1
|
Tang MB, Liu YX, Hu ZW, Luo HY, Zhang S, Shi CH, Xu YM. Study insights in the role of PGC-1α in neurological diseases: mechanisms and therapeutic potential. Front Aging Neurosci 2025; 16:1454735. [PMID: 40012862 PMCID: PMC11861300 DOI: 10.3389/fnagi.2024.1454735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which is highly expressed in the central nervous system, is known to be involved in the regulation of mitochondrial biosynthesis, metabolic regulation, neuroinflammation, autophagy, and oxidative stress. This knowledge indicates a potential role of PGC-1α in a wide range of functions associated with neurological diseases. There is emerging evidence indicating a protective role of PGC-1α in the pathogenesis of several neurological diseases. As such, a deeper and broader understanding of PGC-1α and its role in neurological diseases is urgently needed. The present review provides a relatively complete overview of the current knowledge on PGC-1α, including its functions in different types of neurons, basic structural characteristics, and its interacting transcription factors. Furthermore, we present the role of PGC-1α in the pathogenesis of various neurological diseases, such as intracerebral hemorrhage, ischemic stroke, Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, and other PolyQ diseases. Importantly, we discuss some compounds or drug-targeting strategies that have been studied to ameliorate the pathology of these neurological diseases and introduce the possible mechanistic pathways. Based on the available studies, we propose that targeting PGC-1α could serve as a promising novel therapeutic strategy for one or more neurological diseases.
Collapse
Affiliation(s)
- Mi-bo Tang
- Department of Geriatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yi-xuan Liu
- Department of Geriatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zheng-wei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hai-yang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chang-he Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Eleuteri S, Wang B, Cutillo G, Zhang Fang TS, Tao K, Qu Y, Yang Q, Wei W, Simon DK. PGC-1α regulation by FBXW7 through a novel mechanism linking chaperone-mediated autophagy and the ubiquitin-proteasome system. FEBS J 2025; 292:332-354. [PMID: 39429232 DOI: 10.1111/febs.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and antioxidative defenses, and it may play a critical role in Parkinson's disease (PD). F-box/WD repeat domain-containing protein (FBXW7), an E3 protein ligase, promotes the degradation of substrate proteins through the ubiquitin-proteasome system (UPS) and leads to the clearance of PGC-1α. Here, we elucidate a novel post-translational mechanism for regulating PGC-1α levels in neurons. We show that enhancing chaperone-mediated autophagy (CMA) activity promotes the CMA-mediated degradation of FBXW7 and consequently increases PGC-1α. We confirm the relevance of this pathway in vivo by showing decreased FBXW7 and increased PGC-1α as a result of boosting CMA selectively in dopaminergic (DA) neurons by overexpressing lysosomal-associated membrane protein 2A (LAMP2A) in TH-Cre-LAMP2-loxp conditional mice. We further demonstrate that these mice are protected against MPTP-induced oxidative stress and neurodegeneration. These results highlight a novel regulatory pathway for PGC-1α in DA neurons and suggest targeted increasing of CMA or decreasing FBXW7 in DA neurons as potential neuroprotective strategies in PD.
Collapse
Affiliation(s)
- Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bao Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Gianni Cutillo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tracy Shi Zhang Fang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Fu Y, Zhang S, Yue Q, An Z, Zhao M, Zhao C, Sun X, Li K, Li B, Zhao L, Su L. The preventative effects of Lactococcus Lactis metabolites against LPS-induced sepsis. Front Microbiol 2024; 15:1404652. [PMID: 39086654 PMCID: PMC11288810 DOI: 10.3389/fmicb.2024.1404652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Sepsis is a syndrome of organ dysfunction caused by a dysregulated host response to infection and septic shock. Currently, antibiotic therapy is the standard treatment for sepsis, but it can lead to drug resistance. The disturbance of the gut microbiota which is affected by sepsis could lead to the development of organ failure. It is reported that probiotics could shape the gut microbiota, potentially controlling a variety of intestinal diseases and promoting whole-body health. Methods In this study, we evaluated the preventive effects of intra- and extracellular products of probiotics on sepsis. The extracellular products of Lactococcus lactis (L. lactis) were identified through the in vivo cell experiments. The preventive effect and mechanism of L. lactis extracellular products on mouse sepsis were further explored through HE staining, mouse survival rate measurement, chip analysis, etc. Results L. lactis extracellular products increase cell survival and significantly reduce inflammatory factors secreted in a cellular sepsis model. In in vivo experiments in mice, our samples attenuated sepsis-induced pulmonary edema and inflammatory infiltrates in the lungs of mice, and reduced mortality and inflammatory factor levels within the serum of mice. Finally, the mechanism of sepsis prevention by lactic acid bacteria is suggested. Extracellular products of L. lactis could effectively prevent sepsis episodes. Discussion In animal experiments, we reported that extracellular products of L. lactis can effectively prevent sepsis, and preliminarily discussed the pathological mechanism, which provides more ideas for the prevention of sepsis. In the future, probiotics may be considered a new way to prevent sepsis.
Collapse
Affiliation(s)
- Yue Fu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Minghan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chen Zhao
- Shandong Baoyuan Biotechnology Co., Ltd., Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kunlun Li
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
| | - Baojun Li
- Shandong Baoyuan Biotechnology Co., Ltd., Jinan, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Baoyuan Biotechnology Co., Ltd., Jinan, China
- Shengsheng Xiangrong Biotechnology (Shandong) Co., Ltd., Jinan, China
| |
Collapse
|
4
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
5
|
Esteca MV, Divino IA, Vieira da Silva AL, Severino MB, Braga RR, Ropelle ER, Simabuco FM, Baptista IL. Parkin is a critical player in the effects of caffeine over mitochondrial quality control pathways during skeletal muscle regeneration in mice. Acta Physiol (Oxf) 2024; 240:e14111. [PMID: 38314948 DOI: 10.1111/apha.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
AIM This study aimed to investigate the effects of caffeine on pathways associated with mitochondrial quality control and mitochondrial capacity during skeletal muscle regeneration, focusing on the role of Parkin, a key protein involved in mitophagy. METHODS We used in vitro C2C12 myoblast during differentiation with and without caffeine in the medium, and we evaluated several markers of mitochondrial quality control pathways and myotube growth. In vivo experiments, we used C57BL/6J (WT) and Parkintm 1Shn lineage (Parkin-/- ) mice and injured tibial anterior muscle. The mice regenerated TA muscle for 3, 10, and 21 days with or without caffeine ingestion. TA muscle was used to analyze the protein content of several markers of mitochondrial quality pathways, muscle satellite cell differentiation, and protein synthesis. Furthermore, it analyzed mtDNA, mitochondrial respiration, and myofiber growth. RESULTS C2C12 differentiation experiments showed that caffeine decreased Parkin content, potentially leading to increased DRP1 and PGC-1α content and altered mitochondrial population, thereby enhancing growth capacity. Using Parkin-/- mice, we found that caffeine intake during the regenerative process induces an increase in AMPKα phosphorylation and PGC-1α and TFAM content, changes that were partly Parkin-dependent. In addition, the absence of Parkin potentiates the ergogenic effect of caffeine by increasing mitochondrial capacity and myotube growth. Those effects are related to increased ATF4 content and activation of protein synthesis pathways, such as increased 4E-BP1 phosphorylation. CONCLUSION These findings demonstrate that caffeine ingestion changes mitochondrial quality control during skeletal muscle regeneration, and Parkin is a central player in those mechanisms.
Collapse
Affiliation(s)
- M V Esteca
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - I A Divino
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - A L Vieira da Silva
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - M B Severino
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Multidisciplinarity Laboratory of Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - R R Braga
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - E R Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - F M Simabuco
- Multidisciplinarity Laboratory of Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - I L Baptista
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
6
|
Mangrulkar SV, Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Anwer MK, Dailah HG, Mohan S, Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res 2023; 41:708-729. [PMID: 37162686 DOI: 10.1007/s12640-023-00647-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.
Collapse
Affiliation(s)
| | - Nitu L Wankhede
- Smt. Shantabai Patil College of Diploma in Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
7
|
Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction between alpha-synuclein and mitochondrial dysfunction in Parkinson's disease. Biophys Chem 2023; 303:107122. [PMID: 37839353 DOI: 10.1016/j.bpc.2023.107122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder with the hallmark of abnormal aggregates of alpha-synuclein (α-syn) in Lewy bodies (LBs) and Lewy neurites (LNs). Currently, pathogenic α-syn and mitochondrial dysfunction have been considered as prominent roles that give impetus to the PD onset. This review describes the α-syn pathology and mitochondrial alterations in PD, and focuses on how α-syn interacts with multiple aspects of mitochondrial homeostasis in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China; Heilongjiang Nursing College, Haerbin 150000, PR China.
| |
Collapse
|
8
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
9
|
Mowat FM. Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1Alpha (PGC-1α): A Transcriptional Regulator at the Interface of Aging and Age-Related Macular Degeneration? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:49-53. [PMID: 37440013 DOI: 10.1007/978-3-031-27681-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Human age-related macular degeneration (AMD) is a prevalent age-related disease which causes retinal dysfunction and disability. Genetic and cell culture studies from AMD patients have implicated impaired activity of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). PGC-1α is a transcriptional co-regulator that acts to control a plethora of metabolic processes relevant to AMD pathophysiology including gluconeogenesis, oxidative phosphorylation, and response to oxidative injury. Perturbation of PGC-1α activity in mice causes AMD-like RPE and retinal pathology. There is potential for therapeutic modulation of the PGC-1α pathway in AMD treatment.
Collapse
Affiliation(s)
- Freya M Mowat
- Department of Ophthalmology and Visual Sciences (School of Medicine and Public Health), Department of Surgical Sciences (School of Veterinary Medicine), Medical Sciences Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson's Disease. CNS Drugs 2022; 36:1249-1267. [PMID: 36378485 DOI: 10.1007/s40263-022-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease and contributes significantly to morbidity globally. Currently, no disease-modifying therapies exist to combat this disorder. Insights from the molecular and cellular pathobiology of the disease seems to indicate promising therapeutic targets. The parkin protein has been extensively studied for its role in autosomal recessive Parkinson's disease and, more recently, its role in sporadic Parkinson's disease. Parkin is an E3 ubiquitin ligase that plays a prominent role in mitochondrial quality control, mitochondrial-dependent cell death pathways, and other diverse functions. Understanding the numerous roles of parkin has introduced many new possibilities for therapeutic modalities in treating both autosomal recessive Parkinson's disease and sporadic Parkinson's disease. In this article, we review parkin biology with an emphasis on mitochondrial-related functions and propose novel, potentially disease-modifying therapeutic approaches for treating this debilitating condition.
Collapse
|
11
|
Liu J, Qiu R, Liu R, Song P, Lin P, Chen H, Zhou D, Wang A, Jin Y. Autophagy Mediates Escherichia Coli-Induced Cellular Inflammatory Injury by Regulating Calcium Mobilization, Mitochondrial Dysfunction, and Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:ijms232214174. [PMID: 36430657 PMCID: PMC9698444 DOI: 10.3390/ijms232214174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Bovine endometritis is a reproductive disorder that is induced by mucus or purulent inflammation of the uterine mucosa. However, the intracellular control chain during inflammatory injury remains unclear. In the present study, we found that E. coli activated the inflammatory response through the assembly of the NLRP3 inflammasome and activation of the NF-κB p65 subunit in primary bovine endometrial epithelial cells (bEECs). Infection with E. coli also led to an abnormal increase in cytoplasmic calcium and mitochondrial dysfunction. Additionally, live-cell imaging of calcium reporters indicated that the increase in cytosolic calcium mainly was caused by the release of Ca2+ ions stored in the ER and mitochondria, which was independent of extracellular calcium. Cytoplasmic calcium regulates mitochondrial respiratory chain transmission, DNA replication, and biogenesis. Pretreatment with NAC, BAPTA-AM, or 2-APB reduced the expression of IL-1β and IL-18. Moreover, ERS was involved in the regulation of bovine endometritis and cytosolic calcium was an important factor for regulating ERS in E. coli-induced inflammation. Finally, activation of autophagy inhibited the release of IL-1β and IL-18, cytochrome c, ATP, ERS-related proteins, and cytoplasmic calcium. Collectively, our findings demonstrate that autophagy mediated E. coli-induced cellular inflammatory injury by regulating cytoplasmic calcium, mitochondrial dysfunction, and ERS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yaping Jin
- Correspondence: ; Tel.: +86-29-8709-1802
| |
Collapse
|
12
|
Association of rare PPARGC1A variants with Parkinson's disease risk. J Hum Genet 2022; 67:687-690. [PMID: 35996014 DOI: 10.1038/s10038-022-01074-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Recent researches on Parkinson's disease (PD) pathogenesis discovered the correlation between PD and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) dysfunction and reduction of PPARGC1A gene expression. Hence, we detected PPARGC1A rare variants to clarify their effect on PD risk in a large population of PD patients in mainland China. METHODS We applied whole-exome sequencing (WES) to 1917 patients with early-onset or familial PD and 1652 controls (WES cohort), and whole-genome sequencing (WGS) to 1962 patients with sporadic late-onset PD and 1279 controls (WGS cohort). To identify PPARGC1A rare variants, we used burden analysis to assess the relationship between PPARGC1A rare variants and PD susceptibility. RESULTS 30 rare missense variants in the cohort WES and 21 missense variants in the cohort WGS have been detected in the study and PPARGC1A missense variants are significantly associated with early-onset and familial PD susceptibility in our study (P = 0.012), which supports evidence that PPARGC1A rare variants are involved in the onset of early-onset and familial PD. CONCLUSIONS The study suggested that PPARGC1A rare variants may contribute to the risk of early-onset and familial PD.
Collapse
|
13
|
Fox SN, McMeekin LJ, Savage CH, Joyce KL, Boas SM, Simmons MS, Farmer CB, Ryan J, Pereboeva L, Becker K, Auwerx J, Sudarshan S, Ma J, Lee A, Roberts RC, Crossman DK, Kralli A, Cowell RM. Estrogen-related receptor gamma regulates mitochondrial and synaptic genes and modulates vulnerability to synucleinopathy. NPJ Parkinsons Dis 2022; 8:106. [PMID: 35982091 PMCID: PMC9388660 DOI: 10.1038/s41531-022-00369-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Many studies implicate mitochondrial dysfunction as a key contributor to cell loss in Parkinson disease (PD). Previous analyses of dopaminergic (DAergic) neurons from patients with Lewy-body pathology revealed a deficiency in nuclear-encoded genes for mitochondrial respiration, many of which are targets for the transcription factor estrogen-related receptor gamma (Esrrg/ERRγ). We demonstrate that deletion of ERRγ from DAergic neurons in adult mice was sufficient to cause a levodopa-responsive PD-like phenotype with reductions in mitochondrial gene expression and number, that partial deficiency of ERRγ hastens synuclein-mediated toxicity, and that ERRγ overexpression reduces inclusion load and delays synuclein-mediated cell loss. While ERRγ deletion did not fully recapitulate the transcriptional alterations observed in postmortem tissue, it caused reductions in genes involved in synaptic and mitochondrial function and autophagy. Altogether, these experiments suggest that ERRγ-deficient mice could provide a model for understanding the regulation of transcription in DAergic neurons and that amplifying ERRγ-mediated transcriptional programs should be considered as a strategy to promote DAergic maintenance in PD.
Collapse
Affiliation(s)
- S N Fox
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - L J McMeekin
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C H Savage
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
| | - K L Joyce
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - S M Boas
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - M S Simmons
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ryan
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - L Pereboeva
- Department of Pediatrics, Infectious Disease, Neuroscience Vector and Virus Core, University of Alabama at Birmingham, Birmingham, AL, 35223, USA
| | - K Becker
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - J Auwerx
- Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - S Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - A Lee
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - R M Cowell
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA.
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
14
|
Covering the Role of PGC-1α in the Nervous System. Cells 2021; 11:cells11010111. [PMID: 35011673 PMCID: PMC8750669 DOI: 10.3390/cells11010111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a well-known transcriptional coactivator involved in mitochondrial biogenesis. PGC-1α is implicated in the pathophysiology of many neurodegenerative disorders; therefore, a deep understanding of its functioning in the nervous system may lead to the development of new therapeutic strategies. The central nervous system (CNS)-specific isoforms of PGC-1α have been recently identified, and many functions of PGC-1α are assigned to the particular cell types of the central nervous system. In the mice CNS, deficiency of PGC-1α disturbed viability and functioning of interneurons and dopaminergic neurons, followed by alterations in inhibitory signaling and behavioral dysfunction. Furthermore, in the ALS rodent model, PGC-1α protects upper motoneurons from neurodegeneration. PGC-1α is engaged in the generation of neuromuscular junctions by lower motoneurons, protection of photoreceptors, and reduction in oxidative stress in sensory neurons. Furthermore, in the glial cells, PGC-1α is essential for the maturation and proliferation of astrocytes, myelination by oligodendrocytes, and mitophagy and autophagy of microglia. PGC-1α is also necessary for synaptogenesis in the developing brain and the generation and maintenance of synapses in postnatal life. This review provides an outlook of recent studies on the role of PGC-1α in various cells in the central nervous system.
Collapse
|
15
|
Valian N, Heravi M, Ahmadiani A, Dargahi L. Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums. Basic Clin Neurosci 2021; 12:205-212. [PMID: 34925717 PMCID: PMC8672668 DOI: 10.32598/bcn.12.2.1568.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 05/13/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several studies. However, there is no document reporting the comparison of these two mediums. So in this study, we evaluated the neurons and astroglial cells in primary midbrain neurons from rat embryos cultured in DMEM/F12 and neurobasal mediums. Methods: Primary mesencephalon cells were prepared from the E14.5 rat embryo. Then they were seeded in two different mediums (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 [DMEM/F12] and neurobasal). On day 3 and day 5, half of the medium was replaced with a fresh medium. On day 7, β3-tubulin-, GFAP (Glial fibrillary acidic protein)- and Tyrosine Hydroxylase TH-positive cells were characterized as neurons, astrocytes, and dopaminergic neurons, respectively, using immunohistochemistry. Furthermore, the morphology of the cells in both mediums was observed under light microscopy on days 1, 3, and 5. Results: The cells cultured in both mediums were similar under light microscopy regarding the cell number, but in a neurobasal medium, the cells have aggregated and formed clustering structures. Although GFAP-immunoreactive cells were lower in neurobasal compared to DMEM/F12, the number of β3-tubulin- and TH-positive cells in both cultures was the same. Conclusion: This study’s findings demonstrated that primary midbrain cells from the E14.5 rat embryo could grow in both DMEM/F12 and neurobasal mediums. Therefore, considering the high price of a neurobasal medium, it can be replaced with DMEM/F12 for culturing primary dopaminergic neurons.
Collapse
Affiliation(s)
- Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansooreh Heravi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Lozoya OA, Xu F, Grenet D, Wang T, Stevanovic KD, Cushman JD, Hagler TB, Gruzdev A, Jensen P, Hernandez B, Riadi G, Moy SS, Santos JH, Woychik RP. A brain-specific pgc1α fusion transcript affects gene expression and behavioural outcomes in mice. Life Sci Alliance 2021; 4:4/12/e202101122. [PMID: 34649938 PMCID: PMC8548212 DOI: 10.26508/lsa.202101122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
This study shows that loss of a brain-specific fusion isoform of PGC1a leads to up-regulation of genes and motor impairments in mice, suggesting functional differences between PGC1 isoforms in the brain. PGC1α is a transcriptional coactivator in peripheral tissues, but its function in the brain remains poorly understood. Various brain-specific Pgc1α isoforms have been reported in mice and humans, including two fusion transcripts (FTs) with non-coding repetitive sequences, but their function is unknown. The FTs initiate at a simple sequence repeat locus ∼570 Kb upstream from the reference promoter; one also includes a portion of a short interspersed nuclear element (SINE). Using publicly available genomics data, here we show that the SINE FT is the predominant form of Pgc1α in neurons. Furthermore, mutation of the SINE in mice leads to altered behavioural phenotypes and significant up-regulation of genes in the female, but not male, cerebellum. Surprisingly, these genes are largely involved in neurotransmission, having poor association with the classical mitochondrial or antioxidant programs. These data expand our knowledge on the role of Pgc1α in neuronal physiology and suggest that different isoforms may have distinct functions. They also highlight the need for further studies before modulating levels of Pgc1α in the brain for therapeutic purposes.
Collapse
Affiliation(s)
- Oswaldo A Lozoya
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| | - Fuhua Xu
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| | - Dagoberto Grenet
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Branch, National Institutes of Health, Durham, NC, USA
| | - Korey D Stevanovic
- Neurobehavioral Core Laboratory, National Institutes of Health, Durham, NC, USA
| | - Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institutes of Health, Durham, NC, USA
| | - Thomas B Hagler
- Knockout Mouse Core Facility, National Institutes of Health, Durham, NC, USA
| | - Artiom Gruzdev
- Knockout Mouse Core Facility, National Institutes of Health, Durham, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Bairon Hernandez
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Gonzalo Riadi
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Sheryl S Moy
- Department of Psychiatry, Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janine H Santos
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| | - Richard P Woychik
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
17
|
Kim H, Lee JY, Park SJ, Kwag E, Koo O, Shin JH. ZNF746/PARIS promotes the occurrence of hepatocellular carcinoma. Biochem Biophys Res Commun 2021; 563:98-104. [PMID: 34062393 DOI: 10.1016/j.bbrc.2021.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer to cause liver cancer related deaths worldwide. Zinc finger protein 746 (ZNF746), initially identified as a Parkin-interacting substrate (PARIS), acts as a transcriptional repressor of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in Parkinson's disease. As recent studies reported that PARIS is associated with cancer onset, we investigated whether PARIS is associated with HCC. We found an increase in insoluble parkin and PARIS accumulation in the liver of diethylnitrosamine (DEN)-injected mice, leading to the downregulation of PGC-1α and nuclear respiratory factor 1 (NRF1). Interestingly, the occurrence of DEN-induced tumors was significantly alleviated in the livers of DEN-injected PARIS knockout mice compared to DEN-injected wild-type mice, suggesting that PARIS is involved in DEN-induced hepatocellular tumorigenesis. Moreover, H2O2-treated Chang liver cells showed accumulation of PARIS and downregulation of PGC-1α and NRF1. Thus, these results suggest that PARIS upregulation by oncogenic stresses can promote cancer progression by suppressing the transcriptional level of PGC-1α, and the modulation of PARIS can be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Ji-Yeong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Soo Jeong Park
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Eunsang Kwag
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Okjae Koo
- Laboratory Animal Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, South Korea.
| |
Collapse
|
18
|
Cresto N, Gardier C, Gaillard MC, Gubinelli F, Roost P, Molina D, Josephine C, Dufour N, Auregan G, Guillermier M, Bernier S, Jan C, Gipchtein P, Hantraye P, Chartier-Harlin MC, Bonvento G, Van Camp N, Taymans JM, Cambon K, Liot G, Bemelmans AP, Brouillet E. The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo. Int J Mol Sci 2021; 22:ijms22136760. [PMID: 34201785 PMCID: PMC8268201 DOI: 10.3390/ijms22136760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson's disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) "cell-autonomous". Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its "dead" kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Noémie Cresto
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Camille Gardier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Marie-Claude Gaillard
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Francesco Gubinelli
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Pauline Roost
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Daniela Molina
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Charlène Josephine
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Noëlle Dufour
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Gwenaëlle Auregan
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Martine Guillermier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Suéva Bernier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Caroline Jan
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Pauline Gipchtein
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Philippe Hantraye
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (M.-C.C.-H.); (J.-M.T.)
- Brain Biology and Chemistry, LiCEND, F-59000 Lille, France
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Nadja Van Camp
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (M.-C.C.-H.); (J.-M.T.)
- Brain Biology and Chemistry, LiCEND, F-59000 Lille, France
| | - Karine Cambon
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Géraldine Liot
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Alexis-Pierre Bemelmans
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Emmanuel Brouillet
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
- Correspondence:
| |
Collapse
|
19
|
Parecoxib alleviates the motor behavioral decline of aged rats by ameliorating mitochondrial dysfunction in the substantia nigra via COX-2/PGE2 pathway inhibition. Neuropharmacology 2021; 194:108627. [PMID: 34089729 DOI: 10.1016/j.neuropharm.2021.108627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction manifests as an early event in the substantia nigra (SN) in aging and Parkinson disease. Cyclooxygenase 2 (COX-2), the rate-limiting enzyme in the prostaglandin E2 (PGE2) synthesis pathway, is implicated in aging and age-related neurodegenerative diseases; moreover, inhibition of COX-2 expression has been shown to be neuroprotective for nigrostriatal dopaminergic neurons. However, it is not known whether the neuroprotective effect of COX-2 inhibition is related to improved mitochondrial function during the aging process. To this end, we explored the effects of the selective COX-2 inhibitor parecoxib on mitochondrial function in the SN of aged rats. We found that parecoxib administration to aged rats for 10 weeks decreased COX-2/PGE2 expression, increased tyrosine hydroxylase and dopamine transporter expression in nigrostriatal dopaminergic neurons, and alleviated motor behavioral decline. Decreased malondialdehyde levels and an increased GSH/GSSG ratio as well as enhanced enzymatic activities of catalase and manganese superoxide dismutase in parecoxib-treated aged rats indicate that parecoxib administration elevated antioxidative ability in the SN during the aging process. Parecoxib treatment to aged rats promoted mitochondrial biogenesis by upregulating PGC-1α/NRF-1/TFAM, enhancing mitochondrial fusion by decreasing Drp1 levels and increasing Mfn1 and OPA1 levels, and activated mitophagy by increasing PINK1/Parkin levels while reducing p62/SQSTM1 levels, thereby coordinating mitochondrial homeostasis via inhibiting the COX-2/PGE2 pathway. Thus, our results strongly support the conclusion that parecoxib treatment is conducive to improving mitochondrial dysfunction in the SN upon aging in rats.
Collapse
|
20
|
Mota BC, Sastre M. The Role of PGC1α in Alzheimer's Disease and Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms22115769. [PMID: 34071270 PMCID: PMC8198456 DOI: 10.3390/ijms22115769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
The peroxisome proliferator-activated receptor co-activator-1α (PGC1α) belongs to a family of transcriptional regulators, which act as co-activators for a number of transcription factors, including PPARs, NRFs, oestrogen receptors, etc. PGC1α has been implicated in the control of mitochondrial biogenesis, the regulation of the synthesis of ROS and inflammatory cytokines, as well as genes controlling metabolic processes. The levels of PGC1α have been shown to be altered in neurodegenerative disorders. In the brains of Alzheimer's disease (AD) patients and animal models of amyloidosis, PGC1α expression was reduced compared with healthy individuals. Recently, it was shown that overexpression of PGC1α resulted in reduced amyloid-β (Aβ) generation, particularly by regulating the expression of BACE1, the rate-limiting enzyme involved in the production of Aβ. These results provide evidence pointing toward PGC1α activation as a new therapeutic avenue for AD, which has been supported by the promising observations of treatments with drugs that enhance the expression of PGC1α and gene therapy studies in animal models of AD. This review summarizes the different ways and mechanisms whereby PGC1α can be neuroprotective in AD and the pre-clinical treatments that have been explored so far.
Collapse
|
21
|
Wang J, Zhang L. Retrograde Axonal Transport Property of Adeno-Associated Virus and Its Possible Application in Future. Microbes Infect 2021; 23:104829. [PMID: 33878458 DOI: 10.1016/j.micinf.2021.104829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
Gene therapy has become a treatment method for many diseases. Adeno-associated virus (AAV) is one of the most common virus vectors, is also widely used in the gene therapy field. During the past 2 decades, the retrograde axonal transportability of AAV has been discovered and utilized. Many studies have worked on the retrograde axonal transportability of AAV, and more and more people are interested in this field. This review described the current application, influence factors, and mechanism of retrograde axonal transportability of AAV and predicted its potential use in disease treatment in near future.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Gastroenterology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Liqin Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Dongcheng Qu, Beijing, 100730, China.
| |
Collapse
|
22
|
Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther 2021; 219:107705. [PMID: 33039420 PMCID: PMC7887032 DOI: 10.1016/j.pharmthera.2020.107705] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent some of the most devastating neurological disorders, characterized by progressive loss of the structure and function of neurons. Current therapy for neurodegenerative disorders is limited to symptomatic treatment rather than disease modifying interventions, emphasizing the desperate need for improved approaches. Abundant evidence indicates that impaired mitochondrial function plays a crucial role in pathogenesis of many neurodegenerative diseases and so biochemical factors in mitochondria are considered promising targets for pharmacological-based therapies. Peroxisome proliferator-activated receptors-γ (PPARγ) are ligand-inducible transcription factors involved in regulating various genes including peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC1α). This review summarizes the evidence supporting the ability of PPARγ-PGC1α to coordinately up-regulate the expression of genes required for mitochondrial biogenesis in neurons and provide directions for future work to explore the potential benefit of targeting mitochondrial biogenesis in neurodegenerative disorders. We have highlighted key roles of NRF2, uncoupling protein-2 (UCP2), and paraoxonase-2 (PON2) signaling in mediating PGC1α-induced mitochondrial biogenesis. In addition, the status of PPARγ modulators being used in clinical trials for Parkinson's disease (PD), Alzheimer's disease (AD) and Huntington's disease (HD) has been compiled. The overall purpose of this review is to update and critique our understanding of the role of PPARγ-PGC1α-NRF2 in the induction of mitochondrial biogenesis together with suggestions for strategies to target PPARγ-PGC1α-NRF2 signaling in order to combat mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jennifer K Blackburn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
23
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021. [DOI: 10.3390/cells10020352
expr 820281011 + 880698691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α’s roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington’s Disease, Parkinson’s Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
24
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021; 10:cells10020352. [PMID: 33572179 PMCID: PMC7915819 DOI: 10.3390/cells10020352] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α's roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington's Disease, Parkinson's Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
25
|
BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun 2021; 12:487. [PMID: 33473105 PMCID: PMC7817668 DOI: 10.1038/s41467-020-20679-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Stress-induced glucocorticoids disturb mitochondrial bioenergetics and dynamics; however, instead of being removed via mitophagy, the damaged mitochondria accumulate. Therefore, we investigate the role of glucocorticoids in mitophagy inhibition and subsequent synaptic defects in hippocampal neurons, SH-SY5Y cells, and ICR mice. First, we observe that glucocorticoids decrease both synaptic density and vesicle recycling due to suppressed mitophagy. Screening data reveal that glucocorticoids downregulate BNIP3-like (BNIP3L)/NIX, resulting in the reduced mitochondrial respiration function and synaptic density. Notably, we find that glucocorticoids direct the glucocorticoid receptor to bind directly to the PGC1α promoter, downregulating its expression and nuclear translocation. PGC1α downregulation selectively decreases NIX-dependent mitophagy. Consistent with these results, NIX enhancer pre-treatment of a corticosterone-exposed mouse elevates mitophagy and synaptic density in hippocampus, improving the outcome of a spatial memory task. In conclusion, glucocorticoids inhibit mitophagy via downregulating NIX and that NIX activation represents a potential target for restoring synapse function. Stress-induced glucocorticoids cause mitochondrial damage in neurons, but they are not cleared by mitophagy. Here, the authors show that glucocorticoids inhibit NIX-dependent basal mitophagy, contributing to neurodegeneration in a mouse model that can be reversed by pretreatment with a NIX enhancer.
Collapse
|
26
|
Filograna R, Mennuni M, Alsina D, Larsson NG. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett 2020; 595:976-1002. [PMID: 33314045 PMCID: PMC8247411 DOI: 10.1002/1873-3468.14021] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
Most of the genetic information has been lost or transferred to the nucleus during the evolution of mitochondria. Nevertheless, mitochondria have retained their own genome that is essential for oxidative phosphorylation (OXPHOS). In mammals, a gene‐dense circular mitochondrial DNA (mtDNA) of about 16.5 kb encodes 13 proteins, which constitute only 1% of the mitochondrial proteome. Mammalian mtDNA is present in thousands of copies per cell and mutations often affect only a fraction of them. Most pathogenic human mtDNA mutations are recessive and only cause OXPHOS defects if present above a certain critical threshold. However, emerging evidence strongly suggests that the proportion of mutated mtDNA copies is not the only determinant of disease but that also the absolute copy number matters. In this review, we critically discuss current knowledge of the role of mtDNA copy number regulation in various types of human diseases, including mitochondrial disorders, neurodegenerative disorders and cancer, and during ageing. We also provide an overview of new exciting therapeutic strategies to directly manipulate mtDNA to restore OXPHOS in mitochondrial diseases.
Collapse
Affiliation(s)
- Roberta Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Mara Mennuni
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - David Alsina
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Shevtsova EF, Maltsev AV, Vinogradova DV, Shevtsov PN, Bachurin SO. Mitochondria as a promising target for developing novel agents for treating Alzheimer's disease. Med Res Rev 2020; 41:803-827. [PMID: 32687230 DOI: 10.1002/med.21715] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
The mitochondria-targeting drugs can be conventionally divided into the following groups: those compensating for the energy deficit involved in neurodegeneration, including stimulants of mitochondrial bioenergetics and activators of mitochondrial biogenesis; and neuroprotectors, that are compounds increasing the resistance of mitochondria to opening of mitochondrial permeability transition (MPT) pores. Although compensating for the energy deficit and inhibition of MPT are obvious targets for drugs used in the very early stages of Alzheimer-like pathology, but their use as the monotherapy for patients with severe symptoms is unlikely to be sufficiently effective. It would be optimal to combine targets that would provide the cognitive-stimulating, the neuroprotective effects and the ability to affect specific disease-forming mechanisms. In the design of such drugs, assessment of their potential mitochondrial-targeted effects is of particular importance. The possibility of targeted drug design for simultaneous action on mitochondrial and neurotransmitter's receptors targets is, in particularly, based on the known interplay of various cellular pathways and the presence of common structural components. Of particular interest is directed search for multitarget drugs that would act simultaneously on mitochondrial calcium-dependent functions, the targets (receptors, enzymes, etc.) facilitating neurotransmission, and the molecular targets related to the action of so-called disease-modifying factors, in particular, the formation and overcoming of the toxicity of β-amyloid or hyperphosphorylated tau protein. The examples of such approaches realized on the level of preclinical and clinical trials are presented below.
Collapse
Affiliation(s)
- Elena F Shevtsova
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Andrey V Maltsev
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Darya V Vinogradova
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Pavel N Shevtsov
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Sergey O Bachurin
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| |
Collapse
|
28
|
Mitophagy in Parkinson's disease: From pathogenesis to treatment target. Neurochem Int 2020; 138:104756. [PMID: 32428526 DOI: 10.1016/j.neuint.2020.104756] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/21/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022]
Abstract
Healthy mitochondria play an essential role in energy metabolism, but dysfunctional mitochondria can cause perturbations in cellular processes which can ultimately lead to cell death. The process which selectively removes and degrades dysfunctional mitochondria, mitophagy, protects against the accumulation of abnormal mitochondria and hence has a protective role in maintaining cell health. Increasing numbers of studies have linked defective mitophagy to a range of diseases, including Parkinson's disease (PD). Whilst current treatment strategies in PD can improve the classical motor symptoms of the disease, they are also associated with often severe side-effects, and generally do not tackle the underlying progressive neurodegeneration seen in the disease. The identification of novel treatment targets, such as mitophagy, are therefore of increasing interest in PD research. This review will begin by outlining the process of mitophagy, before examining evidence implicating mitophagy in both monogenic and sporadic forms of PD, drawing links between mitophagy and wider pathological processes such as protein accumulation and neuroinflammation. Finally, this review will examine the diverse strategies employed to promote mitophagy so far, discuss considerations arising from these studies, and present a framework for eventual assessment of mitophagy-promoting compounds and their viability as a treatment strategy for PD patients.
Collapse
|
29
|
Ge P, Dawson VL, Dawson TM. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. Mol Neurodegener 2020; 15:20. [PMID: 32169097 PMCID: PMC7071653 DOI: 10.1186/s13024-020-00367-7] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
That certain cell types in the central nervous system are more likely to undergo neurodegeneration in Parkinson's disease is a widely appreciated but poorly understood phenomenon. Many vulnerable subpopulations, including dopamine neurons in the substantia nigra pars compacta, have a shared phenotype of large, widely distributed axonal networks, dense synaptic connections, and high basal levels of neural activity. These features come at substantial bioenergetic cost, suggesting that these neurons experience a high degree of mitochondrial stress. In such a context, mechanisms of mitochondrial quality control play an especially important role in maintaining neuronal survival. In this review, we focus on understanding the unique challenges faced by the mitochondria in neurons vulnerable to neurodegeneration in Parkinson's and summarize evidence that mitochondrial dysfunction contributes to disease pathogenesis and to cell death in these subpopulations. We then review mechanisms of mitochondrial quality control mediated by activation of PINK1 and Parkin, two genes that carry mutations associated with autosomal recessive Parkinson's disease. We conclude by pinpointing critical gaps in our knowledge of PINK1 and Parkin function, and propose that understanding the connection between the mechanisms of sporadic Parkinson's and defects in mitochondrial quality control will lead us to greater insights into the question of selective vulnerability.
Collapse
Affiliation(s)
- Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Department of Physiology, Solomon H. Snyder Department of Neuroscience, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130 USA
- Present address: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Present address: Picower Institute for Learning and Memory, Cambridge, MA 02139 USA
- Present address: Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, MA 02115 USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Department of Physiology, Solomon H. Snyder Department of Neuroscience, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130 USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Department of Physiology, Solomon H. Snyder Department of Neuroscience, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130 USA
| |
Collapse
|
30
|
GBA mutation promotes early mitochondrial dysfunction in 3D neurosphere models. Aging (Albany NY) 2019; 11:10338-10355. [PMID: 31751314 PMCID: PMC6914435 DOI: 10.18632/aging.102460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Glucocerebrosidase (GBA) mutations are the most important genetic risk factor for the development of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase). Loss-of-GCase activity in cellular models has implicated lysosomal and mitochondrial dysfunction in PD disease pathogenesis, although the exact mechanisms remain unclear. We hypothesize that GBA mutations impair mitochondria quality control in a neurosphere model. We have characterized mitochondrial content, mitochondrial function and macroautophagy flux in 3D-neurosphere-model derived from neural crest stem cells containing heterozygous and homozygous N370SGBA mutations, under carbonyl cyanide-m-chlorophenyl-hydrazine (CCCP)- induced mitophagy. Our findings on mitochondrial markers and ATP levels indicate that mitochondrial accumulation occurs in mutant N370SGBA neurospheres under basal conditions, and clearance of depolarised mitochondria is impaired following CCCP-treatment. A significant increase in TFEB-mRNA levels, the master regulator of lysosomal and autophagy genes, may explain an unchanged macroautophagy flux in N370SGBA neurospheres. PGC1α-mRNA levels were also significantly increased following CCCP-treatment in heterozygote, but not homozygote neurospheres, and might contribute to the increased mitochondrial content seen in cells with this genotype, probably as a compensatory mechanism that is absent in homozygous lines. Mitochondrial impairment occurs early in the development of GCase-deficient neurons. Furthermore, impaired turnover of depolarised mitochondria is associated with early mitochondrial dysfunction. In summary, the presence of GBA mutation may be associated with higher levels of mitochondrial content in homozygous lines and lower clearance of damaged mitochondria in our neurosphere model.
Collapse
|
31
|
Nashine S, Subramaniam SR, Chwa M, Nesburn A, Kuppermann BD, Federoff H, Kenney MC. PU-91 drug rescues human age-related macular degeneration RPE cells; implications for AMD therapeutics. Aging (Albany NY) 2019; 11:6691-6713. [PMID: 31477635 PMCID: PMC6756897 DOI: 10.18632/aging.102179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/09/2019] [Indexed: 12/24/2022]
Abstract
Since mitochondrial dysfunction is implicated in the pathogenesis of AMD, this study is based on the premise that repurposing of mitochondria-stabilizing FDA-approved drugs such as PU-91, might rescue AMD RPE cells from AMD mitochondria-induced damage. The PU-91 drug upregulates PGC-1α which is a critical regulator of mitochondrial biogenesis. Herein, we tested the therapeutic potential of PU-91 drug and examined the additive effects of treatment with PU-91 and esterase inhibitors i.e., EI-12 and EI-78, using the in vitro transmitochondrial AMD cell model. This model was created by fusing platelets obtained from AMD patients with Rho0 i.e., mitochondria-deficient, ARPE-19 cell lines. The resulting AMD RPE cell lines have identical nuclei but differ in their mitochondrial DNA content, which is derived from individual AMD patients. Briefly, we report significant improvement in cell survival, mitochondrial health, and antioxidant potential in PU-91-treated AMD RPE cells compared to their untreated counterparts. In conclusion, this study identifies PU 91 as a therapeutic candidate drug for AMD and repurposing of PU-91 will be a smoother transition from lab bench to clinic since the pharmacological profiles of PU-91 have been examined already.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | | | - Marilyn Chwa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Anthony Nesburn
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA.,Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Baruch D Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Howard Federoff
- Department of Neurology, University of California Irvine, Irvine, CA 92697, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA.,Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
32
|
Role of PGC-1α in Mitochondrial Quality Control in Neurodegenerative Diseases. Neurochem Res 2019; 44:2031-2043. [PMID: 31410709 DOI: 10.1007/s11064-019-02858-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
As one of the major cell organelles responsible for ATP production, it is important that neurons maintain mitochondria with structural and functional integrity; this is especially true for neurons with high metabolic requirements. When mitochondrial damage occurs, mitochondria are able to maintain a steady state of functioning through molecular and organellar quality control, thus ensuring neuronal function. And when mitochondrial quality control (MQC) fails, mitochondria mediate apoptosis. An apparently key molecule in MQC is the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α). Recent findings have demonstrated that upregulation of PGC-1α expression in neurons can modulate MQC to prevent mitochondrial dysfunction in certain in vivo and in vitro aging or neurodegenerative encephalopathy models, such as Huntington's disease, Alzheimer's disease, and Parkinson's disease. Because mitochondrial function and quality control disorders are the basis of pathogenesis in almost all neurodegenerative diseases (NDDs), the role of PGC-1α may make it a viable entry point for the treatment of such diseases. This review focuses on multi-level MQC in neurons, as well as the regulation of MQC by PGC-1α in these major NDDs.
Collapse
|
33
|
Targeting Mitochondrial Defects to Increase Longevity in Animal Models of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:89-110. [PMID: 30919333 DOI: 10.1007/978-3-030-12668-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioenergetic homeostasis is a vital process maintaining cellular health and has primary importance in neuronal cells due to their high energy demand markedly at synapses. Mitochondria, the metabolic hubs of the cells, are the organelles responsible for producing energy in the form of ATP by using nutrients and oxygen. Defects in mitochondrial homeostasis result in energy deprivation and can lead to disrupted neuronal functions. Mitochondrial defects adversely contribute to the pathogenesis of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD). Mitochondrial defects not only include reduced ATP levels but also increased reactive oxygen species (ROS) leading to cellular damage. Here, we detail the mechanisms that lead to neuronal pathologies involving mitochondrial defects. Furthermore, we discuss how to target these mitochondrial defects in order to have beneficial effects as novel and complementary therapeutic avenues in neurodegenerative diseases. The critical evaluation of these strategies and their potential outcome can pave the way for finding novel therapies for neurodegenerative pathologies.
Collapse
|
34
|
Ryan KM, Patterson I, McLoughlin DM. Peroxisome proliferator-activated receptor gamma co-activator-1 alpha in depression and the response to electroconvulsive therapy. Psychol Med 2019; 49:1859-1868. [PMID: 30191781 DOI: 10.1017/s0033291718002556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator (PGC-1α), termed the 'master regulator of mitochondrial biogenesis', has been implicated in stress and resilience to stress-induced depressive-like behaviours in animal models. However, there has been no study conducted to date to examine PGC-1α levels in patients with depression or in response to antidepressant treatment. Our aim was to assess PGC-1α mRNA levels in blood from healthy controls and patients with depression pre-/post-electroconvulsive therapy (ECT), and to examine the relationship between blood PGC-1α mRNA levels and clinical symptoms and outcomes with ECT. METHODS Whole blood PGC-1α mRNA levels were analysed in samples from 67 patients with a major depressive episode and 70 healthy controls, and in patient samples following a course of ECT using quantitative real-time polymerase chain reaction (qRT-PCR). Exploratory subgroup correlational analyses were carried out to determine the relationship between PGC-1α and mood scores. RESULTS PGC-1α levels were lower in patients with depression compared with healthy controls (p = 0.03). This lower level was predominantly accounted for by patients with psychotic unipolar depression (p = 0.004). ECT did not alter PGC-1α levels in the depressed group as a whole, though exploratory analyses revealed a significant increase in PGC-1α in patients with psychotic unipolar depression post-ECT (p = 0.045). We found no relationship between PGC-1α mRNA levels and depression severity or the clinical response to ECT. CONCLUSIONS PGC-1α may represent a novel therapeutic target for the treatment of depression, and be a common link between various pathophysiological processes implicated in depression.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin,Dublin,Ireland
| | - Ian Patterson
- Trinity College Institute of Neuroscience, Trinity College Dublin,Dublin,Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin,Dublin,Ireland
| |
Collapse
|
35
|
Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. Signaling Mechanisms of Selective PPAR γ Modulators in Alzheimer's Disease. PPAR Res 2018; 2018:2010675. [PMID: 30420872 PMCID: PMC6215547 DOI: 10.1155/2018/2010675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nila Ghanei
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
36
|
Harmuth T, Prell-Schicker C, Weber JJ, Gellerich F, Funke C, Drießen S, Magg JCD, Krebiehl G, Wolburg H, Hayer SN, Hauser S, Krüger R, Schöls L, Riess O, Hübener-Schmid J. Mitochondrial Morphology, Function and Homeostasis Are Impaired by Expression of an N-terminal Calpain Cleavage Fragment of Ataxin-3. Front Mol Neurosci 2018; 11:368. [PMID: 30364204 PMCID: PMC6192284 DOI: 10.3389/fnmol.2018.00368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
Abstract
Alterations in mitochondrial morphology and function have been linked to neurodegenerative diseases, including Parkinson disease, Alzheimer disease and Huntington disease. Metabolic defects, resulting from dysfunctional mitochondria, have been reported in patients and respective animal models of all those diseases. Spinocerebellar Ataxia Type 3 (SCA3), another neurodegenerative disorder, also presents with metabolic defects and loss of body weight in early disease stages although the possible role of mitochondrial dysfunction in SCA3 pathology is still to be determined. Interestingly, the SCA3 disease protein ataxin-3, which is predominantly localized in cytoplasm and nucleus, has also been associated with mitochondria in both its mutant and wildtype form. This observation provides an interesting link to a potential mitochondrial involvement of mutant ataxin-3 in SCA3 pathogenesis. Furthermore, proteolytic cleavage of ataxin-3 has been shown to produce toxic fragments and even overexpression of artificially truncated forms of ataxin-3 resulted in mitochondria deficits. Therefore, we analyzed the repercussions of expressing a naturally occurring N-terminal cleavage fragment of ataxin-3 and the influence of an endogenous expression of the S256 cleavage fragment in vitro and in vivo. In our study, expression of a fragment derived from calpain cleavage induced mitochondrial fragmentation and cristae alterations leading to a significantly decreased capacity of mitochondrial respiration and contributing to an increased susceptibility to apoptosis. Furthermore, analyzing mitophagy revealed activation of autophagy in the early pathogenesis with reduced lysosomal activity. In conclusion, our findings indicate that cleavage of ataxin-3 by calpains results in fragments which interfere with mitochondrial function and mitochondrial degradation processes.
Collapse
Affiliation(s)
- Tina Harmuth
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany.,Graduate School of Cellular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Caroline Prell-Schicker
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany
| | - Frank Gellerich
- Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Claudia Funke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefan Drießen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Janine C D Magg
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany
| | - Guido Krebiehl
- Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Stefanie N Hayer
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Rejko Krüger
- Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany
| |
Collapse
|
37
|
Lv J, Jiang S, Yang Z, Hu W, Wang Z, Li T, Yang Y. PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev 2018; 44:8-21. [PMID: 29580918 DOI: 10.1016/j.arr.2018.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
Recently, growing evidence has demonstrated that peroxisome proliferator activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a superior transcriptional regulator that acts via controlling the expression of anti-oxidant enzymes and uncoupling proteins and inducing mitochondrial biogenesis, which plays a beneficial part in the central nervous system (CNS). Given the significance of PGC-1α, we summarize the current literature on the molecular mechanisms and roles of PGC-1α in the CNS. Thus, in this review, we first briefly introduce the basic characteristics regarding PGC-1α. We then depict some of its important cerebral functions and discuss upstream modulators, partners, and downstream effectors of the PGC-1α signaling pathway. Finally, we highlight recent progress in research on the involvement of PGC-1α in certain major neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Collectively, the data presented here may be useful for supporting the future potential of PGC-1α as a therapeutic target.
Collapse
Affiliation(s)
- Jianjun Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University,169 Changle West Road, Xi'an 710032, China
| | - Zheng Wang
- Department of Cadio-Thoracic Surgery, Wuhan General Hospital of The People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
38
|
Im YK, Najyb O, Gravel SP, McGuirk S, Ahn R, Avizonis DZ, Chénard V, Sabourin V, Hudson J, Pawson T, Topisirovic I, Pollak M, St-Pierre J, Ursini-Siegel J. Interplay between ShcA Signaling and PGC-1α Triggers Targetable Metabolic Vulnerabilities in Breast Cancer. Cancer Res 2018; 78:4826-4838. [DOI: 10.1158/0008-5472.can-17-3696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/07/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
|
39
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway-PPAR Gamma, Energy Metabolism and Circadian Rhythms. Neuromolecular Med 2018; 20:174-204. [PMID: 29572723 DOI: 10.1007/s12017-018-8486-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
Entropy production rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Irreversible processes are quantified by changes in the entropy production rate. This review is focused on the opposing interactions observed in NDs between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In amyotrophic lateral sclerosis and Huntington's disease, WNT/beta-catenin pathway is upregulated, whereas PPAR gamma is downregulated. In Alzheimer's disease and Parkinson's disease, WNT/beta-catenin pathway is downregulated while PPAR gamma is upregulated. The dysregulation of the canonical WNT/beta-catenin pathway is responsible for the modification of thermodynamics behaviors of metabolic enzymes. Upregulation of WNT/beta-catenin pathway leads to aerobic glycolysis, named Warburg effect, through activated enzymes, such as glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactic dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). Downregulation of WNT/beta-catenin pathway leads to oxidative stress and cell death through inactivation of Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPAR gamma is dysregulated, whereas it contributes to the regulation of several key circadian genes. NDs show many dysregulation in the mediation of circadian clock genes and so of circadian rhythms. Thermodynamics rhythms operate far-from-equilibrium and partly regulate interactions between WNT/beta-catenin pathway and PPAR gamma. In NDs, metabolism, thermodynamics and circadian rhythms are tightly interrelated.
Collapse
Affiliation(s)
- Alexandre Vallée
- DRCI, Hôpital Foch, Suresnes, France.
- LMA (Laboratoire de Mathématiques et Applications) CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- DRCI, Hôpital Foch, Suresnes, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
40
|
Red raspberries suppress NLRP3 inflammasome and attenuate metabolic abnormalities in diet-induced obese mice. J Nutr Biochem 2018; 53:96-103. [DOI: 10.1016/j.jnutbio.2017.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 12/26/2022]
|
41
|
Cell-Specific Deletion of PGC-1α from Medium Spiny Neurons Causes Transcriptional Alterations and Age-Related Motor Impairment. J Neurosci 2018; 38:3273-3286. [PMID: 29491012 DOI: 10.1523/jneurosci.0848-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 01/24/2023] Open
Abstract
Multiple lines of evidence indicate that a reduction in the expression and function of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is associated with neurodegeneration in diseases such as Huntington's disease (HD). Polymorphisms in the PGC-1α gene modify HD progression and PGC-1α expression is reduced in striatal medium spiny neurons (MSNs) of HD patients and mouse models. However, neither the MSN-specific function of PGC-1α nor the contribution of PGC-1α deficiency to motor dysfunction is known. We identified novel, PGC-1α-dependent transcripts involved in RNA processing, signal transduction, and neuronal morphology and confirmed reductions in these transcripts in male and female mice lacking PGC-1α specifically in MSNs, indicating a cell-autonomous effect in this population. MSN-specific PGC-1α deletion caused reductions in previously identified neuronal and metabolic PGC-1α-dependent genes without causing striatal vacuolizations. Interestingly, these mice exhibited a hypoactivity with age, similar to several HD animal models. However, these newly identified PGC-1α-dependent genes were upregulated with disease severity and age in knock-in HD mouse models independent of changes in PGC-1α transcript, contrary to what would be predicted from a loss-of-function etiological mechanism. These data indicate that PGC-1α is necessary for MSN transcriptional homeostasis and function with age and that, whereas PGC-1α loss in MSNs does not replicate an HD-like phenocopy, its downstream genes are altered in a repeat-length and age-dependent fashion. Understanding the additive effects of PGC-1α gene functional variation and mutant huntingtin on transcription in this cell type may provide insight into the selective vulnerability of MSNs in HD.SIGNIFICANCE STATEMENT Reductions in peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)-mediated transcription have been implicated in the pathogenesis of Huntington's disease (HD). We show that, although PGC-1α-dependent transcription is necessary to maintain medium spiny neuron (MSN) function with age, its loss is insufficient to cause striatal atrophy in mice. We also highlight a set of genes that can serve as proxies for PGC-1α functional activity in the striatum for target engagement studies. Furthermore, we demonstrate that PGC-1α-dependent genes are upregulated in a dose- and age-dependent fashion in HD mouse models, contrary to what would be predicted from a loss-of-function etiological mechanism. However, given this role for PGC-1α in MSN transcriptional homeostasis, it is important to consider how genetic variation in PGC-1α could contribute to mutant-huntingtin-induced cell death and disease progression.
Collapse
|
42
|
PGC1α: Friend or Foe in Cancer? Genes (Basel) 2018; 9:genes9010048. [PMID: 29361779 PMCID: PMC5793199 DOI: 10.3390/genes9010048] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1α in cancer. Both high and low levels of PGC1α expression have been reported to be associated with cancer and worse prognosis, and PGC1α has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1α may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1α downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1α is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1α is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell.
Collapse
|
43
|
Bobela W, Nazeeruddin S, Knott G, Aebischer P, Schneider BL. Modulating the catalytic activity of AMPK has neuroprotective effects against α-synuclein toxicity. Mol Neurodegener 2017; 12:80. [PMID: 29100525 PMCID: PMC5670705 DOI: 10.1186/s13024-017-0220-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022] Open
Abstract
Background Metabolic perturbations and slower renewal of cellular components associated with aging increase the risk of Parkinson’s disease (PD). Declining activity of AMPK, a critical cellular energy sensor, may therefore contribute to neurodegeneration. Methods Here, we overexpress various genetic variants of the catalytic AMPKα subunit to determine how AMPK activity affects the survival and function of neurons overexpressing human α-synuclein in vivo. Results Both AMPKα1 and α2 subunits have neuroprotective effects against human α-synuclein toxicity in nigral dopaminergic neurons. Remarkably, a modified variant of AMPKα1 (T172Dα1) with constitutive low activity most effectively prevents the loss of dopamine neurons, as well as the motor impairments caused by α-synuclein accumulation. In the striatum, T172Dα1 decreases the formation of dystrophic axons, which contain aggregated α-synuclein. In primary cortical neurons, overexpression of human α-synuclein perturbs mitochondrial and lysosomal activities. Co-expressing AMPKα with α-synuclein induces compensatory changes, which limit the accumulation of lysosomal material and increase the mitochondrial mass. Conclusions Together, these results indicate that modulating AMPK activity can mitigate α-synuclein toxicity in nigral dopamine neurons, which may have implications for the development of neuroprotective treatments against PD. Electronic supplementary material The online version of this article (10.1186/s13024-017-0220-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wojciech Bobela
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Sameer Nazeeruddin
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Graham Knott
- Centre of Interdisciplinary Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Patrick Aebischer
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
44
|
Phillipson OT. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management. Ageing Res Rev 2017; 40:149-167. [PMID: 28986235 DOI: 10.1016/j.arr.2017.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
Abstract
The motor deficits which characterise the sporadic form of Parkinson's disease arise from age-related loss of a subset of dopamine neurons in the substantia nigra. Although motor symptoms respond to dopamine replacement therapies, the underlying disease process remains. This review details some features of the progressive molecular pathology and proposes deployment of a combination of nutrients: R-lipoic acid, acetyl-l-carnitine, ubiquinol, melatonin (or receptor agonists) and vitamin D3, with the collective potential to slow progression of these features. The main nutrient targets include impaired mitochondria and the associated oxidative/nitrosative stress, calcium stress and impaired gene transcription induced by pathogenic forms of alpha- synuclein. Benefits may be achieved via nutrient influence on epigenetic signaling pathways governing transcription factors for mitochondrial biogenesis, antioxidant defences and the autophagy-lysosomal pathway, via regulation of the metabolic energy sensor AMP activated protein kinase (AMPK) and the mammalian target of rapamycin mTOR. Nutrients also benefit expression of the transcription factor for neuronal survival (NR4A2), trophic factors GDNF and BDNF, and age-related calcium signals. In addition a number of non-motor related dysfunctions in circadian control, clock genes and associated metabolic, endocrine and sleep-wake activity are briefly addressed, as are late-stage complications in respect of cognitive decline and osteoporosis. Analysis of the network of nutrient effects reveals how beneficial synergies may counter the accumulation and promote clearance of pathogenic alpha-synuclein.
Collapse
|
45
|
Zheng L, Bernard-Marissal N, Moullan N, D'Amico D, Auwerx J, Moore DJ, Knott G, Aebischer P, Schneider BL. Parkin functionally interacts with PGC-1α to preserve mitochondria and protect dopaminergic neurons. Hum Mol Genet 2017; 26:582-598. [PMID: 28053050 DOI: 10.1093/hmg/ddw418] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/02/2016] [Indexed: 11/12/2022] Open
Abstract
To understand the cause of Parkinson's disease (PD), it is important to determine the functional interactions between factors linked to the disease. Parkin is associated with autosomal recessive early-onset PD, and controls the transcription of PGC-1α, a master regulator of mitochondrial biogenesis. These two factors functionally interact to regulate the turnover and quality of mitochondria, by increasing both mitophagic activity and mitochondria biogenesis. In cortical neurons, co-expressing PGC-1α and Parkin increases the number of mitochondria, enhances maximal respiration, and accelerates the recovery of the mitochondrial membrane potential following mitochondrial uncoupling. PGC-1α enhances Mfn2 transcription, but also leads to increased degradation of the Mfn2 protein, a key ubiquitylation target of Parkin on mitochondria. In vivo, Parkin has significant protective effects on the survival and function of nigral dopaminergic neurons in which the chronic expression of PGC-1α is induced. Ultrastructural analysis shows that these two factors together control the density of mitochondria and their interaction with the endoplasmic reticulum. These results highlight the combined effects of Parkin and PGC-1α in the maintenance of mitochondrial homeostasis in dopaminergic neurons. These two factors synergistically control the quality and function of mitochondria, which is important for the survival of neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Lu Zheng
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Norman Moullan
- Laboratory of Integrative and Systems Physiology, EPFL, 1015 Lausanne, Switzerland
| | - Davide D'Amico
- Laboratory of Integrative and Systems Physiology, EPFL, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, EPFL, 1015 Lausanne, Switzerland
| | - Darren J Moore
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Graham Knott
- Centre of Interdisciplinary Electron Microscopy, EPFL, 1015 Lausanne, Switzerland
| | - Patrick Aebischer
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Xue Y, Du M, Zhu MJ. Quercetin suppresses NLRP3 inflammasome activation in epithelial cells triggered by Escherichia coli O157:H7. Free Radic Biol Med 2017; 108:760-769. [PMID: 28476502 DOI: 10.1016/j.freeradbiomed.2017.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/22/2017] [Accepted: 05/01/2017] [Indexed: 12/28/2022]
Abstract
Inflammatory responses elicited by LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is induced by a wide variety of stress signals including infectious agents and cellular disorders. E. coli O157:H7 causes serious gastrointestinal diseases that results in severe inflammation and oxidative stress, causing host cell damage. In this study, we found that E. coli O157:H7 infection induced NLRP3 assembly, caspase-1 activation and interleukin (IL)-1β and IL-18 release in Caco-2 cells. Infection also resulted in mitochondrial dysfunction with disrupted mitochondrial potential and mitochondrial complex-I activity, as well as the cytosolic release of cytochrome c and altered mitochondrial respiratory chain. The damage of mitochondria led to increased production of reactive oxygen species (ROS) and cytosolic release of mitochondrial DNA. Moreover, ROS was required for E. coli O157:H7 induced NLRP3 assembly as inhibiting mitochondrial ROS release by ROS scavengers Mito-TEMPO and N-acetylcysteine abrogated NLRP3 inflammasome activation in Caco-2 cells in response to E. coli O157:H7. Quercetin, one of the most important flavonoids in plant origin foods, had a protective role in inhibiting NLRP3 activation upon E. coli O157:H7 infection by protecting mitochondrial integrity and inhibiting mitochondrial ROS release. In addition, E. coli O157:H7 infection inhibited the host autophagy while quercetin treatment augmented autophagy activation, which further blocked ROS generation and IL-1β and IL-18 release. In summary, E. coli O157:H7 infection induced mitochondrial ROS release and NLRP3 assembly in host cells, while quercetin exerted a preventive role in host cells upon E. coli O157:H7 infection partially due to prevention of ROS production and activation of autophagy.
Collapse
Affiliation(s)
- Yansong Xue
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
47
|
Torok R, Salamon A, Sumegi E, Zadori D, Veres G, Molnar MF, Vecsei L, Klivenyi P. Effect of MPTP on mRNA expression of PGC-1α in mouse brain. Brain Res 2017; 1660:20-26. [DOI: 10.1016/j.brainres.2017.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/05/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
|
48
|
Ng CH, Basil AH, Hang L, Tan R, Goh KL, O'Neill S, Zhang X, Yu F, Lim KL. Genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel rescues the disease phenotypes of genetic models of Parkinson's disease. Neurobiol Aging 2017; 55:33-37. [PMID: 28407521 DOI: 10.1016/j.neurobiolaging.2017.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/19/2022]
Abstract
Despite intensive research, the etiology of Parkinson's disease (PD) remains poorly understood and the disease remains incurable. However, compelling evidence gathered over decades of research strongly support a role for mitochondrial dysfunction in PD pathogenesis. Related to this, PGC-1α, a key regulator of mitochondrial biogenesis, has recently been proposed to be an attractive target for intervention in PD. Here, we showed that silencing of expression of the Drosophila PGC-1α ortholog spargel results in PD-related phenotypes in flies and also seem to negate the effects of AMPK activation, which we have previously demonstrated to be neuroprotective, that is, AMPK-mediated neuroprotection appears to require PGC-1α. Importantly, we further showed that genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel is sufficient to rescue the disease phenotypes of Parkin and LRRK2 genetic fly models of PD, thus supporting the proposed use of PGC-1α-related strategies for neuroprotection in PD.
Collapse
Affiliation(s)
- Chee-Hoe Ng
- Department of Research, National Neuroscience Institute, Singapore, Singapore.
| | - Adeline H Basil
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Liting Hang
- Department of Research, National Neuroscience Institute, Singapore, Singapore; Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Royston Tan
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Kian-Leong Goh
- Department of Research, National Neuroscience Institute, Singapore, Singapore; Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Sharon O'Neill
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Xiaodong Zhang
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Kah-Leong Lim
- Department of Research, National Neuroscience Institute, Singapore, Singapore; Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore; Department of Physiology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
49
|
Caballano-Infantes E, Terron-Bautista J, Beltrán-Povea A, Cahuana GM, Soria B, Nabil H, Bedoya FJ, Tejedo JR. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells. World J Stem Cells 2017; 9:26-36. [PMID: 28289506 PMCID: PMC5329687 DOI: 10.4252/wjsc.v9.i2.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/09/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies.
Collapse
|
50
|
Abstract
Mitochondria were first postulated to contribute to aging more than 40 years ago. During the following decades, multiple lines of evidence in model organisms and humans showed that impaired mitochondrial function can contribute to age-associated disease phenotypes and aging. However, in contrast to the original theory favoring oxidative damage as a cause for mtDNA mutations, there are now strong data arguing that most mammalian mtDNA mutations originate as replication errors made by the mtDNA polymerase. Currently, a substantial amount of mitochondrial research is focused on finding ways to either remove or counteract the effects of mtDNA mutations with the hope of extending the human health- and lifespan. This review summarizes the current knowledge regarding the formation of mtDNA mutations and their impact on mitochondrial function. We also critically discuss proposed pathways interlinked with mammalian mtDNA mutations and suggest future research strategies to elucidate the role of mtDNA mutations in aging.
Collapse
Affiliation(s)
- Timo E S Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Johanna H K Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|