified by hearing status. RESULTS Four hundred seventeen articles were reviewed, and 26 met our inclusion criteria. Ten studies were included in the GJB2 meta-analysis. In the general AA population, pathogenic GJB2 variants are rare, including the 35delG allele, which displayed a carrier frequency of 0.05%. Pathogenic variants were discovered in seven nonsyndromic HL genes (GJB2, MYO3A, TECTA, STRC, OTOF, MYH14, TMC1), eight syndromic HL genes, and one mitochondrial HL gene. Recent comprehensive genetic testing using custom genetic HL testing platforms has yielded only a 26% molecular diagnosis rate for HL etiologies in the AA population. CONCLUSIONS Investigators should be encouraged to provide an ethnic breakdown of results. Sparse literature and poor diagnosis rates indicate that genes involved in HL in the AA population have yet to be identified. Future explorative investigations using next-generation sequencing technologies, such as whole-exome sequencing, into the AA population are warranted.
Collapse
|
33
|
Hereditary hearing loss; about the known and the unknown. Hear Res 2019; 376:58-68. [PMID: 30665849 DOI: 10.1016/j.heares.2019.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023]
Abstract
Hereditary hearing loss is both clinically and genetically very heterogeneous. Despite the large number of genes that have been associated with the condition, many cases remain unexplained. Novel gene associations with hearing loss are to be expected but also are defects of regulatory regions of the genome which are currently not routinely addressed in molecular genetic testing and research. Inheritance patterns other than monogenic might be more common than assumed in isolated cases and diagnoses might have been missed because of misinterpretation of identified DNA variants. This review summarizes current insights in the genetics of hearing loss, the next steps that are being taken in research, and their challenges. Furthermore, genotype-phenotype correlations and modifying factors are discussed as these are instrumental in counselling hearing impaired individuals and/or their family members.
Collapse
|
34
|
A new approach based on targeted pooled DNA sequencing identifies novel mutations in patients with Inherited Retinal Dystrophies. Sci Rep 2018; 8:15457. [PMID: 30337596 PMCID: PMC6194132 DOI: 10.1038/s41598-018-33810-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/04/2018] [Indexed: 01/28/2023] Open
Abstract
Inherited retinal diseases (IRD) are a heterogeneous group of diseases that mainly affect the retina; more than 250 genes have been linked to the disease and more than 20 different clinical phenotypes have been described. This heterogeneity both at the clinical and genetic levels complicates the identification of causative mutations. Therefore, a detailed genetic characterization is important for genetic counselling and decisions regarding treatment. In this study, we developed a method consisting on pooled targeted next generation sequencing (NGS) that we applied to 316 eye disease related genes, followed by High Resolution Melting and copy number variation analysis. DNA from 115 unrelated test samples was pooled and samples with known mutations were used as positive controls to assess the sensitivity of our approach. Causal mutations for IRDs were found in 36 patients achieving a detection rate of 31.3%. Overall, 49 likely causative mutations were identified in characterized patients, 14 of which were first described in this study (28.6%). Our study shows that this new approach is a cost-effective tool for detection of causative mutations in patients with inherited retinopathies.
Collapse
|
35
|
Boudellioua I, Kulmanov M, Schofield PN, Gkoutos GV, Hoehndorf R. OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants. Sci Rep 2018; 8:14681. [PMID: 30279426 PMCID: PMC6168481 DOI: 10.1038/s41598-018-32876-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
An increasing number of disorders have been identified for which two or more distinct alleles in two or more genes are required to either cause the disease or to significantly modify its onset, severity or phenotype. It is difficult to discover such interactions using existing approaches. The purpose of our work is to develop and evaluate a system that can identify combinations of alleles underlying digenic and oligogenic diseases in individual whole exome or whole genome sequences. Information that links patient phenotypes to databases of gene-phenotype associations observed in clinical or non-human model organism research can provide useful information and improve variant prioritization for genetic diseases. Additional background knowledge about interactions between genes can be utilized to identify sets of variants in different genes in the same individual which may then contribute to the overall disease phenotype. We have developed OligoPVP, an algorithm that can be used to prioritize causative combinations of variants in digenic and oligogenic diseases, using whole exome or whole genome sequences together with patient phenotypes as input. We demonstrate that OligoPVP has significantly improved performance when compared to state of the art pathogenicity detection methods in the case of digenic diseases. Our results show that OligoPVP can efficiently prioritize sets of variants in digenic diseases using a phenotype-driven approach and identify etiologically important variants in whole genomes. OligoPVP naturally extends to oligogenic disease involving interactions between variants in two or more genes. It can be applied to the identification of multiple interacting candidate variants contributing to phenotype, where the action of modifier genes is suspected from pedigree analysis or failure of traditional causative variant identification.
Collapse
Affiliation(s)
- Imane Boudellioua
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maxat Kulmanov
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Paul N Schofield
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, Birmingham, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, B15 2TT, Birmingham, United Kingdom
- NIHR Experimental Cancer Medicine Centre, B15 2TT, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, B15 2TT, Birmingham, UK
- NIHR Biomedical Research Centre, B15 2TT, Birmingham, UK
| | - Robert Hoehndorf
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
36
|
Schrauwen I, Chakchouk I, Acharya A, Liaqat K, Irfanullah, Nickerson DA, Bamshad MJ, Shah K, Ahmad W, Leal SM. Novel digenic inheritance of PCDH15 and USH1G underlies profound non-syndromic hearing impairment. BMC MEDICAL GENETICS 2018; 19:122. [PMID: 30029624 PMCID: PMC6053831 DOI: 10.1186/s12881-018-0618-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Digenic inheritance is the simplest model of oligenic disease. It can be observed when there is a strong epistatic interaction between two loci. For both syndromic and non-syndromic hearing impairment, several forms of digenic inheritance have been reported. METHODS We performed exome sequencing in a Pakistani family with profound non-syndromic hereditary hearing impairment to identify the genetic cause of disease. RESULTS We found that this family displays digenic inheritance for two trans heterozygous missense mutations, one in PCDH15 [p.(Arg1034His)] and another in USH1G [p.(Asp365Asn)]. Both of these genes are known to cause autosomal recessive non-syndromic hearing impairment and Usher syndrome. The protein products of PCDH15 and USH1G function together at the stereocilia tips in the hair cells and are necessary for proper mechanotransduction. Epistasis between Pcdh15 and Ush1G has been previously reported in digenic heterozygous mice. The digenic mice displayed a significant decrease in hearing compared to age-matched heterozygous animals. Until now no human examples have been reported. CONCLUSIONS The discovery of novel digenic inheritance mechanisms in hereditary hearing impairment will aid in understanding the interaction between defective proteins and further define inner ear function and its interactome.
Collapse
Affiliation(s)
- Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Imen Chakchouk
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Khurram Liaqat
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Irfanullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Khadim Shah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza 700D, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Vanniya S P, Srisailapathy CRS, Kunka Mohanram R. The tip link protein Cadherin-23: From Hearing Loss to Cancer. Pharmacol Res 2018; 130:25-35. [PMID: 29421162 DOI: 10.1016/j.phrs.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/26/2022]
Abstract
Cadherin-23 is an atypical member of the cadherin superfamily, with a distinctly long extracellular domain. It has been known to be a part of the tip links of the inner ear mechanosensory hair cells. Several studies have been carried out to understand the role of Cadherin-23 in the hearing mechanism and defects in the CDH23 have been associated with hearing impairment resulting from defective or absence of tip links. Recent studies have highlighted the role of Cadherin-23 in several pathological conditions, including cancer, suggesting the presence of several unknown functions. Initially, it was proposed that Cadherin-23 represents a yet unspecified subtype of Cadherins; however, no other proteins with similar characteristics have been identified, till date. It has a unique cytoplasmic domain that does not bear a β-catenin binding region, but has been demonstrated to mediate cell-cell adhesions. Several protein interacting partners have been identified for Cadherin-23 and the roles of their interactions in various cellular mechanisms are yet to be explored. This review summarizes the characteristics of Cadherin-23 and its roles in several pathologies including cancer.
Collapse
Affiliation(s)
- Paridhy Vanniya S
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - Ramkumar Kunka Mohanram
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India.
| |
Collapse
|
38
|
Shang H, Yan D, Tayebi N, Saeidi K, Sahebalzamani A, Feng Y, Blanton S, Liu X. Targeted Next-Generation Sequencing of a Deafness Gene Panel (MiamiOtoGenes) Analysis in Families Unsuitable for Linkage Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3103986. [PMID: 29568747 PMCID: PMC5820677 DOI: 10.1155/2018/3103986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/28/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022]
Abstract
Hearing loss (HL) is a common sensory disorder in humans with high genetic heterogeneity. To date, over 145 loci have been identified to cause nonsyndromic deafness. Furthermore, there are countless families unsuitable for the conventional linkage analysis. In the present study, we used a custom capture panel (MiamiOtoGenes) to target sequence 180 deafness-associated genes in 5 GJB2 negative deaf probands with autosomal recessive nonsyndromic HL from Iran. In these 5 families, we detected one reported and six novel mutations in 5 different deafness autosomal recessive (DFNB) genes (TRIOBP, LHFPL5, CDH23, PCDH15, and MYO7A). The custom capture panel in our study provided an efficient and comprehensive diagnosis for known deafness genes in small families.
Collapse
Affiliation(s)
- Haiqiong Shang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Naeimeh Tayebi
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kolsoum Saeidi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Genetics, Kerman University of Medical Sciences, Kerman, Iran
| | - Afsaneh Sahebalzamani
- Paediatric and Genetic Counselling Center, Kerman Welfare Organization, Kerman, Iran
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Susan Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
39
|
Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech 2017; 7:251. [PMID: 28721681 DOI: 10.1007/s13205-017-0878-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.
Collapse
|
40
|
Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction. Proc Natl Acad Sci U S A 2017; 114:7765-7774. [PMID: 28705869 DOI: 10.1073/pnas.1703408114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many genetic forms of congenital deafness affect the sound reception antenna of cochlear sensory cells, the hair bundle. The resulting sensory deprivation jeopardizes auditory cortex (AC) maturation. Early prosthetic intervention should revive this process. Nevertheless, this view assumes that no intrinsic AC deficits coexist with the cochlear ones, a possibility as yet unexplored. We show here that many GABAergic interneurons, from their generation in the medial ganglionic eminence up to their settlement in the AC, express two cadherin-related (cdhr) proteins, cdhr23 and cdhr15, that form the hair bundle tip links gating the mechanoelectrical transduction channels. Mutant mice lacking either protein showed a major decrease in the number of parvalbumin interneurons specifically in the AC, and displayed audiogenic reflex seizures. Cdhr15- and Cdhr23-expressing interneuron precursors in Cdhr23-/- and Cdhr15-/- mouse embryos, respectively, failed to enter the embryonic cortex and were scattered throughout the subpallium, consistent with the cell polarity abnormalities we observed in vitro. In the absence of adhesion G protein-coupled receptor V1 (adgrv1), another hair bundle link protein, the entry of Cdhr23- and Cdhr15-expressing interneuron precursors into the embryonic cortex was also impaired. Our results demonstrate that a population of newborn interneurons is endowed with specific cdhr proteins necessary for these cells to reach the developing AC. We suggest that an "early adhesion code" targets populations of interneuron precursors to restricted neocortical regions belonging to the same functional area. These findings open up new perspectives for auditory rehabilitation and cortical therapies in patients.
Collapse
|
41
|
Kim BJ, Kim AR, Lee C, Kim SY, Kim NKD, Chang MY, Rhee J, Park MH, Koo SK, Kim MY, Han JH, Oh SH, Park WY, Choi BY. Discovery of CDH23 as a Significant Contributor to Progressive Postlingual Sensorineural Hearing Loss in Koreans. PLoS One 2016; 11:e0165680. [PMID: 27792758 PMCID: PMC5085094 DOI: 10.1371/journal.pone.0165680] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022] Open
Abstract
CDH23 mutations have mostly been associated with prelingual severe-to-profound sensorineural hearing loss (SNHL) in either syndromic or nonsyndromic SNHL (DFNB12). Herein, we demonstrate the contribution of CDH23 mutations to postlingual nonsyndromic SNHL (NS-SNHL). We screened 32 Korean adult probands with postlingual NS-SNHL sporadically or in autosomal recessive fashion using targeted panel or whole exome sequencing. We identified four (12.5%, 4/32) potential postlingual DFNB12 families that segregated the recessive CDH23 variants, qualifying for our criteria along with rapidly progressive SNHL. Three of the four families carried one definite pathogenic CDH23 variant previously known as the prelingual DFNB12 variant in a trans configuration with rare CDH23 variants. To determine the contribution of rare CDH23 variants to the postlingual NS-SNHL, we checked the minor allele frequency (MAF) of CDH23 variants detected from our postlingual NS-SNHL cohort and prelingual NS-SNHL cohort, among the 2040 normal control chromosomes. The allele frequency of these CDH23 variants in our postlingual cohort was 12.5%, which was significantly higher than that of the 2040 control chromosomes (5.53%), confirming the contribution of these rare CDH23 variants to postlingual NS-SNHL. Furthermore, MAF of rare CDH23 variants from the postlingual NS-SNHL group was significantly higher than that from the prelingual NS-SNHL group. This study demonstrates an important contribution of CDH23 mutations to poslingual NS-SNHL and shows that the phenotypic spectrum of DFNB12 can be broadened even into the presbycusis, depending on the pathogenic potential of variants. We also propose that pathogenic potential of CDH23 variants and the clinical fate of DFNB12 may be predicted by MAF.
Collapse
Affiliation(s)
- Bong Jik Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ah Reum Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, Korea
| | - So Young Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | | | - Mun Young Chang
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jihye Rhee
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Mi-Hyun Park
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, Korea
| | - Soo Kyung Koo
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, Korea
| | - Min Young Kim
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung-ha Oh
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
- * E-mail:
| |
Collapse
|
42
|
Stoffels M, Kastner DL. Old Dogs, New Tricks: Monogenic Autoinflammatory Disease Unleashed. Annu Rev Genomics Hum Genet 2016; 17:245-72. [DOI: 10.1146/annurev-genom-090413-025334] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monique Stoffels
- Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | - Daniel L. Kastner
- Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
43
|
Saleha S, Ajmal M, Jamil M, Nasir M, Hameed A. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype. Int J Ophthalmol 2016; 9:662-8. [PMID: 27275418 DOI: 10.18240/ijo.2016.05.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/06/2015] [Indexed: 11/23/2022] Open
Abstract
AIM To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. METHODS A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. RESULTS By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. CONCLUSION The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.
Collapse
Affiliation(s)
- Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ajmal
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nasir
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| |
Collapse
|
44
|
Sommen M, Schrauwen I, Vandeweyer G, Boeckx N, Corneveaux JJ, van den Ende J, Boudewyns A, De Leenheer E, Janssens S, Claes K, Verstreken M, Strenzke N, Predöhl F, Wuyts W, Mortier G, Bitner-Glindzicz M, Moser T, Coucke P, Huentelman MJ, Van Camp G. DNA Diagnostics of Hereditary Hearing Loss: A Targeted Resequencing Approach Combined with a Mutation Classification System. Hum Mutat 2016; 37:812-9. [PMID: 27068579 DOI: 10.1002/humu.22999] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
Abstract
Although there are nearly 100 different causative genes identified for nonsyndromic hearing loss (NSHL), Sanger sequencing-based DNA diagnostics usually only analyses three, namely, GJB2, SLC26A4, and OTOF. As this is seen as inadequate, there is a need for high-throughput diagnostic methods to detect disease-causing variations, including single-nucleotide variations (SNVs), insertions/deletions (Indels), and copy-number variations (CNVs). In this study, a targeted resequencing panel for hearing loss was developed including 79 genes for NSHL and selected forms of syndromic hearing loss. One-hundred thirty one presumed autosomal-recessive NSHL (arNSHL) patients of Western-European ethnicity were analyzed for SNVs, Indels, and CNVs. In addition, we established a straightforward variant classification system to deal with the large number of variants encountered. We estimate that combining prescreening of GJB2 with our panel leads to a diagnosis in 25%-30% of patients. Our data show that after GJB2, the most commonly mutated genes in a Western-European population are TMC1, MYO15A, and MYO7A (3.1%). CNV analysis resulted in the identification of causative variants in two patients in OTOA and STRC. One of the major challenges for diagnostic gene panels is assigning pathogenicity for variants. A collaborative database collecting all identified variants from multiple centers could be a valuable resource for hearing loss diagnostics.
Collapse
Affiliation(s)
- Manou Sommen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Isabelle Schrauwen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.,Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Nele Boeckx
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Jason J Corneveaux
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Jenneke van den Ende
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.,Antwerp University Hospital, Antwerp, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Els De Leenheer
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Sandra Janssens
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Kathleen Claes
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Margriet Verstreken
- University Department Otolaryngology, St. Augustinus Hospital, Antwerp, Belgium
| | - Nicola Strenzke
- Inner Ear Lab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Friederike Predöhl
- Inner Ear Lab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Wim Wuyts
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.,Antwerp University Hospital, Antwerp, Belgium
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.,Antwerp University Hospital, Antwerp, Belgium
| | - Maria Bitner-Glindzicz
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK
| | - Tobias Moser
- Inner Ear Lab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Coucke
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Guy Van Camp
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
45
|
Liu YP, Bosch DGM, Siemiatkowska AM, Rendtorff ND, Boonstra FN, Möller C, Tranebjærg L, Katsanis N, Cremers FPM. Putative digenic inheritance of heterozygous RP1L1 and C2orf71 null mutations in syndromic retinal dystrophy. Ophthalmic Genet 2016; 38:127-132. [PMID: 27029556 DOI: 10.3109/13816810.2016.1151898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration and can occur in non-syndromic and syndromic forms. Syndromic RP is accompanied by other symptoms such as intellectual disability, hearing loss, or congenital abnormalities. Both forms are known to exhibit complex genetic interactions that can modulate the penetrance and expressivity of the phenotype. MATERIALS AND METHODS In an individual with atypical RP, hearing loss, ataxia and cerebellar atrophy, whole exome sequencing was performed. The candidate pathogenic variants were tested by developing an in vivo zebrafish model and assaying for retinal and cerebellar integrity. RESULTS Exome sequencing revealed a complex heterozygous protein-truncating mutation in RP1L1, p.[(Lys111Glnfs*27; Gln2373*)], and a heterozygous nonsense mutation in C2orf71, p.(Ser512*). Mutations in both genes have previously been implicated in autosomal recessive non-syndromic RP, raising the possibility of a digenic model in this family. Functional testing in a zebrafish model for two key phenotypes of the affected person showed that the combinatorial suppression of rp1l1 and c2orf71l induced discrete pathology in terms of reduction of eye size with concomitant loss of rhodopsin in the photoreceptors, and disorganization of the cerebellum. CONCLUSIONS We propose that the combination of heterozygous loss-of-function mutations in these genes drives syndromic retinal dystrophy, likely through the genetic interaction of at least two loci. Haploinsufficiency at each of these loci is insufficient to induce overt pathology.
Collapse
Affiliation(s)
- Yangfan P Liu
- a Center for Human Disease Modeling , Duke University School of Medicine , Durham , North Carolina , USA
| | - Daniëlle G M Bosch
- b Bartiméus, Institute for the Visually Impaired , Zeist , the Netherlands.,c Department of Human Genetics , Radboud University Medical Center , Nijmegen , the Netherlands.,d Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , the Netherlands.,e Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center , Nijmegen , the Netherlands
| | - Anna M Siemiatkowska
- c Department of Human Genetics , Radboud University Medical Center , Nijmegen , the Netherlands.,d Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , the Netherlands
| | - Nanna Dahl Rendtorff
- f Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine , ICMM, University of Copenhagen , Copenhagen , Denmark.,g Department of Audiology , Bispebjerg Hospital and Rigshospitalet , Copenhagen , Denmark
| | - F Nienke Boonstra
- b Bartiméus, Institute for the Visually Impaired , Zeist , the Netherlands.,e Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center , Nijmegen , the Netherlands
| | - Claes Möller
- h Audiological Research Centre, Faculty of Medicine and Health , Örebro University , Örebro , Sweden
| | - Lisbeth Tranebjærg
- f Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine , ICMM, University of Copenhagen , Copenhagen , Denmark.,g Department of Audiology , Bispebjerg Hospital and Rigshospitalet , Copenhagen , Denmark
| | - Nicholas Katsanis
- a Center for Human Disease Modeling , Duke University School of Medicine , Durham , North Carolina , USA
| | - Frans P M Cremers
- c Department of Human Genetics , Radboud University Medical Center , Nijmegen , the Netherlands.,d Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , the Netherlands.,e Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center , Nijmegen , the Netherlands
| |
Collapse
|
46
|
Chiang J(PW, Gorin MB. Challenges confronting precision medicine in the context of inherited retinal disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1152159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Miyasaka Y, Shitara H, Suzuki S, Yoshimoto S, Seki Y, Ohshiba Y, Okumura K, Taya C, Tokano H, Kitamura K, Takada T, Hibino H, Shiroishi T, Kominami R, Yonekawa H, Kikkawa Y. Heterozygous mutation of Ush1g/Sans in mice causes early-onset progressive hearing loss, which is recovered by reconstituting the strain-specific mutation in Cdh23. Hum Mol Genet 2016; 25:2045-2059. [PMID: 26936824 DOI: 10.1093/hmg/ddw078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
Most clinical reports have suggested that patients with congenital profound hearing loss have recessive mutations in deafness genes, whereas dominant alleles are associated with progressive hearing loss (PHL). Jackson shaker (Ush1gjs) is a mouse model of recessive deafness that exhibits congenital profound deafness caused by the homozygous mutation of Ush1g/Sans on chromosome 11. We found that C57BL/6J-Ush1gjs/+ heterozygous mice exhibited early-onset PHL (ePHL) accompanied by progressive degeneration of stereocilia in the cochlear outer hair cells. Interestingly, ePHL did not develop in mutant mice with the C3H/HeN background, thus suggesting that other genetic factors are required for ePHL development. Therefore, we performed classical genetic analyses and found that the occurrence of ePHL in Ush1gjs/+ mice was associated with an interval in chromosome 10 that contains the cadherin 23 gene (Cdh23), which is also responsible for human deafness. To confirm this mutation effect, we generated C57BL/6J-Ush1gjs/+, Cdh23c.753A/G double-heterozygous mice by using the CRISPR/Cas9-mediated Cdh23c.753A>G knock-in method. The Cdh23c.753A/G mice harbored a one-base substitution (A for G), and the homozygous A allele caused moderate hearing loss with aging. Analyses revealed the complete recovery of ePHL and stereocilia degeneration in C57BL/6J-Ush1gjs/+ mice. These results clearly show that the development of ePHL requires at least two mutant alleles of the Ush1g and Cdh23 genes. Our results also suggest that because the SANS and CDH23 proteins form a complex in the stereocilia, the interaction between these proteins may play key roles in the maintenance of stereocilia and the prevention of ePHL.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Sachi Yoshimoto
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Yasuhiro Ohshiba
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Kazuhiro Okumura
- Division of Oncogenomics, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba 260-0801, Japan
| | - Choji Taya
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hisashi Tokano
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Ken Kitamura
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Toyoyuki Takada
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | | | - Hiromichi Yonekawa
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences,
| |
Collapse
|
48
|
Ścieżyńska A, Oziębło D, Ambroziak AM, Korwin M, Szulborski K, Krawczyński M, Stawiński P, Szaflik J, Szaflik JP, Płoski R, Ołdak M. Next-generation sequencing of ABCA4: High frequency of complex alleles and novel mutations in patients with retinal dystrophies from Central Europe. Exp Eye Res 2015; 145:93-99. [PMID: 26593885 DOI: 10.1016/j.exer.2015.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/04/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Variation in the ABCA4 locus has emerged as the most prevalent cause of monogenic retinal diseases. The study aimed to discover causative ABCA4 mutations in a large but not previously investigated cohort with ABCA4-related diseases originating from Central Europe and to refine the genetic relevance of all identified variants based on population evidence. Comprehensive clinical studies were performed to identify patients with Stargardt disease (STGD, n = 76) and cone-rod dystrophy (CRD, n = 16). Next-generation sequencing targeting ABCA4 was applied for a widespread screening of the gene. The results were analyzed in the context of exome data from a corresponding population (n = 594) and other large genomic databases. Our data disprove the pathogenic status of p.V552I and provide more evidence against a causal role of four further ABCA4 variants as drivers of the phenotype under a recessive paradigm. The study identifies 12 novel potentially pathogenic mutations (four of them recurrent) and a novel complex allele p.[(R152*; V2050L)]. In one third (31/92) of our cohort we detected the p.[(L541P; A1038V)] complex allele, which represents an unusually high level of genetic homogeneity for ABCA4-related diseases. Causative ABCA4 mutations account for 79% of STGD and 31% of CRD cases. A combination of p.[(L541P; A1038V)] and/or a truncating ABCA4 mutation always resulted in an early disease onset. Identification of ABCA4 retinopathies provides a specific molecular diagnosis and justifies a prompt introduction of simple precautions that may slow disease progression. The comprehensive, population-specific study expands our knowledge on the genetic landscape of retinal diseases.
Collapse
Affiliation(s)
- Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - Anna M Ambroziak
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland; Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Magdalena Korwin
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Kamil Szulborski
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland; Center for Medical Genetics GENESIS, Poznan, Poland
| | - Piotr Stawiński
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
| | - Monika Ołdak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland; Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland.
| |
Collapse
|
49
|
Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, Montealegre G, Biancotto A, Reinhardt A, Almeida de Jesus A, Pelletier M, Tsai WL, Remmers EF, Kardava L, Hill S, Kim H, Lachmann HJ, Megarbane A, Chae JJ, Brady J, Castillo RD, Brown D, Casano AV, Gao L, Chapelle D, Huang Y, Stone D, Chen Y, Sotzny F, Lee CCR, Kastner DL, Torrelo A, Zlotogorski A, Moir S, Gadina M, McCoy P, Wesley R, Rother KI, Hildebrand PW, Brogan P, Krüger E, Aksentijevich I, Goldbach-Mansky R. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest 2015; 125:4196-211. [PMID: 26524591 DOI: 10.1172/jci81260] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/10/2015] [Indexed: 01/03/2023] Open
Abstract
Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production.
Collapse
|
50
|
Peguero B, Tempel BL. A Chromosome 17 Locus Engenders Frequency-Specific Non-Progressive Hearing Loss that Contributes to Age-Related Hearing Loss in Mice. J Assoc Res Otolaryngol 2015; 16:459-71. [PMID: 25940139 DOI: 10.1007/s10162-015-0519-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
The 129S6/SvEvTac (129S6) inbred mouse is known for its resistance to noise-induced hearing loss (NIHL). However, less is understood of its unique age-related hearing loss (AHL) phenotype and its potential relationship with the resistance to NIHL. Here, we studied the physiological characteristics of hearing loss in 129S6 and asked if noise resistance (NR) and AHL are genetically linked to the same chromosomal region. We used auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to examine hearing sensitivity between 1 and 13 months of age of recombinant-inbred (congenic) mice with an NR phenotype. We identified a region of proximal chromosome (Chr) 17 (D17Mit143-D17Mit100) that contributes to a sensory, non-progressive hearing loss (NPHL) affecting exclusively the high-frequencies (>24 kHz) and maps to the nr1 locus on Chr 17. ABR experiments showed that 129S6 and CBA/CaJ F1 (CBACa) hybrid mice exhibit normal hearing, indicating that the hearing loss in 129S6 mice is inherited recessively. An allelic complementation test between the 129S6 and 101/H (101H) strains did not rescue hearing loss, suggesting genetic allelism between the nphl and phl1 loci of these strains, respectively. The hybrids had a milder hearing loss than either parental strain, which indicate a possible interaction with other genes in the mouse background or a digenic interaction between different genes that reside in the same genomic region. Our study defines a locus for nphl on Chr 17 affecting frequencies greater than 24 kHz.
Collapse
Affiliation(s)
- Braulio Peguero
- The Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA, 98195, USA
| | | |
Collapse
|