1
|
Gavi F, Sighinolfi MC, Pallotta G, Assumma S, Panio E, Fettucciari D, Silvestri A, Russo P, Bientinesi R, Foschi N, Turri F, Carbonara U, Ciccarese C, Iacovelli R, Nero C, Rocco B. Multiomics in Renal Cell Carcinoma: Current Landscape and Future Directions for Precision Medicine. Curr Urol Rep 2025; 26:44. [PMID: 40418294 DOI: 10.1007/s11934-025-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE OF REVIEW Renal cell carcinoma (RCC) is a prevalent and increasingly diagnosed malignancy associated with high mortality and recurrence rates. Traditional diagnostic and therapeutic approaches have limitations due to the disease's molecular heterogeneity. This review aims to explore how the integration of omics sciences-genomics, transcriptomics, proteomics, and metabolomics-can enhance the diagnosis, prognosis, and treatment of RCC. RECENT FINDINGS Genomic analyses have uncovered critical mutations, including VHL, PBRM1, and BAP1, which support improved risk stratification and the development of targeted therapies. Transcriptomic and spatial transcriptomic studies have provided deeper insights into RCC heterogeneity and tumor microenvironment dynamics. Proteomic investigations have revealed potential biomarkers, while metabolomic approaches have highlighted RCC-specific metabolic shifts. Despite these advancements, several challenges persist, including intratumoral heterogeneity, difficulties in multi-omics data integration, and the limited clinical validation of biomarkers. Omics-driven approaches hold significant promise for advancing precision medicine in RCC. These technologies can facilitate earlier diagnosis, guide individualized therapies, and enhance prognostic evaluations. Future research must focus on validating multi-omic biomarkers and leveraging artificial intelligence to manage complex datasets, thereby supporting more informed clinical decision-making and personalized treatment strategies.
Collapse
Affiliation(s)
- Filippo Gavi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy.
| | - Maria Chiara Sighinolfi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Giuseppe Pallotta
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Simone Assumma
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Enrico Panio
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Daniele Fettucciari
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Antonio Silvestri
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Pierluigi Russo
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Riccardo Bientinesi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Nazario Foschi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Filippo Turri
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | | | - Chiara Ciccarese
- Department of Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Roberto Iacovelli
- Department of Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Camilla Nero
- Department of Women and Child Health, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Bernardo Rocco
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| |
Collapse
|
2
|
Hassan MM, Li D, Han Y, Byun J, Hatia RI, Long E, Choi J, Kelley RK, Cleary SP, Lok AS, Bracci P, Permuth JB, Bucur R, Yuan JM, Singal AG, Jalal PK, Ghobrial RM, Santella RM, Kono Y, Shah DP, Nguyen MH, Liu G, Parikh ND, Kim R, Wu HC, El-Serag H, Chang P, Li Y, Chun YS, Lee SS, Gu J, Hawk E, Sun R, Huff C, Rashid A, Amin HM, Beretta L, Wolff RA, Antwi SO, Patt Y, Hwang LY, Klein AP, Zhang K, Schmidt MA, White DL, Goss JA, Khaderi SA, Marrero JA, Cigarroa FG, Shah PK, Kaseb AO, Roberts LR, Amos CI. Genome-wide association study identifies high-impact susceptibility loci for HCC in North America. Hepatology 2024; 80:87-101. [PMID: 38381705 PMCID: PMC11191046 DOI: 10.1097/hep.0000000000000800] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS Despite the substantial impact of environmental factors, individuals with a family history of liver cancer have an increased risk for HCC. However, genetic factors have not been studied systematically by genome-wide approaches in large numbers of individuals from European descent populations (EDP). APPROACH AND RESULTS We conducted a 2-stage genome-wide association study (GWAS) on HCC not affected by HBV infections. A total of 1872 HCC cases and 2907 controls were included in the discovery stage, and 1200 HCC cases and 1832 controls in the validation. We analyzed the discovery and validation samples separately and then conducted a meta-analysis. All analyses were conducted in the presence and absence of HCV. The liability-scale heritability was 24.4% for overall HCC. Five regions with significant ORs (95% CI) were identified for nonviral HCC: 3p22.1, MOBP , rs9842969, (0.51, [0.40-0.65]); 5p15.33, TERT , rs2242652, (0.70, (0.62-0.79]); 19q13.11, TM6SF2 , rs58542926, (1.49, [1.29-1.72]); 19p13.11 MAU2 , rs58489806, (1.53, (1.33-1.75]); and 22q13.31, PNPLA3 , rs738409, (1.66, [1.51-1.83]). One region was identified for HCV-induced HCC: 6p21.31, human leukocyte antigen DQ beta 1, rs9275224, (0.79, [0.74-0.84]). A combination of homozygous variants of PNPLA3 and TERT showing a 6.5-fold higher risk for nonviral-related HCC compared to individuals lacking these genotypes. This observation suggests that gene-gene interactions may identify individuals at elevated risk for developing HCC. CONCLUSIONS Our GWAS highlights novel genetic susceptibility of nonviral HCC among European descent populations from North America with substantial heritability. Selected genetic influences were observed for HCV-positive HCC. Our findings indicate the importance of genetic susceptibility to HCC development.
Collapse
Affiliation(s)
- Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Rikita I Hatia
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robin Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Sean P Cleary
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Paige Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Jennifer B Permuth
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Roxana Bucur
- Princess Margaret Cancer Center and Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jian-Min Yuan
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amit G Singal
- Division of Digestive and Liver Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prasun K Jalal
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - R Mark Ghobrial
- J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Yuko Kono
- Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, California, USA
| | - Dimpy P Shah
- Mays Cancer Center, The University of Texas Health Science Center San Antonio MD Anderson, San Antonio, Texas, USA
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California, USA
| | - Geoffrey Liu
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Hashem El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun Shin Chun
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ernest Hawk
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chad Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel O Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - Yehuda Patt
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lu-Yu Hwang
- Department of Epidemiology, Human Genetics, and Environment Science, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Karen Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Mikayla A Schmidt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Donna L White
- Sections of Gastroenterology and Hepatology and Health Services Research, Baylor College of Medicine, Houston, Texas, USA
| | - John A Goss
- Division of Abdominal Transplantation, Michael E. DeBakey School of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Saira A Khaderi
- Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas, USA
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Francisco G Cigarroa
- Transplant Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Pankil K Shah
- Mays Cancer Center, The University of Texas Health Science Center San Antonio MD Anderson, San Antonio, Texas, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Purdue MP, Dutta D, Machiela MJ, Gorman BR, Winter T, Okuhara D, Cleland S, Ferreiro-Iglesias A, Scheet P, Liu A, Wu C, Antwi SO, Larkin J, Zequi SC, Sun M, Hikino K, Hajiran A, Lawson KA, Cárcano F, Blanchet O, Shuch B, Nepple KG, Margue G, Sundi D, Diver WR, Folgueira MAAK, van Bokhoven A, Neffa F, Brown KM, Hofmann JN, Rhee J, Yeager M, Cole NR, Hicks BD, Manning MR, Hutchinson AA, Rothman N, Huang WY, Linehan WM, Lori A, Ferragu M, Zidane-Marinnes M, Serrano SV, Magnabosco WJ, Vilas A, Decia R, Carusso F, Graham LS, Anderson K, Bilen MA, Arciero C, Pellegrin I, Ricard S, Scelo G, Banks RE, Vasudev NS, Soomro N, Stewart GD, Adeyoju A, Bromage S, Hrouda D, Gibbons N, Patel P, Sullivan M, Protheroe A, Nugent FI, Fournier MJ, Zhang X, Martin LJ, Komisarenko M, Eisen T, Cunningham SA, Connolly DC, Uzzo RG, Zaridze D, Mukeria A, Holcatova I, Hornakova A, Foretova L, Janout V, Mates D, Jinga V, Rascu S, Mijuskovic M, Savic S, Milosavljevic S, Gaborieau V, Abedi-Ardekani B, McKay J, Johansson M, Phouthavongsy L, Hayman L, Li J, Lungu I, Bezerra SM, Souza AG, Sares CTG, Reis RB, Gallucci FP, Cordeiro MD, et alPurdue MP, Dutta D, Machiela MJ, Gorman BR, Winter T, Okuhara D, Cleland S, Ferreiro-Iglesias A, Scheet P, Liu A, Wu C, Antwi SO, Larkin J, Zequi SC, Sun M, Hikino K, Hajiran A, Lawson KA, Cárcano F, Blanchet O, Shuch B, Nepple KG, Margue G, Sundi D, Diver WR, Folgueira MAAK, van Bokhoven A, Neffa F, Brown KM, Hofmann JN, Rhee J, Yeager M, Cole NR, Hicks BD, Manning MR, Hutchinson AA, Rothman N, Huang WY, Linehan WM, Lori A, Ferragu M, Zidane-Marinnes M, Serrano SV, Magnabosco WJ, Vilas A, Decia R, Carusso F, Graham LS, Anderson K, Bilen MA, Arciero C, Pellegrin I, Ricard S, Scelo G, Banks RE, Vasudev NS, Soomro N, Stewart GD, Adeyoju A, Bromage S, Hrouda D, Gibbons N, Patel P, Sullivan M, Protheroe A, Nugent FI, Fournier MJ, Zhang X, Martin LJ, Komisarenko M, Eisen T, Cunningham SA, Connolly DC, Uzzo RG, Zaridze D, Mukeria A, Holcatova I, Hornakova A, Foretova L, Janout V, Mates D, Jinga V, Rascu S, Mijuskovic M, Savic S, Milosavljevic S, Gaborieau V, Abedi-Ardekani B, McKay J, Johansson M, Phouthavongsy L, Hayman L, Li J, Lungu I, Bezerra SM, Souza AG, Sares CTG, Reis RB, Gallucci FP, Cordeiro MD, Pomerantz M, Lee GSM, Freedman ML, Jeong A, Greenberg SE, Sanchez A, Thompson RH, Sharma V, Thiel DD, Ball CT, Abreu D, Lam ET, Nahas WC, Master VA, Patel AV, Bernhard JC, Freedman ND, Bigot P, Reis RM, Colli LM, Finelli A, Manley BJ, Terao C, Choueiri TK, Carraro DM, Houlston R, Eckel-Passow JE, Abbosh PH, Ganna A, Brennan P, Gu J, Chanock SJ. Multi-ancestry genome-wide association study of kidney cancer identifies 63 susceptibility regions. Nat Genet 2024; 56:809-818. [PMID: 38671320 DOI: 10.1038/s41588-024-01725-7] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
Here, in a multi-ancestry genome-wide association study meta-analysis of kidney cancer (29,020 cases and 835,670 controls), we identified 63 susceptibility regions (50 novel) containing 108 independent risk loci. In analyses stratified by subtype, 52 regions (78 loci) were associated with clear cell renal cell carcinoma (RCC) and 6 regions (7 loci) with papillary RCC. Notably, we report a variant common in African ancestry individuals ( rs7629500 ) in the 3' untranslated region of VHL, nearly tripling clear cell RCC risk (odds ratio 2.72, 95% confidence interval 2.23-3.30). In cis-expression quantitative trait locus analyses, 48 variants from 34 regions point toward 83 candidate genes. Enrichment of hypoxia-inducible factor-binding sites underscores the importance of hypoxia-related mechanisms in kidney cancer. Our results advance understanding of the genetic architecture of kidney cancer, provide clues for functional investigation and enable generation of a validated polygenic risk score with an estimated area under the curve of 0.65 (0.74 including risk factors) among European ancestry individuals.
Collapse
Affiliation(s)
- Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Diptavo Dutta
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Timothy Winter
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | | | | | - Paul Scheet
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aoxing Liu
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chao Wu
- Biosample Repository, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Samuel O Antwi
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - James Larkin
- Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | - Stênio C Zequi
- Department of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation INCIT-INOTE, São Paulo, Brazil
- Latin American Renal Cancer Group, São Paulo, Brazil
- Department of Surgery, Division of Urology, São Paulo Federal University, São Paulo, Brazil
| | - Maxine Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ali Hajiran
- Department of Urology, Division of Urologic Oncology, West Virginia University Cancer Institute, Morgantown, WV, USA
| | - Keith A Lawson
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Flavio Cárcano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Brian Shuch
- Department of Urology, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kenneth G Nepple
- Department of Urology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Gaëlle Margue
- Department of Urology, CHU Bordeaux, Bordeaux, France
| | - Debasish Sundi
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Maria A A K Folgueira
- Departments of Radiology and Oncology, Comprehensive Center for Precision Oncology-C2PO, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Nathan R Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Michelle R Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Amy A Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wen-Yi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | | | - Sérgio V Serrano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Ana Vilas
- Department of Pathology, Hospital Pasteur, Montevideo, Uruguay
| | - Ricardo Decia
- Department of Urology, Hospital Pasteur, Montevideo, Uruguay
| | | | - Laura S Graham
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kyra Anderson
- Oncology Clinical Research Support Team, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mehmet A Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Cletus Arciero
- Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Solène Ricard
- Department of Urology, CHU Bordeaux, Bordeaux, France
| | - Ghislaine Scelo
- Observational and Pragmatic Research Institute Pte Ltd, Singapore, Singapore
| | - Rosamonde E Banks
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Naveen S Vasudev
- Department of Oncology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Naeem Soomro
- Department of Urology, Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | - Grant D Stewart
- Department of Urology, Western General Hospital, NHS Lothian, Edinburgh, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Adebanji Adeyoju
- Department of Urology, Stockport NHS Foundation Trust, Stockport, UK
| | - Stephen Bromage
- Department of Urology, Stockport NHS Foundation Trust, Stockport, UK
| | - David Hrouda
- Department of Urology, Imperial College Healthcare NHS Trust, London, UK
| | - Norma Gibbons
- Department of Urology, Imperial College Healthcare NHS Trust, London, UK
| | - Poulam Patel
- Division of Oncology, University of Nottingham, Nottingham, UK
| | - Mark Sullivan
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew Protheroe
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Francesca I Nugent
- Department of Urology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | | | - Xiaoyu Zhang
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lisa J Martin
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Maria Komisarenko
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Timothy Eisen
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sonia A Cunningham
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denise C Connolly
- Cancer Signaling and Microenvironment, Biosample Repository Facility, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Robert G Uzzo
- Department of Urology, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - David Zaridze
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Anush Mukeria
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Oncology, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Anna Hornakova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Dana Mates
- Department of Occupational Health and Toxicology, National Center for Environmental Risk Monitoring, National Institute of Public Health, Bucharest, Romania
| | - Viorel Jinga
- Urology Department, Academy of Romanian Scientists, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Stefan Rascu
- Urology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mirjana Mijuskovic
- Clinic of Nephrology, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Slavisa Savic
- Department of Urology, Clinical Hospital Center Dr Dragisa Misovic Dedinje, Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organisation for Cancer Prevention and Research, Belgrade, Serbia
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | | | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Larry Phouthavongsy
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Lindsay Hayman
- Diagnostic Development Program, Tissue Portal, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jason Li
- Diagnostic Development Program, Tissue Portal, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ilinca Lungu
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Diagnostic Development Program, Tissue Portal, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Aline G Souza
- Departments of Medical Imaging, Hematology and Oncology, Division of Medical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Claudia T G Sares
- Departments of Surgery and Anatomy, Division of Urology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Rodolfo B Reis
- Departments of Surgery and Anatomy, Division of Urology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Fabio P Gallucci
- Surgery Department, Urology Division, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio D Cordeiro
- Surgery Department, Urology Division, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gwo-Shu M Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Anhyo Jeong
- Department of Urology, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Samantha E Greenberg
- Department of Population Sciences, Genetic Counseling Shared Resource, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alejandro Sanchez
- Department of Surgery, Division of Urology, Huntsman Cancer Institute and University of Utah, Salt Lake City, UT, USA
| | | | - Vidit Sharma
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - David D Thiel
- Department of Urology, Mayo Clinic, Jacksonville, FL, USA
| | - Colleen T Ball
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Diego Abreu
- Department of Urology, Hospital Pasteur, Montevideo, Uruguay
| | - Elaine T Lam
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William C Nahas
- Surgery Department, Urology Division, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Viraj A Master
- Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Pierre Bigot
- Department of Urology, CHU Angers, Angers, France
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Leandro M Colli
- Departament of Medical Image, Hematology and Oncology, Division of Medical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Antonio Finelli
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brandon J Manley
- Genitourinary Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dirce M Carraro
- Clinical and Functional Genomics Group, CIPE (International Research Center), A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | | | - Philip H Abbosh
- Department of Nuclear Dynamics and Cancer, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Jian Gu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
4
|
Al Sharie AH, Abu Zahra AM, El-Elimat T, Darweesh RF, Al-Khaldi AK, Abu Mousa BM, Amer MSB, Al Zu’bi YO, Al-Kammash K, Abu Lil A, Al Malkawi AA, Alazzeh Z, Alali FQ. Cyclin dependent kinase inhibitor 3 (CDKN3) upregulation is associated with unfavorable prognosis in clear cell renal cell carcinoma and shapes tumor immune microenvironment: A bioinformatics analysis. Medicine (Baltimore) 2023; 102:e35004. [PMID: 37682177 PMCID: PMC10489202 DOI: 10.1097/md.0000000000035004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Cell cycle regulatory proteins plays a pivotal role in the development and progression of many human malignancies. Identification of their biological functions as well as their prognostic utility presents an active field of research. As a continuation of the ongoing efforts to elucidate the molecular characteristics of clear cell renal cell carcinoma (ccRCC); we present a comprehensive bioinformatics study targeting the prognostic and mechanistic role of cyclin-dependent kinase inhibitor 3 (CDKN3) in ccRCC. The ccRCC cohort from the Cancer Genome Atlas Program was accessed through the UCSC Xena browser to obtain CDKN3 mRNA expression data and their corresponding clinicopathological variables. The independent prognostic signature of CDKN3 was evaluated using univariate and multivariate Cox logistic regression analysis. Gene set enrichment analysis and co-expression gene functional annotations were used to discern CDKN3-related altered molecular pathways. The tumor immune microenvironment was evaluated using TIMER 2.0 and gene expression profiling interactive analysis. CDKN3 upregulation is associated with shortened overall survival (hazard ratio [HR] = 2.325, 95% confident interval [CI]: 1.703-3.173, P < .0001) in the Cancer Genome Atlas Program ccRCC cohort. Univariate (HR: 0.426, 95% CI: 0.316-0.576, P < .001) and multivariate (HR: 0.560, 95% CI: 0.409-0.766, P < .001) Cox logistic regression analyses indicate that CDKN3 is an independent prognostic variable of the overall survival. High CDKN3 expression is associated with enrichment within the following pathways including allograph rejection, epithelial-mesenchymal transition, mitotic spindle, inflammatory response, IL-6/JAK/STAT3 signaling, spermatogenesis, TNF-α signaling via NF-kB pathway, complement activation, KRAS signaling, and INF-γ signaling. CDKN3 is also associated with significant infiltration of a wide spectrum of immune cells and correlates remarkably with immune-related genes. CDKN3 is a poor prognostic biomarker in ccRCC that alters many molecular pathways and impacts the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ahmed H. Al Sharie
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Abdulmalek M. Abu Zahra
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Reem F. Darweesh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Ayah K. Al-Khaldi
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Balqis M. Abu Mousa
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | | | - Yazan O. Al Zu’bi
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Kinda Al-Kammash
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Alma Abu Lil
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | | | - Zainab Alazzeh
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Feras Q. Alali
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Chen J, Zhou J, Jiang Y, Wang Y, Chen C, Jiang T, Du J. Inositol 1,4,5-trisphosphate receptor gene variants are related to the risk of breast cancer in a Chinese population. J Gene Med 2023; 25:e3463. [PMID: 36350267 DOI: 10.1002/jgm.3463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mammalian inositol 1,4,5-trisphosphate receptor (ITPR) genes encode ubiquitously expressed endoplasmic reticulum Ca2+ channels that have recently been shown to be closely linked to the pathogenesis of several cancers. However, few studies to date have explored associations between ITPR gene family single nucleotide polymorphisms (SNPs) and breast cancer risk. METHODS In the present case-control study, 12 SNPs in the potential functional regions of the ITPR1, ITPR2, and ITPR3 genes were genotyped using an Illumina Infinium® Beadchip in 2095 Chinese women (1032 cases and 1063 controls). RESULTS Multivariate logistic regression analyses indicated that a missense SNP in the ITPR3 coding region (rs2229642) was significantly related to breast cancer risk when using an additive model in this study (rs2229642-adjusted odds ratio = 1.40, 95% confidence interval = 1.12-1.74, p = 2.97 × 10-3 ). Expression quantitative trait loci analyses indicated that the SNP rs2229642 was associated with reduced ITPR3 expression levels (p = 3.2 × 10-7 ) and with marked reductions in the expressions of several proximal genes, including BAK1, GRM4, HLA-DOB, and UQCC2 (p = 0.013, 0.018, 3.4 × 10-3 , 3.8 × 10-5 ), suggesting that it may further regulate other genes associated with oncogenic susceptibility. Kaplan-Meier analyses indicated that the patients with higher ITPR3 expression exhibited significantly poorer outcomes compared to the patients with lower expression of this gene (hazard ratio = 1.11, 95% confidence interval = 1-1.23, p = 0.046). CONCLUSIONS The results indicated that genetic variant in the coding region of ITPR3 gene may regulate the expressions of its host and some other cancer-related genes, as well as act as potential predictive biomarker for susceptibility to breast cancer in the Chinese population.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Zhou
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuzhuo Wang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Congcong Chen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Harrison H, Li N, Saunders CL, Rossi SH, Dennis J, Griffin SJ, Stewart GD, Usher‐Smith JA. The current state of genetic risk models for the development of kidney cancer: a review and validation. BJU Int 2022; 130:550-561. [PMID: 35460182 PMCID: PMC9790357 DOI: 10.1111/bju.15752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To review the current state of genetic risk models for predicting the development of kidney cancer, by identifying and comparing the performance of published models. METHODS Risk models were identified from a recent systematic review and the Cancer-PRS web directory. A narrative synthesis of the models, previous validation studies and related genome-wide association studies (GWAS) was carried out. The discrimination and calibration of the identified models was then assessed and compared in the UK Biobank (UKB) cohort (cases, 452; controls, 487 925). RESULTS A total of 39 genetic models predicting the development of kidney cancer were identified and 31 were validated in the UKB. Several of the genetic-only models (seven of 25) and most of the mixed genetic-phenotypic models (five of six) had some discriminatory ability (area under the receiver operating characteristic curve >0.5) in this cohort. In general, models containing a larger number of genetic variants identified in GWAS performed better than models containing a small number of variants associated with known causal pathways. However, the performance of the included models was consistently poorer than genetic risk models for other cancers. CONCLUSIONS Although there is potential for genetic models to identify those at highest risk of developing kidney cancer, their performance is poorer than the best genetic risk models for other cancers. This may be due to the comparatively small number of genetic variants associated with kidney cancer identified in GWAS to date. The development of improved genetic risk models for kidney cancer is dependent on the identification of more variants associated with this disease. Whether these will have utility within future kidney cancer screening pathways is yet to determined.
Collapse
Affiliation(s)
- Hannah Harrison
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Nicole Li
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- Deanary of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | | | - Sabrina H. Rossi
- Department of SurgeryUniversity of CambridgeAddenbrooke’s HospitalCambridgeUK
| | - Joe Dennis
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Simon J. Griffin
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Grant D. Stewart
- Department of SurgeryUniversity of CambridgeAddenbrooke’s HospitalCambridgeUK
| | | |
Collapse
|
7
|
Tsai CW, Chang WS, Xu Y, Huang M, Tamboli P, Wood CG, Bau DT, Gu J. Prognostic significance of circulating insulin growth-like factor 1 and insulin growth-like factor binding protein 3 in renal cell carcinoma patients. Am J Cancer Res 2022; 12:852-860. [PMID: 35261807 PMCID: PMC8899987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023] Open
Abstract
Insulin growth-like factor-1 (IGF-1) and its main binding protein insulin growth-like factor binding protein 3 (IGFBP-3) play important roles in cancer development and progression. We hypothesize that circulating IGF-1 and IGFBP-3 may have significant prognostic values in renal cell carcinoma (RCC) patients. We used 1,010 histologically confirmed RCC patients in this case series study to test this hypothesis. We constructed a weighted genetic risk score (GRS) using a large panel of genome-wide association study (GWAS)-identified single nucleotide polymorphisms (SNPs) to predict circulating IGF-1 and IGFBP-3 level, respectively. We analyzed the associations of the GRS with the prognosis of RCC patients using multivariate Cox proportional hazards model. We found significant associations between genetically predicted circulating IGF-1 level, but not IGFBP-3, and RCC prognosis. RCC patients with better prognosis had significantly higher baseline circulating IGF-1 level than those with worse prognosis. Dichotomized at the median value of GRS, patients with high IGF-1 exhibited significantly lower risks of recurrence (HR=0.81, 95% CI, 0.65-0.99, P=0.045) and death (HR=0.74, 95% CI, 0.60-0.91, P=0.004). If patients were dichotomized at the 75% value of GRS, those with the highest quarter of GRS had 27% lower risk of recurrence (OR=0.73, 95% CI, 0.55-0.96, P=0.025) and 34% lower risk of death (OR=0.66, 95% CI, 0.50-0.87, P=0.003) than the other three quarters of patients. High IGF-1/IGFBP-3 ratio was also associated with reduced risks of recurrence and survival. In conclusion, high circulating IGF-1 level and IGF-1/IGFBP-3 ratio at diagnosis is associated with better prognosis in RCC patients.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Pheroze Tamboli
- Department of Pathology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Christopher G Wood
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia UniversityTaichung 413305, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|
8
|
Xiang X, Chen L, He J, Ma G, Li Y. LncRNA GAS5 rs145204276 Polymorphism Reduces Renal Cell Carcinoma Susceptibility in Southern Chinese Population. J Inflamm Res 2022; 15:1147-1158. [PMID: 35210817 PMCID: PMC8863339 DOI: 10.2147/jir.s348628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Methods Results Conclusions
Collapse
Affiliation(s)
- Xiaoyao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Linfa Chen
- Department of NeUrology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000, People’s Republic of China
| | - Jiawen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Shunde, 528300, People’s Republic of China
- Correspondence: Guoda Ma, Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Shunde, 528300, People’s Republic of China, Email
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- You Li, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China, Email
| |
Collapse
|
9
|
Colli LM, Jessop L, Myers TA, Camp SY, Machiela MJ, Choi J, Cunha R, Onabajo O, Mills GC, Schmid V, Brodie SA, Delattre O, Mole DR, Purdue MP, Yu K, Brown KM, Chanock SJ. Altered regulation of DPF3, a member of the SWI/SNF complexes, underlies the 14q24 renal cancer susceptibility locus. Am J Hum Genet 2021; 108:1590-1610. [PMID: 34390653 PMCID: PMC8456159 DOI: 10.1016/j.ajhg.2021.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Our study investigated the underlying mechanism for the 14q24 renal cell carcinoma (RCC) susceptibility risk locus identified by a genome-wide association study (GWAS). The sentinel single-nucleotide polymorphism (SNP), rs4903064, at 14q24 confers an allele-specific effect on expression of the double PHD fingers 3 (DPF3) of the BAF SWI/SNF complex as assessed by massively parallel reporter assay, confirmatory luciferase assays, and eQTL analyses. Overexpression of DPF3 in renal cell lines increases growth rates and alters chromatin accessibility and gene expression, leading to inhibition of apoptosis and activation of oncogenic pathways. siRNA interference of multiple DPF3-deregulated genes reduces growth. Our results indicate that germline variation in DPF3, a component of the BAF complex, part of the SWI/SNF complexes, can lead to reduced apoptosis and activation of the STAT3 pathway, both critical in RCC carcinogenesis. In addition, we show that altered DPF3 expression in the 14q24 RCC locus could influence the effectiveness of immunotherapy treatment for RCC by regulating tumor cytokine secretion and immune cell activation.
Collapse
MESH Headings
- Carcinogenesis/genetics
- Carcinogenesis/immunology
- Carcinogenesis/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/therapy
- Cell Line, Tumor
- Chromatin/chemistry
- Chromatin/immunology
- Chromatin Assembly and Disassembly/immunology
- Chromosomes, Human, Pair 14
- Cytokines/genetics
- Cytokines/immunology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Gene Expression Regulation
- Genetic Loci
- Genetic Predisposition to Disease
- Genome, Human
- Genome-Wide Association Study
- High-Throughput Nucleotide Sequencing
- Humans
- Immunotherapy/methods
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Kidney Neoplasms/therapy
- Polymorphism, Single Nucleotide
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/immunology
- T-Lymphocytes, Cytotoxic
- Transcription Factors/genetics
- Transcription Factors/immunology
Collapse
Affiliation(s)
- Leandro M Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Lea Jessop
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Timothy A Myers
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Sabrina Y Camp
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Renato Cunha
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14040-900, Brazil; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Olusegun Onabajo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Grace C Mills
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Virginia Schmid
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Seth A Brodie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Olivier Delattre
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris 75248, France
| | - David R Mole
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA.
| |
Collapse
|
10
|
SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling. Cell Death Dis 2021; 12:672. [PMID: 34218253 PMCID: PMC8254807 DOI: 10.1038/s41419-021-03958-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, more than 10 independent SNPs have been discovered to be associated with the risk of renal cell carcinoma among different populations. However, the biological functions of them remain poorly understood. In this study, we performed eQTL analysis, ChIP-PCR, luciferase reporter assay, and Cox regression analysis to identify the functional role and underlying mechanism of rs67311347 in RCC. The ENCORI database, which contains the lncRNA–miRNA–mRNA interactions, was used to explore the possible target miRNA of ENTPD3-AS1. The results showed that the G > A mutation of rs67311347 created a binding motif of ZNF8 and subsequently upregulated ENTPD3-AS1 expression by acting as an enhancer. The TCGA-KIRC and our cohorts both confirmed the downregulation of ENTPD3-AS1 in RCC tissues and demonstrated that increased ENTPD3-AS1 expression was associated with good OS and PFS. Furthermore, ENTPD3-AS1 interacted with miR-155-5p and activated the expression of HIF-1α, which was an important tumor suppressor gene in the development of RCC. The functional experiments revealed that overexpression of ENTPD3-AS1 inhibited cell proliferation in RCC cell lines and the effect could be rescued by knocking down HIF-1α. Our findings reveal that SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling.
Collapse
|
11
|
Chen M, Tsai CW, Chang WS, Xiong GY, Xu Y, Bau DT, Gu J. High circulating insulin-like growth factor-1 reduces the risk of renal cell carcinoma: a Mendelian randomization study. Carcinogenesis 2021; 42:826-830. [PMID: 33852723 DOI: 10.1093/carcin/bgab031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Insulin and insulin-like growth factors play important roles in carcinogenesis. Circulating insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) have been linked to cancer susceptibility. The associations of circulating IGF-1 and IGFBP-3 with the risk of renal cell carcinoma (RCC) are inconsistent. Recent large genome-wide association studies have identified 413 single nucleotide polymorphisms (SNPs) associated with IGF-1 and 4 SNPs associated with IGFBP-3. In this large case-control study consisting of 2069 RCC patients and 2052 healthy controls of European ancestry, we used a two-sample Mendelian randomization (MR) approach to investigate the associations of genetically predicted circulating IGF-1 and IGFBP-3 with RCC risk. We used an individual level data-based genetic risk score (GRS) and a summary statistics-based inverse-variance weighting (IVW) method in MR analyses. We found that genetically predicted IGF-1 was significantly associated with RCC risk in both the GRS analysis [odds ratio (OR) = 0.43 per SD increase, 95% confidence interval (CI), 0.34-0.53] and the IVW analysis (OR = 0.46 per SD increase, 95% CI, 0.37-0.57). Dichotomized at the median GRS value of IGF-1 in controls, individuals with high GRS had a 45% reduced RCC risk (OR = 0.55, 95% CI, 0.48-0.62) compared with those with low GRS. Genetically predicted circulating IGFBP-3 was not associated with RCC risk. This is the largest RCC study of circulating IGF-1 and IGFBP-3 to date and our data suggest a strong inverse relationship between circulating IGF-1 level and RCC risk.
Collapse
Affiliation(s)
- Meng Chen
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Grace Y Xiong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Da-Tian Bau
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Eckel-Passow JE, Yan H, Kosel ML, Serie D, Decker PA, Jenkins RB, Costello B, Leibovich B, Ho TH, Parker A. 8q24 clear cell renal cell carcinoma germline variant is associated with VHL mutation status and clinical aggressiveness. BMC Urol 2020; 20:173. [PMID: 33121461 PMCID: PMC7597051 DOI: 10.1186/s12894-020-00745-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 01/13/2023] Open
Abstract
Background The four most commonly-mutated genes in clear cell renal cell carcinoma (ccRCC) tumors are BAP1, PBRM1, SETD2 and VHL. And, there are currently 14 known RCC germline variants that have been reproducibly shown to be associated with RCC risk. However, the association of germline genetics with tumor genetics and clinical aggressiveness are unknown. Methods We analyzed 420 ccRCC patients from The Cancer Genome Atlas. Molecular subtype was determined based on acquired mutations in BAP1, PBRM1, SETD2 and VHL. Aggressive subtype was defined clinically using Mayo SSIGN score and molecularly using the ccA/ccB gene expression subtype. Publically-available Hi-C data were used to link germline risk variants with candidate target genes. Results The 8q24 variant rs35252396 was significantly associated with VHL mutation status (OR = 1.6, p = 0.0037) and SSIGN score (OR = 1.9, p = 0.00094), after adjusting for multiple comparisons. We observed that, while some germline variants have interactions with nearby genes, some variants demonstrate long-range interactions with target genes. Conclusions These data further demonstrate the link between rs35252396, HIF pathway and ccRCC clinical aggressiveness, providing a more comprehensive picture of how germline genetics and tumor genetics interact with respect to tumor development and progression.
Collapse
Affiliation(s)
- Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew L Kosel
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Daniel Serie
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Paul A Decker
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Thai H Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Alexander Parker
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
13
|
Chen M, Tsai CW, Chang WS, Xu J, Xu Y, Bau DT, Gu J. Prognostic value of leukocyte telomere length in renal cell carcinoma patients. Am J Cancer Res 2020; 10:3428-3439. [PMID: 33163281 PMCID: PMC7642657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023] Open
Abstract
Telomeres play important roles in cancer initiation and progression. Leukocyte telomere length (LTL) can modulate cancer risk and outcome. We hypothesize that genetically predicted short LTL is associated with worse prognosis in renal cell carcinoma (RCC). A total of 1,086 histologically confirmed RCC patients were included in this study. A weighted genetic risk score (GRS) predictive of LTL was constructed using 10 confirmed LTL-associated single nucleotide polymorphisms (SNPs). The associations of individual SNPs and GRS with recurrence and survival were determined by multivariate Cox proportional hazards analysis. In individual SNP analysis, long LTL-associated allele of rs7675998 in NAF1 gene at chromosome 4 was significantly associated with a reduced risk of recurrence (HR=0.85, 95% CI, 0.73-0.99, P=0.043), while the long LTL-associated allele of rs10936599 in TERC at chromosome 3 conferred a reduced risk of death (HR=0.85, 95% CI, 0.73-1.00, P=0.047). More importantly, genetically predicted LTL was associated with both recurrence and survival. Dichotomized at the median value of GRS, patients with low GRS (indicating short LTL) exhibited significantly increased risks of recurrence (HR=1.26, 95% CI, 1.03-1.54, P=0.025) and death (HR=1.23, 95% CI, 1.00-1.50, P=0.045). Hence, we concluded that genetically predicted short LTL is associated with worse prognosis in RCC patients.
Collapse
Affiliation(s)
- Meng Chen
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
| | - Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia UniversityTaichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|
14
|
Cao Q, Li P, Cao P, Qian J, Du M, Li L, Wang M, Qin C, Shao P, Zhang Z, Lu Q, Wang Z. Genetic Variant in Long Non-Coding RNA H19 Modulates Its Expression and Predicts Renal Cell Carcinoma Susceptibility and Mortality. Front Oncol 2020; 10:785. [PMID: 32509581 PMCID: PMC7251175 DOI: 10.3389/fonc.2020.00785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
The long non-coding RNA (lncRNA) H19 has been demonstrated to play a crucial role in carcinogenesis, including renal cell carcinoma (RCC). However, the impact of genetic variations in H19 gene on RCC has not been investigated before. In the present study, we sought to evaluate whether genetic polymorphisms in H19 are related to the susceptibility and mortality of RCC. We genotyped four widely studied polymorphisms in H19 and assessed their relationship with susceptibility and prognosis of RCC in a case-control study compromising 1,027 cases and 1,094 controls. The functionality of the important polymorphism was further investigated by real-time polymerase chain reaction and luciferase reporter assay. We found that H19 rs2839698 was significantly associated with risk and prognosis of RCC. Compared with the H19 rs2839698 CC genotype, the variant genotypes (CT/TT) were significantly associated with increased risk of RCC (P = 0.023, OR = 1.21; 95% CI = 1.03–1.45). Besides, patients with variant genotypes (CT/TT) were more likely to develop large tumor (P = 0.003, OR = 1.47; 95% CI = 1.16–1.85) and advanced disease (P = 0.010, OR = 1.59; 95% CI = 1.12–2.26); and had a significantly unfavorable overall survival than those with the rs2839698 CC genotype (CT/TT vs. CC: Log-rank P = 0.026, HR = 2.25, 95%CI = 1.07–4.75). Furthermore, the CT/TT genotypes were associated with significantly increased expression of H19 in renal tissue. The luciferase reporter assays revealed the potential effect of rs2839698 variant on the binding of microRNAs to H19. Our results suggest that the H19 rs2839698 variant may be a genetic predictor of susceptibility and mortality of RCC. The risk effects and the functional impact of the variant on H19 still need further validation.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Cao
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Qian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Molecular & Genetic Toxicology, Nanjing Medical University, Nanjing, China
| | - Li Li
- Department of Ultrasound, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meilin Wang
- Department of Molecular & Genetic Toxicology, Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Molecular & Genetic Toxicology, Nanjing Medical University, Nanjing, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Germline polymorphisms in the Von Hippel-Lindau and Hypoxia-inducible factor 1-alpha genes, gene-environment and gene-gene interactions and renal cell cancer. Sci Rep 2020; 10:137. [PMID: 31924838 PMCID: PMC6954183 DOI: 10.1038/s41598-019-56980-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/23/2019] [Indexed: 01/20/2023] Open
Abstract
We investigated the relationship between germline single nucleotide polymorphisms (SNPs) in Von Hippel-Lindau (VHL) and Hypoxia-inducible factor 1-alpha (HIF1A), and their gene-environment and gene-gene interactions, and clear-cell RCC (ccRCC) risk. Furthermore, we assessed the relationship between VHL SNPs and VHL promoter methylation. Three VHL polymorphisms and one HIF1A polymorphism were genotyped in the Netherlands Cohort Study. In 1986, 120,852 participants aged 55–69 completed a self-administered questionnaire on diet and lifestyle and toenail clippings were collected. Toenail DNA was genotyped using the Sequenom MassARRAY platform. After 20.3 years, 3004 subcohort members and 406 RCC cases, of which 263 ccRCC cases, were eligible for multivariate case-cohort analyses. VHL_rs779805 was associated with RCC (Hazard Ratio (HR) 1.53; 95% Confidence Interval (CI) 1.07–2.17) and ccRCC risk (HR 1.88; 95% CI 1.25–2.81). No associations were found for other SNPs. Potential gene-environment interactions were found between alcohol consumption and selected SNPs. However, none remained statistically significant after multiple comparison correction. No gene-gene interactions were observed between VHL and HIF1A. VHL promoter methylation was not associated with VHL SNPs. VHL SNPs may increase (cc)RCC susceptibility. No associations were found between gene-environment and gene-gene interactions and (cc)RCC risk and between VHL promoter methylation and VHL SNPs.
Collapse
|
16
|
D'Aniello C, Berretta M, Cavaliere C, Rossetti S, Facchini BA, Iovane G, Mollo G, Capasso M, Pepa CD, Pesce L, D'Errico D, Buonerba C, Di Lorenzo G, Pisconti S, De Vita F, Facchini G. Biomarkers of Prognosis and Efficacy of Anti-angiogenic Therapy in Metastatic Clear Cell Renal Cancer. Front Oncol 2019; 9:1400. [PMID: 31921657 PMCID: PMC6917607 DOI: 10.3389/fonc.2019.01400] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022] Open
Abstract
In the last decades, the prognosis of metastatic renal cell carcinoma (mRCC) has remarkably improved following the advent of the "targeted therapy" era. The expanding knowledge on the prominent role played by angiogenesis in RCC pathogenesis has led to approval of multiple anti-angiogenic agents such as sunitinib, pazopanib, axitinib, cabozantinib, sorafenib, and bevacizumab. These agents can induce radiological responses and delay cancer progression for months or years before onset of resistance, with a clinically meaningful activity. The need for markers of prognosis and efficacy of anti-angiogenic agents has become more compelling as novel systemic immunotherapy agents have also been approved in RCC and can be administered as an alternative to angiogenesis inhibitors. Anti PD-1 monoclonal antibody nivolumab has been approved in the second-line setting after tyrosine kinase inhibitors failure, while combination of nivolumab plus anti CTLA-4 monoclonal antibody ipilimumab has been approved as first-line therapy of RCC patients at intermediate or poor prognosis. In this review article, biomarkers of prognosis and efficacy of antiangiogenic therapies are summarized with a focus on those that have the potential to affect treatment decision-making in RCC. Biomarkers predictive of toxicity of anti-angiogenic agents have also been discussed.
Collapse
Affiliation(s)
- Carmine D'Aniello
- Division of Medical Oncology, A.O.R.N. dei COLLI “Ospedali Monaldi-Cotugno-CTO,”Naples, Italy
| | - Massimiliano Berretta
- Division of Medical Oncology, Istituto Nazionale Tumori, IRCCS CRO Aviano (PN), Milan, Italy
| | - Carla Cavaliere
- UOC of Medical Oncology, ASL NA 3 SUD, Ospedali Riuniti Area Nolana, Nola, Italy
| | - Sabrina Rossetti
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | - Bianca Arianna Facchini
- Division of Medical Oncology, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Gelsomina Iovane
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | - Giovanna Mollo
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | - Mariagrazia Capasso
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | | | - Laura Pesce
- Oncology Unit, San Luca Hospital, Vallo Della Lucania, Italy
| | - Davide D'Errico
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | - Carlo Buonerba
- CRTR Rare Tumors Reference Center, AOU Federico II, Naples, Italy
- Environment & Health Operational Unit, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Giuseppe Di Lorenzo
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
- Department of Medicine, University of Molise, Campobasso, Italy
| | - Salvatore Pisconti
- Department of Onco-Hematology, Medical Oncology, S.G. Moscati Hospital, Taranto, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Gaetano Facchini
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| |
Collapse
|
17
|
Laskar RS, Muller DC, Li P, Machiela MJ, Ye Y, Gaborieau V, Foll M, Hofmann JN, Colli L, Sampson JN, Wang Z, Bacq-Daian D, Boland A, Abedi-Ardekani B, Durand G, Le Calvez-Kelm F, Robinot N, Blanche H, Prokhortchouk E, Skryabin KG, Burdett L, Yeager M, Radojevic-Skodric S, Savic S, Foretova L, Holcatova I, Janout V, Mates D, Rascu S, Mukeria A, Zaridze D, Bencko V, Cybulski C, Fabianova E, Jinga V, Lissowska J, Lubinski J, Navratilova M, Rudnai P, Świątkowska B, Benhamou S, Cancel-Tassin G, Cussenot O, Trichopoulou A, Riboli E, Overvad K, Panico S, Ljungberg B, Sitaram RT, Giles GG, Milne RL, Severi G, Bruinsma F, Fletcher T, Koppova K, Larsson SC, Wolk A, Banks RE, Selby PJ, Easton DF, Pharoah P, Andreotti G, Beane Freeman LE, Koutros S, Albanes D, Männistö S, Weinstein S, Clark PE, Edwards TL, Lipworth L, Carol H, Freedman ML, Pomerantz MM, Cho E, Kraft P, Preston MA, Wilson KM, Michael Gaziano J, Sesso HD, Black A, Freedman ND, Huang WY, Anema JG, Kahnoski RJ, Lane BR, Noyes SL, Petillo D, Teh BT, Peters U, White E, Anderson GL, Johnson L, Luo J, Chow WH, Moore LE, Choueiri TK, Wood C, Johansson M, McKay JD, Brown KM, et alLaskar RS, Muller DC, Li P, Machiela MJ, Ye Y, Gaborieau V, Foll M, Hofmann JN, Colli L, Sampson JN, Wang Z, Bacq-Daian D, Boland A, Abedi-Ardekani B, Durand G, Le Calvez-Kelm F, Robinot N, Blanche H, Prokhortchouk E, Skryabin KG, Burdett L, Yeager M, Radojevic-Skodric S, Savic S, Foretova L, Holcatova I, Janout V, Mates D, Rascu S, Mukeria A, Zaridze D, Bencko V, Cybulski C, Fabianova E, Jinga V, Lissowska J, Lubinski J, Navratilova M, Rudnai P, Świątkowska B, Benhamou S, Cancel-Tassin G, Cussenot O, Trichopoulou A, Riboli E, Overvad K, Panico S, Ljungberg B, Sitaram RT, Giles GG, Milne RL, Severi G, Bruinsma F, Fletcher T, Koppova K, Larsson SC, Wolk A, Banks RE, Selby PJ, Easton DF, Pharoah P, Andreotti G, Beane Freeman LE, Koutros S, Albanes D, Männistö S, Weinstein S, Clark PE, Edwards TL, Lipworth L, Carol H, Freedman ML, Pomerantz MM, Cho E, Kraft P, Preston MA, Wilson KM, Michael Gaziano J, Sesso HD, Black A, Freedman ND, Huang WY, Anema JG, Kahnoski RJ, Lane BR, Noyes SL, Petillo D, Teh BT, Peters U, White E, Anderson GL, Johnson L, Luo J, Chow WH, Moore LE, Choueiri TK, Wood C, Johansson M, McKay JD, Brown KM, Rothman N, Lathrop MG, Deleuze JF, Wu X, Brennan P, Chanock SJ, Purdue MP, Scelo G. Sex specific associations in genome wide association analysis of renal cell carcinoma. Eur J Hum Genet 2019; 27:1589-1598. [PMID: 31231134 PMCID: PMC6777615 DOI: 10.1038/s41431-019-0455-9] [Show More Authors] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinoma (RCC) has an undisputed genetic component and a stable 2:1 male to female sex ratio in its incidence across populations, suggesting possible sexual dimorphism in its genetic susceptibility. We conducted the first sex-specific genome-wide association analysis of RCC for men (3227 cases, 4916 controls) and women (1992 cases, 3095 controls) of European ancestry from two RCC genome-wide scans and replicated the top findings using an additional series of men (2261 cases, 5852 controls) and women (1399 cases, 1575 controls) from two independent cohorts of European origin. Our study confirmed sex-specific associations for two known RCC risk loci at 14q24.2 (DPF3) and 2p21(EPAS1). We also identified two additional suggestive male-specific loci at 6q24.3 (SAMD5, male odds ratio (ORmale) = 0.83 [95% CI = 0.78-0.89], Pmale = 1.71 × 10-8 compared with female odds ratio (ORfemale) = 0.98 [95% CI = 0.90-1.07], Pfemale = 0.68) and 12q23.3 (intergenic, ORmale = 0.75 [95% CI = 0.68-0.83], Pmale = 1.59 × 10-8 compared with ORfemale = 0.93 [95% CI = 0.82-1.06], Pfemale = 0.21) that attained genome-wide significance in the joint meta-analysis. Herein, we provide evidence of sex-specific associations in RCC genetic susceptibility and advocate the necessity of larger genetic and genomic studies to unravel the endogenous causes of sex bias in sexually dimorphic traits and diseases like RCC.
Collapse
Affiliation(s)
- Ruhina S Laskar
- International Agency for Research on Cancer (IARC), Lyon, France
| | - David C Muller
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Peng Li
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Yuanqing Ye
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Leandro Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Delphine Bacq-Daian
- Centre National de Recherche en Génomique Humaine, , Institut de biologie François Jacob, CEA, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, , Institut de biologie François Jacob, CEA, Evry, France
| | | | - Geoffroy Durand
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Helene Blanche
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Egor Prokhortchouk
- Center 'Bioengineering' of the Russian Academy of Sciences, Moscow, Russian Federation
- Kurchatov Scientific Center, Moscow, Russian Federation
| | - Konstantin G Skryabin
- Center 'Bioengineering' of the Russian Academy of Sciences, Moscow, Russian Federation
- Kurchatov Scientific Center, Moscow, Russian Federation
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | | | - Slavisa Savic
- Department of Urology, University Hospital "Dr D. Misovic" Clinical Center, Belgrade, Serbia
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ivana Holcatova
- 2nd Faculty of Medicine, Institute of Public Health and Preventive Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Janout
- Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Stefan Rascu
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, Bucharest, Romania
| | - Anush Mukeria
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Vladimir Bencko
- First Faculty of Medicine, Institute of Hygiene and Epidemiology, Charles University, Prague, Czech Republic
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Eleonora Fabianova
- Regional Authority of Public Health in BanskaBystrica, BanskaBystrica, Slovakia
| | - Viorel Jinga
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, Bucharest, Romania
| | - Jolanta Lissowska
- The M Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Marie Navratilova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Peter Rudnai
- National Public Health Institute, Budapest, Hungary
| | - Beata Świątkowska
- Department of Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Simone Benhamou
- INSERM U946, Paris, France
- CNRS UMR8200, Institute Gustave Roussy, Villejuif, France
| | - Geraldine Cancel-Tassin
- Sorbonne Université, GRC no. 5, ONCOTYPE-URO, AP-HP, Tenon Hospital, Paris, France
- CeRePP, Paris, France
| | - Olivier Cussenot
- Sorbonne Université, GRC no. 5, ONCOTYPE-URO, AP-HP, Tenon Hospital, Paris, France
- CeRePP, Paris, France
| | | | - Elio Riboli
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Borje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Raviprakash T Sitaram
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Graham G Giles
- Cancer Epidemiology & Intelligence Division, Cancer Council of Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville Victoria, 3010, Australia
| | - Roger L Milne
- Cancer Epidemiology & Intelligence Division, Cancer Council of Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville Victoria, 3010, Australia
| | - Gianluca Severi
- Cancer Epidemiology & Intelligence Division, Cancer Council of Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Inserm U1018, Center for Research in Epidemiology and Population Health (CESP), Facultés de Medicine, Université Paris-Saclay, Université Paris-Sud, UVSQ, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | - Fiona Bruinsma
- Cancer Epidemiology & Intelligence Division, Cancer Council of Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Kvetoslava Koppova
- Regional Authority of Public Health in BanskaBystrica, BanskaBystrica, Slovakia
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosamonde E Banks
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James's University Hospital, Leeds, UK
| | - Peter J Selby
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James's University Hospital, Leeds, UK
| | - Douglas F Easton
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul Pharoah
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | | | | | | | | | | | | | | | - Peter Kraft
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A Preston
- Brigham and Women's Hospital and VA Boston, Boston, MA, USA
| | | | | | - Howard D Sesso
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - John G Anema
- Division of Urology, Spectrum Health, Grand Rapids, MI, USA
| | | | - Brian R Lane
- Division of Urology, Spectrum Health, Grand Rapids, MI, USA
- College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Sabrina L Noyes
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, MI, USA
| | - David Petillo
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, MI, USA
| | - Bin Tean Teh
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, MI, USA
| | - Ulrike Peters
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emily White
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Lisa Johnson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health Indiana University Bloomington, Bloomington, IN, USA
| | - Wong-Ho Chow
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | | | - Christopher Wood
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - James D McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Mark G Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine, , Institut de biologie François Jacob, CEA, Evry, France
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France.
| |
Collapse
|
18
|
He X, Bai M, Liu M, Wang L, He Y, Rong H, Yuan D, Jin T. Genetic variants in the ITPR2 gene are associated with Kashin-Beck Disease in Tibetan. Mol Genet Genomic Med 2019; 7:e00715. [PMID: 31066235 PMCID: PMC6625103 DOI: 10.1002/mgg3.715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Kashin‐Beck Disease (KBD) is a chronic, endemic osteoarthropathy. Inositol 1,4,5‐triphosphate receptor type 2 (ITPR2) gene is involved in chondrocytes. We speculated that single‐nucleotide polymorphisms (SNPs) in ITPR2 gene may have an association with KBD in Tibetan. Methods To prove this hypothesis, a total of eight SNPs (rs1049376, rs11048526, rs11048556, rs11048585, rs16931011, rs10842759, rs2230372, and rs7134213) were selected, and genotyped in 316 KBD patients and 320 controls. The association between ITPR2 variants and KBD risk was assessed by logistic regression analysis. Results The study identified significant association (p = 0.019) between KBD and a novel locus, ITPR2 SNP rs11048526 (OR = 1.49, 95% CI = 1.07–2.08). The variant A/G genotype frequency in rs11048526 had a significantly increased risk of KBD in co‐dominant model (OR = 3.70, 95% CI = 1.26–10.89, p = 0.018), dominant model (OR = 3.56, 95% CI = 1.22–10.40, p = 0.020), log‐additive model (OR = 3.00, 95% CI = 1.12–8.00, p = 0.029) after adjusted for age and gender. Conclusion The results indicate a potential association between ITPR2 and KBD risk in Tibetan. Further work is required to confirm these results and explore the mechanisms of these effects.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Mei Bai
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Ming Liu
- Department of gynaecology and obstetricsThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of gynaecology and obstetricsThe Ngari Prefecture People's HospitalNgari PrefectureChina
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Hao Rong
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| |
Collapse
|
19
|
Shi Z, Yu H, Wu Y, Lin X, Bao Q, Jia H, Perschon C, Duggan D, Helfand BT, Zheng SL, Xu J. Systematic evaluation of cancer-specific genetic risk score for 11 types of cancer in The Cancer Genome Atlas and Electronic Medical Records and Genomics cohorts. Cancer Med 2019; 8:3196-3205. [PMID: 30968590 PMCID: PMC6558466 DOI: 10.1002/cam4.2143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic risk score (GRS) is an odds ratio (OR)-weighted and population-standardized method for measuring cumulative effect of multiple risk-associated single nucleotide polymorphisms (SNPs). We hypothesize that GRS is a valid tool for risk assessment of most common cancers. METHODS Utilizing genotype and phenotype data from The Cancer Genome Atlas (TCGA) and Electronic Medical Records and Genomics (eMERGE), we tested 11 cancer-specific GRSs (bladder, breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, prostate, renal, and thyroid cancer) for association with the respective cancer type. Cancer-specific GRSs were calculated, for the first time in these cohorts, based on previously published risk-associated SNPs using the Caucasian subjects in these two cohorts. RESULTS Mean cancer-specific GRS in the population controls of eMERGE approximated the expected value of 1.00 (between 0.98 and 1.02) for all 11 types of cancer. Mean cancer-specific GRS was consistently higher in respective cancer patients than controls for all 11 types of cancer (P < 0.05). When subjects were categorized into low-, average-, and high-risk groups based on cancer-specific GRS (<0.5, 0.5-1.5, and >1.5, respectively), significant dose-response associations of higher cancer-specific GRS with higher OR of respective type of cancer were found for nine types of cancer (P-trend < 0.05). More than 64% subjects in the population controls of eMERGE can be classified as high risk for at least one type of these cancers. CONCLUSION Validity of GRS for predicting cancer risk is demonstrated for most types of cancer. If confirmed in larger studies, cancer-specific GRS may have the potential for developing personalized cancer screening strategy.
Collapse
Affiliation(s)
- Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Hongjie Yu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Yishuo Wu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Lin
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quanwa Bao
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Haifei Jia
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chelsea Perschon
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - David Duggan
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Siqun L Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Shu X, Gu J, Huang M, Tannir NM, Matin SF, Karam JA, Wood CG, Wu X, Ye Y. Germline genetic variants in somatically significantly mutated genes in tumors are associated with renal cell carcinoma risk and outcome. Carcinogenesis 2019; 39:752-757. [PMID: 29635281 DOI: 10.1093/carcin/bgy021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified 13 susceptibility loci for renal cell carcinoma (RCC). Additional genetic loci of risk remain to be explored. Moreover, the role of germline genetic variants in predicting RCC recurrence and overall survival (OS) is less understood. In this study, we focused on 127 significantly mutated genes from The Cancer Genome Atlas (TCGA) Pan-Cancer Analysis across 12 major cancer sites to identify potential genetic variants predictive of RCC risk and clinical outcomes. In a three-phase design with a total of 2657 RCC cases and 5315 healthy controls, two single nucleotide polymorphisms (SNPs) that map to PIK3CG (rs6466135:A, ORmeta = 0.85, 95% CI = 0.77-0.94, Pmeta = 1.4 × 10-3) and ATM (rs611646:T, ORmeta = 1.17, 95% CI = 1.05-1.31, Pmeta = 3.5 × 10-3) were significantly associated with RCC risk. With respect to RCC recurrence and OS, two separate datasets with a total of 661 stages I-III RCC patients (discovery: 367; validation: 294) were analyzed. The most significant association was observed for rs10932384:C (ERBB4) with both outcomes (recurrence: HRmeta = 0.52, 95% CI = 0.39-0.68, Pmeta = 3.81 × 10-6; OS: HRmeta = 0.50, 95% CI = 0.37-0.67, Pmeta = 6.00 × 10-6). In addition, six SNPs were significantly associated with either RCC recurrence or OS but not both (Pmeta < 0.01). Rs10932384:C was significantly correlated with mutation frequency of ERBB4 in clear cell RCC (ccRCC) patients (P = 0.003, Fisher's exact test). Cis-eQTL was observed for several SNPs in blood/transformed fibroblasts but not in RCC tumor tissues. In summary, we identified promising genetic predictors of recurrence and OS among RCC patients with localized disease.
Collapse
Affiliation(s)
- Xiang Shu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianchun Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nizar M Tannir
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Surena F Matin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose A Karam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher G Wood
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Johansson M, Carreras-Torres R, Scelo G, Purdue MP, Mariosa D, Muller DC, Timpson NJ, Haycock PC, Brown KM, Wang Z, Ye Y, Hofmann JN, Foll M, Gaborieau V, Machiela MJ, Colli LM, Li P, Garnier JG, Blanche H, Boland A, Burdette L, Prokhortchouk E, Skryabin KG, Yeager M, Radojevic-Skodric S, Ognjanovic S, Foretova L, Holcatova I, Janout V, Mates D, Mukeriya A, Rascu S, Zaridze D, Bencko V, Cybulski C, Fabianova E, Jinga V, Lissowska J, Lubinski J, Navratilova M, Rudnai P, Benhamou S, Cancel-Tassin G, Cussenot O, Weiderpass E, Ljungberg B, Tumkur Sitaram R, Häggström C, Bruinsma F, Jordan SJ, Severi G, Winship I, Hveem K, Vatten LJ, Fletcher T, Larsson SC, Wolk A, Banks RE, Selby PJ, Easton DF, Andreotti G, Beane Freeman LE, Koutros S, Männistö S, Weinstein S, Clark PE, Edwards TL, Lipworth L, Gapstur SM, Stevens VL, Carol H, Freedman ML, Pomerantz MM, Cho E, Wilson KM, Gaziano JM, Sesso HD, Freedman ND, Parker AS, Eckel-Passow JE, Huang WY, Kahnoski RJ, Lane BR, Noyes SL, Petillo D, Teh BT, Peters U, White E, Anderson GL, Johnson L, Luo J, Buring J, Lee IM, Chow WH, Moore LE, Eisen T, Henrion M, Larkin J, Barman P, Leibovich BC, et alJohansson M, Carreras-Torres R, Scelo G, Purdue MP, Mariosa D, Muller DC, Timpson NJ, Haycock PC, Brown KM, Wang Z, Ye Y, Hofmann JN, Foll M, Gaborieau V, Machiela MJ, Colli LM, Li P, Garnier JG, Blanche H, Boland A, Burdette L, Prokhortchouk E, Skryabin KG, Yeager M, Radojevic-Skodric S, Ognjanovic S, Foretova L, Holcatova I, Janout V, Mates D, Mukeriya A, Rascu S, Zaridze D, Bencko V, Cybulski C, Fabianova E, Jinga V, Lissowska J, Lubinski J, Navratilova M, Rudnai P, Benhamou S, Cancel-Tassin G, Cussenot O, Weiderpass E, Ljungberg B, Tumkur Sitaram R, Häggström C, Bruinsma F, Jordan SJ, Severi G, Winship I, Hveem K, Vatten LJ, Fletcher T, Larsson SC, Wolk A, Banks RE, Selby PJ, Easton DF, Andreotti G, Beane Freeman LE, Koutros S, Männistö S, Weinstein S, Clark PE, Edwards TL, Lipworth L, Gapstur SM, Stevens VL, Carol H, Freedman ML, Pomerantz MM, Cho E, Wilson KM, Gaziano JM, Sesso HD, Freedman ND, Parker AS, Eckel-Passow JE, Huang WY, Kahnoski RJ, Lane BR, Noyes SL, Petillo D, Teh BT, Peters U, White E, Anderson GL, Johnson L, Luo J, Buring J, Lee IM, Chow WH, Moore LE, Eisen T, Henrion M, Larkin J, Barman P, Leibovich BC, Choueiri TK, Lathrop GM, Deleuze JF, Gunter M, McKay JD, Wu X, Houlston RS, Chanock SJ, Relton C, Richards JB, Martin RM, Davey Smith G, Brennan P. The influence of obesity-related factors in the etiology of renal cell carcinoma-A mendelian randomization study. PLoS Med 2019; 16:e1002724. [PMID: 30605491 PMCID: PMC6317776 DOI: 10.1371/journal.pmed.1002724] [Show More Authors] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation. METHODS AND FINDINGS Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44-1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40-1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44-1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30-2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11-1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84-1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose. CONCLUSIONS This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk.
Collapse
Affiliation(s)
| | | | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Daniela Mariosa
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Nicolas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Philip C. Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Zhaoming Wang
- St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Yuanqing Ye
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Leandro M. Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Peng Li
- International Agency for Research on Cancer (IARC), Lyon, France
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Jean-Guillaume Garnier
- Centre National de Genotypage, Institut de Genomique, Centre de l'Energie Atomique et aux Energies Alternatives, Evry, France
- Fondation Jean Dausset - Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Helene Blanche
- Fondation Jean Dausset - Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Anne Boland
- Centre National de Genotypage, Institut de Genomique, Centre de l'Energie Atomique et aux Energies Alternatives, Evry, France
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Egor Prokhortchouk
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Konstantin G. Skryabin
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russian Federation
- Kurchatov Scientific Center, Moscow, Russian Federation
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Sanja Radojevic-Skodric
- Institute of Pathology, Medical School of Belgrade, Belgrade, Serbia
- Clinic of Urology, Clinical Center of Serbia, Belgrade, Serbia
| | - Simona Ognjanovic
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
- International Organization for Cancer Prevention and Research (IOCPR), Belgrade, Serbia
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Janout
- Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Anush Mukeriya
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Stefan Rascu
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, Bucharest, Romania
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Vladimir Bencko
- Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Eleonora Fabianova
- Regional Authority of Public Health in Banska Bystrica, Banska Bystrica, Slovakia
| | - Viorel Jinga
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, Bucharest, Romania
| | - Jolanta Lissowska
- The M Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Marie Navratilova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Peter Rudnai
- National Public Health Center, National Directorate of Environmental Health, Budapest, Hungary
| | - Simone Benhamou
- INSERM U946, Paris, France
- CNRS UMR8200, Institute Gustave Roussy, Villejuif, France
| | - Geraldine Cancel-Tassin
- CeRePP, Paris, France
- UPMC Univ Paris 06, GRC n°5, Institut Universitaire de Cancérologie, Paris, France
| | - Olivier Cussenot
- CeRePP, Paris, France
- UPMC Univ Paris 06, GRC n°5, Institut Universitaire de Cancérologie, Paris, France
- AP-HP, Department of Urology, Hopitaux Universitaires Est Parisien Tenon, Paris, France
| | - Elisabete Weiderpass
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | | | - Christel Häggström
- Department of Biobank Research, Umeå University, Umeå, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Susan J. Jordan
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Public Health, The University of Queensland, Brisbane, Australia
| | - Gianluca Severi
- “Health across generations” team, CESP Inserm, Facultés de Médicine Université Paris-Sud, UVSQ, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Human Genetics Foundation (HuGeF), Torino, Italy
| | - Ingrid Winship
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars J. Vatten
- Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Susanna C. Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosamonde E. Banks
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, United Kingdom
| | - Peter J. Selby
- National Institute for Health Research Diagnostic Evidence Cooperative, Division of Surgery, Imperial College London, St Mary’s Hospital, London, United Kingdom
| | - Douglas F. Easton
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Laura E. Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Peter E. Clark
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, United States of America
| | - Todd L. Edwards
- Department of Medicine, Division of Epidemiology, Vanderbilt-Ingram Cancer Center, Vanderbilt Genetics Institute, Nashville, Tennessee, United States of America
| | - Loren Lipworth
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, United States of America
| | - Susan M. Gapstur
- American Cancer Society, Atlanta, Georgia, United States of America
| | | | - Hallie Carol
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Matthew L. Freedman
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Mark M. Pomerantz
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Eunyoung Cho
- Brown University, Providence, Rhode Island, United States of America
| | - Kathryn M. Wilson
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - J. Michael Gaziano
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Howard D. Sesso
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Alexander S. Parker
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Jeanette E. Eckel-Passow
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Richard J. Kahnoski
- Division of Urology, Spectrum Health, Grand Rapids, Michigan, United States of America
| | - Brian R. Lane
- Division of Urology, Spectrum Health, Grand Rapids, Michigan, United States of America
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Sabrina L. Noyes
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, Michigan, United States of America
- Spectrum Health, Grand Rapids, Michigan, United States of America
| | - David Petillo
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, Michigan, United States of America
- Diagnostics Program at Ferris State University, Grand Rapids, Michigan, United States of America
| | - Bin Tean Teh
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, Michigan, United States of America
- Program in Cancer and Stem Cell Biology, Duke-National, University of Singapore Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ulrike Peters
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emily White
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Garnet L. Anderson
- WHI Clinical Coordinating Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lisa Johnson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Julie Buring
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - I-Min Lee
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Wong-Ho Chow
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lee E. Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | | | - Marc Henrion
- The Institute of Cancer Research, London, United Kingdom
- Dept. of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - James Larkin
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Poulami Barman
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bradley C. Leibovich
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Toni K. Choueiri
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - G. Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Jean-Francois Deleuze
- Centre National de Genotypage, Institut de Genomique, Centre de l'Energie Atomique et aux Energies Alternatives, Evry, France
- Fondation Jean Dausset - Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Marc Gunter
- International Agency for Research on Cancer (IARC), Lyon, France
| | - James D. McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | | | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, United States of America
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - J. Brent Richards
- Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol NHS Foundation Trust National Institute for Health Research Bristol Nutrition Biomedical Research Unit, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
22
|
Molecular Basics on Genitourinary Malignancies. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Mitchell TJ, Rossi SH, Klatte T, Stewart GD. Genomics and clinical correlates of renal cell carcinoma. World J Urol 2018; 36:1899-1911. [PMID: 30099580 PMCID: PMC6280817 DOI: 10.1007/s00345-018-2429-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Clear cell, papillary cell, and chromophobe renal cell carcinomas (RCCs) have now been well characterised thanks to large collaborative projects such as The Cancer Genome Atlas (TCGA). Not only has knowledge of the genomic landscape helped inform the development of new drugs, it also promises to fine tune prognostication. METHODS A literature review was performed summarising the current knowledge on the genetic basis of RCC. RESULTS The Von Hippel-Lindau (VHL) tumour suppressor gene undergoes bi-allelic knockout in the vast majority of clear cell RCCs. The next most prevalent aberrations include a cohort of chromatin-modifying genes with diverse roles including PBRM1, SETD2, BAP1, and KMD5C. The most common non-clear cell renal cancers have also undergone genomic profiling and are characterised by distinct genomic landscapes. Many recurrent mutations have prognostic value and show promise in aiding decisions regarding treatment stratification. Intra-tumour heterogeneity appears to hamper the clinical applicability of sparsely sampled tumours. Ways to abrogate heterogeneity will be required to optimise the genomic classification of tumours. CONCLUSION The somatic mutational landscape of the more common renal cancers is well known. Correlation with outcome needs to be more comprehensively furnished, particularly for small renal masses, rarer non-clear cell renal cancers, and for all tumours undergoing targeted therapy.
Collapse
Affiliation(s)
- Thomas J Mitchell
- Cancer Genome Project, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK. .,Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK. .,Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Sabrina H Rossi
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK.,Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Tobias Klatte
- Department of Urology, Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Bournemouth, BH7 7DW, UK
| | - Grant D Stewart
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK.,Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
24
|
Wang Y, Yang ZY, Chen YH, Li F, Shen H, Yu Y, Huang HY, Shen ZY. A novel functional polymorphism of GSTM3 reduces clear cell renal cell carcinoma risk through enhancing its expression by interfering miR-556 binding. J Cell Mol Med 2018; 22:3005-3015. [PMID: 29569387 PMCID: PMC5980204 DOI: 10.1111/jcmm.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/06/2017] [Indexed: 01/20/2023] Open
Abstract
Dysregulation of glutathione‐S‐transferase M3 (GSTM3) has been related to clear cell renal cell carcinoma (ccRCC) in our former study. GSTM3 plays a pivotal role of detoxification and clearance of reactive oxygen species (ROS) in tumour tissues. This study aimed to examine: (1) the associations between GSTM3 single nucleotide polymorphisms (SNPs) and risk of ccRCC, and (2) the potential molecular mechanism accounting for its effects. 5 SNPs in 3′UTR of GSTM3 were initially genotyped in 329 cases and 420 healthy controls. A SNP‐rs1055259 was found to be significantly associated with the susceptibility of ccRCC (OR = 0.59, 95% CI = 0.41‐0.92; P = .019). The minor allele of rs1055259 (G allele) was associated with RCC risk. This SNP was predicted to affect microRNA (miR)‐556 binding to 3′UTR of GSTM3 mRNA. To determine the functional impact, plasmid constructs carrying different alleles of rs1055259 were created. Compared to rs1055259 A‐allele constructs, cells transfected with rs1055259 G‐allele construct had higher transcriptional activity and were less responsive to miR‐556 changes and gene expression. Elevated GSTM3 expression in G‐allele cells was associated with ROS activity and ccRCC development. Taken together, this study indicated that a functional polymorphism of GSTM3 ‐rs1055259 reduced susceptibility of RCC in the Chinese population. It influenced GSTM3 protein synthesis by interfering miR‐556 binding, subsequently suppressed ROS activity and ccRCC progression.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Zi-Ying Yang
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Yi-Huan Chen
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Feng Li
- Department of Urinary Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Han Shen
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - You Yu
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Hao-Yue Huang
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Zhen-Ya Shen
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
25
|
Batai K, Bergersen A, Price E, Hynes K, Ellis NA, Lee BR. Clinical and Molecular Characteristics and Burden of Kidney Cancer Among Hispanics and Native Americans: Steps Toward Precision Medicine. Clin Genitourin Cancer 2018; 16:e535-e541. [PMID: 29449090 DOI: 10.1016/j.clgc.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 01/20/2023]
Abstract
Cancer disparities in Native Americans (NAs) and Hispanic Americans (HAs) vary significantly in terms of cancer incidence and mortality rates across geographic regions. This review reports that kidney and renal pelvis cancers are unevenly affecting HAs and NAs compared to European Americans of non-Hispanic origin, and that currently there is significant need for improved data and reporting to be able to advance toward genomic-based precision medicine for the assessment of such cancers in these medically underserved populations. More specifically, in states along the US-Mexico border, HAs and NAs have higher kidney cancer incidence rates as well as a higher prevalence of kidney cancer risk factors, including obesity and chronic kidney disease. They are also more likely to receive suboptimal care compared to European Americans. Furthermore, they are underrepresented in epidemiologic, clinical, and molecular genomic studies of kidney cancer. Therefore, we maintain that progress in precision medicine for kidney cancer care requires an understanding of various factors among HAs and NAs, including the real kidney cancer burden, variations in clinical care, issues related to access to care, and specific clinical and molecular characteristics.
Collapse
Affiliation(s)
- Ken Batai
- Department of Surgery, Division of Urology, University of Arizona, Tucson, AZ.
| | - Andrew Bergersen
- Department of Surgery, Division of Urology, University of Arizona, Tucson, AZ
| | - Elinora Price
- Department of Surgery, Division of Urology, University of Arizona, Tucson, AZ
| | - Kieran Hynes
- Department of Surgery, Division of Urology, University of Arizona, Tucson, AZ
| | - Nathan A Ellis
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Benjamin R Lee
- Department of Surgery, Division of Urology, University of Arizona, Tucson, AZ
| |
Collapse
|
26
|
Cheng THT, Lam W, Teoh JYC. Molecular Basics on Genitourinary Malignancies. Urol Oncol 2018. [DOI: 10.1007/978-3-319-42603-7_45-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Zhang GM, Wang MY, Liu YN, Zhu Y, Wan FN, Wei QY, Ye DW. Functional variants in the low-density lipoprotein receptor gene are associated with clear cell renal cell carcinoma susceptibility. Carcinogenesis 2017; 38:1241-1248. [PMID: 29029037 DOI: 10.1093/carcin/bgx098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Recent studies indicate that abnormal levels of low-density lipoprotein (LDL), which is an important component of dyslipidaemia, are associated with alterations to cancer risk, including that of renal cell carcinoma (RCC). Single nucleotide polymorphisms at microRNA-binding sites contribute to cancer susceptibility and progression by affecting the messenger RNA (mRNA) function of target genes. In this case-control study, we examined the frequency of six potentially functional single nucleotide polymorphisms in the LDL receptor gene (LDLR) in 1004 clear cell RCC (ccRCC) patients and 1065 cancer-free subjects. Logistic regression analyses estimated odds ratios (ORs) and 95% confidence intervals (CIs). The association between genetic variants and levels of LDLR mRNA and protein was also evaluated. Compared with the CC genotype, multivariate logistic regression analysis showed that the LDLR rs2738464 variant GG genotype was associated with a significantly decreased ccRCC risk (P = 0.002, OR: 0.605, 95% CI: 0.439-0.833). Further functional experiments showed that the rs2738464 variant G allele affected miR-330 regulation of the LDLR 3'-untranslated region (UTR), increasing LDLR mRNA levels in patient kidney tissues. These findings suggest that LDLR rs2738464 may affect the affinity of miR-330 binding to the LDLR 3'-UTR, thus regulating LDLR expression and contributing to ccRCC risk.
Collapse
Affiliation(s)
- Gui-Ming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, China.,Department of Urology, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China
| | - Meng-Yun Wang
- Department of Oncology, Shanghai Medical College, Fudan University, China.,Cancer Institute, Fudan University Shanghai Cancer Center, China
| | - Ya-Nan Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China
| | - Fang-Ning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China
| | - Qing-Yi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, China.,Duke Cancer Institute, Duke University Medical Center, USA
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China
| |
Collapse
|
28
|
van Hulzen KJE, Scholz CJ, Franke B, Ripke S, Klein M, McQuillin A, Sonuga-Barke EJ, Kelsoe JR, Landén M, Andreassen OA, Lesch KP, Weber H, Faraone SV, Arias-Vasquez A, Reif A. Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis. Biol Psychiatry 2017; 82:634-641. [PMID: 27890468 PMCID: PMC7027938 DOI: 10.1016/j.biopsych.2016.08.040] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BPD) are frequently co-occurring and highly heritable mental health conditions. We hypothesized that BPD cases with an early age of onset (≤21 years old) would be particularly likely to show genetic covariation with ADHD. METHODS Genome-wide association study data were available for 4609 individuals with ADHD, 9650 individuals with BPD (5167 thereof with early-onset BPD), and 21,363 typically developing controls. We conducted a cross-disorder genome-wide association study meta-analysis to identify whether the observed comorbidity between ADHD and BPD could be due to shared genetic risks. RESULTS We found a significant single nucleotide polymorphism-based genetic correlation between ADHD and BPD in the full and age-restricted samples (rGfull = .64, p = 3.13 × 10-14; rGrestricted = .71, p = 4.09 × 10-16). The meta-analysis between the full BPD sample identified two genome-wide significant (prs7089973 = 2.47 × 10-8; prs11756438 = 4.36 × 10-8) regions located on chromosomes 6 (CEP85L) and 10 (TAF9BP2). Restricting the analyses to BPD cases with an early onset yielded one genome-wide significant association (prs58502974 = 2.11 × 10-8) on chromosome 5 in the ADCY2 gene. Additional nominally significant regions identified contained known expression quantitative trait loci with putative functional consequences for NT5DC1, NT5DC2, and CACNB3 expression, whereas functional predictions implicated ABLIM1 as an allele-specific expressed gene in neuronal tissue. CONCLUSIONS The single nucleotide polymorphism-based genetic correlation between ADHD and BPD is substantial, significant, and consistent with the existence of genetic overlap between ADHD and BPD, with potential differential genetic mechanisms involved in early and later BPD onset.
Collapse
Affiliation(s)
- Kimm J E van Hulzen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Claus J Scholz
- Core Unit Systems Medicine, University of Würzburg, Würzburg
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | | | | | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Mikael Landén
- The Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Stephen V Faraone
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway; Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
29
|
Lin M, Zhang L, Hildebrandt MA, Huang M, Wu X, Ye Y. Common, germline genetic variations in the novel tumor suppressor BAP1 and risk of developing different types of cancer. Oncotarget 2017; 8:74936-74946. [PMID: 29088836 PMCID: PMC5650391 DOI: 10.18632/oncotarget.20465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023] Open
Abstract
BRCA1 associated protein-1 (BAP1) is a novel tumor suppressor that has recently been shown to be somatically mutated in several cancers. The BAP1 gene also carries rare germline mutations in families with a high incidence of several types of cancers, such as mesothelioma, uveal melanoma, lung adenocarcinoma, melanocytic neoplasms, and renal cell carcinoma. To test the hypothesis that common, germline genetic variants in BAP1 may also contribute to the risk of developing different types of cancer, we genotyped germline single nucleotide polymorphisms (SNPs) for BAP1 in a large population of patients with cancer, including 2,340 with colorectal cancer, 1,436 with bladder cancer, 3,313 with lung cancer, 1,325 with renal cell carcinoma, and 1,162 with esophageal cancer. We identified significant association of rs11708581 (P = 0.0034) and rs390802 (P = 0.015) with risk of renal cell carcinoma and rs12163565 (P = 0.038) with risk of lung cancer. Expression quantitative trait loci analysis in renal cell carcinoma using publicly available data from TCGA showed that the proxy SNPs for rs11708581 and rs390802 were negatively associated with the expression level of BAP1. Our study indicate that common germline genetic variants of BAP1 play a role in mediating the risk of developing renal cell carcinoma and lung cancer.
Collapse
Affiliation(s)
- Moubin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Liren Zhang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
30
|
Wang F, Zhang Y, Wang S, Zhang Y, Wu D, Zhang C, Gao Y, Liu X, Wang W, Zhang S. IL1 genes polymorphism and the risk of renal cell carcinoma in Chinese Han population. Oncotarget 2017; 8:56021-56029. [PMID: 28915570 PMCID: PMC5593541 DOI: 10.18632/oncotarget.18715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 01/20/2023] Open
Abstract
Renal cell carcinoma (RCC) is considered a cytokine-responsive tumor. However, with the lack of diagnostic screening biomarkers, early diagnosis of RCC is challenging. Our study was investigated the association of IL1 gene polymorphisms and RCC risk. We conducted a case-control study of 291 RCC cases and 463 controls to evaluation the IL1RN of single nucleotide polymorphisms (SNPs) on RCC risk. We selection of 16 SNPs in IL1RN, IL1A, IL1B genes were analyzed. Using the chi-squared (χ2) test and genetic model analysis, we found an association with RCC risk for five SNPs [rs3783550 (IL1A), rs3783546 (IL1A), rs1609682 (IL1A), rs3783521 (IL1A), and rs1143623 (IL1B)] and increased the risk of RCC. Stratified analyses show that smoking, not drinking and age>55 populations relative to nonsmoking, drinking and age<55 more susceptible. Our study suggested that IL1B and IL1A may involve in the development of RCC in Chinese Han population.
Collapse
Affiliation(s)
- Fei Wang
- Department of Urology, People's Hospital of Hainan Province, Haikou, Hainan, 570311, P.R. China
| | - Yingai Zhang
- Central Laboratory, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, 570208, P.R. China
| | - Shunlan Wang
- Central Laboratory, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, 570208, P.R. China
| | - Yadong Zhang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, P.R. China
| | - Dinglan Wu
- Central Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518110, P.R. China
| | - Chong Zhang
- Department of Urology, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, 570208, P.R. China
| | - Yuanhui Gao
- Central Laboratory, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, 570208, P.R. China
| | - Xi Liu
- Central Laboratory, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, 570208, P.R. China
| | - Weifu Wang
- Department of Urology, People's Hospital of Hainan Province, Haikou, Hainan, 570311, P.R. China
| | - Shufang Zhang
- Central Laboratory, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, 570208, P.R. China
| |
Collapse
|
31
|
Grampp S, Schmid V, Salama R, Lauer V, Kranz F, Platt JL, Smythies J, Choudhry H, Goppelt-Struebe M, Ratcliffe PJ, Mole DR, Schödel J. Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genet 2017; 13:e1006872. [PMID: 28715484 PMCID: PMC5536434 DOI: 10.1371/journal.pgen.1006872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/31/2017] [Accepted: 06/15/2017] [Indexed: 12/03/2022] Open
Abstract
Un-physiological activation of hypoxia inducible factor (HIF) is an early event in most renal cell cancers (RCC) following inactivation of the von Hippel-Lindau tumor suppressor. Despite intense study, how this impinges on cancer development is incompletely understood. To test for the impact of genetic signals on this pathway, we aligned human RCC-susceptibility polymorphisms with genome-wide assays of HIF-binding and observed highly significant overlap. Allele-specific assays of HIF binding, chromatin conformation and gene expression together with eQTL analyses in human tumors were applied to mechanistic analysis of one such overlapping site at chromosome 12p12.1. This defined a novel stage-specific mechanism in which the risk polymorphism, rs12814794, directly creates a new HIF-binding site that mediates HIF-1α isoform specific upregulation of its target BHLHE41. The alignment of multiple sites in the HIF cis-acting apparatus with RCC-susceptibility polymorphisms strongly supports a causal model in which minor variation in this pathway exerts significant effects on RCC development.
Collapse
MESH Headings
- Alleles
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/genetics
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Chromosomes, Human, Pair 12/genetics
- Cyclin D1
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- HeLa Cells
- Hep G2 Cells
- High-Throughput Nucleotide Sequencing
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- MCF-7 Cells
- Polymorphism, Single Nucleotide
- Quantitative Trait Loci
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Steffen Grampp
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Virginia Schmid
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, United Kingdom
| | - Rafik Salama
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, United Kingdom
| | - Victoria Lauer
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Kranz
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Computer Science 9, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - James L. Platt
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, United Kingdom
| | - James Smythies
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, United Kingdom
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Center of Innovation in Personalized Medicine, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter J. Ratcliffe
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, United Kingdom
| | - David R. Mole
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, United Kingdom
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Park SL, Cheng I, Haiman CA. Genome-Wide Association Studies of Cancer in Diverse Populations. Cancer Epidemiol Biomarkers Prev 2017. [PMID: 28637795 DOI: 10.1158/1055-9965.epi-17-0169] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) of cancer have identified more than 700 risk loci, of which approximately 80% were first discovered in European ancestry populations, approximately 15% in East Asians, 3% in multiethnic scans, and less than 1% in African and Latin American populations. These percentages closely mirror the distribution of samples included in the discovery phase of cancer GWAS to date (84% European, 11% East Asian, 4% African, and 1% Latin American ancestry). GWAS in non-European ancestry populations have provided insight into ancestry-specific variation in cancer and have pointed to regions of susceptibility that are of particular importance in certain populations. Uncovering and characterizing cancer risk loci in diverse populations is critical for understanding underlying biological mechanisms and developing future genetic risk prediction models in non-European ancestry populations. New GWAS and continued collaborations will be required to eliminate population inequalities in the number of studies, sample sizes, and variant content on GWAS arrays, and to better align genetic research in cancer to the global distribution of race/ethnicity Cancer Epidemiol Biomarkers Prev; 27(4); 405-17. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Sungshim L Park
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California.,Stanford Cancer Institute, Palo Alto, California
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
33
|
Shu X, Purdue MP, Ye Y, Tu H, Wood CG, Tannir NM, Wang Z, Albanes D, Gapstur SM, Stevens VL, Rothman N, Chanock SJ, Wu X. Potential Susceptibility Loci Identified for Renal Cell Carcinoma by Targeting Obesity-Related Genes. Cancer Epidemiol Biomarkers Prev 2017. [PMID: 28626070 DOI: 10.1158/1055-9965.epi-17-0141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Obesity is an established risk factor for renal cell carcinoma (RCC). Although genome-wide association studies (GWAS) of RCC have identified several susceptibility loci, additional variants might be missed due to the highly conservative selection.Methods: We conducted a multiphase study utilizing three independent genome-wide scans at MD Anderson Cancer Center (MDA RCC GWAS and MDA RCC OncoArray) and National Cancer Institute (NCI RCC GWAS), which consisted of a total of 3,530 cases and 5,714 controls, to investigate genetic variations in obesity-related genes and RCC risk.Results: In the discovery phase, 32,946 SNPs located at ±10 kb of 2,001 obesity-related genes were extracted from MDA RCC GWAS and analyzed using multivariable logistic regression. Proxies (R2 > 0.8) were searched or imputation was performed if SNPs were not directly genotyped in the validation sets. Twenty-one SNPs with P < 0.05 in both MDA RCC GWAS and NCI RCC GWAS were subsequently evaluated in MDA RCC OncoArray. In the overall meta-analysis, significant (P < 0.05) associations with RCC risk were observed for SNP mapping to IL1RAPL2 [rs10521506-G: ORmeta = 0.87 (0.81-0.93), Pmeta = 2.33 × 10-5], PLIN2 [rs2229536-A: ORmeta = 0.87 (0.81-0.93), Pmeta = 2.33 × 10-5], SMAD3 [rs4601989-A: ORmeta = 0.86 (0.80-0.93), Pmeta = 2.71 × 10-4], MED13L [rs10850596-A: ORmeta = 1.14 (1.07-1.23), Pmeta = 1.50 × 10-4], and TSC1 [rs3761840-G: ORmeta = 0.90 (0.85-0.97), Pmeta = 2.47 × 10-3]. We did not observe any significant cis-expression quantitative trait loci effect for these SNPs in the TCGA KIRC data.Conclusions: Taken together, we found that genetic variation of obesity-related genes could influence RCC susceptibility.Impact: The five identified loci may provide new insights into disease etiology that reveal importance of obesity-related genes in RCC development. Cancer Epidemiol Biomarkers Prev; 26(9); 1436-42. ©2017 AACR.
Collapse
Affiliation(s)
- Xiang Shu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huakang Tu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Victoria L Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
34
|
Scelo G, Purdue MP, Brown KM, Johansson M, Wang Z, Eckel-Passow JE, Ye Y, Hofmann JN, Choi J, Foll M, Gaborieau V, Machiela MJ, Colli LM, Li P, Sampson JN, Abedi-Ardekani B, Besse C, Blanche H, Boland A, Burdette L, Chabrier A, Durand G, Le Calvez-Kelm F, Prokhortchouk E, Robinot N, Skryabin KG, Wozniak MB, Yeager M, Basta-Jovanovic G, Dzamic Z, Foretova L, Holcatova I, Janout V, Mates D, Mukeriya A, Rascu S, Zaridze D, Bencko V, Cybulski C, Fabianova E, Jinga V, Lissowska J, Lubinski J, Navratilova M, Rudnai P, Szeszenia-Dabrowska N, Benhamou S, Cancel-Tassin G, Cussenot O, Baglietto L, Boeing H, Khaw KT, Weiderpass E, Ljungberg B, Sitaram RT, Bruinsma F, Jordan SJ, Severi G, Winship I, Hveem K, Vatten LJ, Fletcher T, Koppova K, Larsson SC, Wolk A, Banks RE, Selby PJ, Easton DF, Pharoah P, Andreotti G, Freeman LEB, Koutros S, Albanes D, Männistö S, Weinstein S, Clark PE, Edwards TL, Lipworth L, Gapstur SM, Stevens VL, Carol H, Freedman ML, Pomerantz MM, Cho E, Kraft P, Preston MA, Wilson KM, Michael Gaziano J, Sesso HD, Black A, Freedman ND, Huang WY, Anema JG, Kahnoski RJ, Lane BR, Noyes SL, Petillo D, Teh BT, Peters U, White E, et alScelo G, Purdue MP, Brown KM, Johansson M, Wang Z, Eckel-Passow JE, Ye Y, Hofmann JN, Choi J, Foll M, Gaborieau V, Machiela MJ, Colli LM, Li P, Sampson JN, Abedi-Ardekani B, Besse C, Blanche H, Boland A, Burdette L, Chabrier A, Durand G, Le Calvez-Kelm F, Prokhortchouk E, Robinot N, Skryabin KG, Wozniak MB, Yeager M, Basta-Jovanovic G, Dzamic Z, Foretova L, Holcatova I, Janout V, Mates D, Mukeriya A, Rascu S, Zaridze D, Bencko V, Cybulski C, Fabianova E, Jinga V, Lissowska J, Lubinski J, Navratilova M, Rudnai P, Szeszenia-Dabrowska N, Benhamou S, Cancel-Tassin G, Cussenot O, Baglietto L, Boeing H, Khaw KT, Weiderpass E, Ljungberg B, Sitaram RT, Bruinsma F, Jordan SJ, Severi G, Winship I, Hveem K, Vatten LJ, Fletcher T, Koppova K, Larsson SC, Wolk A, Banks RE, Selby PJ, Easton DF, Pharoah P, Andreotti G, Freeman LEB, Koutros S, Albanes D, Männistö S, Weinstein S, Clark PE, Edwards TL, Lipworth L, Gapstur SM, Stevens VL, Carol H, Freedman ML, Pomerantz MM, Cho E, Kraft P, Preston MA, Wilson KM, Michael Gaziano J, Sesso HD, Black A, Freedman ND, Huang WY, Anema JG, Kahnoski RJ, Lane BR, Noyes SL, Petillo D, Teh BT, Peters U, White E, Anderson GL, Johnson L, Luo J, Buring J, Lee IM, Chow WH, Moore LE, Wood C, Eisen T, Henrion M, Larkin J, Barman P, Leibovich BC, Choueiri TK, Mark Lathrop G, Rothman N, Deleuze JF, McKay JD, Parker AS, Wu X, Houlston RS, Brennan P, Chanock SJ. Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nat Commun 2017; 8:15724. [PMID: 28598434 PMCID: PMC5472706 DOI: 10.1038/ncomms15724] [Show More Authors] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
Previous genome-wide association studies (GWAS) have identified six risk loci for renal cell carcinoma (RCC). We conducted a meta-analysis of two new scans of 5,198 cases and 7,331 controls together with four existing scans, totalling 10,784 cases and 20,406 controls of European ancestry. Twenty-four loci were tested in an additional 3,182 cases and 6,301 controls. We confirm the six known RCC risk loci and identify seven new loci at 1p32.3 (rs4381241, P=3.1 × 10-10), 3p22.1 (rs67311347, P=2.5 × 10-8), 3q26.2 (rs10936602, P=8.8 × 10-9), 8p21.3 (rs2241261, P=5.8 × 10-9), 10q24.33-q25.1 (rs11813268, P=3.9 × 10-8), 11q22.3 (rs74911261, P=2.1 × 10-10) and 14q24.2 (rs4903064, P=2.2 × 10-24). Expression quantitative trait analyses suggest plausible candidate genes at these regions that may contribute to RCC susceptibility.
Collapse
Affiliation(s)
- Ghislaine Scelo
- International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Mattias Johansson
- International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Zhaoming Wang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | - Yuanqing Ye
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | - Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Valerie Gaborieau
- International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Leandro M. Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Peng Li
- International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | | | - Celine Besse
- Centre National de Genotypage, Institut de Genomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, 91057 Evry, France
| | - Helene Blanche
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain, 75010 Paris, France
| | - Anne Boland
- Centre National de Genotypage, Institut de Genomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, 91057 Evry, France
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Amelie Chabrier
- International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Geoffroy Durand
- International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | | | - Egor Prokhortchouk
- Center ‘Bioengineering' of the Russian Academy of Sciences, Moscow 117312, Russia
- Kurchatov Scientific Center, Moscow 123182, Russia
| | | | - Konstantin G. Skryabin
- Center ‘Bioengineering' of the Russian Academy of Sciences, Moscow 117312, Russia
- Kurchatov Scientific Center, Moscow 123182, Russia
| | | | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | | | - Zoran Dzamic
- Clinical Center of Serbia (KCS), Clinic of Urology, University of Belgrade-Faculty of Medicine, 11000 Belgrade, Serbia
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Ivana Holcatova
- 2nd Faculty of Medicine, Institute of Public Health and Preventive Medicine, Charles University, 150 06 Prague 5, Czech Republic
| | - Vladimir Janout
- Department of Preventive Medicine, Faculty of Medicine, Palacky University, 775 15 Olomouc, Czech Republic
| | - Dana Mates
- National Institute of Public Health, 050463 Bucharest, Romania
| | - Anush Mukeriya
- Russian N.N. Blokhin Cancer Research Centre, Moscow 115478, Russian Federation
| | - Stefan Rascu
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, 050659 Bucharest, Romania
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow 115478, Russian Federation
| | - Vladimir Bencko
- First Faculty of Medicine, Institute of Hygiene and Epidemiology, Charles University, 128 00 Prague 2, Czech Republic
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Eleonora Fabianova
- Regional Authority of Public Health in Banska Bystrica, 975 56 Banska Bystrica, Slovakia
| | - Viorel Jinga
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, 050659 Bucharest, Romania
| | - Jolanta Lissowska
- The M Sklodowska-Curie Cancer Center and Institute of Oncology, 02-034 Warsaw, Poland
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Marie Navratilova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Peter Rudnai
- National Public Health Center, National Directorate of Environmental Health, 1097 Budapest, Hungary
| | | | - Simone Benhamou
- Université Paris Diderot, INSERM, Unité Variabilité Génétique et Maladies Humaines, 75010 Paris, France
| | | | - Olivier Cussenot
- CeRePP, Tenon Hospital, 75020 Paris, France
- UPMC Univ Paris 06 GRC n°5, 75013 Paris, France
| | - Laura Baglietto
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94805 Villejuif, France
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, 0304 Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center, 00250 Helsinki, Finland
| | - Borje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, 901 85 Umeå, Sweden
| | - Raviprakash T. Sitaram
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, 901 85 Umeå, Sweden
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
| | - Susan J. Jordan
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
- School of Public Health, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gianluca Severi
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94805 Villejuif, France
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria 3053, Australia
- Human Genetics Foundation (HuGeF), 10126 Torino, Italy
| | - Ingrid Winship
- Department of Medicine, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger 7600, Norway
| | - Lars J. Vatten
- Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, University of London, London WC1H 9SH, UK
| | - Kvetoslava Koppova
- Regional Authority of Public Health in Banska Bystrica, 975 56 Banska Bystrica, Slovakia
| | - Susanna C. Larsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rosamonde E. Banks
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - Peter J. Selby
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - Douglas F. Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Laura E. Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Satu Männistö
- Department of Health, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Peter E. Clark
- Vanderbilt-Ingram Cancer Center, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Todd L. Edwards
- Vanderbilt-Ingram Cancer Center, Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37209, USA
| | - Loren Lipworth
- Vanderbilt-Ingram Cancer Center, Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | | | | | - Hallie Carol
- Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | | | | - Eunyoung Cho
- Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Peter Kraft
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Mark A. Preston
- Brigham and Women's Hospital and VA Boston, Boston, Massachusetts 02115, USA
| | - Kathryn M. Wilson
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - J. Michael Gaziano
- Brigham and Women's Hospital and VA Boston, Boston, Massachusetts 02115, USA
| | - Howard D. Sesso
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Brigham and Women's Hospital and VA Boston, Boston, Massachusetts 02115, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - John G. Anema
- Division of Urology, Spectrum Health, Grand Rapids, Michigan 49503, USA
| | | | - Brian R. Lane
- Division of Urology, Spectrum Health, Grand Rapids, Michigan 49503, USA
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Sabrina L. Noyes
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, Michigan 49503, USA
| | - David Petillo
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, Michigan 49503, USA
| | - Bin Tean Teh
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, Michigan 49503, USA
| | - Ulrike Peters
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emily White
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Garnet L. Anderson
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Lisa Johnson
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | - Julie Buring
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Brigham and Women's Hospital and VA Boston, Boston, Massachusetts 02115, USA
| | - I-Min Lee
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Brigham and Women's Hospital and VA Boston, Boston, Massachusetts 02115, USA
| | - Wong-Ho Chow
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | - Lee E. Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Christopher Wood
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Timothy Eisen
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Marc Henrion
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - James Larkin
- Medical Oncology, Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Poulami Barman
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Bradley C. Leibovich
- Department of Urology, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55902, USA
| | | | - G. Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada H3A 0G1
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| | - Jean-Francois Deleuze
- Centre National de Genotypage, Institut de Genomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, 91057 Evry, France
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain, 75010 Paris, France
| | - James D. McKay
- International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Alexander S. Parker
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland 20892, USA
| |
Collapse
|
35
|
Zhang N, Wu Y, Gong J, Li K, Lin X, Chen H, Yu Y, Gou Y, Hou J, Jiang D, Na R, Wang X, Ding Q, Xu J. Germline genetic variations in PDZD2 and ITPR2 genes are associated with clear cell renal cell carcinoma in Chinese population. Oncotarget 2017; 8:24196-24201. [PMID: 26918600 PMCID: PMC5421839 DOI: 10.18632/oncotarget.6917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/31/2015] [Indexed: 01/20/2023] Open
Abstract
Genome-wide association studies (GWAS) of renal cell carcinoma (RCC) have identified single nucleotide polymorphisms (SNPs) associated with RCC in European and African American population. In this study, we evaluated whether these SNPs are associated with clear cell RCC (ccRCC) in Chinese population. All reported RCC risk-associated SNPs from GWAS were evaluated in 346 ccRCC cases and 1,130 controls. Rs10054504 (at PDZD2, Odds ratio, OR = 0.71, 95%CI:0.59-0.86, P = 0.0006), rs718314 (at ITPR2, OR = 0.56, 95%CI:0.45-0.69, P = 5.26×10-8) and rs1049380 (at ITPR2, by dominant model, OR = 1.58, 95%CI:1.18-2.13, P = 0.0025) were significantly associated with ccRCC risk in Chinese population. To conclude, genetic variations in PDZD2 and ITPR2 are ccRCC-risk associated in Chinese population.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yishuo Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jian Gong
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yet-sen University, Guandong, PR China
| | - Xiaolin Lin
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Haitao Chen
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Yang Yu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yuancheng Gou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jiangang Hou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Deke Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Rong Na
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Health Communication Institute, School of Public Health, Fudan University, Shanghai, PR China
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Xiang Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jianfeng Xu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yet-sen University, Guandong, PR China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
36
|
Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers 2017; 3:17009. [PMID: 28276433 PMCID: PMC5936048 DOI: 10.1038/nrdp.2017.9] [Citation(s) in RCA: 1787] [Impact Index Per Article: 223.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Renal cell carcinoma (RCC) denotes cancer originated from the renal epithelium and accounts for >90% of cancers in the kidney. The disease encompasses >10 histological and molecular subtypes, of which clear cell RCC (ccRCC) is most common and accounts for most cancer-related deaths. Although somatic VHL mutations have been described for some time, more-recent cancer genomic studies have identified mutations in epigenetic regulatory genes and demonstrated marked intra-tumour heterogeneity, which could have prognostic, predictive and therapeutic relevance. Localized RCC can be successfully managed with surgery, whereas metastatic RCC is refractory to conventional chemotherapy. However, over the past decade, marked advances in the treatment of metastatic RCC have been made, with targeted agents including sorafenib, sunitinib, bevacizumab, pazopanib and axitinib, which inhibit vascular endothelial growth factor (VEGF) and its receptor (VEGFR), and everolimus and temsirolimus, which inhibit mechanistic target of rapamycin complex 1 (mTORC1), being approved. Since 2015, agents with additional targets aside from VEGFR have been approved, such as cabozantinib and lenvatinib; immunotherapies, such as nivolumab, have also been added to the armamentarium for metastatic RCC. Here, we provide an overview of the biology of RCC, with a focus on ccRCC, as well as updates to complement the current clinical guidelines and an outline of potential future directions for RCC research and therapy.
Collapse
Affiliation(s)
- James J. Hsieh
- Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8069, St. Louis, Missouri, USA
| | - Mark P. Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Charles Swanton
- Francis Crick Institute, UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, UK
| | - Laurence Albiges
- Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Manuela Schmidinger
- Department of Medicine I, Clinical Division of Oncology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daniel Y. Heng
- Department of Medical Oncolgy, Tom Baker Cancer Center, Calgary, Alberta, Canada
| | - James Larkin
- Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | - Vincenzo Ficarra
- Department of Experimental and Clinical Medical Sciences - Urologic Clinic, University of Udine, Italy
| |
Collapse
|
37
|
Potential role of gene-environment interactions in ion transport mechanisms in the etiology of renal cell cancer. Sci Rep 2016; 6:34262. [PMID: 27686058 PMCID: PMC5043233 DOI: 10.1038/srep34262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/07/2016] [Indexed: 01/20/2023] Open
Abstract
We investigated the ion transport mechanism (ITM) in renal cell cancer (RCC) etiology using gene-environment interactions between candidate single nucleotide polymorphisms (SNPs) and associated environmental factors, including dietary intakes of sodium, potassium and fluid, hypertension and diuretic medication. A literature-based selection of 13 SNPs in ten ITM genes were successfully genotyped in toenail DNA of 3,048 subcohort members and 419 RCC cases from the Netherlands Cohort Study. Diet and lifestyle were measured with baseline questionnaires. Cox regression analyses were conducted for main effects and gene-environment interactions. ADD1_rs4961 was significantly associated with RCC risk, showing a Hazard Ratio (HR) of 1.24 (95% confidence intervals (CI): 1.01–1.53) for the GT + TT (versus GG) genotype. Four of 65 tested gene-environment interactions were statistically significant. Three of these interactions clustered in SLC9A3_rs4957061, including the ones with fluid and potassium intake, and diuretic medication. For fluid intake, the RCC risk was significantly lower for high versus low intake in participants with the CC genotype (HR(95% CI): 0.47(0.26–0.86)), but not for the CT + TT genotype (P-interaction = 0.002). None of the main genetic effects and gene-environment interactions remained significant after adjustment for multiple testing. Data do not support the general hypothesis that the ITM is a disease mechanism in RCC etiology.
Collapse
|
38
|
Scelo G, Hofmann JN, Banks RE, Bigot P, Bhatt RS, Cancel-Tassin G, Chew SK, Creighton CJ, Cussenot O, Davis IJ, Escudier B, Frayling TM, Häggström C, Hildebrandt MAT, Holcatova I, Johansson M, Linehan WM, McDermott DF, Nathanson KL, Ogawa S, Perlman EJ, Purdue MP, Stattin P, Swanton C, Vasudev NS, Wu X, Znaor A, Brennan P, Chanock SJ. International cancer seminars: a focus on kidney cancer. Ann Oncol 2016; 27:1382-5. [PMID: 27130845 PMCID: PMC4959923 DOI: 10.1093/annonc/mdw186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/05/2023] Open
Abstract
Recent years have seen important advances in our understanding of the etiology, biology and genetics of kidney cancer. To summarize important achievements and identify prominent research questions that remain, a workshop was organized by IARC and the US NCI. A series of 'difficult questions' were formulated, which should be given future priority in the areas of population, genomic and clinical research.
Collapse
Affiliation(s)
- G Scelo
- Section of Genetics, International Agency for Research on Cancer, Lyon, France
| | - J N Hofmann
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Service, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - R E Banks
- Clinical and Biomedical Proteomics Group, Cancer Research UK Centre, Leeds Institute for Cancer Studies and Pathology, St James' University Hospital, Leeds, UK
| | - P Bigot
- Department of Urology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - R S Bhatt
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Kidney Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - G Cancel-Tassin
- Groupe de Recherche GRC-UPMC n°5, Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
| | - S K Chew
- Translational Cancer Therapeutics Laboratory, UCL Cancer Institute, University College London, London, UK
| | - C J Creighton
- Duncan Cancer Center-Biostatistics, Baylor College of Medicine, Houston
| | - O Cussenot
- Groupe de Recherche GRC-UPMC n°5, Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
| | - I J Davis
- Department of Genetics, UNC School of Medicine, Chapel Hill, USA
| | - B Escudier
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France
| | | | - C Häggström
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå Department of Biobank Research, Umeå University, Umeå, Sweden
| | - M A T Hildebrandt
- Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - I Holcatova
- Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic
| | - M Johansson
- Section of Genetics, International Agency for Research on Cancer, Lyon, France
| | - W M Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda
| | - D F McDermott
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Kidney Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - K L Nathanson
- Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - S Ogawa
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - E J Perlman
- Department of Pathology, Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - M P Purdue
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Service, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - P Stattin
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå
| | - C Swanton
- University College London Hospitals and Cancer Institute, London, UK
| | - N S Vasudev
- Clinical and Biomedical Proteomics Group, Cancer Research UK Centre, Leeds Institute for Cancer Studies and Pathology, St James' University Hospital, Leeds, UK
| | - X Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Znaor
- Section of Genetics, International Agency for Research on Cancer, Lyon, France
| | - P Brennan
- Section of Genetics, International Agency for Research on Cancer, Lyon, France
| | - S J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Service, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
39
|
Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat Commun 2016; 7:12098. [PMID: 27384883 PMCID: PMC4941055 DOI: 10.1038/ncomms12098] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/28/2016] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies have identified multiple renal cell carcinoma (RCC) susceptibility loci. Here, we use regional imputation and bioinformatics analysis of the 12p12.1 locus to identify the single-nucleotide polymorphism (SNP) rs7132434 as a potential functional variant. Luciferase assays demonstrate allele-specific regulatory activity and, together with data from electromobility shift assays, suggest allele-specific differences at rs7132434 for AP-1 transcription factor binding. In an analysis of The Cancer Genome Atlas data, SNPs highly correlated with rs7132434 show allele-specific differences in BHLHE41 expression (trend P value=6.3 × 10(-7)). Cells overexpressing BHLHE41 produce larger mouse xenograft tumours, while RNA-seq analysis reveals that constitutively increased BHLHE41 induces expression of IL-11. We conclude that the RCC risk allele at 12p12.1 maps to rs7132434, a functional variant in an enhancer that upregulates BHLHE41 expression which, in turn, induces IL-11, a member of the IL-6 cytokine family.
Collapse
|
40
|
Liu Y, Han X, Yu Y, Ding Y, Ni C, Liu W, Hou X, Li Z, Hou J, Shen D, Yin J, Zhang H, Thompson TC, Tan X, Cao G. A genetic polymorphism affects the risk and prognosis of renal cell carcinoma: association with follistatin-like protein 1 expression. Sci Rep 2016; 6:26689. [PMID: 27225192 PMCID: PMC4880907 DOI: 10.1038/srep26689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
Few single nucleotide polymorphisms (SNPs) associated with the risk of renal cell carcinoma (RCC) have been identified, yet genetic predisposition contributes significantly to this malignancy. We previously showed that follistatin-like 1 (FSTL1) was significantly down-regulated in clear cell RCC (ccRCC), in particular metastatic ccRCC. In the present study, we systemically investigated the associations of the 6 SNPs within FSTL1-coding genomic region with RCC risk and postoperative prognosis. Age- and gender-matched case-control study (417 vs 855) indicated that rs1259293 variant genotype CC was significantly associated with an increased risk of RCC, with an odds ratio of 2.004 (95% confidence internal [CI] = 1.190-3.375). Multivariate Cox regression analysis in 309 of 417 cases showed that rs1259293 genotype (CC vs TT + CT) independently predicted an unfavorable prognosis, with a hazard ratio of 2.531 (95% CI = 1.052-6.086). Expression of FSTL1 was significantly higher in adjacent renal tissues than in tumors, and significantly higher in the tissues with rs1259293 TT genotype than in those with rs1259293 TC+CC genotypes. rs1259293 C allele might generate a CTCF binding site that blocks trans-activation of FSTL1 expression. Our results indicate that rs1259293 is associated with an increased risk and unfavorable postoperative prognosis of RCC, possibly by down-regulating FSTL1 expression in renal tissues.
Collapse
Affiliation(s)
- Yan Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Department of Chronic Diseases, Center for Diseases Control and Prevention of Yangpu District, Shanghai, China
| | - Yongwei Yu
- Department of Pathology, the 1 affiliated hospital, Second Military Medical University, Shanghai, China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Chong Ni
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianguo Hou
- Department of Urology, the 1 affiliated hospital, Second Military Medical University, Shanghai, China
| | - Dan Shen
- Department of Chronic Diseases, Center for Diseases Control and Prevention of Yangpu District, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Timothy C. Thompson
- Genitourinary Medical Oncology-Research, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
41
|
Schödel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR. Hypoxia, Hypoxia-inducible Transcription Factors, and Renal Cancer. Eur Urol 2016; 69:646-657. [PMID: 26298207 PMCID: PMC5012644 DOI: 10.1016/j.eururo.2015.08.007] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022]
Abstract
CONTEXT Renal cancer is a common urologic malignancy, and therapeutic options for metastatic disease are limited. Most clear cell renal cell carcinomas (ccRCC) are associated with loss of von Hippel-Lindau tumor suppressor (pVHL) function and deregulation of hypoxia pathways. OBJECTIVE This review summarizes recent evidence from genetic and biological studies showing that hypoxia and hypoxia-related pathways play critical roles in the development and progress of renal cancer. EVIDENCE ACQUISITION We used a systematic search for articles using the keywords hypoxia, HIF, renal cancer, and VHL. EVIDENCE SYNTHESIS Identification of the tumor suppressor pVHL has allowed the characterization of important ccRCC-associated pathways. pVHL targets α-subunits of hypoxia-inducible transcription factors (HIF) for proteasomal degradation. The two main HIF-α isoforms have opposing effects on RCC biology, possibly through distinct interactions with additional oncogenes. Furthermore, HIF-1α activity is commonly diminished by chromosomal deletion in ccRCCs, and increased HIF-1 activity reduces tumor burden in xenograft tumor models. Conversely, polymorphisms at the HIF-2α gene locus predispose to the development of ccRCCs, and HIF-2α promotes tumor growth. Genetic studies have revealed a prominent role for chromatin-modifying enzyme genes in ccRCC, and these may further modulate specific aspects of the HIF response. This suggests that, rather than global activation of HIF, specific components of the response are important in promoting kidney cancer. Some of these processes are already targets for current therapeutic strategies, and further dissection of this pathway might yield novel methods of treating RCC. CONCLUSIONS In contrast to many tumor types, HIF-1α and HIF-2α have opposing effects in ccRCC biology, with HIF-1α acting as a tumor suppressor and HIF-2α acting as an oncogene. The overall effect of VHL inactivation will depend on fine-tuning of the HIF response. PATIENT SUMMARY High levels of hypoxia-inducible transcription factors (HIF) are particularly important in the clear cell type of kidney cancer, in which they are no longer properly regulated by the von Hippel-Lindau protein. The two HIF-α proteins have opposing effects on tumor evolution.
Collapse
Affiliation(s)
- Johannes Schödel
- Medizinische Klinik 4 and Translational Research Center, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| | - Steffen Grampp
- Medizinische Klinik 4 and Translational Research Center, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Cambridge NIHR Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter J Ratcliffe
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Paul Russo
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, NY, NY, USA; Weill Medical College, Cornell University, Memorial Sloan Kettering Cancer Center, NY, NY, USA
| | - David R Mole
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Adult Height in Relation to the Incidence of Cancer at Different Anatomic Sites: the Epidemiology of a Challenging Association. Curr Nutr Rep 2016. [DOI: 10.1007/s13668-016-0152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Shi JL, Fu L, Wang WD. High expression of inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) as a novel biomarker for worse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 2016; 6:5299-309. [PMID: 25779662 PMCID: PMC4467150 DOI: 10.18632/oncotarget.3024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/31/2014] [Indexed: 11/25/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) is a key regulator for the activity of calcium ion transmembrane transportation, which plays a critical role in cell cycle and proliferation. However, the clinical impact of ITPR2 in cytogenetically normal acute myeloid leukemia (CN-AML) remained unknown. Several microarray datasets were used to evaluate the association between ITPR2 expression and clinical and molecular characteristics. ITPR2 showed a higher expression in CN-AML patients than normal persons. In a cohort of 157 CN-AML patients, high ITPR2 expression (ITPR2high) was associated with dramatically shorter overall survival (OS; P = 0.004) and event-free survival (EFS; P = 0.01), which were also shown in the European Leukemia Net (ELN) intermediate-I genetic category (OS: P = 0.0066; EFS: P = 0.009). Multivariable analyses adjusting for known prognostic factors confirmed ITPR2high to be associated with shorter OS (P = 0.0019) and EFS (P = 0.012). The prognostic value of ITPR2 was further validated in another cohort of 162 CN-AML patients (P = 0.007). In addition, first gene/microRNA expression signatures were derived that associated with ITPR2high on the genome-wide scale, which provided many indications to illustrate the possible mechanisms why ITPR2 could function. These results could aid to identify new targets and design novel therapeutic strategies for CN-AML patients.
Collapse
Affiliation(s)
- Jin-long Shi
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Beijing 100191, China
| | - Wei-dong Wang
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
44
|
Melkonian SC, Daniel CR, Ye Y, Tannir NM, Karam JA, Matin SF, Wood CG, Wu X. Gene-environment interaction of genome-wide association study-identified susceptibility loci and meat-cooking mutagens in the etiology of renal cell carcinoma. Cancer 2015; 122:108-15. [PMID: 26551148 DOI: 10.1002/cncr.29543] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 11/05/2022]
Abstract
BACKGROUND Meat-cooking mutagens may be associated with renal cell carcinoma (RCC) risk. In the current study, the authors examined associations between meat-cooking mutagens, genetic susceptibility variants, and risk of RCC. METHODS The authors used 659 newly diagnosed RCC cases and 699 healthy controls to investigate the association between dietary intake of meat-cooking mutagens and RCC. They examined whether associations varied by risk factors for RCC and genetic susceptibility variants previously identified from genome-wide association studies. Odds ratios and 95% confidence intervals were estimated using tertiles of intake of dietary polycyclic aromatic hydrocarbons/heterocyclic amines. RESULTS Dietary intake of the mutagenic compounds 2-amino-3,8-dimethylimidazo-(4,5-f) quinoxaline (MeIQx) and 2-amino-1 methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) were found to be significantly associated with an increased risk of RCC (odds ratios across tertiles: 1.00 [referent], 1.28 [95% confidence interval, 0.94-1.74], and 1.95 [95% confidence interval, 1.43-2.66] [P for trend <.001], respectively; and 1.00 [referent], 1.41 [95% confidence interval, 1.04-1.90], and 1.54 [95% confidence interval, 1.14-2.07] [P for trend =.02], respectively). The authors observed evidence of interactions between PhIP and RCC susceptibility variants in 2 genes: inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) (rs718314; multiplicative P for interaction = .03 and additive P for interaction =.002) and endothelial PAS domain-containing protein 1 (EPAS1) (rs7579899; additive P for interaction =.06). CONCLUSIONS The intake of meat may increase the risk of RCC through mechanisms related to the cooking compounds MeIQx and PhIP. These associations may be modified by genetic susceptibility to RCC. Further research is necessary to understand the biological mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Stephanie C Melkonian
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Surena F Matin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
45
|
Rouprêt M. Smoking Status Is Not Sufficient to Accurately Target Patients Who Would Benefit from Screening for Bladder and Kidney Cancer. Eur Urol Focus 2015; 1:52-53. [DOI: 10.1016/j.euf.2014.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 10/23/2022]
|
46
|
Wang BD, Ceniccola K, Yang Q, Andrawis R, Patel V, Ji Y, Rhim J, Olender J, Popratiloff A, Latham P, Lai Y, Patierno SR, Lee NH. Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities. Clin Cancer Res 2015; 21:4970-84. [PMID: 26089375 DOI: 10.1158/1078-0432.ccr-14-1566] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 06/08/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE African Americans (AA) exhibit higher rates of prostate cancer incidence and mortality compared with European American (EA) men. In addition to socioeconomic influences, biologic factors are believed to play a critical role in prostate cancer disparities. We investigated whether population-specific and -enriched miRNA-mRNA interactions might contribute to prostate cancer disparities. EXPERIMENTAL DESIGN Integrative genomics was used, combining miRNA and mRNA profiling, miRNA target prediction, pathway analysis, and functional validation, to map miRNA-mRNA interactions associated with prostate cancer disparities. RESULTS We identified 22 AA-specific and 18 EA-specific miRNAs in prostate cancer versus patient-matched normal prostate, and 10 "AA-enriched/-depleted" miRNAs in AA prostate cancer versus EA prostate cancer comparisons. Many of these population-specific/-enriched miRNAs could be paired with target mRNAs that exhibited an inverse pattern of differential expression. Pathway analysis revealed EGFR (or ERBB) signaling as a critical pathway significantly regulated by AA-specific/-enriched mRNAs and miRNA-mRNA pairings. Novel miRNA-mRNA pairings were validated by qRT-PCR, Western blot, and/or IHC analyses in prostate cancer specimens. Loss/gain of function assays performed in population-specific prostate cancer cell lines confirmed miR-133a/MCL1, miR-513c/STAT1, miR-96/FOXO3A, miR-145/ITPR2, and miR-34a/PPP2R2A as critical miRNA-mRNA pairings driving oncogenesis. Manipulating the balance of these pairings resulted in decreased proliferation and invasion, and enhanced sensitization to docetaxel-induced cytotoxicity in AA prostate cancer cells. CONCLUSIONS Our data suggest that AA-specific/-enriched miRNA-mRNA pairings may play a critical role in the activation of oncogenic pathways in AA prostate cancer. Our findings also suggest that miR-133a/MCL1, miR-513c/STAT1, and miR-96/FOXO3A may have clinical significance in the development of novel strategies for treating aggressive prostate cancer.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Kristin Ceniccola
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Qi Yang
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Ramez Andrawis
- Medical Faculty Associates, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Youngmi Ji
- Cartilage Biology and Orthopedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Johng Rhim
- Department of Surgery, Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jacqueline Olender
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Anastas Popratiloff
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Patricia Latham
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Yinglei Lai
- Department of Statistics, The George Washington University, Washington, District of Columbia
| | - Steven R Patierno
- GW Cancer Institute, The George Washington University Medical Center, Washington, District of Columbia. Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
| |
Collapse
|
47
|
Shen T, Shu XO, Xiang YB, Li HL, Cai H, Gao YT, Zheng W, Lipworth L. Association of hypertension and obesity with renal cell carcinoma risk: a report from the Shanghai Men's and Women's Health Studies. Cancer Causes Control 2015; 26:1173-80. [PMID: 26081424 DOI: 10.1007/s10552-015-0611-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/02/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE Consistently reported associations between hypertension and obesity and renal cell carcinoma (RCC) risk have largely come from studies in Western populations. These associations were examined in a case-control study nested in the Shanghai Women's Health Study (SWHS, 1996-2000) and Shanghai Men's Health Study (SMHS, 2001-2006). METHODS Overall, 271 incident RCC cases (124 women, 147 men) were identified through 31 December 2011, and 2,693 controls were individually matched by sex, age, and calendar time at cohort enrollment, and menopausal status (for women). Participants completed a structured questionnaire by in-person interview at baseline, and conditional logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs). RESULTS Self-reported hypertension was associated with a significant 40 % increased risk of RCC among women and men (95 % CI 1.1, 1.9). Body mass index (BMI), modeled continuously, was associated with an elevated risk of RCC among men, with an OR of 1.5 (95 % CI 1.1, 2.0) per 5 kg/m(2) increase in BMI, but not among women. CONCLUSIONS Hypertension is independently associated with risk of RCC among both women and men in Shanghai, while overweight and obesity appear to be associated with risk of RCC in Chinese men only.
Collapse
Affiliation(s)
- Tian Shen
- Division of Epidemiology, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 800, Nashville, TN, 37203-1738, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang G, Gu C, Zhu Y, Luo L, Dong D, Wan F, Zhang H, Shi G, Sun L, Ye D. ADIPOQ polymorphism rs182052 is associated with clear cell renal cell carcinoma. Cancer Sci 2015; 106:687-691. [PMID: 25827778 PMCID: PMC4471788 DOI: 10.1111/cas.12664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/15/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022] Open
Abstract
Recent studies have indicated that low circulating adiponectin concentrations are associated with a higher risk of several cancers, including renal cell carcinoma. In this case–control study, we examined the frequency of single nucleotide polymorphisms (rs182052G>A, rs266729C>G, and rs3774262G>A) in the adiponectin gene (ADIPOQ) in 1004 patients with clear cell renal cell carcinoma (ccRCC) compared with a group of healthy subjects (n = 1108). Fasting serum adiponectin concentrations were also examined. Logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (95% CI). The association of serum adiponectin concentration with genetic variants was calculated using a multivariate linear regression model. A significantly higher ccRCC risk was associated with the rs182052 variant A allele (adjusted OR, 1.36 and 95% CI, 1.07–1.74 for AA vs GG, P = 0.013; adjusted OR, 1.27 and 95% CI, 1.04–1.56 for AA vs GG+AG, P = 0.019), and this positive association was more evident in overweight subjects. Fasting serum adiponectin was lower in subjects carrying A alleles of rs182052 in both ccRCC patients (β = −0.399, P = 0.018) and healthy controls (β = −0.371, P = 0.024). These results suggest that ADIPOQ rs182052 is significantly associated with ccRCC risk. In this case–control study, we examined the frequency of single nucleotide polymorphisms (rs182052G>A, rs266729C>G, and rs3774262G>A) in the adiponectin gene (ADIPOQ) in 1004 patients with clear cell RCC (ccRCC) compared with a group of healthy subjects (n = 1108). Fasting serum adiponectin concentrations were also examined. Fasting serum adiponectin was lower in subjects carrying minor alleles of rs182052 in both ccRCC patients (β = −0.399, P = 0.018) and healthy controls (β = −0.371, P = 0.024). These results suggest that ADIPOQ rs182052 is significantly associated with ccRCC risk.
Collapse
Affiliation(s)
- Guiming Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chengyuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dahai Dong
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lijiang Sun
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Haddad AQ, Margulis V. Tumour and patient factors in renal cell carcinoma-towards personalized therapy. Nat Rev Urol 2015; 12:253-62. [PMID: 25868564 DOI: 10.1038/nrurol.2015.71] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Renal cell carcinoma (RCC) comprises a heterogeneous group of histologically and molecularly distinct tumour subtypes. Current targeted therapies have improved survival in patients with advanced disease but complete response occurs rarely, if at all. The genomic characterization of RCC is central to the development of novel targeted therapies. Large-scale studies employing multiple 'omics' platforms have led to the identification of key driver genes and commonly altered pathways. Specific molecular alterations and signatures that correlate with tumour phenotype and clinical outcome have been identified and can be harnessed for patient management and counselling. RCC seems to be a remarkably diverse malignancy with significant intratumour and intertumour genetic heterogeneity. The tumour microenvironment is increasingly recognized as a vital regulator of RCC tumour biology. Patient factors, including immune response and drug metabolism, vary widely, which can lead to widely divergent responses to drug therapy. Intratumour heterogeneity poses a significant challenge to the development of personalized therapies in RCC as a single biopsy might not accurately represent the clonal population ultimately responsible for aggressive biologic behaviour. On the other hand, the diversity of genomic alterations in RCC could also afford opportunities for targeting unique pathways based on analysis of an individual tumour's molecular composition.
Collapse
Affiliation(s)
- Ahmed Q Haddad
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
50
|
Pośpiech E, Ligęza J, Wilk W, Gołas A, Jaszczyński J, Stelmach A, Ryś J, Blecharczyk A, Wojas-Pelc A, Jura J, Branicki W. Variants of SCARB1 and VDR Involved in Complex Genetic Interactions May Be Implicated in the Genetic Susceptibility to Clear Cell Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:860405. [PMID: 25945350 PMCID: PMC4402472 DOI: 10.1155/2015/860405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/21/2015] [Accepted: 03/15/2015] [Indexed: 11/17/2022]
Abstract
The current data are still inconclusive in terms of a genetic component involved in the susceptibility to renal cell carcinoma. Our aim was to evaluate 40 selected candidate polymorphisms for potential association with clear cell renal cell carcinoma (ccRCC) based on independent group of 167 patients and 200 healthy controls. The obtained data were searched for independent effects of particular polymorphisms as well as haplotypes and genetic interactions. Association testing implied position rs4765623 in the SCARB1 gene (OR = 1.688, 95% CI: 1.104-2.582, P = 0.016) and a haplotype in VDR comprising positions rs739837, rs731236, rs7975232, and rs1544410 (P = 0.012) to be the risk factors in the studied population. The study detected several epistatic effects contributing to the genetic susceptibility to ccRCC. Variation in GNAS1 was implicated in a strong synergistic interaction with BIRC5. This effect was part of a model suggested by multifactor dimensionality reduction method including also a synergy between GNAS1 and SCARB1 (P = 0.036). Significance of GNAS1-SCARB1 interaction was further confirmed by logistic regression (P = 0.041), which also indicated involvement of SCARB1 in additional interaction with EPAS1 (P = 0.008) as well as revealing interactions between GNAS1 and EPAS1 (P = 0.016), GNAS1 and MC1R (P = 0.031), GNAS1 and VDR (P = 0.032), and MC1R and VDR (P = 0.035).
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
| | - Janusz Ligęza
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Wacław Wilk
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Aniela Gołas
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
| | - Janusz Jaszczyński
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Andrzej Stelmach
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Janusz Ryś
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Aleksandra Blecharczyk
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, Collegium Medicum of the Jagiellonian University, Skawińska 8, 31-066 Cracow, Poland
| | - Jolanta Jura
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Wojciech Branicki
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| |
Collapse
|