1
|
Cui C, Wu X, Dong S, Chen B, Zhang T. Remifentanil-induced inflammation in microglial cells: Activation of the PAK4-mediated NF-κB/NLRP3 pathway and onset of hyperalgesia. Brain Behav Immun 2025; 123:334-352. [PMID: 39322089 DOI: 10.1016/j.bbi.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND The perioperative use of remifentanil is associated with postoperative hyperalgesia, which can impair recovery and extend hospitalization. Recent studies have revealed that microglia-mediated activation of the NLRP3 inflammasome plays a critical role in opioid-induced hyperalgesia, with NF-κB acting as a pivotal activation point for NLRP3. Despite these findings, the specific molecular mechanisms underlying remifentanil-induced postoperative hyperalgesia remain unclear. This study aims to develop a model of remifentanil-induced hyperalgesia and investigate the molecular mechanisms, focusing on the NF-κB/NLRP3 pathway, using both in vitro and in vivo approaches. METHOD We established a remifentanil-induced hyperalgesia model and performed proteomic analysis to identify differential protein expression in the spinal cord tissue of rats. NLRP3 or PAK4 antagonists were administered intrathecally in vivo, and mechanical pain thresholds in the hind paws were measured using Von Frey testing. In vitro, we applied NLRP3 or PAK4 inhibitors or used lentivirus infection to silence PAK4, NF-κB, and NLRP3 genes. Protein expression was assessed through immunohistochemistry, immunofluorescence, and Western blotting. Additionally, ELISA was performed to measure IL-1β and IL-18 levels, and RT-qPCR was conducted to evaluate the transcription of target genes. RESULTS Proteomic analysis revealed that remifentanil upregulates PAK4 protein in spinal cord tissue two hours after the surgery. In addition, remifentanil induces morphological changes in the spinal cord dorsal horn, characterized by increased expression of PAK4, p-p65, NLRP3 and Iba-1 proteins, which in turn leads to elevated IL-1β and IL-18 levels and an inflammatory response. Intrathecal injection of NLRP3 or PAK4 inhibitors mitigates remifentanil-induced hyperalgesia and associated changes. In vitro, downregulation of PAK4 inhibits the increase in PAK4, p-p65, NLRP3 and Caspase-1 induced by LPS. Conversely, the downregulation of NLRP3 does not impact the levels of PAK4 and p-p65 proteins, aligning with the in vivo results and suggesting that PAK4 acts as an upstream signaling molecule of NLRP3. CONCLUSION Remifentanil can increase PAK4 expression in spinal cord dorsal horn cells by activating the NF-κB/NLRP3 pathway and mediating microglial activation, thereby contributing to postoperative hyperalgesia.
Collapse
Affiliation(s)
- Chang Cui
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610500, Sichuan Province, China
| | - Xiaochu Wu
- West China Hospital of Sichuan University, Chengdu 610500, Sichuan Province, China
| | - Shuhua Dong
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Benzhen Chen
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610500, Sichuan Province, China
| | - Tianyao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China.
| |
Collapse
|
2
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
3
|
Wennagel D, Braz BY, Capizzi M, Barnat M, Humbert S. Huntingtin coordinates dendritic spine morphology and function through cofilin-mediated control of the actin cytoskeleton. Cell Rep 2022; 40:111261. [PMID: 36044862 DOI: 10.1016/j.celrep.2022.111261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Compelling evidence indicates that in Huntington's disease (HD), mutation of huntingtin (HTT) alters several aspects of early brain development such as synaptogenesis. It is not clear to what extent the partial loss of wild-type HTT function contributes to these abnormalities. Here we investigate the function of HTT in the formation of spines. Although larger spines normally correlate with more synaptic activity, cell-autonomous depletion of HTT leads to enlarged spines but reduced excitatory synaptic function. We find that HTT is required for the proper turnover of endogenous actin and to recruit AMPA receptors at active synapses; loss of HTT leads to LIM kinase (LIMK) hyperactivation, which maintains cofilin in its inactive state. HTT therefore influences actin dynamics through the LIMK-cofilin pathway. Loss of HTT uncouples spine structure from synaptic function, which may contribute to the ultimate development of HD symptoms.
Collapse
Affiliation(s)
- Doris Wennagel
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France
| | - Barbara Yael Braz
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France
| | - Mariacristina Capizzi
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France; Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Monia Barnat
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France
| | - Sandrine Humbert
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France; Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
4
|
Podvin S, Rosenthal SB, Poon W, Wei E, Fisch KM, Hook V. Mutant Huntingtin Protein Interaction Map Implicates Dysregulation of Multiple Cellular Pathways in Neurodegeneration of Huntington's Disease. J Huntingtons Dis 2022; 11:243-267. [PMID: 35871359 PMCID: PMC9484122 DOI: 10.3233/jhd-220538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat (CAG) expansions in the human HTT gene encoding the huntingtin protein (Htt) with an expanded polyglutamine tract. OBJECTIVE HD models from yeast to transgenic mice have investigated proteins interacting with mutant Htt that may initiate molecular pathways of cell death. There is a paucity of datasets of published Htt protein interactions that include the criteria of 1) defining fragments or full-length Htt forms, 2) indicating the number of poly-glutamines of the mutant and wild-type Htt forms, and 3) evaluating native Htt interaction complexes. This research evaluated such interactor data to gain understanding of Htt dysregulation of cellular pathways. METHODS Htt interacting proteins were compiled from the literature that meet our criteria and were subjected to network analysis via clustering, gene ontology, and KEGG pathways using rigorous statistical methods. RESULTS The compiled data of Htt interactors found that both mutant and wild-type Htt interact with more than 2,971 proteins. Application of a community detection algorithm to all known Htt interactors identified significant signal transduction, membrane trafficking, chromatin, and mitochondrial clusters, among others. Binomial analyses of a subset of reported protein interactor information determined that chromatin organization, signal transduction and endocytosis were diminished, while mitochondria, translation and membrane trafficking had enriched overall edge effects. CONCLUSION The data support the hypothesis that mutant Htt disrupts multiple cellular processes causing toxicity. This dataset is an open resource to aid researchers in formulating hypotheses of HD mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA.,Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Neuroscience and Dept of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Sodium Benzoate—Harmfulness and Potential Use in Therapies for Disorders Related to the Nervous System: A Review. Nutrients 2022; 14:nu14071497. [PMID: 35406109 PMCID: PMC9003278 DOI: 10.3390/nu14071497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, due to the large number of reports regarding the harmfulness of food additives, more and more consumers follow the so-called “clean label” trend, i.e., prefer and choose the least-processed food products. One of the compounds known as a preservative with a high safety profile is sodium benzoate. While some studies show that it can be used to treat conditions such as depression, pain, schizophrenia, autism spectrum disorders, and neurodegenerative diseases, others report its harmfulness. For example, it was found to cause mutagenic effects, generate oxidative stress, disrupt hormones, and reduce fertility. Due to such disparate results, the purpose of this study is to comprehensively discuss the safety profile of sodium benzoate and its potential use in neurodegenerative diseases, especially in autism spectrum disorder (ASD), schizophrenia, major depressive disorder (MDD), and pain relief.
Collapse
|
6
|
The Use of Nanomedicine to Target Signaling by the PAK Kinases for Disease Treatment. Cells 2021; 10:cells10123565. [PMID: 34944073 PMCID: PMC8700304 DOI: 10.3390/cells10123565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
P21-activated kinases (PAKs) are serine/threonine kinases involved in the regulation of cell survival, proliferation, inhibition of apoptosis, and the regulation of cell morphology. Some members of the PAK family are highly expressed in several types of cancer, and they have also been implicated in several other medical disorders. They are thus considered to be good targets for treatment of cancer and other diseases. Although there are several inhibitors of the PAKs, the utility of some of these inhibitors is reduced for several reasons, including limited metabolic stability. One way to overcome this problem is the use of nanoparticles, which have the potential to increase drug delivery. The overall goals of this review are to describe the roles for PAK kinases in cell signaling and disease, and to describe how the use of nanomedicine is a promising new method for administering PAK inhibitors for the purpose of disease treatment and research. We discuss some of the basic mechanisms behind nanomedicine technology, and we then describe how these techniques are being used to package and deliver PAK inhibitors.
Collapse
|
7
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
8
|
Seefelder M, Kochanek S. A meta-analysis of transcriptomic profiles of Huntington's disease patients. PLoS One 2021; 16:e0253037. [PMID: 34111223 PMCID: PMC8191979 DOI: 10.1371/journal.pone.0253037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Description of robust transcriptomic alterations in Huntington’s disease is essential to identify targets for biochemical studies and drug development. We analysed publicly available transcriptome data from the brain and blood of 220 HD patients and 241 healthy controls and identified 737 and 661 genes with robustly altered mRNA levels in the brain and blood of HD patients, respectively. In the brain, a subnetwork of 320 genes strongly correlated with HD and was enriched in transport-related genes. Bioinformatical analysis of this subnetwork highlighted CDC42, PAK1, YWHAH, NFY, DLX1, HMGN3, and PRMT3. Moreover, we found that CREB1 can regulate 78.0% of genes whose mRNA levels correlated with HD in the blood of patients. Alterations in protein transport, metabolism, transcriptional regulation, and CDC42-mediated functions are likely central features of HD. Further our data substantiate the role of transcriptional regulators that have not been reported in the context of HD (e.g. DLX1, HMGN3 and PRMT3) and strongly suggest dysregulation of NFY and its target genes across tissues. A large proportion of the identified genes such as CDC42 were also altered in Parkinson’s (PD) and Alzheimer’s disease (AD). The observed dysregulation of CDC42 and YWHAH in samples from HD, AD and PD patients indicates that those genes and their upstream regulators may be interesting therapeutic targets.
Collapse
Affiliation(s)
- Manuel Seefelder
- Department of Gene Therapy, Ulm University, Ulm, Germany
- * E-mail:
| | | |
Collapse
|
9
|
Liu H, Liu K, Dong Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front Cell Dev Biol 2021; 9:641381. [PMID: 33796531 PMCID: PMC8007885 DOI: 10.3389/fcell.2021.641381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
10
|
Cong C, Liang W, Zhang C, Wang Y, Yang Y, Wang X, Wang S, Huo D, Wang H, Wang D, Feng H. PAK4 suppresses motor neuron degeneration in hSOD1 G93A -linked amyotrophic lateral sclerosis cell and rat models. Cell Prolif 2021; 54:e13003. [PMID: 33615605 PMCID: PMC8016643 DOI: 10.1111/cpr.13003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons (MN). CREB pathway-mediated inhibition of apoptosis contributes to neuron protection, and PAK4 activates CREB signalling in diverse cell types. This study aimed to investigate PAK4's effect and mechanism of action in ALS. METHODS We analysed RNA levels by qRT-PCR, protein levels by immunofluorescence and Western blotting, and apoptosis by flow cytometry and TUNEL staining. Cell transfection was performed for in vitro experiment. Mice were injected intraspinally to evaluate PAK4 function in vivo experiment. Rotarod test was performed to measure motor function. RESULTS The expression and activation of PAK4 significantly decreased in the cell and mouse models of ALS as the disease progressed, which was caused by the negative regulation of miR-9-5p. Silencing of PAK4 increased the apoptosis of MN by inhibiting CREB-mediated neuroprotection, whereas overexpression of PAK4 protected MN from hSOD1G93A -induced degeneration by activating CREB signalling. The neuroprotective effect of PAK4 was markedly inhibited by CREB inhibitor. In ALS models, the PAK4/CREB pathway was inhibited, and cell apoptosis increased. In vivo experiments revealed that PAK4 overexpression in the spinal neurons of hSOD1G93A mice suppressed MN degeneration, prolonged survival and promoted the CREB pathway. CONCLUSIONS PAK4 protects MN from degeneration by activating the anti-apoptotic effects of CREB signalling, suggesting it may be a therapeutic target in ALS.
Collapse
Affiliation(s)
- Chaohua Cong
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Weiwei Liang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Chunting Zhang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Ying Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Yueqing Yang
- Department of Neurology, The Second Clinical College of Harbin Medical University, Harbin, China
| | - Xudong Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Shuyu Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Di Huo
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Hongyong Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Honglin Feng
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Valionyte E, Yang Y, Roberts SL, Kelly J, Lu B, Luo S. Lowering Mutant Huntingtin Levels and Toxicity: Autophagy-Endolysosome Pathways in Huntington's Disease. J Mol Biol 2019; 432:2673-2691. [PMID: 31786267 DOI: 10.1016/j.jmb.2019.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Huntington's disease (HD) is a monogenetic neurodegenerative disease, which serves as a model of neurodegeneration with protein aggregation. Autophagy has been suggested to possess a great value to tackle protein aggregation toxicity and neurodegenerative diseases. Current studies suggest that autophagy-endolysosomal pathways are critical for HD pathology. Here we review recent advancement in the studies of autophagy and selective autophagy relating HD. Restoration of autophagy flux and enhancement of selective removal of mutant huntingtin/disease-causing protein would be effective approaches towards tackling HD as well as other similar neurodegenerative disorders.
Collapse
Affiliation(s)
- Evelina Valionyte
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK
| | - Yi Yang
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK
| | - Sheridan L Roberts
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK
| | - Jack Kelly
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK.
| |
Collapse
|
12
|
Wiatr K, Piasecki P, Marczak Ł, Wojciechowski P, Kurkowiak M, Płoski R, Rydzanicz M, Handschuh L, Jungverdorben J, Brüstle O, Figlerowicz M, Figiel M. Altered Levels of Proteins and Phosphoproteins, in the Absence of Early Causative Transcriptional Changes, Shape the Molecular Pathogenesis in the Brain of Young Presymptomatic Ki91 SCA3/MJD Mouse. Mol Neurobiol 2019; 56:8168-8202. [PMID: 31201651 PMCID: PMC6834541 DOI: 10.1007/s12035-019-01643-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is a polyQ neurodegenerative disease where the presymptomatic phase of pathogenesis is unknown. Therefore, we investigated the molecular network of transcriptomic and proteomic triggers in young presymptomatic SCA3/MJD brain from Ki91 knock-in mouse. We found that transcriptional dysregulations resulting from mutant ataxin-3 are not occurring in young Ki91 mice, while old Ki91 mice and also postmitotic patient SCA3 neurons demonstrate the late transcriptomic changes. Unlike the lack of early mRNA changes, we have identified numerous early changes of total proteins and phosphoproteins in 2-month-old Ki91 mouse cortex and cerebellum. We discovered the network of processes in presymptomatic SCA3 with three main groups of disturbed processes comprising altered proteins: (I) modulation of protein levels and DNA damage (Pabpc1, Ddb1, Nedd8), (II) formation of neuronal cellular structures (Tubb3, Nefh, p-Tau), and (III) neuronal function affected by processes following perturbed cytoskeletal formation (Mt-Co3, Stx1b, p-Syn1). Phosphoproteins downregulate in the young Ki91 mouse brain and their phosphosites are associated with kinases that interact with ATXN3 such as casein kinase, Camk2, and kinases controlled by another Atxn3 interactor p21 such as Gsk3, Pka, and Cdk kinases. We conclude that the onset of SCA3 pathology occurs without altered transcript level and is characterized by changed levels of proteins responsible for termination of translation, DNA damage, spliceosome, and protein phosphorylation. This disturbs global cellular processes such as cytoskeleton and transport of vesicles and mitochondria along axons causing energy deficit and neurodegeneration also manifesting in an altered level of transcripts at later ages.
Collapse
Affiliation(s)
- Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Piotr Piasecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Paweł Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland.,Institute of Computing Science, Poznan University of Technology, Poznań, Poland
| | - Małgorzata Kurkowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Johannes Jungverdorben
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland.
| |
Collapse
|
13
|
Bondar VV, Adamski CJ, Onur TS, Tan Q, Wang L, Diaz-Garcia J, Park J, Orr HT, Botas J, Zoghbi HY. PAK1 regulates ATXN1 levels providing an opportunity to modify its toxicity in spinocerebellar ataxia type 1. Hum Mol Genet 2018; 27:2863-2873. [PMID: 29860311 PMCID: PMC6077814 DOI: 10.1093/hmg/ddy200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 04/23/2018] [Accepted: 05/22/2018] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is caused by the expansion of a trinucleotide repeat that encodes a polyglutamine tract in ataxin-1 (ATXN1). The expanded polyglutamine in ATXN1 increases the protein's stability and results in its accumulation and toxicity. Previous studies have demonstrated that decreasing ATXN1 levels ameliorates SCA1 phenotypes and pathology in mouse models. We rationalized that reducing ATXN1 levels through pharmacological inhibition of its modulators could provide a therapeutic avenue for SCA1. Here, through a forward genetic screen in Drosophila we identified, p21-activated kinase 3 (Pak3) as a modulator of ATXN1 levels. Loss-of-function of fly Pak3 or Pak1, whose mammalian homologs belong to Group I of PAK proteins, reduces ATXN1 levels, and accordingly, improves disease pathology in a Drosophila model of SCA1. Knockdown of PAK1 potently reduces ATXN1 levels in mammalian cells independent of the well-characterized S776 phosphorylation site (known to stabilize ATXN1) thus revealing a novel molecular pathway that regulates ATXN1 levels. Furthermore, pharmacological inhibition of PAKs decreases ATXN1 levels in a mouse model of SCA1. To explore the potential of using PAK inhibitors in combination therapy, we combined the pharmacological inhibition of PAK with MSK1, a previously identified modulator of ATXN1, and examined their effects on ATXN1 levels. We found that inhibition of both pathways results in an additive decrease in ATXN1 levels. Together, this study identifies PAK signaling as a distinct molecular pathway that regulates ATXN1 levels and presents a promising opportunity to pursue for developing potential therapeutics for SCA1.
Collapse
Affiliation(s)
- Vitaliy V Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Tarik S Onur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Qiumin Tan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Li Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Javier Diaz-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Jeehye Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Pensold D, Symmank J, Hahn A, Lingner T, Salinas-Riester G, Downie BR, Ludewig F, Rotzsch A, Haag N, Andreas N, Schubert K, Hübner CA, Pieler T, Zimmer G. The DNA Methyltransferase 1 (DNMT1) Controls the Shape and Dynamics of Migrating POA-Derived Interneurons Fated for the Murine Cerebral Cortex. Cereb Cortex 2018; 27:5696-5714. [PMID: 29117290 DOI: 10.1093/cercor/bhw341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 01/24/2023] Open
Abstract
The proliferative niches in the subpallium generate a rich cellular variety fated for diverse telencephalic regions. The embryonic preoptic area (POA) represents one of these domains giving rise to the pool of cortical GABAergic interneurons and glial cells, in addition to striatal and residual POA cells. The migration from sites of origin within the subpallium to the distant targets like the cerebral cortex, accomplished by the adoption and maintenance of a particular migratory morphology, is a critical step during interneuron development. To identify factors orchestrating this process, we performed single-cell transcriptome analysis and detected Dnmt1 expression in murine migratory GABAergic POA-derived cells. Deletion of Dnmt1 in postmitotic immature cells of the POA caused defective migration and severely diminished adult cortical interneuron numbers. We found that DNA methyltransferase 1 (DNMT1) preserves the migratory shape in part through negative regulation of Pak6, which stimulates neuritogenesis at postmigratory stages. Our data underline the importance of DNMT1 for the migration of POA-derived cells including cortical interneurons.
Collapse
Affiliation(s)
- Daniel Pensold
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Judit Symmank
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Anne Hahn
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Thomas Lingner
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Gabriela Salinas-Riester
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Bryan R Downie
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Fabian Ludewig
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Anne Rotzsch
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Natja Haag
- Institute of Biochemistry I, University Hospital Jena, 07743 Jena, Germany.,Institute of Human Genetics, University Hospital RWTH Aachen, Aachen, Germany
| | - Nico Andreas
- FACS Core Facility, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Katrin Schubert
- FACS Core Facility, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Tomas Pieler
- Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| |
Collapse
|
15
|
|
16
|
Won SY, Park MH, You ST, Choi SW, Kim HK, McLean C, Bae SC, Kim SR, Jin BK, Lee KH, Shin EY, Kim EG. Nigral dopaminergic PAK4 prevents neurodegeneration in rat models of Parkinson's disease. Sci Transl Med 2017; 8:367ra170. [PMID: 27903866 DOI: 10.1126/scitranslmed.aaf1629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra. No neuroprotective treatments have successfully prevented the progression of this disease. We report that p21-activated kinase 4 (PAK4) is a key survival factor for DA neurons. We observed PAK4 immunoreactivity in rat and human DA neurons in brain tissue, but not in microglia or astrocytes. PAK4 activity was markedly decreased in postmortem brain tissue from PD patients and in rodent models of PD. Expression of constitutively active PAK4S445N/S474E (caPAK4) protected DA neurons in both the 6-hydroxydopamine and α-synuclein rat models of PD and preserved motor function. This neuroprotective effect of caPAK4 was mediated by phosphorylation of CRTC1 [CREB (adenosine 3',5'-monophosphate response element-binding protein)-regulated transcription coactivator] at S215. The nonphosphorylated form of CRTC1S215A compromised the ability of caPAK4 to induce the expression of the CREB target proteins Bcl-2, BDNF, and PGC-1α. Our results support a neuroprotective role for the PAK4-CRTC1S215-CREB signaling pathway and suggest that this pathway may be a useful therapeutic target in PD.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Mee-Hee Park
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Soon-Tae You
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Seung-Won Choi
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Hyong-Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Catriona McLean
- Department of Pathology, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, South Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, South Korea
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Chosun University, Gwangju 61452, South Korea.,Department of Biomedical Science, Chosun University, Gwangju 61452, South Korea
| | - Eun-Young Shin
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Eung-Gook Kim
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea.
| |
Collapse
|
17
|
Civiero L, Greggio E. PAKs in the brain: Function and dysfunction. Biochim Biophys Acta Mol Basis Dis 2017; 1864:444-453. [PMID: 29129728 DOI: 10.1016/j.bbadis.2017.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
p21-Activated kinases (PAKs) comprise a family of proteins covering a central role in signal transduction. They are downstream effectors of Rho GTPases and can affect a variety of processes in different cell types and tissues by remodeling the cytoskeleton and by promoting gene transcription and cell survival. Given the relevance of cytoskeletal organization in neuronal development as well as synaptic function and the importance of pro-survival signals in controlling neuronal cell fate, accumulating studies investigated the role of PAKs in the nervous system. In this review, we provide a critical overview of the role of PAKs in the nervous system, both in neuronal and non-neuronal cells, and discuss their potential link with neurodegenerative diseases.
Collapse
|
18
|
Zhou W, Li X, Premont RT. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J Cell Sci 2017; 129:1963-74. [PMID: 27182061 DOI: 10.1242/jcs.179465] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins (inactivators) for the ADP-ribosylation factor (Arf) small GTP-binding proteins, and function to limit the activity of Arf proteins. The PIX proteins, α-PIX and β-PIX (also known as ARHGEF6 and ARHGEF7, respectively), are guanine nucleotide exchange factors (activators) for the Rho family small GTP-binding protein family members Rac1 and Cdc42. Through their multi-domain structures, GIT and PIX proteins can also function as signaling scaffolds by binding to numerous protein partners. Importantly, the constitutive association of GIT and PIX proteins into oligomeric GIT-PIX complexes allows these two proteins to function together as subunits of a larger structure that coordinates two distinct small GTP-binding protein pathways and serves as multivalent scaffold for the partners of both constituent subunits. Studies have revealed the involvement of GIT and PIX proteins, and of the GIT-PIX complex, in numerous fundamental cellular processes through a wide variety of mechanisms, pathways and signaling partners. In this Commentary, we discuss recent findings in key physiological systems that exemplify current understanding of the function of this important regulatory complex. Further, we draw attention to gaps in crucial information that remain to be filled to allow a better understanding of the many roles of the GIT-PIX complex in health and disease.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui 323000, China
| | - Xiaobo Li
- Department of Computer Science and Technology, College of Engineering and Design, Lishui University, Lishui 323000, China
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
19
|
Identification of oral cancer related candidate genes by integrating protein-protein interactions, gene ontology, pathway analysis and immunohistochemistry. Sci Rep 2017; 7:2472. [PMID: 28559546 PMCID: PMC5449392 DOI: 10.1038/s41598-017-02522-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
In the recent years, bioinformatics methods have been reported with a high degree of success for candidate gene identification. In this milieu, we have used an integrated bioinformatics approach assimilating information from gene ontologies (GO), protein–protein interaction (PPI) and network analysis to predict candidate genes related to oral squamous cell carcinoma (OSCC). A total of 40973 PPIs were considered for 4704 cancer-related genes to construct human cancer gene network (HCGN). The importance of each node was measured in HCGN by ten different centrality measures. We have shown that the top ranking genes are related to a significantly higher number of diseases as compared to other genes in HCGN. A total of 39 candidate oral cancer target genes were predicted by combining top ranked genes and the genes corresponding to significantly enriched oral cancer related GO terms. Initial verification using literature and available experimental data indicated that 29 genes were related with OSCC. A detailed pathway analysis led us to propose a role for the selected candidate genes in the invasion and metastasis in OSCC. We further validated our predictions using immunohistochemistry (IHC) and found that the gene FLNA was upregulated while the genes ARRB1 and HTT were downregulated in the OSCC tissue samples.
Collapse
|
20
|
CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun 2016; 7:13821. [PMID: 27929117 PMCID: PMC5155164 DOI: 10.1038/ncomms13821] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
Aberrant protein aggregation is controlled by various chaperones, including CCT (chaperonin containing TCP-1)/TCP-1/TRiC. Mutated CCT4/5 subunits cause sensory neuropathy and CCT5 expression is decreased in Alzheimer's disease. Here, we show that CCT integrity is essential for autophagosome degradation in cells or Drosophila and this phenomenon is orchestrated by the actin cytoskeleton. When autophagic flux is reduced by compromise of individual CCT subunits, various disease-relevant autophagy substrates accumulate and aggregate. The aggregation of proteins like mutant huntingtin, ATXN3 or p62 after CCT2/5/7 depletion is predominantly autophagy dependent, and does not further increase with CCT knockdown in autophagy-defective cells/organisms, implying surprisingly that the effect of loss-of-CCT activity on mutant ATXN3 or huntingtin oligomerization/aggregation is primarily a consequence of autophagy inhibition rather than loss of physiological anti-aggregation activity for these proteins. Thus, our findings reveal an essential partnership between two key components of the proteostasis network and implicate autophagy defects in diseases with compromised CCT complex activity.
Collapse
|
21
|
Dbo/Henji Modulates Synaptic dPAK to Gate Glutamate Receptor Abundance and Postsynaptic Response. PLoS Genet 2016; 12:e1006362. [PMID: 27736876 PMCID: PMC5065118 DOI: 10.1371/journal.pgen.1006362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023] Open
Abstract
In response to environmental and physiological changes, the synapse manifests plasticity while simultaneously maintains homeostasis. Here, we analyzed mutant synapses of henji, also known as dbo, at the Drosophila neuromuscular junction (NMJ). In henji mutants, NMJ growth is defective with appearance of satellite boutons. Transmission electron microscopy analysis indicates that the synaptic membrane region is expanded. The postsynaptic density (PSD) houses glutamate receptors GluRIIA and GluRIIB, which have distinct transmission properties. In henji mutants, GluRIIA abundance is upregulated but that of GluRIIB is not. Electrophysiological results also support a GluR compositional shift towards a higher IIA/IIB ratio at henji NMJs. Strikingly, dPAK, a positive regulator for GluRIIA synaptic localization, accumulates at the henji PSD. Reducing the dpak gene dosage suppresses satellite boutons and GluRIIA accumulation at henji NMJs. In addition, dPAK associated with Henji through the Kelch repeats which is the domain essential for Henji localization and function at postsynapses. We propose that Henji acts at postsynapses to restrict both presynaptic bouton growth and postsynaptic GluRIIA abundance by modulating dPAK. To meet various developmental or environmental needs, the communication between pre- and postsynapse can be modulated in different aspects. The release of presynaptic vesicles can be regulated at the steps of docking, membrane fusion and endocytosis. Upon receiving neurotransmitter stimuli from presynaptic terminals, postsynaptic cells tune their responses by controlling the abundance of different neurotransmitter receptors at the synaptic membrane. The Drosophila NMJ is a well-defined genetic system to study the function and physiology of synapses. Two types of glutamate receptors (GluRs), IIA and IIB, present at the NMJ, exhibit distinct desensitization kinetics: GluRIIA desensitizes much slower than GluRIIB does, resulting in more ionic influx and larger postsynaptic responses. By altering the ratio of GluRIIA to GluRIIB, muscle cells modulate their responses to presynaptic release efficiently. However, how to regulate this intricate GluRIIA/GluRIIB ratio requires further study. Here, we describe a negative regulation for dPAK, a crucial regulator of GluRIIA localization at the PSD. Henji specifically binds to dPAK near the postsynaptic region and hinders dPAK localization from the PSD. By negatively controlling dPAK levels, synaptic GluRIIA abundance can be restrained within an appropriate range, protecting the synapse from unwanted fluctuations in synaptic strengths or the detriment of excitotoxicity.
Collapse
|
22
|
Expression of p21-activated kinases 1 and 3 is altered in the brain of subjects with depression. Neuroscience 2016; 333:331-44. [PMID: 27474226 DOI: 10.1016/j.neuroscience.2016.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 01/25/2023]
Abstract
The p21-activated kinases (PAKs) of group I are the main effectors for the small Rho GTPases, critically involved in neurodevelopment, plasticity and maturation of the nervous system. Moreover, the neuronal complexity controlled by PAK1/PAK3 signaling determines the postnatal brain size and synaptic properties. Stress induces alterations at the level of structural and functional synaptic plasticity accompanied by reductions in size and activity of the hippocampus and the prefrontal cortex (PFC). These abnormalities are likely to contribute to the pathology of depression and, in part, reflect impaired cytoskeleton remodeling pointing to the role of Rho GTPase signaling. Thus, the present study assessed the expression of the group I PAKs and their activators in the brain of depressed subjects. Using quantitative polymerase chain reaction (qPCR), mRNA levels and coexpression of the group I PAKs: PAK1, PAK2, and PAK3 as well as of their activators: RAC1, CDC42 and ARHGEF7 were examined in postmortem samples from the PFC (n=25) and the hippocampus (n=23) of subjects with depression and compared to control subjects (PFC n=24; hippocampus n=21). Results demonstrated that mRNA levels of PAK1 and PAK3, are significantly reduced in the brain of depressed subjects, with PAK1 being reduced in the PFC and PAK3 in the hippocampus. No differences were observed for the ubiquitously expressed PAK2. Following analysis of gene coexpression demonstrated disruption of coordinated gene expression in the brain of subjects with depression. Abnormalities in mRNA expression of PAK1 and PAK3 as well as their altered coexpression patterns were detected in the brain of subjects with depression.
Collapse
|
23
|
Kim H, Oh JY, Choi SL, Nam YJ, Jo A, Kwon A, Shin EY, Kim EG, Kim HK. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons. Mol Brain 2016; 9:45. [PMID: 27121078 PMCID: PMC4848805 DOI: 10.1186/s13041-016-0230-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the roles of p21-activated serine/threonine kinase 1 (PAK1) have been reported in some neurodegenerative diseases, details regarding neurodegeneration are still limited. Hence, we tried to determine the role of PAK1 and molecular mechanisms of neuronal death involved in neurodegeneration. RESULTS Expression of a dominant-negative form of PAK1 (PAK1(H83,86L, K229R), PAK1-DN) decreased the cell viability and increased cell death induced by oxidative stress. Indeed, oxidative stress decreased the phosphorylation of PAK1 in neuroblastoma cells, cultured dopamine (DA) neurons, or rat midbrains. PAK1-DN reduced the level of Bcl-2 protein, through an ubiquitin/proteasome-dependent mechanism. The level of Bcl-2 may be regulated by PAK1-ERK signaling and/or PAK1, directly. Conversely, expression of an active form of PAK1 (PAK1(T423E), PAK1-CA) could recover both loss of DA neurons in the substantia nigra (SN) and behavioral defects in a 6-OHDA-induced hemiparkinsonian rat model. CONCLUSIONS Our data suggest that the oxidative stress-induced down-regulation of PAK1 activity could be involved in the loss of mesencephalic DA neurons through modulation of neuronal death, suggesting a novel role of PAK1 as a molecular determinant and mechanisms in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Hwanhee Kim
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Jun-Young Oh
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Sun-Lim Choi
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Yeon-Ju Nam
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Anna Jo
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Ara Kwon
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Eun-Young Shin
- Department of Medicine and Biochemistry, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Eung-Gook Kim
- Department of Medicine and Biochemistry, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea. .,Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, The Republic of Korea.
| |
Collapse
|
24
|
Narayanan KL, Chopra V, Rosas HD, Malarick K, Hersch S. Rho Kinase Pathway Alterations in the Brain and Leukocytes in Huntington's Disease. Mol Neurobiol 2015; 53:2132-40. [PMID: 25941073 PMCID: PMC4823347 DOI: 10.1007/s12035-015-9147-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disease caused by an expanded polyglutamine tract in the huntingtin gene. Therapeutic approaches targeting mutant huntingtin (mtHtt) or its downstream toxic consequences are under development, including Rho kinase pathway inhibition. We investigated the messenger RNA (mRNA) expression of Rho kinase pathway genes, including RhoA (Ras homolog family member A), ROCK1 (Rho-associated kinase1), PRK2 (protein kinase C-related protein kinase 2), Profilin1, cofilin1, MYPT1 (myosin phosphatase target subunit 1), and LIMK1 (LIM domain kinase 1) in HD human blood leukocytes, postmortem brain, and in R6/2 HD mouse brain tissue using qPCR. RhoA, ROCK1, PRK2, Profilin1, cofilin1, and MYPT1 were significantly increased in HD blood compared to controls. In frontal cortex of HD postmortem brain tissue, the expression of RhoA, ROCK1, PRK2, Profilin1, and MYPT1 were also significantly increased. In the brain from 4-week-old R6/2 mice, the expression of Rock1, Prk2, Cofilin1, and MYPT1 was significantly increased while RhoA, Rock1, Profilin1, Cofilin1, and Mypt1 were increased and Limk1 mRNA decreased in 13-week-old R6/2 mice. Western blot analysis using human postmortem tissues for ROCK1 and Profilin1 demonstrated significantly increased protein levels, which correlated with the mRNA increases. Collectively, we have shown the panel of Rho kinase pathway genes to be highly altered in human HD blood, postmortem brain tissue, and in R6/2 mice. These studies confirm that HD upregulates the Rho kinase pathway and identifies mRNAs that could serve as peripheral markers in HD patients and translational markers in HD mouse models.
Collapse
Affiliation(s)
- K Lakshmi Narayanan
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Massachusetts General Hospital, East, Bldg 114, Room 2005, Charlestown, MA, 02129-4404, USA
| | - Vanita Chopra
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Massachusetts General Hospital, East, Bldg 114, Room 2005, Charlestown, MA, 02129-4404, USA
| | - H Diana Rosas
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Massachusetts General Hospital, East, Bldg 114, Room 2005, Charlestown, MA, 02129-4404, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Center for Neuroimaging of Aging and Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Keith Malarick
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Massachusetts General Hospital, East, Bldg 114, Room 2005, Charlestown, MA, 02129-4404, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Center for Neuroimaging of Aging and Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Steven Hersch
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Massachusetts General Hospital, East, Bldg 114, Room 2005, Charlestown, MA, 02129-4404, USA.
| |
Collapse
|
25
|
Jimenez-Sanchez M, Lam W, Hannus M, Sönnichsen B, Imarisio S, Fleming A, Tarditi A, Menzies F, Dami TE, Xu C, Gonzalez-Couto E, Lazzeroni G, Heitz F, Diamanti D, Massai L, Satagopam VP, Marconi G, Caramelli C, Nencini A, Andreini M, Sardone GL, Caradonna NP, Porcari V, Scali C, Schneider R, Pollio G, O’Kane CJ, Caricasole A, Rubinsztein DC. siRNA screen identifies QPCT as a druggable target for Huntington's disease. Nat Chem Biol 2015; 11:347-354. [PMID: 25848931 PMCID: PMC4696152 DOI: 10.1038/nchembio.1790] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/05/2015] [Indexed: 11/09/2022]
Abstract
Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development.
Collapse
Affiliation(s)
- Maria Jimenez-Sanchez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Wun Lam
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Michael Hannus
- Cenix BioScience GmbH, Tatzberg 47, 01307 Dresden, Germany
| | | | - Sara Imarisio
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EG
| | - Alessia Tarditi
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Fiona Menzies
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Teresa Ed Dami
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EG
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Catherine Xu
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EG
| | | | - Giulia Lazzeroni
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Freddy Heitz
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Daniela Diamanti
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Luisa Massai
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Venkata P. Satagopam
- Structural and Computational Biology, EMBL, Meyerhofstr.1, 69117, Heidelberg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, House of Biomedicine, 7 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Guido Marconi
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Chiara Caramelli
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Arianna Nencini
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Matteo Andreini
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Gian Luca Sardone
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | | | - Valentina Porcari
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Carla Scali
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Reinhard Schneider
- Structural and Computational Biology, EMBL, Meyerhofstr.1, 69117, Heidelberg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, House of Biomedicine, 7 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Giuseppe Pollio
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Andrea Caricasole
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
26
|
Ma QL, Yang F, Frautschy SA, Cole GM. PAK in Alzheimer disease, Huntington disease and X-linked mental retardation. CELLULAR LOGISTICS 2014; 2:117-125. [PMID: 23162743 PMCID: PMC3490962 DOI: 10.4161/cl.21602] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Developmental cognitive deficits including X-linked mental retardation (XLMR) can be caused by mutations in P21-activated kinase 3 (PAK3) that disrupt actin dynamics in dendritic spines. Neurodegenerative diseases such as Alzheimer disease (AD), where both PAK1 and PAK3 are dysregulated, may share final common pathways with XLMR. Independent of familial mutation, cognitive deficits emerging with aging, notably AD, begin after decades of normal function. This prolonged prodromal period involves the buildup of amyloid-β (Aβ) extracellular plaques and intraneuronal neurofibrillary tangles (NFT). Subsequently region dependent deficits in synapses, dendritic spines and cognition coincide with dysregulation in PAK1 and PAK. Specifically proximal to decline, cytoplasmic levels of actin-regulating Rho GTPase and PAK1 kinase are decreased in moderate to severe AD, while aberrant activation and translocation of PAK1 appears around the onset of cognitive deficits. Downstream to PAK1, LIM kinase inactivates cofilin, contributing to cofilin pathology, while the activation of Rho-dependent kinase ROCK increases Aβ production. Aβ activation of fyn disrupts neuronal PAK1 and ROCK-mediated signaling, resulting in synaptic deficits. Reductions in PAK1 by the anti-amyloid compound curcumin suppress synaptotoxicity. Similarly other neurological disorders, including Huntington disease (HD) show dysregulation of PAKs. PAK1 modulates mutant huntingtin toxicity by enhancing huntingtin aggregation, and inhibition of PAK activity protects HD as well as fragile X syndrome (FXS) symptoms. Since PAK plays critical roles in learning and memory and is disrupted in many cognitive disorders, targeting PAK signaling in AD, HD and XLMR may be a novel common therapeutic target for AD, HD and XLMR.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Neurology; University of California Los Angeles; Los Angeles, CA USA ; Geriatric Research and Clinical Center; Greater Los Angeles Veterans Affairs Healthcare System; West Los Angeles Medical Center; Los Angeles, CA USA
| | | | | | | |
Collapse
|
27
|
Stankiewicz TR, Linseman DA. Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 2014; 8:314. [PMID: 25339865 PMCID: PMC4187614 DOI: 10.3389/fncel.2014.00314] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Rho family of GTPases belongs to the Ras superfamily of low molecular weight (∼21 kDa) guanine nucleotide binding proteins. The most extensively studied members are RhoA, Rac1, and Cdc42. In the last few decades, studies have demonstrated that Rho family GTPases are important regulatory molecules that link surface receptors to the organization of the actin and microtubule cytoskeletons. Indeed, Rho GTPases mediate many diverse critical cellular processes, such as gene transcription, cell–cell adhesion, and cell cycle progression. However, Rho GTPases also play an essential role in regulating neuronal morphology. In particular, Rho GTPases regulate dendritic arborization, spine morphogenesis, growth cone development, and axon guidance. In addition, more recent efforts have underscored an important function for Rho GTPases in regulating neuronal survival and death. Interestingly, Rho GTPases can exert either a pro-survival or pro-death signal in neurons depending upon both the cell type and neurotoxic insult involved. This review summarizes key findings delineating the involvement of Rho GTPases and their effectors in the regulation of neuronal survival and death. Collectively, these results suggest that dysregulation of Rho family GTPases may potentially underscore the etiology of some forms of neurodegenerative disease such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA
| | - Daniel A Linseman
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA ; Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado Denver Aurora, CO, USA
| |
Collapse
|
28
|
Koth AP, Oliveira BR, Parfitt GM, Buonocore JDQ, Barros DM. Participation of group I p21-activated kinases in neuroplasticity. ACTA ACUST UNITED AC 2014; 108:270-7. [PMID: 25174326 DOI: 10.1016/j.jphysparis.2014.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
PAKs are a family of serine/threonine protein kinases activated by small GTPases of the Rho family, including Rac and Cdc42, and are categorized into group I (isoforms 1, 2 and 3) and group II (isoforms 4, 5 and 6). PAK1 and PAK3 are critically involved in biological mechanisms associated with neurodevelopment, neuroplasticity and maturation of the nervous system, and changes in their activity have been detected in pathological disorders, such as Alzheimer's disease, Huntington's disease and mental retardation. The group I PAKs have been associated with neurological processes due to their involvement in intracellular mechanisms that result in molecular and cellular morphological alterations that promote cytoskeletal outgrowth, increasing the efficiency of synaptic transmission. Their substrates in these processes include other intracellular signaling molecules, such as Raf, Mek and LIMK, as well as other components of the cytoskeleton, such as MLC and FLNa. In this review, we describe the characteristics of group I PAKs, such as their molecular structure, mechanisms of activation and importance in the neurobiological processes involved in synaptic plasticity.
Collapse
Affiliation(s)
- André P Koth
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Bruno R Oliveira
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Biologia Molecular, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Gustavo M Parfitt
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Juliana de Quadros Buonocore
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Daniela M Barros
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
29
|
Sahoo B, Singer D, Kodali R, Zuchner T, Wetzel R. Aggregation behavior of chemically synthesized, full-length huntingtin exon1. Biochemistry 2014; 53:3897-907. [PMID: 24921664 PMCID: PMC4075985 DOI: 10.1021/bi500300c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Repeat
length disease thresholds vary among the 10 expanded polyglutamine
(polyQ) repeat diseases, from about 20 to about 50 glutamine residues.
The unique amino acid sequences flanking the polyQ segment are thought
to contribute to these repeat length thresholds. The specific portions
of the flanking sequences that modulate polyQ properties are not always
clear, however. This ambiguity may be important in Huntington’s
disease (HD), for example, where in vitro studies
of aggregation mechanisms have led to distinctly different mechanistic
models. Most in vitro studies of the aggregation
of the huntingtin (HTT) exon1 fragment implicated in the HD mechanism
have been conducted on inexact molecules that are imprecise either
on the N-terminus (recombinantly produced peptides) or on the C-terminus
(chemically synthesized peptides). In this paper, we investigate the
aggregation properties of chemically synthesized HTT exon1 peptides
that are full-length and complete, containing both normal and expanded
polyQ repeat lengths, and compare the results directly to previously
investigated molecules containing truncated C-termini. The results
on the full-length peptides are consistent with a two-step aggregation
mechanism originally developed based on studies of the C-terminally
truncated analogues. Thus, we observe relatively rapid formation of
spherical oligomers containing from 100 to 600 HTT exon1 molecules
and intermediate formation of short protofibril-like structures containing
from 500 to 2600 molecules. In contrast to this relatively rapid assembly,
mature HTT exon1 amyloid requires about one month to dissociate in vitro, which is similar to the time required for neuronal
HTT exon1 aggregates to disappear in vivo after HTT
production is discontinued.
Collapse
Affiliation(s)
- Bankanidhi Sahoo
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | |
Collapse
|
30
|
Meissner WG. Methods for treating neurological conditions (WO2011159945). Expert Opin Ther Pat 2012; 22:847-52. [PMID: 22697132 DOI: 10.1517/13543776.2012.699524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This patent application claims that inhibition of p21-activated kinases (PAK) reverses, partially reverses or delays clinical signs in neurological conditions (main claim for Huntington's disease (HD), substance abuse and addiction, Parkinson's disease, depression, bipolar disorder, anxiety disorder, posttraumatic stress disorder and neurofibromatosis). Several compounds with a pyrido-[2,3-d]pyrimidine-7(8H)-one core and high affinity to the catalytic domain of PAK1-4 are described in the patent. These PAK inhibitors are hypothesized to exert beneficial effects on clinical symptoms via modulation of dendritic spine morphology and/or synaptic function. Preliminary preclinical data suggest that PAK inhibition may be an interesting approach for the treatment of HD, neurofibromatosis and fragile X syndrome, while data for other neurological conditions are missing. Current limitations call for a comprehensive characterization of the role of PAK dysfunction in neurological disorders before further testing the effect of PAK inhibitors in relevant preclinical models. If ever, it will probably take many years before the most promising compounds will head to the clinic for further assessment in patients with neurological disorders.
Collapse
|
31
|
Chan PM, Manser E. PAKs in Human Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:171-87. [DOI: 10.1016/b978-0-12-396456-4.00011-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Infection of primary neurons mediated by nipah virus envelope proteins: role of host target cells in antiviral action. J Virol 2011; 85:8422-6. [PMID: 21653662 DOI: 10.1128/jvi.00452-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have previously described heterotypic peptides from parainfluenza virus that potently inhibit Nipah virus in vitro but are not efficacious in vivo. In contrast, our second-generation inhibitors, featuring a cholesterol moiety, are also efficacious in vivo. The difference between in vitro and in vivo results led us to investigate the basis for this discrepancy. Here, we compare the activities of the compounds in standard laboratory cells and in cells relevant to the natural tropism of Nipah virus, i.e., primary neurons, and show that while our first-generation inhibitors are poorly active in primary neurons, the cholesterol-conjugated compounds are highly potent. These results highlight the advantage of evaluating antiviral potency in cells relevant to natural host target tissue.
Collapse
|
33
|
Maruta H. Effective neurofibromatosis therapeutics blocking the oncogenic kinase PAK1. Drug Discov Ther 2011; 5:266-78. [DOI: 10.5582/ddt.2011.v5.6.266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Abstract
It has been more than 17 years since the causative mutation for Huntington's disease was discovered as the expansion of the triplet repeat in the N-terminal portion of the Huntingtin (HTT) gene. In the intervening time, researchers have discovered a great deal about Huntingtin's involvement in a number of cellular processes. However, the role of Huntingtin in the key pathogenic mechanism leading to neurodegeneration in the disease process has yet to be discovered. Here, we review the body of knowledge that has been uncovered since gene discovery and include discussions of the HTT gene, CAG triplet repeat expansion, HTT expression, protein features, posttranslational modifications, and many of its known protein functions and interactions. We also highlight potential pathogenic mechanisms that have come to light in recent years.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610-0236, USA.
| | | |
Collapse
|
35
|
Lajoie P, Snapp EL. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 2010; 5:e15245. [PMID: 21209946 PMCID: PMC3011017 DOI: 10.1371/journal.pone.0015245] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/16/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington's disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt. METHODOLOGY/PRINCIPAL FINDINGS When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Htt(ex1)) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHtt(ex1) variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHtt(ex1) formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHtt(ex1) split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHtt(ex1) to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHtt(ex1). A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHtt(ex1) oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs. CONCLUSIONS/SIGNIFICANCE Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erik Lee Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
36
|
Simmons DA, Mehta RA, Lauterborn JC, Gall CM, Lynch G. Brief ampakine treatments slow the progression of Huntington's disease phenotypes in R6/2 mice. Neurobiol Dis 2010; 41:436-44. [PMID: 20977939 DOI: 10.1016/j.nbd.2010.10.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 10/06/2010] [Accepted: 10/15/2010] [Indexed: 02/06/2023] Open
Abstract
Daily, systemic injections of a positive AMPA-type glutamate receptor modulator (ampakine) have been shown to reduce synaptic plasticity defects in rodent models of aging and early-stage Huntington's disease (HD). Here we report that long-term ampakine treatment markedly slows the progression of striatal neuropathology and locomotor dysfunction in the R6/2 HD mouse model. Remarkably, these effects were produced by an ampakine, CX929, with a short half-life. Injected once daily for 4-7 weeks, the compound increased protein levels of brain-derived neurotrophic factor (BDNF) in the neocortex and striatum of R6/2 but not wild-type mice. Moreover, ampakine treatments prevented the decrease in total striatal area, blocked the loss of striatal DARPP-32 immunoreactivity and reduced by 36% the size of intra-nuclear huntingtin aggregates in R6/2 striatum. The CX929 treatments also markedly improved motor performance of R6/2 mice on several measures (rotarod, vertical pole descent) but did not influence body weight or lifespan. These findings describe a minimally invasive, pharmacologically plausible strategy for treatment of HD and, potentially, other neuropathological diseases.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
p21-activated kinases (PAKs) act downstream of Rho-family GTPase and are linked to steps in both cancer initiation and progression. There are six mammalian PAK isoforms that are divided into two groups, and for different reasons both groups are attractive targets for cancer therapy. We describe the background and recent development of a PAK inhibitor, PF-3758309, which exhibits relatively good selectivity and high potency for PAKs. Experiments using PF-3758309 confirm that inhibiting PAK is a beneficial strategy to combat some tumors, and this activity is likely related to modulation of both cell proliferation and survival. The genetic loss of NF2 (neurofibromatosis type 2) leading to increased cell proliferation through a Ras-Rac-PAK pathway may represent a good test system to analyze this new PAK inhibitor.
Collapse
Affiliation(s)
- Zhuo-shen Zhao
- Small G-Protein Signalling and Kinases (sGSK) Group at Institute of Molecular and Cell Biology (IMCB), Neuroscience Research PartnershipProteos BuildingSingapore 138673
| | - Ed Manser
- Small G-Protein Signalling and Kinases (sGSK) Group at Institute of Molecular and Cell Biology (IMCB), Neuroscience Research PartnershipProteos BuildingSingapore 138673
- Institute of Medical Biology (IMB), A*STAR#06-34 Immunos BuildingSingapore 138648
| |
Collapse
|
38
|
Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. Expert Opin Ther Targets 2010; 14:703-25. [PMID: 20507214 DOI: 10.1517/14728222.2010.492779] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IMPORTANCE OF THE FIELD P21-activated kinases (PAKs) are involved in multiple signal transduction pathways in mammalian cells. PAKs, and PAK1 in particular, play a role in such disorders as cancer, mental retardation and allergy. Cell motility, survival and proliferation, the organization and function of cytoskeleton and extracellular matrix, transcription and translation are among the processes affected by PAK1. AREAS COVERED IN THIS REVIEW We discuss the mechanisms that control PAK1 activity, its involvement in physiological and pathophysiological processes, the benefits and the drawbacks of the current tools to regulate PAK1 activity, the evidence that suggests PAK1 as a therapeutic target and the likely directions of future research. WHAT THE READER WILL GAIN The reader will gain a better knowledge and understanding of the areas described above. TAKE HOME MESSAGE PAK1 is a promising therapeutic target in cancer and allergen-induced disorders. Its suitability as a target in vascular, neurological and infectious diseases remains ambiguous. Further advancement of this field requires progress on such issues as the development of specific and clinically acceptable inhibitors, the choice between targeting one or multiple PAK isoforms, elucidation of the individual roles of PAK1 targets and the mechanisms that may circumvent inhibition of PAK1.
Collapse
Affiliation(s)
- Julia V Kichina
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
39
|
Eriguchi M, Mizuta H, Luo S, Kuroda Y, Hara H, Rubinsztein DC. α Pix enhances mutant huntingtin aggregation. J Neurol Sci 2010; 290:80-5. [DOI: 10.1016/j.jns.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/03/2009] [Accepted: 11/09/2009] [Indexed: 11/28/2022]
|
40
|
Yang H, Liu C, Zhong Y, Luo S, Monteiro MJ, Fang S. Huntingtin interacts with the cue domain of gp78 and inhibits gp78 binding to ubiquitin and p97/VCP. PLoS One 2010; 5:e8905. [PMID: 20126661 PMCID: PMC2811200 DOI: 10.1371/journal.pone.0008905] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 01/06/2010] [Indexed: 02/05/2023] Open
Abstract
Huntington's disease (HD) is caused by polyglutamine expansion in huntingtin (htt) protein, but the exact mechanism of HD pathogenesis remains uncertain. Recent evidence suggests that htt proteins with expanded polyglutamine tracts induce endoplasmic reticulum (ER) stress, probably by interfering with ER-associated degradation (ERAD). Here we report that mutant htt interacts and interferes with the function of gp78, an ER membrane-anchored ubiquitin ligase (E3) involved in ERAD. Mapping studies showed that the HEAT repeats 2&3 of htt interact with the cue domain of gp78. The interaction competitively reduces polyubiquitinated protein binding to gp78 and also sterically blocks gp78 interaction of p97/VCP, a molecular chaperone that is essential for ERAD. These effects of htt negatively regulate the function of gp78 in ERAD and are aggravated by polyglutamine expansion. Paradoxically, gp78 is still able to ubiquitinate and facilitate degradation of htt proteins with expanded polyglutamine. The impairment of ERAD by mutant htt proteins is associated with induction of ER stress. Our studies provide a novel molecular mechanism that supports the involvement of ER stress in HD pathogenesis.
Collapse
Affiliation(s)
- Hui Yang
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| | - Chao Liu
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| | - Shouqing Luo
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Mervyn J. Monteiro
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
41
|
Offner N, Vazquez R, Néri C. [Propagation of polyglutamine agregates in normal cells]. Med Sci (Paris) 2009; 25:773-4. [PMID: 19849968 DOI: 10.1051/medsci/20092510773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicolas Offner
- Laboratoire de biologie et pathologie du neurone, Centre de psychiatrie et de neurosciences, Inserm U894 2 ter, rue d'Alésia, 75014 Paris, France
| | | | | |
Collapse
|
42
|
Futter M, Diekmann H, Schoenmakers E, Sadiq O, Chatterjee K, Rubinsztein DC. Wild-type but not mutant huntingtin modulates the transcriptional activity of liver X receptors. J Med Genet 2009; 46:438-46. [PMID: 19451134 PMCID: PMC2696822 DOI: 10.1136/jmg.2009.066399] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Huntington’s disease is caused by expansion of a polyglutamine tract found in the amino-terminal of the ubiquitously expressed protein huntingtin. Well studied in its mutant form, huntingtin has a wide variety of normal functions, loss of which may also contribute to disease progression. Widespread transcriptional dysfunction occurs in brains of Huntington’s disease patients and in transgenic mouse and cell models of Huntington’s disease. Methods: To identify new transcriptional pathways altered by the normal and/or abnormal function of huntingtin, we probed several nuclear receptors, normally expressed in the brain, for binding to huntingtin in its mutant and wild-type forms. Results: Wild-type huntingtin could bind to a number of nuclear receptors; LXRα, PPARγ, VDR and TRα1. Over-expression of huntingtin activated, while knockout of huntingtin decreased, LXR mediated transcription of a reporter gene. Loss of huntingtin also decreased expression of the LXR target gene, ABCA1. In vivo, huntingtin deficient zebrafish had a severe phenotype and reduced expression of LXR regulated genes. An LXR agonist was able to partially rescue the phenotype and the expression of LXR target genes in huntingtin deficient zebrafish during early development. Conclusion: Our data suggest a novel function for wild-type huntingtin as a co-factor of LXR. However, this activity is lost by mutant huntingtin that only interacts weakly with LXR.
Collapse
Affiliation(s)
- M Futter
- CIMR, Medical Genetics, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
43
|
Luo S, Rubinsztein DC. Huntingtin promotes cell survival by preventing Pak2 cleavage. J Cell Sci 2009; 122:875-85. [PMID: 19240112 DOI: 10.1242/jcs.050013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Huntington's disease is caused by a polyglutamine expansion in the huntingtin protein. Wild-type huntingtin, by contrast, appears to protect cells from pro-apoptotic insults. Here we describe a novel anti-apoptotic function for huntingtin. When cells are exposed to Fas-related signals, the ubiquitously expressed p21-activated kinase 2 (Pak2) can be activated via cleavage by caspases to release a constitutively active C-terminal fragment, which mediates cell death. Our data show that huntingtin interacts with Pak2. Overexpression of huntingtin significantly inhibits caspase-3-mediated and caspase-8-mediated cleavage of Pak2 in cells. Moreover, huntingtin prevents Pak2 cleavage by caspase-3 and caspase-8 in vitro. Although huntingtin is cytoprotective in wild-type cells that are exposed to TNFalpha, it has no significant benefit in TNFalpha-treated cells with Pak2 knockdown. Thus, huntingtin exerts anti-apoptotic effects by binding to Pak2, which reduces the abilities of caspase-3 and caspase-8 to cleave Pak2 and convert it into a mediator of cell death.
Collapse
Affiliation(s)
- Shouqing Luo
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
44
|
Kreis P, Barnier JV. PAK signalling in neuronal physiology. Cell Signal 2008; 21:384-93. [PMID: 19036346 DOI: 10.1016/j.cellsig.2008.11.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 11/06/2008] [Indexed: 12/11/2022]
Abstract
Group I p21-activated kinases are a family of key effectors of Rac1 and Cdc42 and they regulate many aspects of cellular function, such as cytoskeleton dynamics, cell movement and cell migration, cell proliferation and differentiation, and gene expression. The three genes PAK1/2/3 are expressed in brain and recent evidence indicates their crucial roles in neuronal cell fate, in axonal guidance and neuronal polarisation, and in neuronal migration. Moreover they are implicated in neurodegenerative diseases and play an important role in synaptic plasticity, with PAK3 being specifically involved in mental retardation. The main goal of this review is to describe the molecular mechanisms that govern the different functions of group I PAK in neuronal signalling and to discuss the specific functions of each isoform.
Collapse
Affiliation(s)
- Patricia Kreis
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, Gif sur Yvette, France.
| | | |
Collapse
|
45
|
UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci 2008; 33:394-403. [PMID: 18639460 DOI: 10.1016/j.tibs.2008.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 12/24/2022]
Abstract
The p21-activated kinases (PAKs) are signal transducers, central to many vital cellular processes, including cell morphology, motility, survival, gene transcription and hormone signalling. The mammalian PAK family contains six serine/threonine kinases divided into two subgroups, group I (PAK 1-3) and group II (PAK4-6), based on their domain architecture and regulation. PAKs functioning as dynamic signalling nodes present themselves as attractive therapeutic targets in tumours, neurological diseases and infection. The recent findings across all PAKs, including newly reported structures, shed light on the cellular functions of PAKs, highlighting molecular mechanisms of activation, catalysis and substrate specificity. We believe that a comprehensive understanding of the entire PAK family is essential for developing strategies towards PAK-targeted therapeutics.
Collapse
|