1
|
Getachew H, Mehrotra S, Kaur T, Fernandez-Godino R, Pierce EA, Garita-Hernandez M. The RNA content of extracellular vesicles from gene-edited PRPF31 +/- hiPSC-RPE show potential as biomarkers of retinal degeneration. Mol Ther Methods Clin Dev 2025; 33:101452. [PMID: 40231248 PMCID: PMC11995067 DOI: 10.1016/j.omtm.2025.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal degeneration (IRD), causing vision loss via the dysfunction and death of photoreceptors and retinal pigment epithelium (RPE). Mutations in the PRPF31 gene are associated with autosomal dominant RP, impairing RPE function. While adeno-associated virus (AAV)-mediated gene therapy shows promise for treating IRDs, the slow progression of these diseases often makes timely measurement of clinical efficacy challenging. Extracellular vesicles (EVs) are lipid enclosed vesicles secreted by cells, and their RNA contents are being explored as circulating biomarkers for other diseases. We hypothesize that EV RNAs could serve as biomarkers of the health status of the neural retina and RPE. To test this, we used PRPF31 +/+ and PRPF31 +/- human induced pluripotent stem cell (hiPSC)-derived RPE (hi-RPE) to investigate the RNAs contained in RPE-derived EVs and how they change in disease. We also compared the RNA contents of RPE-EVs with the RNAs of the hi-RPE cells themselves. We found that EVs from mutant PRPF31 hi-RPE cells have distinct RNA profiles compared to those from control cells, suggesting that EV RNA contents change during disease. Additionally, we identified 18 miRNAs and 865 poly(A) RNAs enriched in EVs from PRPF31 +/- hi-RPE, which could serve as biomarkers for RPE degeneration.
Collapse
Affiliation(s)
- Heran Getachew
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Tarandeep Kaur
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Marcela Garita-Hernandez
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Kemal RA, O’Keefe RT. Addressing the tissue specificity of U5 snRNP spliceosomopathies. Front Cell Dev Biol 2025; 13:1572188. [PMID: 40264708 PMCID: PMC12011746 DOI: 10.3389/fcell.2025.1572188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Precursor mRNA (pre-mRNA) must undergo splicing to remove intron sequences and join exons. This splicing process is catalysed by an RNA/protein complex called the spliceosome. At the centre of the catalytic spliceosome is the U5 small nuclear ribonucleoprotein (snRNP). Pathogenic variants in U5 snRNP core proteins are associated with various diseases commonly known as spliceosomopathies. Variants in TXNL4A and EFTUD2 manifest in craniofacial malformations while variants in PRPF8 and SNRNP200 manifest in retinitis pigmentosa. This perspective highlights research addressing how these specific manifestations come about as the spliceosome is required in all cells and at all developmental stages. Cell and animal models can replicate the human clinical specificity providing explanations for the specificity of the disorders. We propose that future research could benefit from models originating from patient-derived induced pluripotent stem cells (iPSCs) and isogenic controls to compare the coding and non-coding transcriptomic perturbations. Analysis of spliceosomal protein complexes and their interactome could also uncover novel insights on molecular pathogenesis. Finally, as studies highlight changes in metabolic processes, metabolomic studies could become a new venture in studying the consequences of U5 snRNP variants.
Collapse
Affiliation(s)
- Rahmat Azhari Kemal
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Department of Medical Biology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Raymond T. O’Keefe
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Zimmann F, McNicoll F, Thakur PK, Blažíková M, Kubovčiak J, Hernández Cañás MC, Nováková Z, Bařinka C, Kolář M, Staněk D, Müller-McNicoll M, Cvačková Z. Retinitis pigmentosa-linked mutations impair the snRNA unwinding activity of SNRNP200 and reduce pre-mRNA binding of PRPF8. Cell Mol Life Sci 2025; 82:103. [PMID: 40045025 PMCID: PMC11883072 DOI: 10.1007/s00018-025-05621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
Retinitis pigmentosa (RP) is a hereditary disorder caused by mutations in more than 70 different genes including those that encode proteins important for pre-mRNA splicing. Most RP-associated mutations in splicing factors reduce either their expression, stability or incorporation into functional splicing complexes. However, we have previously shown that two RP mutations in PRPF8 (F2314L and Y2334N) and two in SNRNP200 (S1087L and R1090L) behaved differently, and it was still unclear how these mutations affect the functions of both proteins. To investigate this in the context of functional spliceosomes, we used iCLIP in HeLa and retinal pigment epithelial (RPE) cells. We found that both mutations in the RNA helicase SNRNP200 change its interaction with U4 and U6 snRNAs. The significantly broader binding profile of mutated SNRNP200 within the U4 region upstream of the U4/U6 stem I strongly suggests that its activity to unwind snRNAs is impaired. This was confirmed by FRAP measurements and helicase activity assays comparing mutant and WT protein. The RP variants of PRPF8 did not affect snRNAs, but showed a reduced binding to pre-mRNAs, which resulted in the slower splicing of introns and altered expression of hundreds of genes in RPE cells. This suggests that changes in the expression and splicing of specific genes are the main driver of retinal degeneration in PRPF8-linked RP.
Collapse
Affiliation(s)
- Felix Zimmann
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Francois McNicoll
- Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Prasoon Kumar Thakur
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Blažíková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovčiak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Zora Nováková
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Müller-McNicoll
- Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany.
- Max Planck Institute of Biophysics, Frankfurt, Germany.
| | - Zuzana Cvačková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Griffin C, Coppenrath K, Khan D, Lin Z, Horb M, Saint-Jeannet JP. Deletion of sf3b4 causes splicing defects and gene dysregulation that disrupt craniofacial development and survival. Dis Model Mech 2025; 18:dmm052169. [PMID: 40126363 PMCID: PMC11980789 DOI: 10.1242/dmm.052169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Nager and Rodriguez syndromes are rare craniofacial and limb disorders characterized by midface retrusion, micrognathia, absent thumbs and radial hypoplasia. These disorders result from haploinsufficiency of SF3B4 (splicing factor 3b, subunit 4), a component of the pre-mRNA spliceosomal machinery. Although the spliceosome is present and functions in all cells of the body, most spliceosomopathies - including Nager and Rodriguez syndromes - are cell- or tissue-specific in their pathology. To understand the pathomechanism underlying these conditions, we generated a Xenopus tropicalis sf3b4 mutant line using CRISPR/Cas9 gene-editing technology. Homozygous deletion of sf3b4 is detrimental to the development of cranial neural crest (NC)-derived cartilage progenitors. Temporal RNA-sequencing analyses of mutant embryos identified an increase in exon-skipping events, followed by important transcriptional changes associated with an enrichment for terms consistent with defects in NC cell migration and survival. We propose that disruption of these processes may underly the pathogenesis of Nager and Rodriguez syndromes.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Doha Khan
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratory, NYU Grossman School of Medicine, New York, NY 10010, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| |
Collapse
|
5
|
Mirinezhad MR, Mirzaei F, Salmaninejad A, Esfehani RJ, Seyedtaghia MR, Farahmand S, Toosi MB, Hashemian S, Lewis MES. Reporting a Homozygous Case of Neurodevelopmental Disorder Associated With a Novel PRPF8 Variant. Mol Genet Genomic Med 2025; 13:e70084. [PMID: 40066647 PMCID: PMC11894437 DOI: 10.1002/mgg3.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND While recently identified heterozygous PRPF8 variants have been linked to various human diseases, their role in neurodevelopmental disorders (NDDs) remains ambiguous. This study investigates the potential association between homozygous PRPF8 variants and NDDs. Most PRPF8 variants are primarily associated with retinal diseases; however, we analyze a family with multiple members diagnosed with NDDs. METHODS Using exome sequencing (ES), the cause of behavioral problems and intellectual disabilities (IDs) of two sisters from a consanguineous parents was solved, and the results confirmed by direct sanger sequencing method likewise protein modeling to assess the structural impact of the identified variant on the PRPF8 protein has been done. RESULTS ES identified a novel homozygous variant, PRPF8 c.257G>T, p.R86M. To the best of our knowledge at the time of writing this manuscript, the mentioned variant has not been reported in relation to NDDs. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. CONCLUSION Our findings indicate that the p.R86M variant may disrupt normal protein function by changing its structure and probably its interaction, potentially leading to the observed neurodevelopmental phenotypes. This study highlights the first link between the PRPF8 variant and NDDs, suggesting a distinct role for specific PRPF8 variants in the etiology of NDDs. These results warrant further investigation into the mechanisms by which PRPF8 variants contribute to NDDs, emphasizing the need for comprehensive genetic screening in families with unexplained neurodevelopmental conditions.
Collapse
Affiliation(s)
- Mohammad Reza Mirinezhad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Farzaneh Mirzaei
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Arash Salmaninejad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Reza Jafarzadeh Esfehani
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
- Blood Borne Infections Research Center, Academic Center for Education, Culture & Research (ACECR)Razavi Khorasan BranchMashhadIran
| | - Mohammad Reza Seyedtaghia
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Sheyda Farahmand
- Department of BiologyMashhad Branch, Islamic Azad UniversityMashhadIran
| | - Mehran Beiraghi Toosi
- Pediatric WardSchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Pediatric Neurology Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - M. E. Suzzane Lewis
- Department of Medical GeneticsUniversity of British Columbia (UBC)VancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
| |
Collapse
|
6
|
Huang G, Wang D, Xue J. Research Progress on the Relationship Between PRPF8 and Cancer. Curr Issues Mol Biol 2025; 47:150. [PMID: 40136404 PMCID: PMC11941625 DOI: 10.3390/cimb47030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Alternative splicing (AS) plays a crucial role in regulating gene expression and protein diversity, influencing both normal cellular function and pathological conditions, including cancer. Protein pre-mRNA processing factor 8 (PRPF8), a core component of the spliceosome, is integral to the splicing process, ensuring accurate gene transcription and spliceosome assembly. Disruptions in PRPF8 function are linked to a variety of cancers, as mutations in this gene can induce abnormal splicing events that contribute to tumorigenesis, metastasis, and drug resistance. This review provides an in-depth analysis of the mechanisms by which PRPF8 regulates tumorigenesis through AS, exploring its role in diverse cancer types, including breast, liver, myeloid, and colorectal cancers. Furthermore, we examine the molecular pathways associated with PRPF8 dysregulation and their impact on cancer progression. We also discuss the emerging potential of targeting PRPF8 in cancer therapy, highlighting challenges in drug development.
Collapse
Affiliation(s)
- Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | | | | |
Collapse
|
7
|
Quinodoz M, Rodenburg K, Cvackova Z, Kaminska K, de Bruijn SE, Iglesias-Romero AB, Boonen EGM, Ullah M, Zomer N, Folcher M, Bijon J, Holtes LK, Tsang SH, Corradi Z, Freund KB, Shliaga S, Panneman DM, Hitti-Malin RJ, Ali M, AlTalbishi A, Andréasson S, Ansari G, Arno G, Astuti GDN, Ayuso C, Ayyagari R, Banfi S, Banin E, Barboni MTS, Bauwens M, Ben-Yosef T, Birch DG, Biswas P, Blanco-Kelly F, Bocquet B, Boon CJF, Branham K, Britten-Jones AC, Bujakowska KM, Cadena EL, Calzetti G, Cancellieri F, Cattaneo L, Issa PC, Chadderton N, Coutinho-Santos L, Daiger SP, De Baere E, de la Cerda B, De Roach JN, De Zaeytijd J, Derks R, Dhaenens CM, Dudakova L, Duncan JL, Farrar GJ, Feltgen N, Fernández-Caballero L, Sallum JMF, Gana S, Garanto A, Gardner JC, Gilissen C, Goto K, Gonzàlez-Duarte R, Griffiths-Jones S, Haack TB, Haer-Wigman L, Hardcastle AJ, Hayashi T, Héon E, Hoischen A, Holtan JP, Hoyng CB, Ibanez MBB, Inglehearn CF, Iwata T, Jones K, Kalatzis V, Kamakari S, Karali M, Kellner U, Knézy K, Klaver CCW, Koenekoop RK, Kohl S, Kominami T, Kühlewein L, Lamey TM, Leroy BP, Martín-Gutiérrez MP, Martins N, Mauring L, Leibu R, Lin S, Liskova P, Lopez I, López-Rodríguez VRDJ, Mahroo OA, Manes G, et alQuinodoz M, Rodenburg K, Cvackova Z, Kaminska K, de Bruijn SE, Iglesias-Romero AB, Boonen EGM, Ullah M, Zomer N, Folcher M, Bijon J, Holtes LK, Tsang SH, Corradi Z, Freund KB, Shliaga S, Panneman DM, Hitti-Malin RJ, Ali M, AlTalbishi A, Andréasson S, Ansari G, Arno G, Astuti GDN, Ayuso C, Ayyagari R, Banfi S, Banin E, Barboni MTS, Bauwens M, Ben-Yosef T, Birch DG, Biswas P, Blanco-Kelly F, Bocquet B, Boon CJF, Branham K, Britten-Jones AC, Bujakowska KM, Cadena EL, Calzetti G, Cancellieri F, Cattaneo L, Issa PC, Chadderton N, Coutinho-Santos L, Daiger SP, De Baere E, de la Cerda B, De Roach JN, De Zaeytijd J, Derks R, Dhaenens CM, Dudakova L, Duncan JL, Farrar GJ, Feltgen N, Fernández-Caballero L, Sallum JMF, Gana S, Garanto A, Gardner JC, Gilissen C, Goto K, Gonzàlez-Duarte R, Griffiths-Jones S, Haack TB, Haer-Wigman L, Hardcastle AJ, Hayashi T, Héon E, Hoischen A, Holtan JP, Hoyng CB, Ibanez MBB, Inglehearn CF, Iwata T, Jones K, Kalatzis V, Kamakari S, Karali M, Kellner U, Knézy K, Klaver CCW, Koenekoop RK, Kohl S, Kominami T, Kühlewein L, Lamey TM, Leroy BP, Martín-Gutiérrez MP, Martins N, Mauring L, Leibu R, Lin S, Liskova P, Lopez I, López-Rodríguez VRDJ, Mahroo OA, Manes G, McKibbin M, McLaren TL, Meunier I, Michaelides M, Millán JM, Mizobuchi K, Mukherjee R, Nagy ZZ, Neveling K, Ołdak M, Oorsprong M, Pan Y, Papachristou A, Percesepe A, Pfau M, Pierce EA, Place E, Ramesar R, Rasquin FA, Rice GI, Roberts L, Rodríguez-Hidalgo M, Ruiz-Eddera J, Sabir AH, Sajiki AF, Sánchez-Barbero AI, Sarma AS, Sangermano R, Santos CM, Scarpato M, Scholl HPN, Sharon D, Signorini SG, Simonelli F, Sousa AB, Stefaniotou M, Stingl K, Suga A, Sullivan LS, Szabó V, Szaflik JP, Taurina G, Toomes C, Tran VH, Tsilimbaris MK, Tsoka P, Vaclavik V, Vajter M, Valeina S, Valente EM, Valentine C, Valero R, van Aerschot J, van den Born LI, Webster AR, Whelan L, Wissinger B, Yioti GG, Yoshitake K, Zenteno JC, Zeuli R, Zuleger T, Landau C, Jacob AI, Cremers FPM, Lee W, Ellingford JM, Stanek D, Rivolta C, Roosing S. De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.06.24317169. [PMID: 39830270 PMCID: PMC11741465 DOI: 10.1101/2025.01.06.24317169] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The U4 small nuclear RNA (snRNA) forms a duplex with the U6 snRNA and, together with U5 and ~30 proteins, is part of the U4/U6.U5 tri-snRNP complex, located at the core of the major spliceosome. Recently, recurrent de novo variants in the U4 RNA, transcribed from the RNU4-2 gene, and in at least two other RNU genes were discovered to cause neurodevelopmental disorder. We detected inherited and de novo heterozygous variants in RNU4-2 (n.18_19insA and n.56T>C) and in four out of the five RNU6 paralogues (n.55_56insG and n.56_57insG) in 135 individuals from 62 families with non-syndromic retinitis pigmentosa (RP), a rare form of hereditary blindness. We show that these variants are recurrent among RP families and invariably cluster in close proximity within the three-way junction (between stem-I, the 5' stem-loop and stem-II) of the U4/U6 duplex, affecting its natural conformation. Interestingly, this region binds to numerous splicing factors of the tri-snRNP complex including PRPF3, PRPF8 and PRPF31, previously associated with RP as well. The U4 and U6 variants identified seem to affect snRNP biogenesis, namely the U4/U6 di-snRNP, which is an assembly intermediate of the tri-snRNP. Based on the number of positive cases observed, deleterious variants in RNU4-2 and in RNU6 paralogues could be a significant cause of isolated or dominant RP, accounting for up to 1.2% of all undiagnosed RP cases. This study highlights the role of non-coding genes in rare Mendelian disorders and uncovers pleiotropy in RNU4-2, where different variants underlie neurodevelopmental disorder and RP.
Collapse
Affiliation(s)
- Mathieu Quinodoz
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zuzana Cvackova
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Kaminska
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ana Belén Iglesias-Romero
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Erica G M Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- The Rotterdam Eye Hospital, Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands
| | - Mukhtar Ullah
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Nick Zomer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc Folcher
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Jacques Bijon
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
- Department of Ophthalmology, Rothschild Foundation Hospital, Paris, France
| | - Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons Columbia University Irving Medical Center, New York, NY, USA
- Edward S. Harkness Eye Institute, Jonas Children’s Vision Care (JCVC), Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Stefanida Shliaga
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan M Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rebekkah J Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manir Ali
- University of Leeds, Leeds, UK
- Division of Molecular Medicine, Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
| | - Ala’a AlTalbishi
- Molecular Biology Research Unit, St John Eye Hospital Group, Jerusalem, Palestine
| | - Sten Andréasson
- Department of Ophthalmology, University Hospital of Lund, Lund, Sweden
| | - Georg Ansari
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gavin Arno
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Radha Ayyagari
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Sandro Banfi
- Department of Precision Medicine, Medical Genetics, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Genomic Medicine, Telethon Institute of Genetics and Medicine, Pozzuoli, NA, Italy
| | - Eyal Banin
- Hadassah Medical Center, Division of Ophthalmology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Miriam Bauwens
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Pooja Biswas
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatrice Bocquet
- Institute for Neurosciences of Montpellier (INM), Montpellier University, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kari Branham
- Department of Ophthalmology and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Victoria, Australia
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Elizabeth L Cadena
- Department of Epidemiology and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giacomo Calzetti
- Vista Vision Eye Clinic, Brescia, Italy
- Clinical Translation Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Francesca Cancellieri
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Luca Cattaneo
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Peter Charbel Issa
- Department of Ophthalmology, TUM University Hospital, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Naomi Chadderton
- Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | | | - Stephen P Daiger
- Department of Epidemiology and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Berta de la Cerda
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre, CABIMER, Seville, Spain
| | - John N De Roach
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Julie De Zaeytijd
- Department of Head and Skin, Ghent University Hospital, Ghent, Belgium
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Université de Lille, INSERM U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, Wayne and Gladys Valley Center for Vision, San Francisco, CA, USA
| | - G Jane Farrar
- Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Nicolas Feltgen
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lidia Fernández-Caballero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Juliana M Ferraz Sallum
- Department of Ophthalmology, Federal University of São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jessica C Gardner
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kensuke Goto
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Roser Gonzàlez-Duarte
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sam Griffiths-Jones
- School of Biological Sciences, Division of Evolution, Infection, and Genomics, The University of Manchester, Manchester, UK
| | - Tobias B Haack
- Institute for Medical Genetics and Applied Genomics, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
- Center for Rare Disease, University of Tübingen, Tübingen, Germany
- Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE)
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, Ocular Genetics Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manuel Benjamin B Ibanez
- Department of Ophthalmology, Section of Pediatric Ophthalmology, Strabismus, and Ocular Genetics, DOH Eye Center, East Avenue Medical Center, Quezon City, Metro Manila, Philippines
- Section of Pediatric Ophthalmology, Strabismus, and Ocular Genetics, Makati Medical Center, Makati City, Philippines
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Kaylie Jones
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), Montpellier University, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Smaragda Kamakari
- Department of Inherited Retinal Dystrophies, Ophthalmic Genetics group, OMMA, Ophthalmological Institute of Athens, Athens, Greece
| | - Marianthi Karali
- Department of Precision Medicine, Medical Genetics, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ulrich Kellner
- Center for Rare Retinal Diseases, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany
| | - Krisztina Knézy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Caroline C W Klaver
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Robert K Koenekoop
- Department of Pediatric Surgery, Division of Pediatric Ophthalmology, Montreal Children’s Hospital, McGill University Health Center (MUHC), Montreal, Quebec, Canada
| | - Susanne Kohl
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Laura Kühlewein
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Bart P Leroy
- Department of Head and Skin, Ghent University Hospital, Ghent, Belgium
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent, Belgium
| | - María Pilar Martín-Gutiérrez
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Nelson Martins
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Laura Mauring
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Eye Clinic, Tartu University Hospital, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Rina Leibu
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Siying Lin
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Saint Mary’s Hospital, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Irma Lopez
- Department of Pediatric Surgery, Division of Pediatric Ophthalmology, Montreal Children’s Hospital, McGill University Health Center (MUHC), Montreal, Quebec, Canada
| | - Victor R de J López-Rodríguez
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
- Section of Ophthalmology, King’s College London, St. Thomas’ Hospital Campus, London, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gaël Manes
- INSERM U1298, Montpellier University, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
- Department of Ophthalmology, Leeds Teaching Hospitals NHS Trust, St James’s University Hospital, Leeds, UK
| | - Terri L McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), Montpellier University, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - José M Millán
- Instituto de Investigación Sanitaria La Fe (IIS La Fe) and CIBERER, Valencia, Spain
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Rajarshi Mukherjee
- Department of Ophthalmology, Leeds Teaching Hospitals NHS Trust, St James’s University Hospital, Leeds, UK
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monika Ołdak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Michiel Oorsprong
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Pan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Anastasia Papachristou
- Department of Ophthalmology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Antonio Percesepe
- Department of Medicine and Surgery, Medical Genetics, University of Parma, Parma, Italy
| | - Maximilian Pfau
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Eric A Pierce
- Ocular Genomics institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Emily Place
- Ocular Genomics institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Raj Ramesar
- Department of Pathology, UCT/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Gillian I Rice
- School of Biological Sciences, Division of Evolution, Infection, and Genomics, The University of Manchester, Manchester, UK
| | - Lisa Roberts
- Department of Pathology, UCT/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - María Rodríguez-Hidalgo
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Department of Genetic, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Javier Ruiz-Eddera
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Department of Ophthalmology, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Ataf H Sabir
- West Midlands Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ai Fujita Sajiki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ana Isabel Sánchez-Barbero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Asodu Sandeep Sarma
- Hadassah Medical Center, Division of Ophthalmology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Riccardo Sangermano
- Ocular Genomics institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Cristina M Santos
- Serviço de Oftalmologia, Instituto de Oftalmologia Dr. Gama Pinto, Lisboa, Portugal
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Margherita Scarpato
- Department of Precision Medicine, Medical Genetics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Hendrik P N Scholl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Pallas Kliniken AG, Pallas Klinik Zürich, Zürich, Switzerland
- European Vision Institute, Basel, Switzerland
| | - Dror Sharon
- Hadassah Medical Center, Division of Ophthalmology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ana Berta Sousa
- Department of Medical Genetics, ULS St Maria, Lisboa, Portugal
- Laboratory of Basic Immunology, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Stefaniotou
- Department of Ophthalmology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Katarina Stingl
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Lori S Sullivan
- Department of Epidemiology and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Viktória Szabó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
- SPKSO Ophthalmic University Hospital in Warsaw, Warsaw, Poland
| | - Gita Taurina
- Medical Genetics and Prenatal Diagnostics Clinic, Children’s Clinical University Hospital, Riga, Latvia
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
| | - Viet H Tran
- Department of Ophthalmology; Oculogenetics Unit, Jules Gonin University Hospital; University of Lausanne, Lausanne, Vaud, Switzerland
- Centre for Gene Therapy & Regenerative Medicine, King’s College London, London, UK
| | - Miltiadis K Tsilimbaris
- Department of Ophthalmology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Pavlina Tsoka
- Department of Ophthalmology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Veronika Vaclavik
- Department of Ophthalmology; Oculogenetics Unit, Jules Gonin University Hospital; University of Lausanne, Lausanne, Vaud, Switzerland
| | - Marie Vajter
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Sandra Valeina
- Eye Disease Clinic, Children’s University Hospital Riga, Riga, Latvia
| | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Casey Valentine
- Department of Pathology, UCT/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rebeca Valero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joseph van Aerschot
- Department of Ophthalmology, Pediatric ophthalmology and Ophthalmogenetics, Leuven, Belgium
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Laura Whelan
- Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Pharmacy and Biomolecular Sciences (PBS), RCSI University of Medicine and Health Sciences, Dublin 2, Leinster, Ireland
- FutureNeuro Research Ireland Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Leinster, Ireland
| | - Bernd Wissinger
- Centre for Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - Georgia G Yioti
- Department of Ophthalmology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Roberta Zeuli
- Department of Precision Medicine, Medical Genetics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Theresia Zuleger
- Institute for Medical Genetics and Applied Genomics, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - Chaim Landau
- Bonei Olam - Center for Rare Jewish Genetic Diseases, Brooklyn, NY, USA
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Winston Lee
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jamie M Ellingford
- School of Biological Sciences, Division of Evolution, Infection, and Genomics, The University of Manchester, Manchester, UK
- Genomics England Ltd, London, UK
| | - David Stanek
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Carlo Rivolta
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Bodenbender JP, Bethge L, Stingl K, Mazzola P, Haack T, Biskup S, Wissinger B, Weisschuh N, Kohl S, Kühlewein L. Clinical and Genetic Findings in a Cohort of Patients with PRPF31-Associated Retinal Dystrophy. Am J Ophthalmol 2024; 267:213-229. [PMID: 38909744 DOI: 10.1016/j.ajo.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE The purpose of our study was to assess the phenotypic and genotypic spectrum in a large cohort of patients with PRPF31-associated retinal dystrophy. DESIGN Retrospective cohort study. METHODS In this retrospective chart review study, we collected cross-sectional data on the phenotype and genotype of patients with PRPF31-associated retinal dystrophy from the clinics for inherited retinal dystrophies at the University of Tuebingen and the local RetDis database and biobank. Patients underwent thorough ophthalmological examinations and genetic testing. RESULTS Eighty-six patients from 61 families were available for clinical assessment, while genomic DNA was available for 111 individuals (index patients and family members). Fifty-three different disease-associated variants were observed in our cohort. Point mutations were the most common class. All but two patients exhibited features of a typical Retinitis pigmentosa (RP). One patient showed a cone-rod dystrophy pattern. One mutation carrier revealed no signs of a retinal dystrophy. There was a statistically significant better visual acuity for patients with large deletions in the 20-39 age group. Cystoid macular edema was common in those with preserved central retina and showed an association with female sex. CONCLUSION Our study confirms high phenotypic variability in disease onset and age at which legal blindness is reached in PRPF31-associated RP. Non-penetrance is commonly documented in family history, although poorly represented in our study, possibly indicating that true asymptomatic mutation carriers are rare if followed-up over lifetime with thorough ophthalmologic workup.
Collapse
Affiliation(s)
- Jan-Philipp Bodenbender
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany
| | - Leon Bethge
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University (P.M., T.H.), Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University (P.M., T.H.), Tübingen, Germany; Center for Rare Diseases, Eberhard Karls University (T.H.), Tübingen, Germany
| | | | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (B.W., N.W., S.K.), Tübingen, Germany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (B.W., N.W., S.K.), Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (B.W., N.W., S.K.), Tübingen, Germany
| | - Laura Kühlewein
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany; Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (L.K.), Tübingen, Germany.
| |
Collapse
|
9
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
10
|
Yang WQ, Ge JY, Zhang X, Zhu WY, Lin L, Shi Y, Xu B, Liu RJ. THUMPD2 catalyzes the N2-methylation of U6 snRNA of the spliceosome catalytic center and regulates pre-mRNA splicing and retinal degeneration. Nucleic Acids Res 2024; 52:3291-3309. [PMID: 38165050 PMCID: PMC11014329 DOI: 10.1093/nar/gkad1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.
Collapse
Affiliation(s)
- Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian-Yang Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaofeng Zhang
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lin Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064,Zhejiang Province, China
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Atkinson R, Georgiou M, Yang C, Szymanska K, Lahat A, Vasconcelos EJR, Ji Y, Moya Molina M, Collin J, Queen R, Dorgau B, Watson A, Kurzawa-Akanbi M, Laws R, Saxena A, Shyan Beh C, Siachisumo C, Goertler F, Karwatka M, Davey T, Inglehearn CF, McKibbin M, Lührmann R, Steel DH, Elliott DJ, Armstrong L, Urlaub H, Ali RR, Grellscheid SN, Johnson CA, Mozaffari-Jovin S, Lako M. PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5´-splice-site selection causing tissue-specific defects. Nat Commun 2024; 15:3138. [PMID: 38605034 PMCID: PMC11009313 DOI: 10.1038/s41467-024-47253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.
Collapse
Affiliation(s)
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Albert Lahat
- Department of Biosciences, Durham University, Durham, UK
| | | | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Moya Molina
- Biosciences Institute, Newcastle University, Newcastle, UK
- Newcells Biotech, Newcastle, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Avril Watson
- Biosciences Institute, Newcastle University, Newcastle, UK
- Newcells Biotech, Newcastle, UK
| | | | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Abhijit Saxena
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chia Shyan Beh
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | | | - Martin McKibbin
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Reinhard Lührmann
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg August University of Göttingen, Göttingen, Germany
| | - Robin R Ali
- Centre for Cell and Gene Therapy, Kings College London, London, UK
| | - Sushma-Nagaraja Grellscheid
- Department of Biosciences, Durham University, Durham, UK
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| | - Sina Mozaffari-Jovin
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Medical Genetics and Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
12
|
Lv Y, Li J, Yu S, Zhang Y, Hu H, Sun K, Jia D, Han Y, Tu J, Huang Y, Liu X, Zhang X, Gao P, Chen X, Shaw Williams MT, Tang Z, Shu X, Liu M, Ren X. The splicing factor Prpf31 is required for hematopoietic stem and progenitor cell expansion during zebrafish embryogenesis. J Biol Chem 2024; 300:105772. [PMID: 38382674 PMCID: PMC10959673 DOI: 10.1016/j.jbc.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.
Collapse
Affiliation(s)
- Yuexia Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Department of Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mark Thomas Shaw Williams
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Griffin C, Coppenrath K, Khan D, Lin Z, Horb M, Saint-Jeannet JP. Sf3b4 mutation in Xenopus tropicalis causes RNA splicing defects followed by massive gene dysregulation that disrupt cranial neural crest development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578190. [PMID: 38352410 PMCID: PMC10862923 DOI: 10.1101/2024.01.31.578190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Nager syndrome is a rare craniofacial and limb disorder characterized by midface retrusion, micrognathia, absent thumbs, and radial hypoplasia. This disorder results from haploinsufficiency of SF3B4 (splicing factor 3b, subunit 4) a component of the pre-mRNA spliceosomal machinery. The spliceosome is a complex of RNA and proteins that function together to remove introns and join exons from transcribed pre-mRNA. While the spliceosome is present and functions in all cells of the body, most spliceosomopathies - including Nager syndrome - are cell/tissue-specific in their pathology. In Nager syndrome patients, it is the neural crest (NC)-derived craniofacial skeletal structures that are primarily affected. To understand the pathomechanism underlying this condition, we generated a Xenopus tropicalis sf3b4 mutant line using the CRISPR/Cas9 gene editing technology. Here we describe the sf3b4 mutant phenotype at neurula, tail bud, and tadpole stages, and performed temporal RNA-sequencing analysis to characterize the splicing events and transcriptional changes underlying this phenotype. Our data show that while loss of one copy of sf3b4 is largely inconsequential in Xenopus tropicalis, homozygous deletion of sf3b4 causes major splicing defects and massive gene dysregulation, which disrupt cranial NC cell migration and survival, thereby pointing at an essential role of Sf3b4 in craniofacial development.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
| | - Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Doha Khan
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratory, NYU Grossman School of Medicine, New York, NY, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | |
Collapse
|
14
|
Aweidah H, Xi Z, Sahel JA, Byrne LC. PRPF31-retinitis pigmentosa: Challenges and opportunities for clinical translation. Vision Res 2023; 213:108315. [PMID: 37714045 PMCID: PMC10872823 DOI: 10.1016/j.visres.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
Mutations in pre-mRNA processing factor 31 cause autosomal dominant retinitis pigmentosa (PRPF31-RP), for which there is currently no efficient treatment, making this disease a prime target for the development of novel therapeutic strategies. PRPF31-RP exhibits incomplete penetrance due to haploinsufficiency, in which reduced levels of gene expression from the mutated allele result in disease. A variety of model systems have been used in the investigation of disease etiology and therapy development. In this review, we discuss recent advances in both in vivo and in vitro model systems, evaluating their advantages and limitations in the context of therapy development for PRPF31-RP. Additionally, we describe the latest approaches for treatment, including AAV-mediated gene augmentation, genome editing, and late-stage therapies such as optogenetics, cell transplantation, and retinal prostheses.
Collapse
Affiliation(s)
- Hamzah Aweidah
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhouhuan Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Khalifah BA, Alghamdi SA, Alhasan AH. Unleashing the potential of catalytic RNAs to combat mis-spliced transcripts. Front Bioeng Biotechnol 2023; 11:1244377. [PMID: 38047291 PMCID: PMC10690607 DOI: 10.3389/fbioe.2023.1244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Human transcriptome can undergo RNA mis-splicing due to spliceopathies contributing to the increasing number of genetic diseases including muscular dystrophy (MD), Alzheimer disease (AD), Huntington disease (HD), myelodysplastic syndromes (MDS). Intron retention (IR) is a major inducer of spliceopathies where two or more introns remain in the final mature mRNA and account for many intronic expansion diseases. Potential removal of such introns for therapeutic purposes can be feasible when utilizing bioinformatics, catalytic RNAs, and nano-drug delivery systems. Overcoming delivery challenges of catalytic RNAs was discussed in this review as a future perspective highlighting the significance of utilizing synthetic biology in addition to high throughput deep sequencing and computational approaches for the treatment of mis-spliced transcripts.
Collapse
Affiliation(s)
- Bashayer A. Khalifah
- Institute for Bioengineering, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ali H. Alhasan
- Institute for Bioengineering, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Daich Varela M, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107:1223-1230. [PMID: 36038193 DOI: 10.1136/bjo-2022-321903] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Inherited retinal diseases (IRDs) have been in the front line of gene therapy development for the last decade, providing a useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are ongoing, tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral vector delivery of a normal copy of the disease-causing gene. However, only recently has autosomal dominant (ad) disease been targeted, with the commencement of a trial for rhodopsin (RHO)-associated retinitis pigmentosa (RP), implementing antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).Autosomal dominant RP represents 15%-25% of all RP, with RHO accounting for 20%-30% of these cases. Autosomal dominant macular and cone-rod dystrophies (MD/CORD) correspond to approximately 7.5% of all IRDs, and approximately 35% of all MD/CORD cases, with the main causative gene being BEST1 Autosomal dominant IRDs are not only less frequent than recessive, but also tend to be less severe and have later onset; for example, an individual with RHO-adRP would typically become severely visually impaired at an age 2-3 times older than in X-linked RPGR-RP.Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1 and PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by clustered regularly interspaced short palindromic repeats/Cas are some of the strategies that are currently under investigation and will be discussed here.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
17
|
Watson A, Lako M. Retinal organoids provide unique insights into molecular signatures of inherited retinal disease throughout retinogenesis. J Anat 2023; 243:186-203. [PMID: 36177499 PMCID: PMC10335378 DOI: 10.1111/joa.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022] Open
Abstract
The demand for induced pluripotent stem cells (iPSC)-derived retinal organoid and retinal pigment epithelium (RPE) models for the modelling of inherited retinopathies has increased significantly in the last decade. These models are comparable with foetal retinas up until the later stages of retinogenesis, expressing all of the key neuronal markers necessary for retinal function. These models have proven to be invaluable in the understanding of retinogenesis, particular in the context of patient-specific diseases. Inherited retinopathies are infamously described as clinically and phenotypically heterogeneous, such that developing gene/mutation-specific animal models in each instance of retinal disease is not financially or ethically feasible. Further to this, many animal models are insufficient in the study of disease pathogenesis due to anatomical differences and failure to recapitulate human disease phenotypes. In contrast, iPSC-derived retinal models provide a high throughput platform which is physiologically relevant for studying human health and disease. They also serve as a platform for drug screening, gene therapy approaches and in vitro toxicology of novel therapeutics in pre-clinical studies. One unique characteristic of stem cell-derived retinal models is the ability to mimic in vivo retinogenesis, providing unparalleled insights into the effects of pathogenic mutations in cells of the developing retina, in a highly accessible way. This review aims to give the reader an overview of iPSC-derived retinal organoids and/or RPE in the context of disease modelling of several inherited retinopathies including Retinitis Pigmentosa, Stargardt disease and Retinoblastoma. We describe the ability of each model to recapitulate in vivo disease phenotypes, validate previous findings from animal models and identify novel pathomechanisms that underpin individual IRDs.
Collapse
Affiliation(s)
- Avril Watson
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Majlinda Lako
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
18
|
Krausová M, Kreplová M, Banik P, Cvačková Z, Kubovčiak J, Modrák M, Zudová D, Lindovský J, Kubik-Zahorodna A, Pálková M, Kolář M, Procházka J, Sedláček R, Staněk D. Retinitis pigmentosa-associated mutations in mouse Prpf8 cause misexpression of circRNAs and degeneration of cerebellar granule cells. Life Sci Alliance 2023; 6:e202201855. [PMID: 37019475 PMCID: PMC10078954 DOI: 10.26508/lsa.202201855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
A subset of patients with retinitis pigmentosa (RP) carry mutations in several spliceosomal components including the PRPF8 protein. Here, we established two alleles of murine Prpf8 that genocopy or mimic aberrant PRPF8 found in RP patients-the substitution p.Tyr2334Asn and an extended protein variant p.Glu2331ValfsX15. Homozygous mice expressing the aberrant Prpf8 variants developed within the first 2 mo progressive atrophy of the cerebellum because of extensive granule cell loss, whereas other cerebellar cells remained unaffected. We further show that a subset of circRNAs were deregulated in the cerebellum of both Prpf8-RP mouse strains. To identify potential risk factors that sensitize the cerebellum for Prpf8 mutations, we monitored the expression of several splicing proteins during the first 8 wk. We observed down-regulation of all selected splicing proteins in the WT cerebellum, which coincided with neurodegeneration onset. The decrease in splicing protein expression was further pronounced in mouse strains expressing mutated Prpf8. Collectively, we propose a model where physiological reduction in spliceosomal components during postnatal tissue maturation sensitizes cells to the expression of aberrant Prpf8 and the subsequent deregulation of circRNAs triggers neuronal death.
Collapse
Affiliation(s)
- Michaela Krausová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Kreplová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Poulami Banik
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Cvačková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovčiak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Modrák
- Core Facility Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Zudová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Jiří Lindovský
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Agnieszka Kubik-Zahorodna
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Marcela Pálková
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedláček
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
19
|
Lisbjerg K, Grønskov K, Bertelsen M, Møller LB, Kessel L. Genetic Modifiers of Non-Penetrance and RNA Expression Levels in PRPF31-Associated Retinitis Pigmentosa in a Danish Cohort. Genes (Basel) 2023; 14:435. [PMID: 36833363 PMCID: PMC9956082 DOI: 10.3390/genes14020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background/aims: To examine potential genetic modifiers of disease penetrance in PRPF31-associated retinitis pigmentosa 11 (RP11). (2) Methods: Blood samples from individuals (n = 37) with PRPF31 variants believed to be disease-causing were used for molecular genetic testing and, in some cases (n = 23), also for mRNA expression analyses. Medical charts were used to establish if individuals were symptomatic (RP) or asymptomatic non-penetrant carriers (NPC). RNA expression levels of PRPF31 and CNOT3 were measured on peripheral whole blood using quantitative real-time PCR normalized to GAPDH. Copy number variation of minisatellite repeat element 1 (MSR1) was performed with DNA fragment analysis. (3) Results: mRNA expression analyses on 22 individuals (17 with RP and 5 non-penetrant carriers) revealed no statistically significant differences in PRPF31 or CNOT3 mRNA expression levels between individuals with RP and non-penetrant carriers. Among 37 individuals, we found that all three carriers of a 4-copy MSR1 sequence on their wild-type (WT) allele were non-penetrant carriers. However, copy number variation of MSR1 is not the sole determinant factor of non-penetrance, as not all non-penetrant carriers carried a 4-copy WT allele. A 4-copy MSR1 mutant allele was not associated with non-penetrance. (4) Conclusions: In this Danish cohort, a 4-copy MSR1 WT allele was associated with non-penetrance of retinitis pigmentosa caused by PRPF31 variants. The level of PRPF31 mRNA expression in peripheral whole blood was not a useful indicator of disease status.
Collapse
Affiliation(s)
- Kristian Lisbjerg
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Mette Bertelsen
- Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lisbeth Birk Møller
- Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Turner BRH, Mellor C, McElroy C, Bowen N, Gu W, Knill C, Itasaki N. Non-ubiquitous expression of core spliceosomal protein SmB/B' in chick and mouse embryos. Dev Dyn 2023; 252:276-293. [PMID: 36058892 PMCID: PMC10087933 DOI: 10.1002/dvdy.537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Although splicing is an integral part of the expression of many genes in our body, genetic syndromes with spliceosomal defects affect only specific tissues. To help understand the mechanism, we investigated the expression pattern of a core protein of the major spliceosome, SmB/B' (Small Nuclear Ribonucleoprotein Polypeptides B/B'), which is encoded by SNRPB. Loss-of-function mutations of SNRPB in humans cause cerebro-costo-mandibular syndrome (CCMS) characterized by rib gaps, micrognathia, cleft palate, and scoliosis. Our expression analysis focused on the affected structures as well as non-affected tissues, using chick and mouse embryos as model animals. RESULTS Embryos at young stages (gastrula) showed ubiquitous expression of SmB/B'. However, the level and pattern of expression became tissue-specific as differentiation proceeded. The regions relating to CCMS phenotypes such as cartilages of ribs and vertebrae and palatal mesenchyme express SmB/B' in the nucleus sporadically. However, cartilages that are not affected in CCMS also showed similar expressions. Another spliceosomal gene, SNRNP200, which mutations cause retinitis pigmentosa, was also prominently expressed in cartilages in addition to the retina. CONCLUSION The expression of SmB/B' is spatiotemporally regulated during embryogenesis despite the ubiquitous requirement of the spliceosome, however, the expression pattern is not strictly correlated with the phenotype presentation.
Collapse
Affiliation(s)
| | | | - Clara McElroy
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Natalie Bowen
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Wenjia Gu
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Chris Knill
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Nobue Itasaki
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
A 69 kb Deletion in chr19q13.42 including PRPF31 Gene in a Chinese Family Affected with Autosomal Dominant Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11226682. [PMID: 36431159 PMCID: PMC9695658 DOI: 10.3390/jcm11226682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify the genetic cause of autosomal dominant retinitis pigmentosa (adRP) and characterize the underlying molecular mechanisms of incomplete penetrance in a Chinese family affected with adRP. All enrolled family members underwent ophthalmic examinations. Whole-genome sequencing (WGS), multiplex ligation-dependent probe amplification (MLPA), linkage analysis and haplotype construction were performed in all participants. RNA-seq was performed to analyze the regulating mechanism of incomplete penetrance among affected patients, mutation carriers and healthy controls. In the studied family, 14 individuals carried a novel heterozygous large deletion of 69 kilobase (kb) in 19q13.42 encompassing exon 1 of the PRPF31 gene and five upstream genes: TFPT, OSCAR, NDUFA3, TARM1, and VSTM1. Three family members were sequenced and diagnosed as non-penetrant carriers (NPCs). RNA-seq showed significant differential expression of genes in deletion between mutation carriers and healthy control. The RP11 pedigree in this study was the largest pedigree compared to other reported RP11 pedigrees with large deletions. Early onset in all affected members in this pedigree was considered to be a special phenotype and was firstly reported in a RP11 family for the first time. Differential expression of PRPF31 between affected and unaffected subjects indicates a haploinsufficiency to cause the disease in the family. The other genes with significant differential expression might play a cooperative effect on the penetrance of RP11.
Collapse
|
22
|
Aburegeba Z, Pan J, Hutter H. Mutations in the Spliceosome Component prp-6 and Overexpression of cdh-5 Suppress Axon Guidance Defects of cdh-4 Mutants in Caenorhabditis elegans. Neurosci Insights 2022; 17:26331055221123346. [PMID: 36090596 PMCID: PMC9452795 DOI: 10.1177/26331055221123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
During nervous system development, axons must navigate to specific target areas. In Caenorhabditis elegans, the cadherin CDH-4 is required for ventral nerve cord axonal navigation, and dorsal nerve cord fasciculation. How CDH-4 mediates axon navigation and fasciculation is currently unknown. To identify genes acting together with cdh-4, we isolated mutants suppressing the axon guidance defects of cdh-4 mutants. These suppressors showed partial suppression of axonal defects in the dorsal and ventral nerve cords seen in cdh-4 mutants. We identified one suppressor gene, prp-6, which encodes a component of the spliceosome. Complete loss-of-function alleles of prp-6 are lethal, suggesting that the mutation isolated in our suppressor screen is a partial loss-of-function allele. A previous study found that RNAi-induced suppression of prp-6 leads to changes in the expression of several 100 genes including the cadherin cdh-5. We found that overexpression of cdh-5 mimics the suppression seen in prp-6 mutants, suggesting that CDH-5 can partially compensate for the loss of CDH-4.
Collapse
Affiliation(s)
- Zina Aburegeba
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jie Pan
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
23
|
Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue. NPJ Regen Med 2022; 7:39. [PMID: 35974011 PMCID: PMC9381579 DOI: 10.1038/s41536-022-00235-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the ubiquitously expressed pre-mRNA processing factor (PRPF) 31 gene, one of the most common causes of dominant form of Retinitis Pigmentosa (RP), lead to a retina-specific phenotype. It is uncertain which retinal cell types are affected and animal models do not clearly present the RP phenotype observed in PRPF31 patients. Retinal organoids and retinal pigment epithelial (RPE) cells derived from human-induced pluripotent stem cells (iPSCs) provide potential opportunities for studying human PRPF31-related RP. We demonstrate here that RPE cells carrying PRPF31 mutations present important morphological and functional changes and that PRPF31-mutated retinal organoids recapitulate the human RP phenotype, with a rod photoreceptor cell death followed by a loss of cones. The low level of PRPF31 expression may explain the defective phenotypes of PRPF31-mutated RPE and photoreceptor cells, which were not observed in cells derived from asymptomatic patients or after correction of the pathogenic mutation by CRISPR/Cas9. Transcriptome profiles revealed differentially expressed and mis-spliced genes belonging to pathways in line with the observed defective phenotypes. The rescue of RPE and photoreceptor defective phenotypes by PRPF31 gene augmentation provide the proof of concept for future therapeutic strategies.
Collapse
|
24
|
Tanner A, Chan HW, Schiff E, Mahroo OM, Pulido JS. Exploring the mutational landscape of genes associated with inherited retinal disease using large genomic datasets: identifying loss of function intolerance and outlying propensities for missense changes. BMJ Open Ophthalmol 2022; 7:bmjophth-2022-001079. [PMID: 36161854 PMCID: PMC9422814 DOI: 10.1136/bmjophth-2022-001079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/18/2022] [Indexed: 11/11/2022] Open
Abstract
Background Large databases permit quantitative description of genes in terms of intolerance to loss of function (‘haploinsufficiency’) and prevalence of missense variants. We explored these parameters in inherited retinal disease (IRD) genes. Methods IRD genes (from the ‘RetNet’ resource) were classified by probability of loss of function intolerance (pLI) using online Genome Aggregation Database (gnomAD) and DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) databases. Genes were identified having pLI ≥0.9 together with one or both of the following: upper bound of CI <0.35 for observed to expected (o/e) ratio of loss of function variants in the gnomAD resource; haploinsufficiency score <10 in the DECIPHER resource. IRD genes in which missense variants appeared under-represented or over-represented (Z score for o/e ratio of <−2.99 or >2.99, respectively) were also identified. The genes were evaluated in the gene ontology Protein Analysis THrough Evolutionary Relationships (PANTHER) resource. Results Of 280 analysed genes, 39 (13.9%) were predicted loss of function intolerant. A greater proportion of X-linked than autosomal IRD genes fulfilled these criteria, as expected. Most autosomal genes were associated with dominant disease. PANTHER analysis showed >100 fold enrichment of spliceosome tri-snRNP complex assembly. Most encoded proteins were longer than the median length in the UniProt database. Fourteen genes (11 of which were in the ‘haploinsufficient’ group) showed under-representation of missense variants. Six genes (SAMD11, ALMS1, WFS1, RP1L1, KCNV2, ADAMTS18) showed over-representation of missense variants. Conclusion A minority of IRD-associated genes appear to be ‘haploinsufficient’. Over-representation of spliceosome pathways was observed. When interpreting genetic tests, variants found in genes with over-representation of missense variants should be interpreted with caution.
Collapse
|
25
|
Patients with Retinitis Pigmentosa May Have a Higher Risk of Developing Open-Angle Glaucoma. J Ophthalmol 2022; 2022:9719095. [PMID: 35783342 PMCID: PMC9242799 DOI: 10.1155/2022/9719095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is the most common retinal hereditary dystrophy, which can lead to blindness if it progresses. Similarly, open-angle glaucoma (OAG) is a genetic disorder. The similarities in genetic variants and pathophysiology between RP and OAG have been reported. We sought to explore whether patients with RP have a significantly higher risk of OAG development. Methods We enrolled patients with RP into the RP group through Taiwan's National Health Insurance Research Database from 2001 to 2013; we included a comparison group of 1 : 4 age- and gender-matched individuals without RP. We performed a Cox regression analysis to estimate the crude and adjusted hazard ratios (HRs) for OAG. We adjusted the following confounders in the Cox regression model: age, gender, diabetes mellitus, hypertension, and chronic kidney disease. Results We enrolled 6,223 subjects with RP and 24,892 subjects for comparison. The mean age of the cohort was 49.0 ± 18.1 years. The RP group had significantly higher percentages of diabetes mellitus, hypertension, and hyperlipidaemia. The cumulative incidence of OAG in patients with RP was 1.57%; this was significantly higher than that in the comparison group (0.58%, p < 0.0001). On univariate Cox regression analysis, the hazard of OAG development was significantly greater in the RP group than in the comparison group with an unadjusted HR of 2.86 (95% confidence interval, 2.21–3.70). The increased risk persisted after adjusting for confounders (adjusted HR = 2.86; 95% CI, 2.21–3.70). Conclusions This nationwide population-based cohort study showed that people with RP are at a significantly greater risk of developing OAG than individuals without it.
Collapse
|
26
|
Obuća M, Cvačková Z, Kubovčiak J, Kolář M, Staněk D. Retinitis pigmentosa-linked mutation in DHX38 modulates its splicing activity. PLoS One 2022; 17:e0265742. [PMID: 35385551 PMCID: PMC8985939 DOI: 10.1371/journal.pone.0265742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary disease affecting tens of thousands of people world-wide. Here we analyzed the effect of an amino acid substitution in the RNA helicase DHX38 (Prp16) causing RP. DHX38 has been proposed as the helicase important for the 2nd step of splicing. We showed that DHX38 associates with key splicing factors involved in both splicing steps but did not find any evidence that the RP mutations changes DHX38 interaction profile with the spliceosome. We further downregulated DHX38 and monitored changes in splicing. We observed only minor perturbations of general splicing but detected modulation of ~70 alternative splicing events. Next, we probed DHX38 function in splicing of retina specific genes and found that FSCN2 splicing is dependent on DHX38. In addition, RHO splicing was inhibited specifically by expression of DHX38 RP variant. Finally, we showed that overexpression of DHX38 promotes usage of canonical as well as cryptic 5' splice sites in HBB splicing reporter. Together, our data show that DHX38 is a splicing factor that promotes splicing of cryptic splice sites and regulate alternative splicing. We further provide evidence that the RP-linked substitution G332D modulates DHX38 splicing activity.
Collapse
Affiliation(s)
- Mina Obuća
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Zuzana Cvačková
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovčiak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Staněk
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
27
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
28
|
Determinants of Disease Penetrance in PRPF31-Associated Retinopathy. Genes (Basel) 2021; 12:genes12101542. [PMID: 34680937 PMCID: PMC8535263 DOI: 10.3390/genes12101542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa 11 (RP11) is caused by dominant mutations in PRPF31, however a significant proportion of mutation carriers do not develop retinopathy. Here, we investigated the relationship between CNOT3 polymorphism, MSR1 repeat copy number and disease penetrance in RP11 patients and non-penetrant carriers (NPCs). We further characterized PRPF31 and CNOT3 expression in fibroblasts from eight RP11 patients and one NPC from a family carrying the c.1205C>T variant. Retinal organoids (ROs) and retinal pigment epithelium (RPE) were differentiated from induced pluripotent stem cells derived from RP11 patients, an NPC and a control subject. All RP11 patients were homozygous for the 3-copy MSR1 repeat in the PRPF31 promoter, while 3/5 NPCs carried a 4-copy MSR1 repeat. The CNOT3 rs4806718 genotype did not correlate with disease penetrance. PRFP31 expression declined with age in adult cadaveric retina. PRPF31 and CNOT3 expression was reduced in RP11 fibroblasts, RO and RPE compared with controls. Both RP11 and NPC RPE displayed shortened primary cilia compared with controls, however a subpopulation of cells with normal cilia lengths was present in NPC RPE monolayers. Our results indicate that RP11 non-penetrance is associated with the inheritance of a 4-copy MSR1 repeat, but not with CNOT3 polymorphisms.
Collapse
|
29
|
Yang C, Georgiou M, Atkinson R, Collin J, Al-Aama J, Nagaraja-Grellscheid S, Johnson C, Ali R, Armstrong L, Mozaffari-Jovin S, Lako M. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Front Cell Dev Biol 2021; 9:700276. [PMID: 34395430 PMCID: PMC8355544 DOI: 10.3389/fcell.2021.700276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15–20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell’s transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.
Collapse
Affiliation(s)
- Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Colin Johnson
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin Ali
- King's College London, London, United Kingdom
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2021; 13:559-579. [PMID: 34196950 PMCID: PMC9232692 DOI: 10.1007/s13238-021-00856-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell “housekeeping” machinery, mutations in core components of the spliceosome frequently correlate with cell- or tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to mis-splicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Maxwell DW, O'Keefe RT, Roy S, Hentges KE. The role of splicing factors in retinitis pigmentosa: links to cilia. Biochem Soc Trans 2021; 49:1221-1231. [PMID: 34060618 DOI: 10.1042/bst20200798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023]
Abstract
Cilia are critical to numerous biological functions, both in development and everyday homeostatic processes. Diseases arising from genetic mutations that cause cilia dysfunction are termed ciliopathies. Several ubiquitously expressed splicing factors have been implicated in the condition Retinitis Pigmentosa (RP), a group of diseases characterised by the progressive degeneration of the retina. In many types of RP the disease affects the modified primary cilium of the photoreceptor cells and thus, these types of RP are considered ciliopathies. Here, we discuss sequence variants found within a number of these splicing factors, the resulting phenotypes, and the mechanisms underpinning disease pathology. Additionally, we discuss recent evidence investigating why RP patients with mutations in globally expressed splicing factors present with retina-specific phenotypes.
Collapse
Affiliation(s)
- Dale W Maxwell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Raymond T O'Keefe
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- Department of Pediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Kathryn E Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| |
Collapse
|
32
|
Lovera M, Lüders J. The ciliary impact of nonciliary gene mutations. Trends Cell Biol 2021; 31:876-887. [PMID: 34183231 DOI: 10.1016/j.tcb.2021.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/15/2023]
Abstract
Mutations in genes encoding centriolar or ciliary proteins cause diseases collectively known as 'ciliopathies'. Interestingly, the Human Phenotype Ontology database lists numerous disorders that display clinical features reminiscent of ciliopathies but do not involve defects in the centriole-cilium proteome. Instead, defects in different cellular compartments may impair cilia indirectly and cause additional, nonciliopathy phenotypes. This phenotypic heterogeneity, perhaps combined with the field's centriole-cilium-centric view, may have hindered the recognition of ciliary contributions. Identifying these diseases and dissecting how the underlying gene mutations impair cilia not only will add to our understanding of cilium assembly and function but also may open up new therapeutic avenues.
Collapse
Affiliation(s)
- Marta Lovera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
33
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
34
|
Arzalluz-Luque Á, Cabrera JL, Skottman H, Benguria A, Bolinches-Amorós A, Cuenca N, Lupo V, Dopazo A, Tarazona S, Delás B, Carballo M, Pascual B, Hernan I, Erceg S, Lukovic D. Mutant PRPF8 Causes Widespread Splicing Changes in Spliceosome Components in Retinitis Pigmentosa Patient iPSC-Derived RPE Cells. Front Neurosci 2021; 15:636969. [PMID: 33994920 PMCID: PMC8116631 DOI: 10.3389/fnins.2021.636969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is a rare, progressive disease that affects photoreceptors and retinal pigment epithelial (RPE) cells with blindness as a final outcome. Despite high medical and social impact, there is currently no therapeutic options to slow down the progression of or cure the disease. The development of effective therapies was largely hindered by high genetic heterogeneity, inaccessible disease tissue, and unfaithful model organisms. The fact that components of ubiquitously expressed splicing factors lead to the retina-specific disease is an additional intriguing question. Herein, we sought to correlate the retinal cell-type-specific disease phenotype with the splicing profile shown by a patient with autosomal recessive RP, caused by a mutation in pre-mRNA splicing factor 8 (PRPF8). In order to get insight into the role of PRPF8 in homeostasis and disease, we capitalize on the ability to generate patient-specific RPE cells and reveal differentially expressed genes unique to RPE cells. We found that spliceosomal complex and ribosomal functions are crucial in determining cell-type specificity through differential expression and alternative splicing (AS) and that PRPF8 mutation causes global changes in splice site selection and exon inclusion that particularly affect genes involved in these cellular functions. This finding corroborates the hypothesis that retinal tissue identity is conferred by a specific splicing program and identifies retinal AS events as a framework toward the design of novel therapeutic opportunities.
Collapse
Affiliation(s)
- Ángeles Arzalluz-Luque
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, València, Spain
| | - Jose Luis Cabrera
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
| | - Arantxa Bolinches-Amorós
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center Principe Felipe, Valencia, Spain
- National Stem Cell Bank-Valencia Node, Research Center Principe Felipe, Valencia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
| | - Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, València, Spain
| | - Bárbara Delás
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Miguel Carballo
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Beatriz Pascual
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Imma Hernan
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Slaven Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center Principe Felipe, Valencia, Spain
- National Stem Cell Bank-Valencia Node, Research Center Principe Felipe, Valencia, Spain
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Dunja Lukovic
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
- Retinal Degeneration Lab, Research Centre Principe Felipe, Valencia, Spain
| |
Collapse
|
35
|
Li J, Liu F, Lv Y, Sun K, Zhao Y, Reilly J, Zhang Y, Tu J, Yu S, Liu X, Qin Y, Huang Y, Gao P, Jia D, Chen X, Han Y, Shu X, Luo D, Tang Z, Liu M. Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing. Nucleic Acids Res 2021; 49:2027-2043. [PMID: 33476374 PMCID: PMC7913766 DOI: 10.1093/nar/gkab003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
Dysfunction of splicing factors often result in abnormal cell differentiation and apoptosis, especially in neural tissues. Mutations in pre-mRNAs processing factor 31 (PRPF31) cause autosomal dominant retinitis pigmentosa, a progressive retinal degeneration disease. The transcriptome-wide splicing events specifically regulated by PRPF31 and their biological roles in the development and maintenance of retina are still unclear. Here, we showed that the differentiation and viability of retinal progenitor cells (RPCs) are severely perturbed in prpf31 knockout zebrafish when compared with other tissues at an early embryonic stage. At the cellular level, significant mitotic arrest and DNA damage were observed. These defects could be rescued by the wild-type human PRPF31 rather than the disease-associated mutants. Further bioinformatic analysis and experimental verification uncovered that Prpf31 deletion predominantly causes the skipping of exons with a weak 5′ splicing site. Moreover, genes necessary for DNA repair and mitotic progression are most enriched among the differentially spliced events, which may explain the cellular and tissular defects in prpf31 mutant retinas. This is the first time that Prpf31 is demonstrated to be essential for the survival and differentiation of RPCs during retinal neurogenesis by specifically modulating the alternative splicing of genes involved in DNA repair and mitosis.
Collapse
Affiliation(s)
- Jingzhen Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuntong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Science, Wuhan 430072, PR China
| | - Jamas Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK
| | - Yangjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Science, Wuhan 430072, PR China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| |
Collapse
|
36
|
The Alter Retina: Alternative Splicing of Retinal Genes in Health and Disease. Int J Mol Sci 2021; 22:ijms22041855. [PMID: 33673358 PMCID: PMC7917623 DOI: 10.3390/ijms22041855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing of mRNA is an essential mechanism to regulate and increase the diversity of the transcriptome and proteome. Alternative splicing frequently occurs in a tissue- or time-specific manner, contributing to differential gene expression between cell types during development. Neural tissues present extremely complex splicing programs and display the highest number of alternative splicing events. As an extension of the central nervous system, the retina constitutes an excellent system to illustrate the high diversity of neural transcripts. The retina expresses retinal specific splicing factors and produces a large number of alternative transcripts, including exclusive tissue-specific exons, which require an exquisite regulation. In fact, a current challenge in the genetic diagnosis of inherited retinal diseases stems from the lack of information regarding alternative splicing of retinal genes, as a considerable percentage of mutations alter splicing or the relative production of alternative transcripts. Modulation of alternative splicing in the retina is also instrumental in the design of novel therapeutic approaches for retinal dystrophies, since it enables precision medicine for specific mutations.
Collapse
|
37
|
Wood KA, Eadsforth MA, Newman WG, O'Keefe RT. The Role of the U5 snRNP in Genetic Disorders and Cancer. Front Genet 2021; 12:636620. [PMID: 33584830 PMCID: PMC7876476 DOI: 10.3389/fgene.2021.636620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is performed by the spliceosome, a dynamic macromolecular complex consisting of five small uridine-rich ribonucleoprotein complexes (the U1, U2, U4, U5, and U6 snRNPs) and numerous auxiliary splicing factors. A plethora of human disorders are caused by genetic variants affecting the function and/or expression of splicing factors, including the core snRNP proteins. Variants in the genes encoding proteins of the U5 snRNP cause two distinct and tissue-specific human disease phenotypes – variants in PRPF6, PRPF8, and SNRP200 are associated with retinitis pigmentosa (RP), while variants in EFTUD2 and TXNL4A cause the craniofacial disorders mandibulofacial dysostosis Guion-Almeida type (MFDGA) and Burn-McKeown syndrome (BMKS), respectively. Furthermore, recurrent somatic mutations or changes in the expression levels of a number of U5 snRNP proteins (PRPF6, PRPF8, EFTUD2, DDX23, and SNRNP40) have been associated with human cancers. How and why variants in ubiquitously expressed spliceosome proteins required for pre-mRNA splicing in all human cells result in tissue-restricted disease phenotypes is not clear. Additionally, why variants in different, yet interacting, proteins making up the same core spliceosome snRNP result in completely distinct disease outcomes – RP, craniofacial defects or cancer – is unclear. In this review, we define the roles of different U5 snRNP proteins in RP, craniofacial disorders and cancer, including how disease-associated genetic variants affect pre-mRNA splicing and the proposed disease mechanisms. We then propose potential hypotheses for how U5 snRNP variants cause tissue specificity resulting in the restricted and distinct human disorders.
Collapse
Affiliation(s)
- Katherine A Wood
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Megan A Eadsforth
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - William G Newman
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Raymond T O'Keefe
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
38
|
Hebbar S, Lehmann M, Behrens S, Hälsig C, Leng W, Yuan M, Winkler S, Knust E. Mutations in the splicing regulator Prp31 lead to retinal degeneration in Drosophila. Biol Open 2021; 10:10/1/bio052332. [PMID: 33495354 PMCID: PMC7860132 DOI: 10.1242/bio.052332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Retinitis pigmentosa (RP) is a clinically heterogeneous disease affecting 1.6 million people worldwide. The second-largest group of genes causing autosomal dominant RP in human encodes regulators of the splicing machinery. Yet, how defects in splicing factor genes are linked to the aetiology of the disease remains largely elusive. To explore possible mechanisms underlying retinal degeneration caused by mutations in regulators of the splicing machinery, we induced mutations in Drosophila Prp31, the orthologue of human PRPF31, mutations in which are associated with RP11. Flies heterozygous mutant for Prp31 are viable and develop normal eyes and retina. However, photoreceptors degenerate under light stress, thus resembling the human disease phenotype. Degeneration is associated with increased accumulation of the visual pigment rhodopsin 1 and increased mRNA levels of twinfilin, a gene associated with rhodopsin trafficking. Reducing rhodopsin levels by raising animals in a carotenoid-free medium not only attenuates rhodopsin accumulation, but also retinal degeneration. Given a similar importance of proper rhodopsin trafficking for photoreceptor homeostasis in human, results obtained in flies presented here will also contribute to further unravel molecular mechanisms underlying the human disease. This paper has an associated First Person interview with the co-first authors of the article. Summary: Retinitis pigmentosa (RP) is a human disease resulting in blindness, which affects 1 in 4.000 people worldwide. So far >90 genes have been identified that are causally related to RP. Mutations in the splicing factor PRPF31 are linked to RP11. We induced mutations in the Drosophila orthologue Prp31 and show that flies heterozygous for Prp31 undergo light-dependent retinal degeneration. Degeneration is associated with increased accumulation of the light-sensitive molecule, rhodopsin 1. In fact, reducing rhodopsin levels by dietary intervention modifies the extent of retinal degeneration. This model will further contribute to better understand the aetiology of the human disease.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Malte Lehmann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sarah Behrens
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Catrin Hälsig
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Weihua Leng
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michaela Yuan
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sylke Winkler
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
39
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2021. [DOI: 10.1016/j.preteyeres.2020.100874
expr 921883647 + 833887994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
40
|
Henson HE, Taylor MR. A sart1 Zebrafish Mutant Results in Developmental Defects in the Central Nervous System. Cells 2020; 9:cells9112340. [PMID: 33105605 PMCID: PMC7690441 DOI: 10.3390/cells9112340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
The spliceosome consists of accessory proteins and small nuclear ribonucleoproteins (snRNPs) that remove introns from RNA. As splicing defects are associated with degenerative conditions, a better understanding of spliceosome formation and function is essential. We provide insight into the role of a spliceosome protein U4/U6.U5 tri-snRNP-associated protein 1, or Squamous cell carcinoma antigen recognized by T-cells (Sart1). Sart1 recruits the U4.U6/U5 tri-snRNP complex to nuclear RNA. The complex then associates with U1 and U2 snRNPs to form the spliceosome. A forward genetic screen identifying defects in choroid plexus development and whole-exome sequencing (WES) identified a point mutation in exon 12 of sart1 in Danio rerio (zebrafish). This mutation caused an up-regulation of sart1. Using RNA-Seq analysis, we identified additional upregulated genes, including those involved in apoptosis. We also observed increased activated caspase 3 in the brain and eye and down-regulation of vision-related genes. Although splicing occurs in numerous cells types, sart1 expression in zebrafish was restricted to the brain. By identifying sart1 expression in the brain and cell death within the central nervous system (CNS), we provide additional insights into the role of sart1 in specific tissues. We also characterized sart1's involvement in cell death and vision-related pathways.
Collapse
Affiliation(s)
- Hannah E. Henson
- Chemical Biology and Therapeutics Department, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-731-661-5520
| | - Michael R. Taylor
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
41
|
Narasimhan I, Murali A, Subramanian K, Ramalingam S, Parameswaran S. Autosomal dominant retinitis pigmentosa with toxic gain of function: Mechanisms and therapeutics. Eur J Ophthalmol 2020; 31:304-320. [PMID: 32962414 DOI: 10.1177/1120672120957605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autosomal dominant retinitis pigmentosa is a form of retinitis pigmentosa, an inherited retinal degenerative disorder characterized by progressive loss of photoreceptors eventually leading to irreversible loss of vision. Mutations in genes involved in the basic functions of the visual system give rise to this condition. These mutations can either lead to loss of function or toxic gain of function phenotypes. While autosomal dominant retinitis pigmentosa caused by loss of function can be ideally treated by gene supplementation with a single vector to address a different spectrum of mutations in a gene, the same strategy cannot be applied to toxic gain of function phenotypes. In toxic gain of function phenotypes, the mutation in the gene results in the acquisition of a new function that can interrupt the functioning of the wildtype protein by various mechanisms leading to cell toxicity, thus making a single approach impractical. This review focuses on the genes and mechanisms that cause toxic gain of function phenotypes associated with autosomal dominant retinitis pigmentosa and provide a bird's eye view on current therapeutic strategies and ongoing clinical trials.
Collapse
Affiliation(s)
- Ishwarya Narasimhan
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Aishwarya Murali
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Krishnakumar Subramanian
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Sivaprakash Ramalingam
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
42
|
Wood KA, Rowlands CF, Thomas HB, Woods S, O’Flaherty J, Douzgou S, Kimber SJ, Newman WG, O’Keefe RT. Modelling the developmental spliceosomal craniofacial disorder Burn-McKeown syndrome using induced pluripotent stem cells. PLoS One 2020; 15:e0233582. [PMID: 32735620 PMCID: PMC7394406 DOI: 10.1371/journal.pone.0233582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
The craniofacial developmental disorder Burn-McKeown Syndrome (BMKS) is caused by biallelic variants in the pre-messenger RNA splicing factor gene TXNL4A/DIB1. The majority of affected individuals with BMKS have a 34 base pair deletion in the promoter region of one allele of TXNL4A combined with a loss-of-function variant on the other allele, resulting in reduced TXNL4A expression. However, it is unclear how reduced expression of this ubiquitously expressed spliceosome protein results in craniofacial defects during development. Here we reprogrammed peripheral mononuclear blood cells from a BMKS patient and her unaffected mother into induced pluripotent stem cells (iPSCs) and differentiated the iPSCs into induced neural crest cells (iNCCs), the key cell type required for correct craniofacial development. BMKS patient-derived iPSCs proliferated more slowly than both mother- and unrelated control-derived iPSCs, and RNA-Seq analysis revealed significant differences in gene expression and alternative splicing. Patient iPSCs displayed defective differentiation into iNCCs compared to maternal and unrelated control iPSCs, in particular a delay in undergoing an epithelial-to-mesenchymal transition (EMT). RNA-Seq analysis of differentiated iNCCs revealed widespread gene expression changes and mis-splicing in genes relevant to craniofacial and embryonic development that highlight a dampened response to WNT signalling, the key pathway activated during iNCC differentiation. Furthermore, we identified the mis-splicing of TCF7L2 exon 4, a key gene in the WNT pathway, as a potential cause of the downregulated WNT response in patient cells. Additionally, mis-spliced genes shared common sequence properties such as length, branch point to 3’ splice site (BPS-3’SS) distance and splice site strengths, suggesting that splicing of particular subsets of genes is particularly sensitive to changes in TXNL4A expression. Together, these data provide the first insight into how reduced TXNL4A expression in BMKS patients might compromise splicing and NCC function, resulting in defective craniofacial development in the embryo.
Collapse
Affiliation(s)
- Katherine A. Wood
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Charlie F. Rowlands
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Huw B. Thomas
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Julieta O’Flaherty
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sofia Douzgou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - William G. Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Griffin C, Saint-Jeannet JP. Spliceosomopathies: Diseases and mechanisms. Dev Dyn 2020; 249:1038-1046. [PMID: 32506634 DOI: 10.1002/dvdy.214] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
The spliceosome is a complex of RNA and proteins that function together to identify intron-exon junctions in precursor messenger-RNAs, splice out the introns, and join the flanking exons. Mutations in any one of the genes encoding the proteins that make up the spliceosome may result in diseases known as spliceosomopathies. While the spliceosome is active in all cell types, with the majority of the proteins presumably expressed ubiquitously, spliceosomopathies tend to be tissue-specific as a result of germ line or somatic mutations, with phenotypes affecting primarily the retina in retinitis pigmentosa, hematopoietic lineages in myelodysplastic syndromes, or the craniofacial skeleton in mandibulofacial dysostosis. Here we describe the major spliceosomopathies, review the proposed mechanisms underlying retinitis pigmentosa and myelodysplastic syndromes, and discuss how this knowledge may inform our understanding of craniofacial spliceosomopathies.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| |
Collapse
|
44
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2020; 80:100874. [PMID: 32553897 DOI: 10.1016/j.preteyeres.2020.100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Mutations which induce aberrant transcript splicing represent a distinct class of disease-causing genetic variants in retinal disease genes. Such mutations may either weaken or erase regular splice sites or create novel splice sites which alter exon recognition. While mutations affecting the canonical GU-AG dinucleotides at the splice donor and splice acceptor site are highly predictive to cause a splicing defect, other variants in the vicinity of the canonical splice sites or those affecting additional cis-acting regulatory sequences within exons or introns are much more difficult to assess or even to recognize and require additional experimental validation. Splicing mutations are unique in that the actual outcome for the transcript (e.g. exon skipping, pseudoexon inclusion, intron retention) and the encoded protein can be quite different depending on the individual mutation. In this article, we present an overview on the current knowledge about and impact of splicing mutations in inherited retinal diseases. We introduce the most common sub-classes of splicing mutations including examples from our own work and others and discuss current strategies for the identification and validation of splicing mutations, as well as therapeutic approaches, open questions, and future perspectives in this field of research.
Collapse
|
45
|
Laaref AM, Manchon L, Bareche Y, Lapasset L, Tazi J. The core spliceosomal factor U2AF1 controls cell-fate determination via the modulation of transcriptional networks. RNA Biol 2020; 17:857-871. [PMID: 32150510 PMCID: PMC7549707 DOI: 10.1080/15476286.2020.1733800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) plays a central role during cell-fate determination. However, how the core spliceosomal factors (CSFs) are involved in this process is poorly understood. Here, we report the down-regulation of the U2AF1 CSF during stem cell differentiation. To investigate its function in stemness and differentiation, we downregulated U2AF1 in human induced pluripotent stem cells (hiPSCs), using an inducible-shRNA system, to the level found in differentiated ectodermal, mesodermal and endodermal cells. RNA sequencing and computational analysis reveal that U2AF1 down-regulation modulates the expression of development-regulating genes and regulates transcriptional networks involved in cell-fate determination. Furthermore, U2AF1 down-regulation induces a switch in the AS of transcription factors (TFs) required to establish specific cell lineages, and favours the splicing of a differentiated cell-specific isoform of DNMT3B. Our results showed that the differential expression of the core spliceosomal factor U2AF1, between stem cells and the precursors of the three germ layers regulates a cell-type-specific alternative splicing programme and a transcriptional network involved in cell-fate determination via the modulation of gene expression and alternative splicing of transcription regulators.
Collapse
Affiliation(s)
| | | | - Yacine Bareche
- IGMM, CNRS, University of Montpellier, Montpellier, France
- Breast Cancer Translational Research Laboratory, J. C. Heuson, Institut Jules Bordet, Université Libre De Bruxelles, Brussels, Belgium
| | - Laure Lapasset
- IGMM, CNRS, University of Montpellier, Montpellier, France
- VP research, CNRS, University of Montpellier, Montpellier, France
| | - Jamal Tazi
- IGMM, CNRS, University of Montpellier, Montpellier, France
- Lead Contact
| |
Collapse
|
46
|
Finding relationships among biological entities. LOGIC AND CRITICAL THINKING IN THE BIOMEDICAL SCIENCES 2020. [PMCID: PMC7499094 DOI: 10.1016/b978-0-12-821364-3.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Confusion over the concepts of “relationships” and “similarities” lies at the heart of many battles over the direction and intent of research projects. Here is a short story that demonstrates the difference between the two concepts: You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail, like a lion’s tale, and a fluffy head, like a lion’s mane. With a little imagination the mouth of the lion seems to roar down from the sky. You have succeeded in finding similarities between the cloud and a lion. If you look at a cloud and you imagine a tea kettle producing a head of steam and you recognize that the physical forces that create a cloud and the physical forces that produced steam from a heated kettle are the same, then you have found a relationship. Most popular classification algorithms operate by grouping together data objects that have similar properties or values. In so doing, they may miss finding the true relationships among objects. Traditionally, relationships among data objects are discovered by an intellectual process. In this chapter, we will discuss the scientific gains that come when we classify biological entities by relationships, not by their similarities.
Collapse
|
47
|
Brydon EM, Bronstein R, Buskin A, Lako M, Pierce EA, Fernandez-Godino R. AAV-Mediated Gene Augmentation Therapy Restores Critical Functions in Mutant PRPF31 +/- iPSC-Derived RPE Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:392-402. [PMID: 31890732 PMCID: PMC6909184 DOI: 10.1016/j.omtm.2019.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited vision loss and is characterized by degeneration of retinal photoreceptor cells and the retinal pigment epithelium (RPE). Mutations in pre-mRNA processing factor 31 (PRPF31) cause dominant RP via haploinsufficiency with incomplete penetrance. There is good evidence that the diverse severity of this disease is a result of differing levels of expression of the wild-type allele among patients. Thus, we hypothesize that PRPF31-related RP will be amenable to treatment by adeno-associated virus (AAV)-mediated gene augmentation therapy. To test this hypothesis, we used induced pluripotent stem cells (iPSCs) with mutations in PRPF31 and differentiated them into RPE cells. The mutant PRPF31 iPSC-RPE cells recapitulate the cellular phenotype associated with the PRPF31 pathology, including defective cell structure, diminished phagocytic function, defects in ciliogenesis, and compromised barrier function. Treatment of the mutant PRPF31 iPSC-RPE cells with AAV-PRPF31 restored normal phagocytosis and cilia formation, and it partially restored structure and barrier function. These results suggest that AAV-based gene therapy targeting RPE cells holds therapeutic promise for patients with PRPF31-related RP.
Collapse
Affiliation(s)
- Elizabeth M Brydon
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Revital Bronstein
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Buskin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Azizzadeh Pormehr L, Ahmadian S, Daftarian N, Mousavi SA, Shafiezadeh M. PRPF31 reduction causes mis-splicing of the phototransduction genes in human organotypic retinal culture. Eur J Hum Genet 2019; 28:491-498. [PMID: 31654038 DOI: 10.1038/s41431-019-0531-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 12/22/2022] Open
Abstract
PRPF31 is ubiquitously expressed splicing factor and has an essential role in the pre-mRNA splicing in all tissues. However, it is not clear how reduced expression of this general splicing factor leads to retinal restricted disease, retinitis pigmentosa (RP). In this study, we used RNA interference and RNA-sequencing to mimic the PRPF31 haploinsufficiency in human organotypic retinal cultures (HORCs). We examined the effects of PRPF31 deficiency on splicing by analyzing the differential exon usages (DEUs) and intron retentions of the retinal transcriptome. Our results revealed that the PRPF31 deficiency causes mis-splicing of genes involved in RNA processing (PRPF3, PRPF8, PRPF4, and PRPF19) and phototransduction (RHO, ROM1, FSCN2, GNAT2, and GNAT1) in the retina in the PRPF31 reduced samples. Mis-splicing of genes implicated in phototransduction was associated with photoreceptor degeneration observed in RP patients. Our data revealed that PRPF31 deficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on phototransduction and RNA processing.
Collapse
Affiliation(s)
- Leila Azizzadeh Pormehr
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahshid Shafiezadeh
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Genes (Basel) 2019; 10:genes10080557. [PMID: 31344897 PMCID: PMC6722924 DOI: 10.3390/genes10080557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
The light sensing outer segments of photoreceptors (PRs) are renewed every ten days due to their high photoactivity, especially of the cones during daytime vision. This demands a tremendous amount of energy, as well as a high turnover of their main biosynthetic compounds, membranes, and proteins. Therefore, a refined proteostasis network (PN), regulating the protein balance, is crucial for PR viability. In many inherited retinal diseases (IRDs) this balance is disrupted leading to protein accumulation in the inner segment and eventually the death of PRs. Various studies have been focusing on therapeutically targeting the different branches of the PR PN to restore the protein balance and ultimately to treat inherited blindness. This review first describes the different branches of the PN in detail. Subsequently, insights are provided on how therapeutic compounds directed against the different PN branches might slow down or even arrest the appalling, progressive blinding conditions. These insights are supported by findings of PN modulators in other research disciplines.
Collapse
|
50
|
Liu B, Calton MA, Abell NS, Benchorin G, Gloudemans MJ, Chen M, Hu J, Li X, Balliu B, Bok D, Montgomery SB, Vollrath D. Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular disease mechanisms. Commun Biol 2019; 2:186. [PMID: 31123710 PMCID: PMC6527609 DOI: 10.1038/s42003-019-0430-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The retinal pigment epithelium (RPE) serves vital roles in ocular development and retinal homeostasis but has limited representation in large-scale functional genomics datasets. Understanding how common human genetic variants affect RPE gene expression could elucidate the sources of phenotypic variability in selected monogenic ocular diseases and pinpoint causal genes at genome-wide association study (GWAS) loci. We interrogated the genetics of gene expression of cultured human fetal RPE (fRPE) cells under two metabolic conditions and discovered hundreds of shared or condition-specific expression or splice quantitative trait loci (e/sQTLs). Co-localizations of fRPE e/sQTLs with age-related macular degeneration (AMD) and myopia GWAS data suggest new candidate genes, and mechanisms by which a common RDH5 allele contributes to both increased AMD risk and decreased myopia risk. Our study highlights the unique transcriptomic characteristics of fRPE and provides a resource to connect e/sQTLs in a critical ocular cell type to monogenic and complex eye disorders.
Collapse
Affiliation(s)
- Boxiang Liu
- Department of Biology, Stanford University, Stanford, CA 94305 USA
| | - Melissa A. Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Nathan S. Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Gillie Benchorin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael J. Gloudemans
- Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, 94305 CA USA
| | - Ming Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Jane Hu
- Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles, 90095 CA USA
| | - Xin Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Brunilda Balliu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Dean Bok
- Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles, 90095 CA USA
| | - Stephen B. Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|