1
|
Toupenet Marchesi L, Stockholm D, Esteves T, Leblanc M, Auger N, Branchu J, El Hachimi KH, Stevanin G. Transcriptomic analysis reinforces the implication of spatacsin in neuroinflammation and neurodevelopment. Sci Rep 2025; 15:2370. [PMID: 39827309 PMCID: PMC11743199 DOI: 10.1038/s41598-025-86337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Hereditary spastic paraplegia (HSP) encompasses a group of rare genetic diseases primarily affecting motor neurons. Among these, spastic paraplegia type 11 (SPG11) represents a complex form of HSP caused by deleterious variants in the SPG11 gene, which encodes the spatacsin protein. Previous studies have described several potential roles for spatacsin, including its involvement in lysosome and autophagy mechanisms, neuronal and neurites development or mitochondria function. Despite these findings, the precise function of the spatacsin protein remains elusive. To elucidate its function, we conducted an extensive RNA sequencing (RNAseq) experiment and transcriptomic analysis in three distinct neural structures (cerebellum, cortex and hippocampus) and at three different ages (6 weeks, 4 months and 8 months) in both wild type and Spg11-/- mice. Our functional analysis of differentially expressed genes (DEGs) and Gene Set Enrichment Analysis (GSEA) revealed dysregulation in pathways related to inflammation, RNA metabolism and neuronal and neurite development, factors frequently implicated in neurodegenerative disorders. Notably, we also observed early deregulation in cellular pathways related to cell proliferation. Our results represent a significant step towards a better understanding of the functions of spatacsin in the cell and the underlying cellular mechanisms disrupted by its absence.
Collapse
Affiliation(s)
- Liriopé Toupenet Marchesi
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Daniel Stockholm
- PSL Research University, EPHE, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Typhaine Esteves
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Marion Leblanc
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Nicolas Auger
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Julien Branchu
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
| | - Khalid Hamid El Hachimi
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Giovanni Stevanin
- PSL Research University, EPHE, Paris, France.
- Institut des Neurosciences cognitives et intégratives d'Aquitaine (INCIA), Bordeaux University, CNRS, Bordeaux, France.
| |
Collapse
|
2
|
Tsitsikov EN, Phan KP, Liu Y, Tsytsykova AV, Paterno R, Sherry DM, Johnson AC, Dunn IF. Spontaneous mutation in 2310061I04Rik results in reduced expression of mitochondrial genes and impaired brain myelination. PLoS One 2024; 19:e0290487. [PMID: 39631040 PMCID: PMC11617004 DOI: 10.1371/journal.pone.0290487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/10/2024] [Indexed: 12/07/2024] Open
Abstract
Here, we describe a spontaneous mouse mutant with a deletion in a predicted gene 2310061I04Rik (Rik) of unknown function located on chromosome 17. A 59 base pair long deletion occurred in the first intron of the Rik gene and disrupted its expression. Riknull mice were born healthy and appeared anatomically normal up to two weeks of age. After that, these mice showed inhibited growth, ataxic gait, and died shortly after postnatal day 24 (P24). Transcriptome analysis at P14 and P23 revealed significantly reduced expression of mitochondrial genes in Riknull brains compared to wild type controls including mt-Nd4, mt-Cytb, mt-Nd2, mt-Co1, mt-Atp6, and others. Similarly, genes specific for myelinating oligodendrocytes also showed reduced expression in P23 Riknull brains compared to controls. Histological examination of anterior thalamic nuclei demonstrated decreased myelination of anteroventral nuclei but not of anterodorsal nuclei in P23 Riknull mice. Myelination of the anterior commissure was also impaired and displayed extensive vacuolation. Consistently with these findings, immunohistochemistry showed reduced expression of Opalin, a glycoprotein expressed in differentiated oligodendrocytes. Taken together, these results suggest that RIK is important for oligodendrocyte maturation and myelination in the developing brain.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Rosalia Paterno
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - David M. Sherry
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Anthony C. Johnson
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| |
Collapse
|
3
|
Lygate CA. Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure. Clin Sci (Lond) 2024; 138:491-514. [PMID: 38639724 DOI: 10.1042/cs20230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
4
|
Chen L, Wang J, Ren Y, Ma Y, Liu J, Jiang H, Liu C. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155382. [PMID: 38382280 DOI: 10.1016/j.phymed.2024.155382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetes is a metabolic disorder characterized by chronic hyperglycaemia. Chronic metabolic abnormalities and long-term hyperglycaemia may result in a wide range of acute and chronic consequences. Previous studies have demonstrated that artesunate(ART) has antidiabetic, anti-inflammatory, antiatherosclerotic, and other beneficial effects, but the specific regulatory mechanism is not completely clear. AIM This study investigated the effects of ART on metabolic disorders in type 2 diabetes mellitus (T2DM) model db/db mice and explored the underlying mechanisms involved. METHODS C57BL/KsJ-db/db mice were used to identify the targets and molecular mechanism of ART. Metabolomic methods were used to evaluate the efficacy of ART in improving T2DM-related metabolic disorders. Network pharmacology and transcriptomic sequencing were used to analyse the targets and pathways of ART in T2DM. Finally, molecular biology experiments were performed to verify the key targets and pathways selected by network pharmacology and transcriptomic analyses. RESULTS After a 7-week ART intervention (160 mg/kg), the glucose and lipid metabolism levels of the db/db mice improved. Additionally, the oxidative stress indices, namely, the MDA and SOD levels, significantly improved (p<0.01). Linoleic acid and glycerophospholipid metabolism, amino acid metabolism, bile acid synthesis, and purine metabolism disorders in db/db mice were partially corrected after ART treatment. Network pharmacology analysis identified important targets of ART for the treatment of metabolic disorders in T2DM . These targets are involved in key signalling pathways, including the highest scores observed for the PI3K/Akt signalling pathway. Transcriptomic analysis revealed that ART could activate the MAPK signalling pathway and two key gene targets, HGK and GADD45. Immunoblotting revealed that ART increases p-PI3K, p-AKT, Glut2, and IRS1 protein expression and suppresses the phosphorylation of p38, ERK1/2, and JNK, returning HGK and GADD45 to their preartesunate levels. CONCLUSION Treatment of db/db mice with 160 mg/kg ART for 7 weeks significantly reduced fasting blood glucose and lipid levels. It also improved metabolic imbalances in amino acids, lipids, purines, and bile acids, thereby improving metabolic disorders. These effects are achieved by activating the PI3K/AKT pathway and inhibiting the MAPK pathway, thus demonstrating the efficacy of the drug.
Collapse
Affiliation(s)
- Lulu Chen
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jialin Wang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yanshuang Ren
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yujin Ma
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Hongwei Jiang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
5
|
Chen X, Zhang Z, Niu H, Tian X, Tian H, Yao W, He H, Shi H, Li C, Luo J. Goat Milk Improves Glucose Metabolism in Type 2 Diabetic Mice and Protects Pancreatic β-Cell Functions. Mol Nutr Food Res 2024; 68:e2200842. [PMID: 37990402 DOI: 10.1002/mnfr.202200842] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/13/2023] [Indexed: 11/23/2023]
Abstract
SCOPE Consuming goat milk is known to benefit high-fat diet-fed and streptozocin (STZ)-induced diabetic rats, but the underlying mechanisms are unknown. This study is conducted to investigate the metabolic effects of a goat milk diet (a form of goat milk powder) on glucose homeostasis and pancreatic conditions in a mouse model of Type 2 diabetes mellitus (T2DM) induced by STZ. METHODS AND RESULTS T2DM mice are fed with a goat-milk-based diet containing 10.3% w/w goat milk powder for 10 weeks for investigating the in vivo effects; a β-cell line MIN6 cells are used to test the in vitro effects of digested goat milk (DGM). Goat milk diet improves the deleterious effects of STZ on fasting glucose levels and glucose tolerance, accelerates pancreatic structure recovery, and alters blood metabolites in mice. Based on the significant differences observed in metabolites, the key pathways, metabolite regulatory enzymes, metabolite molecular modules, and biochemical reactions are identified as critical integrated pathways. DGM promotes the cell activity, glucose transportation, and AKT activation in cultured STZ-treated MIN6 cells in vitro. CONCLUSIONS Goat milk diet improves glucose homeostasis and pancreatic conditions of T2DM mice, in association with improved blood metabolite profiles and activation of pancreatic AKT pathway.
Collapse
Affiliation(s)
- Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhifei Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiming Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinmiao Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huanshan He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
7
|
Philip M, Snow RJ, Della Gatta PA, Callahan DL, Bellofiore N, Salamonsen LA, Palmer KR, Ellery SJ. Aspects of human uterine creatine metabolism during the menstrual cycle and at term pregnancy†. Biol Reprod 2023; 109:839-850. [PMID: 37602666 DOI: 10.1093/biolre/ioad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
Creatine metabolism likely contributes to energy homeostasis in the human uterus, but whether this organ synthesizes creatine and whether creatine metabolism is adjusted throughout the menstrual cycle and with pregnancy are largely unknown. This study determined endometrial protein expression of creatine-synthesizing enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), creatine kinase (CKBB), and the creatine transporter (SLC6A8) throughout the menstrual cycle in fertile and primary infertile women. It also characterized creatine metabolism at term pregnancy, measuring aspects of creatine metabolism in myometrial and decidual tissue. In endometrial samples, AGAT, GAMT, SLC6A8, and CKBB were expressed in glandular and luminal epithelial cells. Except for SLC6A8, the other proteins were also located in stromal cells. Irrespective of fertility, AGAT, GAMT, and SLC6A8 high-intensity immunohistochemical staining was greatest in the early secretory phase of the menstrual cycle. During the proliferative phase, staining for SLC6A8 protein was greater (P = 0.01) in the primary infertile compared with the fertile group. Both layers of the term pregnant uterus contained creatine, phosphocreatine, guanidinoacetic acid, arginine, glycine, and methionine; detectable gene and protein expression of AGAT, GAMT, CKBB, and ubiquitous mitochondrial CK (uMt-CK); and gene expression of SLC6A8. The proteins AGAT, GAMT, CKBB, and SLC6A8 were uniformly distributed in the myometrium and localized to the decidual glands. In conclusion, endometrial tissue has the capacity to produce creatine and its capacity is highest around the time of fertilization and implantation. Both layers of the term pregnant uterus also contained all the enzymatic machinery and substrates of creatine metabolism.
Collapse
Affiliation(s)
- Mamatha Philip
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Rodney J Snow
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Damien L Callahan
- Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC, Australia
| | - Nadia Bellofiore
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Lois A Salamonsen
- The Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kirsten R Palmer
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Branovets J, Soodla K, Vendelin M, Birkedal R. Rat and mouse cardiomyocytes show subtle differences in creatine kinase expression and compartmentalization. PLoS One 2023; 18:e0294718. [PMID: 38011179 PMCID: PMC10681188 DOI: 10.1371/journal.pone.0294718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Creatine kinase (CK) and adenylate kinase (AK) are energy transfer systems. Different studies on permeabilized cardiomyocytes suggest that ADP-channelling from mitochondrial CK alone stimulates respiration to its maximum, VO2_max, in rat but not mouse cardiomyocytes. Results are ambiguous on ADP-channelling from AK to mitochondria. This study was undertaken to directly compare the CK and AK systems in rat and mouse hearts. In homogenates, we assessed CK- and AK-activities, and the CK isoform distribution. In permeabilized cardiomyocytes, we assessed mitochondrial respiration stimulated by ADP from CK and AK, VO2_CK and VO2_AK, respectively. The ADP-channelling from CK or AK to mitochondria was assessed by adding PEP and PK to competitively inhibit the respiration rate. We found that rat compared to mouse hearts had a lower aerobic capacity, higher VO2_CK/VO2_max, and different CK-isoform distribution. Although rat hearts had a larger fraction of mitochondrial CK, less ADP was channeled from CK to the mitochondria. This suggests different intracellular compartmentalization in rat and mouse cardiomyocytes. VO2_AK/VO2_max was similar in mouse and rat cardiomyocytes, and AK did not channel ADP to the mitochondria. In the absence of intracellular compartmentalization, the AK- and CK-activities in homogenate should have been similar to the ADP-phosphorylation rates estimated from VO2_AK and VO2_CK in permeabilized cardiomyocytes. Instead, we found that the ADP-phosphorylation rates estimated from permeabilized cardiomyocytes were 2 and 9 times lower than the activities recorded in homogenate for CK and AK, respectively. Our results highlight the importance of energetic compartmentalization in cardiac metabolic regulation and signalling.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Kärol Soodla
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
9
|
Laasmaa M, Branovets J, Stolova J, Shen X, Rätsepso T, Balodis MJ, Grahv C, Hendrikson E, Louch WE, Birkedal R, Vendelin M. Cardiomyocytes from female compared to male mice have larger ryanodine receptor clusters and higher calcium spark frequency. J Physiol 2023; 601:4033-4052. [PMID: 37561554 DOI: 10.1113/jp284515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Sex differences in cardiac physiology are receiving increased attention as it has become clear that men and women have different aetiologies of cardiac disease and require different treatments. There are experimental data suggesting that male cardiomyocytes exhibit larger Ca2+ transients due to larger Ca2+ sparks and a higher excitation-contraction coupling gain; in addition, they exhibit a larger response to adrenergic stimulation with isoprenaline (ISO). Here, we studied whether there are sex differences relating to structural organization of the transverse tubular network and ryanodine receptors (RyRs). Surprisingly, we found that female cardiomyocytes exhibited a higher spark frequency in a range of spark magnitudes. While overall RyR expression and phosphorylation were the same, female cardiomyocytes had larger but fewer RyR clusters. The density of transverse t-tubules was the same, but male cardiomyocytes had more longitudinal t-tubules. The Ca2+ transients were similar in male and female cardiomyocytes under control conditions and in the presence of ISO. The synchrony of the Ca2+ transients was similar between sexes as well. Overall, our data suggest subtle sex differences in the Ca2+ influx and efflux pathways and their response to ISO, but these differences are balanced, resulting in similar Ca2+ transients in field-stimulated male and female cardiomyocytes. The higher spark frequency in female cardiomyocytes is related to the organization of RyRs into larger, but fewer clusters. KEY POINTS: During a heartbeat, the force of contraction depends on the amplitude of the calcium transient, which in turn depends on the amount of calcium released as calcium sparks through ryanodine receptors in the sarcoplasmic reticulum. Previous studies suggest that cardiomyocytes from male compared to female mice exhibit larger calcium sparks, larger sarcoplasmic reticulum calcium release and greater response to adrenergic stimulation triggering a fight-or-flight response. In contrast, we show that cardiomyocytes from female mice have a higher spark frequency during adrenergic stimulation and similar spark morphology. The higher spark frequency is related to the organization of ryanodine receptors into fewer, but larger clusters in female compared to male mouse cardiomyocytes. Despite subtle sex differences in cardiomyocyte structure and calcium fluxes, the differences are balanced, leading to similar calcium transients in cardiomyocytes from male and female mice.
Collapse
Affiliation(s)
- Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Jekaterina Stolova
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Xin Shen
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Triinu Rätsepso
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Mihkel Jaan Balodis
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Cärolin Grahv
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Eliise Hendrikson
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - William Edward Louch
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
10
|
Chen K, Hu X. Intranasal creatine administration increases brain creatine level and improves Barnes maze performance in rats. Brain Res Bull 2023; 201:110703. [PMID: 37429386 DOI: 10.1016/j.brainresbull.2023.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
While skeletal muscle creatine levels can be enhanced by exogenous creatine supplementation, the elevation of brain creatine levels with oral creatine administration remains a challenge due to a lack of effective transportation of creatine through the blood-brain barrier. Intranasal administration can bypass the blood-brain barrier and deliver drugs directly to the brain. The purpose of this study was to assess the effect of intranasal administration of creatine on brain creatine level and cognitive performance. Rats were randomly assigned into three groups intranasal administration group, oral administration group, and control group. The intranasal group exhibited fewer errors and shorter primary latency compared to the control and oral groups, respectively, during the acquisition phase of the Barnes maze. The intranasal group spent a higher percentage of time in the target quadrant during the probe trial compared to the control group. Biochemical measurements showed that the concentration of creatine in the olfactory bulbs, medial prefrontal cortex, and hippocampus of the rats in the intranasal group was higher than in the oral, and control groups. These results indicate that intranasal administration of creatine hydrochloride increases the creatine level in the rat's brain's and improves their performance in the Barnes maze.
Collapse
Affiliation(s)
- Kaiqing Chen
- Department of Bioengineering, University of California, Riverside, USA
| | - Xiaoping Hu
- Department of Bioengineering, University of California, Riverside, USA.
| |
Collapse
|
11
|
Koch V, Gruenewald LD, Gruber-Rouh T, Eichler K, Leistner DM, Mahmoudi S, Booz C, Bernatz S, D'Angelo T, Albrecht MH, Alizadeh LS, Nour-Eldin NEA, Scholtz JE, Yel I, Vogl TJ, März W, Hardt SE, Martin SS. Homoarginine in the cardiovascular system: Pathophysiology and recent developments. Fundam Clin Pharmacol 2023; 37:519-529. [PMID: 36509694 DOI: 10.1111/fcp.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Upcoming experimental and epidemiological data have identified the endogenous non-proteinogenic amino acid L-homoarginine (L-hArg) not only as a novel biomarker for cardiovascular disease but also as being directly involved in the pathogenesis of cardiac dysfunction. The association of low L-hArg levels with adverse cardiovascular events and mortality has proposed the idea of nutritional supplementation to rescue pathways inversely associated with cardiovascular health. Subsequent clinical and experimental studies contributed significantly to our knowledge of potential effects on the cardiorenal axis, acting either as a biomarker or a cardiovascular active agent. In this review article, we provide a comprehensive summary of the L-hArg metabolism, pathophysiological aspects, and current developments in the field of experimental and clinical evidence in favor of protective cardiovascular effects. Establishing a reliable biomarker to identify patients at high risk to die of cardiovascular disease represents one of the main goals for tackling this disease and providing individual therapeutic guidance.
Collapse
Affiliation(s)
- Vitali Koch
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Cardiology, Angiology, and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Katrin Eichler
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - David M Leistner
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Christian Booz
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Simon Bernatz
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | | | - Leona S Alizadeh
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Jan-Erik Scholtz
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ibrahim Yel
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Winfried März
- Fifth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan E Hardt
- Department of Cardiology, Angiology, and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon S Martin
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Su Z, Bai X, Wang H, Wang S, Chen C, Xiao F, Guo H, Gao H, Leng L, Li H. Identification of biomarkers associated with the feed efficiency by metabolomics profiling: results from the broiler lines divergent for high or low abdominal fat content. J Anim Sci Biotechnol 2022; 13:122. [PMID: 36352447 PMCID: PMC9647982 DOI: 10.1186/s40104-022-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022] Open
Abstract
Background Improving feed efficiency (FE) is one of the main objectives in broiler breeding. It is difficult to directly measure FE traits, and breeders hence have been trying to identify biomarkers for the indirect selection and improvement of FE traits. Metabolome is the "bridge" between genome and phenome. The metabolites may potentially account for more of the phenotypic variation and can suitably serve as biomarkers for selecting FE traits. This study aimed to identify plasma metabolite markers for selecting high-FE broilers. A total of 441 birds from Northeast Agricultural University broiler lines divergently selected for abdominal fat content were used to analyze plasma metabolome and estimate the genetic parameters of differentially expressed metabolites. Results The results identified 124 differentially expressed plasma metabolites (P < 0.05) between the lean line (high-FE birds) and the fat line (low-FE birds). Among these differentially expressed plasma metabolites, 44 were found to have higher positive or negative genetic correlations with FE traits (|rg| ≥ 0.30). Of these 44 metabolites, 14 were found to display moderate to high heritability estimates (h2 ≥ 0.20). However, among the 14 metabolites, 4 metabolites whose physiological functions have not been reported were excluded. Ultimately, 10 metabolites were suggested to serve as the potential biomarkers for breeding the high-FE broilers. Based on the physiological functions of these metabolites, reducing inflammatory and improving immunity were proposed to improve FE and increase production efficiency. Conclusions According to the pipeline for the selection of the metabolite markers established in this study, it was suggested that 10 metabolites including 7-ketocholesterol, dimethyl sulfone, epsilon-(gamma-glutamyl)-lysine, gamma-glutamyltyrosine, 2-oxoadipic acid, L-homoarginine, testosterone, adenosine 5'-monophosphate, adrenic acid, and calcitriol could be used as the potential biomarkers for breeding the "food-saving broilers".
Collapse
|
13
|
McAndrew DJ, Lake HA, Zervou S, Schwedhelm E, Schneider JE, Neubauer S, Lygate CA. Homoarginine and creatine deficiency do not exacerbate murine ischaemic heart failure. ESC Heart Fail 2022; 10:189-199. [PMID: 36178450 PMCID: PMC9871656 DOI: 10.1002/ehf2.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Low levels of homoarginine and creatine are associated with heart failure severity in humans, but it is unclear to what extent they contribute to pathophysiology. Both are synthesized via L-arginine:glycine amidinotransferase (AGAT), such that AGAT-/- mice have a combined creatine and homoarginine deficiency. We hypothesized that this would be detrimental in the setting of chronic heart failure. METHODS AND RESULTS Study 1: homoarginine deficiency-female AGAT-/- and wild-type mice were given creatine-supplemented diet so that both had normal myocardial creatine levels, but only AGAT-/- had low plasma homoarginine. Myocardial infarction (MI) was surgically induced and left ventricular (LV) structure and function assessed at 6-7 weeks by in vivo imaging and haemodynamics. Study 2: homoarginine and creatine-deficiency-as before, but AGAT-/- mice were given creatine-supplemented diet until 1 week post-MI, when 50% were changed to a creatine-free diet. Both groups therefore had low homoarginine levels, but one group also developed lower myocardial creatine levels. In both studies, all groups had LV remodelling and dysfunction commensurate with the development of chronic heart failure, for example, LV dilatation and mean ejection fraction <20%. However, neither homoarginine deficiency alone or in combination with creatine deficiency had a significant effect on mortality, LV remodelling, or on any indices of contractile and lusitropic function. CONCLUSIONS Low levels of homoarginine and creatine do not worsen chronic heart failure arguing against a major causative role in disease progression. This suggests that it is unnecessary to correct hArg deficiency in patients with heart failure, although supra-physiological levels may still be beneficial.
Collapse
Affiliation(s)
- Debra J. McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| | - Hannah A. Lake
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jurgen E. Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,Experimental and Preclinical Imaging Centre (ePIC), Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| |
Collapse
|
14
|
Lygate CA, Lake HA, McAndrew DJ, Neubauer S, Zervou S. Influence of homoarginine on creatine accumulation and biosynthesis in the mouse. Front Nutr 2022; 9:969702. [PMID: 36017222 PMCID: PMC9395972 DOI: 10.3389/fnut.2022.969702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Organisms obtain creatine from their diet or by de novo synthesis via AGAT (L-arginine:glycine amidinotransferase) and GAMT (Guanidinoacetate N-methyltrasferase) in kidney and liver, respectively. AGAT also synthesizes homoarginine (hArg), low levels of which predict poor outcomes in human cardiovascular disease, while supplementation maintains contractility in murine heart failure. However, the expression pattern of AGAT has not been systematically studied in mouse tissues and nothing is known about potential feedback interactions between creatine and hArg. Herein, we show that C57BL/6J mice express AGAT and GAMT in kidney and liver respectively, whereas pancreas was the only organ to express appreciable levels of both enzymes, but no detectable transmembrane creatine transporter (Slc6A8). In contrast, kidney, left ventricle (LV), skeletal muscle and brown adipose tissue must rely on creatine transporter for uptake, since biosynthetic enzymes are not expressed. The effects of creatine and hArg supplementation were then tested in wild-type and AGAT knockout mice. Homoarginine did not alter creatine accumulation in plasma, LV or kidney, whereas in pancreas from AGAT KO, the addition of hArg resulted in higher levels of tissue creatine than creatine-supplementation alone (P < 0.05). AGAT protein expression in kidney was downregulated by creatine supplementation (P < 0.05), consistent with previous reports of end-product repression. For the first time, we show that hArg supplementation causes a similar down-regulation of AGAT protein (P < 0.05). These effects on AGAT were absent in the pancreas, suggesting organ specific mechanisms of regulation. These findings highlight the potential for interactions between creatine and hArg that may have implications for the use of dietary supplements and other therapeutic interventions.
Collapse
Affiliation(s)
- Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Tan Z, Si Y, Yu Y, Ding J, Huang L, Xu Y, Zhang H, Lu Y, Wang C, Yu B, Yuan L. Yi-Shen-Hua-Shi Granule Alleviates Adriamycin-Induced Glomerular Fibrosis by Suppressing the BMP2/Smad Signaling Pathway. Front Pharmacol 2022; 13:917428. [PMID: 35784691 PMCID: PMC9240271 DOI: 10.3389/fphar.2022.917428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common clinical condition with manifestations of nephrotic syndrome and fibrosis of the glomeruli and interstitium. Yi-Shen-Hua-Shi (YSHS) granule has been shown to have a good effect in alleviating nephrotic syndrome (NS) in clinical and in animal models of FSGS, but whether it can alleviate renal fibrosis in FSGS and its mechanism and targets are not clear. In this study, we explored the anti-fibrotic effect and the targets of the YSHS granule in an adriamycin (ADR)-induced FSGS model and found that the YSHS granule significantly improved the renal function of ADR-induced FSGS model mice and also significantly reduced the deposition of collagen fibers and the expression of mesenchymal cell markers FN, vimentin, and α-SMA in the glomeruli of ADR-induced FSGS mice, suggesting that the YSHS granule inhibited the fibrosis of sclerotic glomeruli. Subsequently, a network pharmacology-based approach was used to identify the potential targets of the YSHS granule for the alleviation of glomerulosclerosis in FSGS, and the results showed that the YSHS granule down-regulated the expressions of BMP2, GSTA1, GATS3, BST1, and S100A9 and up-regulated the expressions of TTR and GATM in ADR-induced FSGS model mice. We also proved that the YSHS granule inhibited the fibrosis in the glomeruli of ADR-induced FSGS model mice through the suppression of the BMP2/Smad signaling pathway.
Collapse
Affiliation(s)
- Zhuojing Tan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yachen Si
- Department of Internal Medicine, No. 944 Hospital of Joint Logistics Support Force, Jiuquan, China
| | - Yan Yu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Linxi Huang
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Xu
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongxia Zhang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yihan Lu
- Nanjing Medical University, Nanjing, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Li Yuan, ; Bing Yu, ; Chao Wang,
| | - Bing Yu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Li Yuan, ; Bing Yu, ; Chao Wang,
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Li Yuan, ; Bing Yu, ; Chao Wang,
| |
Collapse
|
16
|
Kleist CJ, Choe CU, Atzler D, Schönhoff M, Böger R, Schwedhelm E, Wicha SG. Population kinetics of homoarginine and optimized supplementation for cardiovascular risk reduction. Amino Acids 2022; 54:889-896. [PMID: 35618975 PMCID: PMC9213336 DOI: 10.1007/s00726-022-03169-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/01/2022] [Indexed: 11/24/2022]
Abstract
Homoarginine is an endogenous amino acid whose levels are reduced in patients with renal, cardio- and cerebrovascular disease. Moreover, low homoarginine concentrations independently predict morbidity and mortality in these patients. Besides endogenous synthesis, homoarginine is also a constituent of the human diet. The objective of the present study was to analyze the kinetics of orally supplemented homoarginine in human plasma by means of a pharmacometric approach. We developed a pharmacometric model to evaluate different dosing regimens, especially the regimen of 125 mg once weekly, based on a previous clinical study (n = 20). The model was adapted to account for differences in baseline homoarginine plasma concentrations between healthy and diseased individuals. A novel dosing regimen of 25 mg once daily led to higher attainment of homoarginine reference concentrations using clinical trial simulations. With 25 mg/day, the trough concentration of only 6% of the older and 3.8% of the younger population was predicted to be below the target concentration of 2.0-4.1 µmol/L. In synopsis, the new dosing regimen recapitulates the kinetics of homoarginine in healthy individuals optimally.
Collapse
Affiliation(s)
- Christine J Kleist
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mirjam Schönhoff
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany.
| |
Collapse
|
17
|
Expression of cardiovascular-related microRNAs is altered in L-arginine:glycine amidinotransferase deficient mice. Sci Rep 2022; 12:5108. [PMID: 35332188 PMCID: PMC8948300 DOI: 10.1038/s41598-022-08846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
In humans and mice, L-arginine:glycine amidinotransferase (AGAT) and its metabolites homoarginine (hArg) and creatine have been linked to cardiovascular disease (CVD), specifically myocardial infarction (MI) and heart failure (HF). The underlying molecular and regulatory mechanisms, however, remain unclear. To identify potential pathways of cardiac AGAT metabolism, we sequenced microRNA (miRNA) in left ventricles of wild-type (wt) compared to AGAT-deficient (AGAT-/-) mice. Using literature search and validation by qPCR, we identified eight significantly regulated miRNAs in AGAT-/- mice linked to atherosclerosis, MI and HF: miR-30b, miR-31, miR-130a, miR-135a, miR-148a, miR-204, miR-298, and let-7i. Analysis of Gene Expression Omnibus (GEO) data confirmed deregulation of these miRNAs in mouse models of MI and HF. Quantification of miRNA expression by qPCR in AGAT-/- mice supplemented with creatine or hArg revealed that miR-30b, miR-31, miR-130a, miR-148a, and miR-204 were regulated by creatine, while miR-135a and miR-298 showed a trend of regulation by hArg. Finally, bioinformatics-based target prediction showed that numerous AGAT-dependent genes previously linked to CVD are likely to be regulated by the identified miRNAs. Taken together, AGAT deficiency and hArg/creatine supplementation are associated with cardiac miRNA expression which may influence cardiac (dys)function and CVD.
Collapse
|
18
|
Duran‐Trio L, Fernandes‐Pires G, Grosse J, Soro‐Arnaiz I, Roux‐Petronelli C, Binz P, De Bock K, Cudalbu C, Sandi C, Braissant O. Creatine transporter-deficient rat model shows motor dysfunction, cerebellar alterations, and muscle creatine deficiency without muscle atrophy. J Inherit Metab Dis 2022; 45:278-291. [PMID: 34936099 PMCID: PMC9302977 DOI: 10.1002/jimd.12470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
Creatine (Cr) is a nitrogenous organic acid and plays roles such as fast phosphate energy buffer to replenish ATP, osmolyte, antioxidant, neuromodulator, and as a compound with anabolic and ergogenic properties in muscle. Cr is taken from the diet or endogenously synthetized by the enzymes arginine:glycine amidinotransferase and guanidinoacetate methyltransferase, and specifically taken up by the transporter SLC6A8. Loss-of-function mutations in the genes encoding for the enzymes or the transporter cause creatine deficiency syndromes (CDS). CDS are characterized by brain Cr deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy, and motor dysfunction. Among CDS, the X-linked Cr transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different animal models of CTD show reduced brain Cr levels, cognitive deficiencies, and together they cover other traits similar to those of patients. However, motor function was poorly explored in CTD models, and some controversies in the phenotype exist in comparison with CTD patients. Our recently described Slc6a8Y389C knock-in rat model of CTD showed mild impaired motor function, morphological alterations in cerebellum, reduced muscular mass, Cr deficiency, and increased guanidinoacetate content in muscle, although no consistent signs of muscle atrophy. Our results indicate that such motor dysfunction co-occurred with both nervous and muscle dysfunctions, suggesting that muscle strength and performance as well as neuronal connectivity might be affected by this Cr deficiency in muscle and brain.
Collapse
Affiliation(s)
- Lara Duran‐Trio
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Gabriella Fernandes‐Pires
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Jocelyn Grosse
- Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ines Soro‐Arnaiz
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
| | - Clothilde Roux‐Petronelli
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Pierre‐Alain Binz
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Katrien De Bock
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Carmen Sandi
- Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Olivier Braissant
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| |
Collapse
|
19
|
Fernandes-Pires G, Braissant O. Current and potential new treatment strategies for creatine deficiency syndromes. Mol Genet Metab 2022; 135:15-26. [PMID: 34972654 DOI: 10.1016/j.ymgme.2021.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Creatine deficiency syndromes (CDS) are inherited metabolic disorders caused by mutations in GATM, GAMT and SLC6A8 and mainly affect central nervous system (CNS). AGAT- and GAMT-deficient patients lack the functional brain endogenous creatine (Cr) synthesis pathway but express the Cr transporter SLC6A8 at blood-brain barrier (BBB), and can thus be treated by oral supplementation of high doses of Cr. For Cr transporter deficiency (SLC6A8 deficiency or CTD), current treatment strategies benefit one-third of patients. However, as their phenotype is not completely reversed, and for the other two-thirds of CTD patients, the development of novel more effective therapies is needed. This article aims to review the current knowledge on Cr metabolism and CDS clinical aspects, highlighting their current treatment possibilities and the most recent research perspectives on CDS potential therapeutics designed, in particular, to bring new options for the treatment of CTD.
Collapse
Affiliation(s)
- Gabriella Fernandes-Pires
- Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
20
|
Wang H, Zhou S, Liu Y, Yu Y, Xu S, Peng L, Ni C. Exploration study on serum metabolic profiles of Chinese male patients with artificial stone silicosis, silicosis, and coal worker's pneumoconiosis. Toxicol Lett 2021; 356:132-142. [PMID: 34861340 DOI: 10.1016/j.toxlet.2021.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023]
Abstract
Long-term exposure to inhaled silica dust induces pneumoconiosis, which remains a heavy burden in developing countries. Modern industry provides new resources of occupational SiO2 leading to artificial stone silicosis especially in developed countries. This study aimed to characterize the serum metabolic profile of pneumoconiosis and artificial stone silicosis patients. Our case-control study recruited 46 pairs of pneumoconiosis patients and dust-exposed workers. Nontargeted metabolomics and lipidomics by ultra-high-performance liquid chromatography-tandem mass spectrometry platform were conducted to characterize serum metabolic profile in propensity score-matched (PSM) pilot study. 54 differential metabolites were screened, 24 of which showed good screening efficiency through receiver operating characteristics (ROC) in pilot study and validation study (both AUC > 0.75). 4 of the 24 metabolites can predict pneumoconiosis stages, which are 1,2-dioctanoylthiophosphatidylcholine, phosphatidylcholine(O-18:1/20:1), indole-3-acetamide and l-homoarginine. Kynurenine, N-tetradecanoylsphingosine 1-phosphate, 5-methoxytryptophol and phosphatidylethanolamine(22:6/18:1) displayed the potential as specific biomarkers for artificial stone silicosis. Taken together, our results confirmed that tryptophan metabolism is closely related to pneumoconiosis and may be related to disease progression. Hopefully, our results could supplement the biomarkers of pneumoconiosis and provide evidence for the discovery of artificial stone silicosis-specific biomarkers.
Collapse
Affiliation(s)
- Huanqiang Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100000, PR China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yihan Yu
- Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430000, PR China
| | - Sha Xu
- Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430000, PR China
| | - Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
21
|
Chen HR, Zhang-Brotzge X, Morozov YM, Li Y, Wang S, Zhang HH, Kuan IS, Fugate EM, Mao H, Sun YY, Rakic P, Lindquist DM, DeGrauw T, Kuan CY. Creatine transporter deficiency impairs stress adaptation and brain energetics homeostasis. JCI Insight 2021; 6:e140173. [PMID: 34324436 PMCID: PMC8492331 DOI: 10.1172/jci.insight.140173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
The creatine transporter (CrT) maintains brain creatine (Cr) levels, but the effects of its deficiency on energetics adaptation under stress remain unclear. There are also no effective treatments for CrT deficiency, the second most common cause of X-linked intellectual disabilities. Herein, we examined the consequences of CrT deficiency in brain energetics and stress-adaptation responses plus the effects of intranasal Cr supplementation. We found that CrT-deficient (CrT–/y) mice harbored dendritic spine and synaptic dysgenesis. Nurtured newborn CrT–/y mice maintained baseline brain ATP levels, with a trend toward signaling imbalance between the p-AMPK/autophagy and mTOR pathways. Starvation elevated the signaling imbalance and reduced brain ATP levels in P3 CrT–/y mice. Similarly, CrT–/y neurons and P10 CrT–/y mice showed an imbalance between autophagy and mTOR signaling pathways and greater susceptibility to cerebral hypoxia-ischemia and ischemic insults. Notably, intranasal administration of Cr after cerebral ischemia increased the brain Cr/N-acetylaspartate ratio, partially averted the signaling imbalance, and reduced infarct size more potently than intraperitoneal Cr injection. These findings suggest important functions for CrT and Cr in preserving the homeostasis of brain energetics in stress conditions. Moreover, intranasal Cr supplementation may be an effective treatment for congenital CrT deficiency and acute brain injury.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Neurosciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiaohui Zhang-Brotzge
- Department of Pediatrics, Division of Neurology, Emory University, Atlanta, Georgia, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | | | - Irena S Kuan
- Department of Pediatrics, Division of Neurology, Emory University, Atlanta, Georgia, USA
| | - Elizabeth M Fugate
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Yu-Yo Sun
- Department of Neurosciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Diana M Lindquist
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ton DeGrauw
- Department of Pediatrics, Division of Neurology, Emory University, Atlanta, Georgia, USA
| | - Chia-Yi Kuan
- Department of Neurosciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Hannemann J, Cordts K, Seniuk A, Choe CU, Schmidt-Hutten L, Duque Escobar J, Weinberger F, Böger R, Schwedhelm E. Arginine:Glycine Amidinotransferase Is Essential for Creatine Supply in Mice During Chronic Hypoxia. Front Physiol 2021; 12:703069. [PMID: 34483959 PMCID: PMC8416470 DOI: 10.3389/fphys.2021.703069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: Chronic hypoxia induces pulmonary and cardiovascular pathologies, including pulmonary hypertension (PH). L-arginine:glycine amidinotransferase (AGAT) is essential for homoarginine (hArg) and guanidinoacetate synthesis, the latter being converted to creatine by guanidinoacetate methyltransferase. Low hArg concentrations are associated with cardiovascular morbidity and predict mortality in patients with PH. We therefore aimed to investigate the survival and cardiac outcome of AGAT knockout (Agat−/−) mice under hypoxia and a possible rescue of the phenotype. Methods:Agat−/− mice and wild-type (WT) littermates were subjected to normoxia or normobaric hypoxia (10% oxygen) for 4 weeks. A subgroup of Agat−/− mice was supplemented with 1% creatine from weaning. Survival, hematocrit, blood lactate and glucose, heart weight-to-tibia length (HW/TL) ratio, hArg plasma concentration, and Agat and Gamt expression in lung, liver, and kidneys were evaluated. Results: After 6 h of hypoxia, blood lactate was lower in Agat−/−-mice as compared to normoxia (p < 0.001). Agat−/− mice died within 2 days of hypoxia, whereas Agat−/− mice supplemented with creatine and WT mice survived until the end of the study. In WT mice, hematocrit (74 ± 4 vs. 55 ± 2%, mean ± SD, p < 0.001) and HW/TL (9.9 ± 1.3 vs. 7.3 ± 0.7 mg/mm, p < 0.01) were higher in hypoxia, while hArg plasma concentration (0.25 ± 0.06 vs. 0.38 ± 0.12 μmol/L, p < 0.01) was lower. Agat and Gamt expressions were differentially downregulated by hypoxia in lung, liver, and kidneys. Conclusion:Agat and Gamt are downregulated in hypoxia. Agat−/− mice are nonviable in hypoxia. Creatine rescues the lethal phenotype, but it does not reduce right ventricular hypertrophy of Agat−/− mice in hypoxia.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany
| | - Kathrin Cordts
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Seniuk
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute of Cellular and Integrative Physiology, University Medical Center Hamburg, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Schmidt-Hutten
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jorge Duque Escobar
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Florian Weinberger
- Insitute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
23
|
Forst AL, Reichold M, Kleta R, Warth R. Distinct Mitochondrial Pathologies Caused by Mutations of the Proximal Tubular Enzymes EHHADH and GATM. Front Physiol 2021; 12:715485. [PMID: 34349672 PMCID: PMC8326905 DOI: 10.3389/fphys.2021.715485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The mitochondria of the proximal tubule are essential for providing energy in this nephron segment, whose ATP generation is almost exclusively oxygen dependent. In addition, mitochondria are involved in a variety of metabolic processes and complex signaling networks. Proximal tubular mitochondrial dysfunction can therefore affect renal function in very different ways. Two autosomal dominantly inherited forms of renal Fanconi syndrome illustrate how multifaceted mitochondrial pathology can be: Mutation of EHHADH, an enzyme in fatty acid metabolism, results in decreased ATP synthesis and a consecutive transport defect. In contrast, mutations of GATM, an enzyme in the creatine biosynthetic pathway, leave ATP synthesis unaffected but do lead to mitochondrial protein aggregates, inflammasome activation, and renal fibrosis with progressive renal failure. In this review article, the distinct pathophysiological mechanisms of these two diseases are presented, which are examples of the spectrum of proximal tubular mitochondrial diseases.
Collapse
Affiliation(s)
- Anna-Lena Forst
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Markus Reichold
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Robert Kleta
- Centre for Nephrology, University College London, London, United Kingdom
| | - Richard Warth
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Lygate CA. The Pitfalls of in vivo Cardiac Physiology in Genetically Modified Mice - Lessons Learnt the Hard Way in the Creatine Kinase System. Front Physiol 2021; 12:685064. [PMID: 34054587 PMCID: PMC8160301 DOI: 10.3389/fphys.2021.685064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
In order to fully understand gene function, at some point, it is necessary to study the effects in an intact organism. The creation of the first knockout mouse in the late 1980's gave rise to a revolution in the field of integrative physiology that continues to this day. There are many complex choices when selecting a strategy for genetic modification, some of which will be touched on in this review, but the principal focus is to highlight the potential problems and pitfalls arising from the interpretation of in vivo cardiac phenotypes. As an exemplar, we will scrutinize the field of cardiac energetics and the attempts to understand the role of the creatine kinase (CK) energy buffering and transport system in the intact organism. This story highlights the confounding effects of genetic background, sex, and age, as well as the difficulties in interpreting knockout models in light of promiscuous proteins and metabolic redundancy. It will consider the dose-dependent effects and unintended consequences of transgene overexpression, and the need for experimental rigour in the context of in vivo phenotyping techniques. It is intended that this review will not only bring clarity to the field of cardiac energetics, but also aid the non-expert in evaluating and critically assessing data arising from in vivo genetic modification.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Verouti SN, Lambert D, Mathis D, Pathare G, Escher G, Vogt B, Fuster DG. Solute carrier SLC16A12 is critical for creatine and guanidinoacetate handling in the kidney. Am J Physiol Renal Physiol 2021; 320:F351-F358. [PMID: 33459166 DOI: 10.1152/ajprenal.00475.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
A heterozygous mutation (c.643C.A; p.Q215X) in the creatine transporter SLC16A12 has been proposed to cause a syndrome with juvenile cataracts, microcornea, and glucosuria in humans. To further explore the role of SLC16A12 in renal physiology and decipher the mechanism underlying the phenotype of humans with the SLC16A12 mutation, we studied Slc16a12 knockout (KO) rats. Slc16a12 KO rats had lower plasma levels and increased absolute and fractional urinary excretion of creatine and its precursor guanidinoacetate (GAA). Slc16a12 KO rats displayed lower plasma and urinary creatinine levels, but the glomerular filtration rate was normal. The phenotype of heterozygous rats was indistinguishable from wild-type (WT) rats. Renal artery to vein (RAV) concentration differences in WT rats were negative for GAA and positive for creatinine. However, RAV differences for GAA were similar in Slc16a12 KO rats, indicating incomplete compensation of urinary GAA losses by renal GAA synthesis. Together, our results reveal that Slc16a12 in the basolateral membrane of the proximal tubule is critical for the reabsorption of creatine and GAA. Our data suggest a dominant-negative mechanism underlying the phenotype of humans affected by the heterozygous SLC16A12 mutation. Furthermore, in the absence of Slc16a12, urinary losses of GAA are not adequately compensated by increased tubular synthesis, likely caused by feedback inhibition of the rate-limiting enzyme l-arginine:glycine amidinotransferase by creatine in proximal tubular cells.NEW & NOTEWORTHY SLC16A12 is a recently identified creatine transporter of unknown physiological function. A heterozygous mutation in the human SLC16A12 gene causes juvenile cataracts and reduced plasma guanidinoacetate (GAA) levels with an increased fractional urinary excretion of GAA. Our study with transgenic SLC16A12-deficient rats reveals that SLC16A12 is critical for tubular reabsorption of creatine and GAA in the kidney. Our data furthermore indicate a dominant-negative mechanism underlying the phenotype of humans affected by the heterozygous SLC16A12 mutation.
Collapse
Affiliation(s)
- Sophia N Verouti
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Delphine Lambert
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Déborah Mathis
- Laboratory Clinical Chemistry and Biochemistry, Kinderspital Zurich, Zurich, Switzerland
| | - Ganesh Pathare
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Geneviève Escher
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bruno Vogt
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel G Fuster
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Creatine Metabolism in Female Reproduction, Pregnancy and Newborn Health. Nutrients 2021; 13:nu13020490. [PMID: 33540766 PMCID: PMC7912953 DOI: 10.3390/nu13020490] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes. Maternal dietary creatine supplementation during pregnancy as a safeguard against hypoxia-induced perinatal injury, particularly that of the brain, has also been widely studied in pre-clinical in vitro and small animal models. However, there is still no consensus on whether creatine is essential for successful reproduction. This review consolidates the available literature on creatine metabolism in female reproduction, pregnancy and the early neonatal period. Creatine metabolism is discussed in relation to cellular bioenergetics and de novo synthesis, as well as the potential to use dietary creatine in a reproductive setting. We highlight the apparent knowledge gaps and the research “road forward” to understand, and then utilize, creatine to improve reproductive health and perinatal outcomes.
Collapse
|
27
|
Branovets J, Karro N, Barsunova K, Laasmaa M, Lygate CA, Vendelin M, Birkedal R. Cardiac expression and location of hexokinase changes in a mouse model of pure creatine deficiency. Am J Physiol Heart Circ Physiol 2021; 320:H613-H629. [PMID: 33337958 DOI: 10.1152/ajpheart.00188.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Creatine kinase (CK) is considered the main phosphotransfer system in the heart, important for overcoming diffusion restrictions and regulating mitochondrial respiration. It is substrate limited in creatine-deficient mice lacking l-arginine:glycine amidinotransferase (AGAT) or guanidinoacetate N-methyltranferase (GAMT). Our aim was to determine the expression, activity, and mitochondrial coupling of hexokinase (HK) and adenylate kinase (AK), as these represent alternative energy transfer systems. In permeabilized cardiomyocytes, we assessed how much endogenous ADP generated by HK, AK, or CK stimulated mitochondrial respiration and how much was channeled to mitochondria. In whole heart homogenates, and cytosolic and mitochondrial fractions, we measured the activities of AK, CK, and HK. Lastly, we assessed the expression of the major HK, AK, and CK isoforms. Overall, respiration stimulated by HK, AK, and CK was ∼25, 90, and 80%, respectively, of the maximal respiration rate, and ∼20, 0, and 25%, respectively, was channeled to the mitochondria. The activity, distribution, and expression of HK, AK, and CK did not change in GAMT knockout (KO) mice. In AGAT KO mice, we found no changes in AK, but we found a higher HK activity in the mitochondrial fraction, greater expression of HK I, but a lower stimulation of respiration by HK. Our findings suggest that mouse hearts depend less on phosphotransfer systems to facilitate ADP flux across the mitochondrial membrane. In AGAT KO mice, which are a model of pure creatine deficiency, the changes in HK may reflect changes in metabolism as well as influence mitochondrial regulation and reactive oxygen species production.NEW & NOTEWORTHY In creatine-deficient AGAT-/- and GAMT-/- mice, the myocardial creatine kinase system is substrate limited. It is unknown whether subcellular localization and mitochondrial ADP channeling by hexokinase and adenylate kinase may compensate as alternative phosphotransfer systems. Our results show no changes in adenylate kinase, which is the main alternative to creatine kinase in heart. However, we found increased expression and activity of hexokinase I in AGAT-/- cardiomyocytes. This could affect mitochondrial regulation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
28
|
Philip M, Snow RJ, Gatta PAD, Bellofiore N, Ellery SJ. Creatine metabolism in the uterus: potential implications for reproductive biology. Amino Acids 2020; 52:1275-1283. [PMID: 32996056 DOI: 10.1007/s00726-020-02896-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/19/2020] [Indexed: 11/25/2022]
Abstract
Creatine is an amino acid derivative synthesized from arginine, glycine and methionine. It serves as the substrate for the creatine kinase system, which is vital for maintaining ATP levels in tissues with high and fluctuating energy demand. There exists evidence that the creatine kinase system operates in both the endometrial and myometrial layers of the uterus. While use and regulation of this system in the uterus are not well understood, it is likely to be important given uterine tissues undergo phases of increased energy demand during certain stages of the female reproductive cycle, pregnancy, and parturition. This review discusses known adaptations of creatine metabolism in the uterus during the reproductive cycle (both estrous and menstrual), pregnancy and parturition, highlighting possible links to fertility and the existing knowledge gaps. Specifically, we discuss the adaptations and regulation of uterine creatine metabolite levels, cell creatine transport, de novo creatine synthesis, and creatine kinase expression in the various layers and cell types of the uterus. Finally, we discuss the effects of dietary creatine on uterine metabolism. In summary, there is growing evidence that creatine metabolism is up-regulated in uterine tissues during phases where energy demand is increased. While it remains unclear how important these adaptations are in the maintenance of healthy uterine function, furthering our understanding of uterine creatine metabolism may uncover strategies to combat poor embryo implantation and failure to conceive, as well as enhancing uterine contractile performance during labor.
Collapse
Affiliation(s)
- Mamatha Philip
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences Deakin University, Geelong, VIC, Australia
| | - Rodney J Snow
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences Deakin University, Geelong, VIC, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences Deakin University, Geelong, VIC, Australia
| | - Nadia Bellofiore
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia.,Department of Obstetrics and Gynecology, Monash University, Melbourne, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia. .,Department of Obstetrics and Gynecology, Monash University, Melbourne, Australia.
| |
Collapse
|
29
|
Hu S, Cheng L, Wang J, Li L, He H, Hu B, Ren X, Hu J. Genome-wide transcriptome profiling reveals the mechanisms underlying muscle group-specific phenotypic changes under different raising systems in ducks. Poult Sci 2020; 99:6723-6736. [PMID: 33248588 PMCID: PMC7704955 DOI: 10.1016/j.psj.2020.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022] Open
Abstract
Although a number of nongenetic factors have been reported to be able to modulate skeletal muscle phenotypes in meat-type birds, neither the underlying mechanisms nor the muscle group–specific phenotypic and molecular responses have been fully understood. In the present study, a total of 240 broiler ducks were used to compare the effects of floor raising system (FRS) and net raising system (NRS) on the physicochemical properties and global gene expression profiles of both breast and thigh muscles at the posthatching week 4 (W4), W8, and W13. Our results showed that compared with FRS, NRS generally induced higher pH, lower lightness (L∗) and yellowness (b∗), lower drip loss and cooking loss, and lower shear force in either breast or thigh muscles during early posthatching stages but subsequently showed less pronounced or even reverse effects. Meanwhile, it was observed that the raising system differently changed the myofiber characteristics depending on the muscle group and the developmental stage. Genome-wide transcriptome analysis showed that compared with FRS, NRS induced the most extensive gene expression changes in breast muscle (BM) at W4 but in thigh muscle (TM) at W13, suggesting the asynchronous molecular responses of BM and TM to the raising system and period. Most of differentially expressed genes in either BM or TM between NRS and FRS were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes terms associated with regulation of muscle cellular functions, metabolic and contractile activities, and tissue remodeling, indicating similar molecular mechanisms principally responsible for the raising system-caused phenotypic changes in both muscle groups. Nevertheless, several crucial pathways (e.g., adipocytokine signaling, AGE-RAGE signaling, and apoptosis) and genes (e.g., ANO6, ACER2, UCP3, DTL, and TMEM120A) were tightly related to the muscle group–specific adaptive remodeling on different raising systems. These data could not only contribute to a better understanding of the molecular mechanisms behind meat quality but also provide novel insights into the molecular causes of the muscle group–specific adaptive remodeling in response to environmental stimuli.
Collapse
Affiliation(s)
- Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Lumin Cheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China.
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Xufang Ren
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| |
Collapse
|
30
|
Alessandrì MG, Strigini F, Cioni G, Battini R. Increased creatine demand during pregnancy in Arginine: Glycine Amidino-Transferase deficiency: a case report. BMC Pregnancy Childbirth 2020; 20:506. [PMID: 32883247 PMCID: PMC7469264 DOI: 10.1186/s12884-020-03192-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
Background Creatine (Cr), an amino acid derivative, is one of the most important sources of energy acting as both a spatial and temporal energy buffer through its phosphorylated analogue phosphocreatine (PCr) and creatine kinase (CK). Maternal Cr biosynthesis and metabolism seem to play an important role in pregnancy, as shown in preclinical and in healthy human pregnancy studies. Patients with Arginine:Glycine Amidino-Transferase deficiency (AGAT-d), due to the deficit of the first enzyme involved in Cr synthesis, are at a disadvantage due to their failure to synthesize Cr and their dependence on external intake, in contrast to normal subjects, where changes in Cr biosynthesis supply their needs. We report the outcomes of a pregnancy in an AGAT-d woman, and the challenge we faced in managing her treatment with oral Cr to ensure optimal conditions for her fetus. Case presentation A 22-year-old AGAT-d woman referred to our Institute for the management of her first conception at 11 weeks of fetal gestational age. Sonographic monitoring at 20 w GA indicated a reduction of fetal growth, in particular of the head circumference that was below the 3rd centile. Biochemical monitoring of Cr in biological fluids of the mother revealed a decline of the Cr concentrations, in particular in the urine sample, requiring prompt correction of the Cr dose. At 35 weeks of gestation the patient delivered a male infant, heterozygous for GATM mutation, with normal brain Cr levels; at one year the baby achieved typical developmental milestones. Conclusions This rare pregnancy demonstrates that Cr levels in the blood and urine of the mother with AGAT-d decreased since the first months of gestation. The increase of the Cr daily dose administered to the mother seems to have produced beneficial effects also on the fetus.
Collapse
Affiliation(s)
- Maria Grazia Alessandrì
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128, Calambrone - Pisa, Italy.
| | - Francesca Strigini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128, Calambrone - Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128, Calambrone - Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
31
|
Alfaro GF, Novak TE, Rodning SP, Moisá SJ. Preconditioning beef cattle for long-duration transportation stress with rumen-protected methionine supplementation: A nutrigenetics study. PLoS One 2020; 15:e0235481. [PMID: 32614880 PMCID: PMC7332072 DOI: 10.1371/journal.pone.0235481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/16/2020] [Indexed: 01/03/2023] Open
Abstract
In general, beef cattle long-distance transportation from cow-calf operations to feedlots or from feedlots to abattoirs is a common situation in the beef industry. The aim of this study was to determine the effect of rumen-protected methionine (RPM) supplementation on a proposed gene network for muscle fatigue, creatine synthesis (CKM), and reactive oxygen species (ROS) metabolism after a transportation simulation in a test track. Angus × Simmental heifers (n = 18) were stratified by body weight (408 ± 64 kg; BW) and randomly assigned to dietary treatments: 1) control diet (CTRL) or 2) control diet + 8 gr/hd/day of top-dressed rumen-protected methionine (RPM). After an adaptation period to Calan gates, animals received the mentioned dietary treatment consisting of Bermuda hay ad libitum and a soy hulls and corn gluten feed based supplement. After 45 days of supplementation, animals were loaded onto a trailer and transported for 22 hours (long-term transportation). Longissimus muscle biopsies, BW and blood samples were obtained on day 0 (Baseline), 43 (Pre-transport; PRET), and 46 (Post-transport; POST). Heifers' average daily gain did not differ between baseline and PRET. Control heifer's shrink was 10% of BW while RPM heifers shrink was 8%. Serum cortisol decreased, and glucose and creatine kinase levels increased after transportation, but no differences were observed between treatments. Messenger RNA was extracted from skeletal muscle tissue and gene expression analysis was performed by RT-qPCR. Results showed that AHCY and DNMT3A (DNA methylation), SSPN (Sarcoglycan complex), and SOD2 (Oxidative Stress-ROS) were upregulated in CTRL between baseline and PRET and, decreased between pre and POST while they remained constant for RPM. Furthermore, CKM was not affected by treatments. In conclusion, RPM supplementation may affect ROS production and enhance DNA hypermethylation, after a long-term transportation.
Collapse
Affiliation(s)
- Gastón F. Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Taylor E. Novak
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Soren P. Rodning
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Sonia J. Moisá
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
32
|
Sinha A, Ahmed S, George C, Tsagaris M, Naufer A, von Both I, Tkachyova I, van Eede M, Henkelman M, Schulze A. Magnetic resonance imaging reveals specific anatomical changes in the brain of Agat- and Gamt-mice attributed to creatine depletion and guanidinoacetate alteration. J Inherit Metab Dis 2020; 43:827-842. [PMID: 31951021 DOI: 10.1002/jimd.12215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 11/07/2022]
Abstract
Arginine:glycine amidinotransferase- and guanidinoacetate methyltransferase deficiency are severe neurodevelopmental disorders. It is not known whether mouse models of disease express a neuroanatomical phenotype. High-resolution magnetic resonance imaging (MRI) with advanced image analysis was performed in perfused, fixed mouse brains encapsulated with the skull from male, 10-12 week old Agat -exc and B6J.Cg-Gamt tm1Isb mice (n = 48; n = 8 per genotype, strain). T2-weighted MRI scans were nonlinearly aligned to a 3D atlas of the mouse brain with 62 structures identified. Local differences in brain shape related to genotype were assessed by analysis of deformation fields. Creatine (Cr) and guanidinoacetate (GAA) were measured with high-performance liquid chromatography (HPLC) in brain homogenates (n = 24; n = 4 per genotype, strain) after whole-body perfusion. Cr was decreased in the brain of Agat- and Gamt mutant mice. GAA was decreased in Agat-/- and increased in Gamt-/- . Body weight and brain volume were lower in Agat-/- than in Gamt-/- . The analysis of entire brain structures revealed corpus callosum, internal capsule, fimbria and hypothalamus being different between the genotypes in both strains. Eighteen and fourteen significant peaks (local areas of difference in relative size) were found in Agat- and Gamt mutants, respectively. Comparing Agat-/- with Gamt-/- , we found changes in three brain regions, lateral septum, amygdala, and medulla. Intra-strain differences in four brain structures can be associated with Cr deficiency, while the inter-strain differences in three brain structures of the mutant mice may relate to GAA. Correlating these neuroanatomical findings with gene expression data implies the role of Cr metabolism in the developing brain and the importance of early intervention in patients with Cr deficiency syndromes.
Collapse
Affiliation(s)
- Ankit Sinha
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sohail Ahmed
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris George
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melina Tsagaris
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amriya Naufer
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ingo von Both
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ilona Tkachyova
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthijs van Eede
- Mouse Imaging Centre, Toronto Center of Phenogenomics, Toronto, Ontario, Canada
| | - Mark Henkelman
- Mouse Imaging Centre, Toronto Center of Phenogenomics, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreas Schulze
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Association of Lower Plasma Homoarginine Concentrations with Greater Risk of All-Cause Mortality in the Community: The Framingham Offspring Study. J Clin Med 2020; 9:jcm9062016. [PMID: 32604958 PMCID: PMC7356383 DOI: 10.3390/jcm9062016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Lower circulating homoarginine concentrations have been associated with morbidity and mortality in patients with established cardiovascular disease (CVD). We assayed plasma homoarginine concentrations in 3331 Framingham Offspring Study participants attending examination cycle six (mean age 58.6 years, 53% women). We evaluated correlates of plasma homoarginine and related homoarginine to incident CVD and death. We also classified participants as having higher (upper quartile) versus lower (lower three quartiles) homoarginine and previously assayed asymmetric dimethylarginine (ADMA) concentrations, and created cross-classification groups. We observed 630 incident CVD events and 940 deaths during a median follow-up of 18 years. In multivariable regression analysis, homoarginine was associated positively with male sex, body mass index, anti-hypertensive medication use and systolic blood pressure, but inversely with age and smoking. Higher homoarginine levels were associated with a lower mortality risk (hazard ratio (HR) per SD increment, 0.83, 95% CI: 0.74–0.93) adjusting for standard CVD risk factors, and ADMA. Among the cross-classification groups, participants with higher homoarginine and lower ADMA had a lower mortality risk (HR, 0.81, 95% CI: 0.67–0.98) compared to those with low levels of both. Further studies are needed to dissect the mechanisms of the association of homoarginine and mortality over decades in the community.
Collapse
|
34
|
Arginine derivatives in atrial fibrillation progression phenotypes. J Mol Med (Berl) 2020; 98:999-1008. [PMID: 32504111 PMCID: PMC8556202 DOI: 10.1007/s00109-020-01932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
Arginine, homoarginine (hArg), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) affect nitric oxide metabolism and altered concentrations are associated with cardiovascular morbidity and mortality. We analyzed these metabolites using liquid chromatography-tandem mass spectrometry in patients with atrial fibrillation (AF) (n = 241) with a focus on heart rhythm at blood withdrawal, AF progression phenotypes, and successful sinus rhythm (SR) restoration (n = 22). AF progression phenotypes were defined as paroxysmal AF with/without low voltage areas (LVA) and persistent AF with/without LVA. While arginine, ADMA, and hArg were within reference limits for healthy controls, SDMA was higher in the AF cohort (0.57 ± 0.12 vs. 0.53 μmol/L (97.5th percentile in reference cohort)). SR restoration in AF patients resulted in normalization of SDMA concentrations (0.465 ± 0.082 vs. 0.570 ± 0.134 μmol/L at baseline, p < 0.001). Patients with AF at the time of blood sampling had significantly lower hArg (1.65 ± 0.51 vs. 1.85 ± 0.60 μmol/L, p = 0.006) and higher ADMA concentrations (0.526 ± 0.08 vs. 0.477 ± 0.08 μmol/L, p < 0.001) compared with AF patients in SR. hArg concentrations were lower in patients with advanced AF progression phenotypes (persistent AF with LVA (p = 0.046)) independent of heart rhythm at blood sampling. Summarizing, arginine metabolism imbalance is associated with AF in general and AF progression and may contribute to associated risk. KEY MESSAGES: • Heart rhythm at blood withdrawal affects ADMA and hArg level in AF patients. • SDMA is higher in AF patients. • SDMA levels normalize after sinus rhythm restoration. • hArg levels decrease in advanced AF progression phenotypes.
Collapse
|
35
|
Marker enzyme activities in hindleg from creatine-deficient AGAT and GAMT KO mice - differences between models, muscles, and sexes. Sci Rep 2020; 10:7956. [PMID: 32409787 PMCID: PMC7224371 DOI: 10.1038/s41598-020-64740-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 11/10/2022] Open
Abstract
Creatine kinase (CK) functions as an energy buffer in muscles. Its substrate, creatine, is generated by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). Creatine deficiency has more severe consequences for AGAT than GAMT KO mice. In the present study, to characterize their muscle phenotype further, we recorded the weight of tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GAS), plantaris (PLA) and soleus (SOL) from creatine-deficient AGAT and GAMT, KO and WT mice. In GAS, PLA and SOL representing glycolytic, intermediate and oxidative muscle, respectively, we recorded the activities of pyruvate kinase (PK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome oxidase (CO). In AGAT KO compared to WT mice, muscle atrophy and differences in marker enzyme activities were more pronounced in glycolytic than oxidative muscle. In GAMT KO compared to WT, the atrophy was modest, differences in PK and LDH activities were minor, and CS and CO activities were slightly higher in all muscles. SOL from males had higher CS and CO activities compared to females. Our results add detail to the characterization of AGAT and GAMT KO skeletal muscle phenotypes and illustrate the importance of taking into account differences between muscles, and differences between sexes.
Collapse
|
36
|
Analysis of L-arginine:glycine amidinotransferase-, creatine- and homoarginine-dependent gene regulation in the murine heart. Sci Rep 2020; 10:4821. [PMID: 32179820 PMCID: PMC7076046 DOI: 10.1038/s41598-020-61638-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 02/04/2023] Open
Abstract
L-arginine:glycine amidinotransferase (AGAT) and its metabolites creatine and homoarginine (HA) have been linked to cardiovascular pathologies in both human and murine studies, but the underlying molecular mechanisms are poorly understood. Here, we report the first analysis of heart transcriptome variation using microarrays in an AGAT-deficient (AGAT−/−) mouse model to evaluate AGAT-, creatine- and HA-dependent gene regulation. Our data revealed significant differences of gene expression between AGAT−/− and wild-type (WT) mice, affecting cardiac energy metabolism (Fbp2, Ucp2), cardiac hypertrophy and fibrosis (Nppa, Ctgf), immune response (Fgl2), and the conduction system of the heart (Dsc2, Ehd4, Hcn2, Hcn4, Scn4a, Scn4b). All of these genes being expressed on WT level in creatine-supplemented mice. Using in silico analysis based on the GEO database we found that most of these candidate genes (Ctgf, Dsc2, Fbp2, Fgl2, Hcn2, Nppa) revealed significant alterations in a WT mouse model of myocardial infarction underlining a pathophysiological relationship between AGAT metabolism and cardiovascular disease.
Collapse
|
37
|
Imprinted genes in clinical exome sequencing: Review of 538 cases and exploration of mouse-human conservation in the identification of novel human disease loci. Eur J Med Genet 2020; 63:103903. [PMID: 32169557 DOI: 10.1016/j.ejmg.2020.103903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/20/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Human imprinting disorders cause a range of dysmorphic and neurocognitive phenotypes, and they may elude traditional molecular diagnosis such exome sequencing. The discovery of novel disorders related to imprinted genes has lagged behind traditional Mendelian disorders because current diagnostic technology, especially unbiased testing, has limited utility in their discovery. To identify novel imprinting disorders, we reviewed data for every human gene hypothesized to be imprinted, identified each mouse ortholog, determined its imprinting status in the mouse, and analyzed its function in humans and mice. We identified 17 human genes that are imprinted in both humans and mice, and have functional data in mice or humans to suggest that dysregulated expression would lead to an abnormal phenotype in humans. These 17 genes, along with known imprinted genes, were preferentially flagged 538 clinical exome sequencing tests. The identified genes were: DIRAS3 [1p31.3], TP73 [1p36.32], SLC22A3 [6q25.3], GRB10 [7p12.1], DDC [7p12.2], MAGI2 [7q21.11], PEG10 [7q21.3], PPP1R9A [7q21.3], CALCR [7q21.3], DLGAP2 [8p23.3], GLIS3 [9p24.2], INPP5F [10q26.11], ANO1 [11q13.3], SLC38A4 [12q13.11], GATM [15q21.1], PEG3 [19q13.43], and NLRP2 [19q13.42]. In the 538 clinical cases, eight cases (1.7%) reported variants in a causative known imprinted gene. There were 367/758 variants (48.4%) in imprinted genes that were not known to cause disease, but none of those variants met the criteria for clinical reporting. Imprinted disorders play a significant role in human disease, and additional human imprinted disorders remain to be discovered. Therefore, evolutionary conservation is a potential tool to identify novel genes involved in human imprinting disorders and to identify them in clinical testing.
Collapse
|
38
|
Jensen M, Müller C, Schwedhelm E, Arunachalam P, Gelderblom M, Magnus T, Gerloff C, Zeller T, Choe CU. Homoarginine- and Creatine-Dependent Gene Regulation in Murine Brains with l-Arginine:Glycine Amidinotransferase Deficiency. Int J Mol Sci 2020; 21:ijms21051865. [PMID: 32182846 PMCID: PMC7084559 DOI: 10.3390/ijms21051865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022] Open
Abstract
l-arginine:glycine amidinotransferase (AGAT) and its metabolites homoarginine (hArg) and creatine have been linked to stroke pathology in both human and mouse studies. However, a comprehensive understanding of the underlying molecular mechanism is lacking. To investigate transcriptional changes in cerebral AGAT metabolism, we applied a transcriptome analysis in brains of wild-type (WT) mice compared to untreated AGAT-deficient (AGAT−/−) mice and AGAT−/− mice with creatine or hArg supplementation. We identified significantly regulated genes between AGAT−/− and WT mice in two independent cohorts of mice which can be linked to amino acid metabolism (Ivd, Lcmt2), creatine metabolism (Slc6a8), cerebral myelination (Bcas1) and neuronal excitability (Kcnip3). While Ivd and Kcnip3 showed regulation by hArg supplementation, Bcas1 and Slc6a8 were creatine dependent. Additional regulated genes such as Pla2g4e and Exd1 need further evaluation of their influence on cerebral function. Experimental stroke models showed a significant regulation of Bcas1 and Slc6a8. Together, these results reveal that AGAT deficiency, hArg and creatine regulate gene expression in the brain, which may be critical in stroke pathology.
Collapse
Affiliation(s)
- Märit Jensen
- University Heart and Vascular Centre Hamburg, Clinic for Cardiology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.J.); (C.M.); (T.Z.)
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (P.A.); (M.G.); (T.M.); (C.G.)
| | - Christian Müller
- University Heart and Vascular Centre Hamburg, Clinic for Cardiology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.J.); (C.M.); (T.Z.)
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany;
| | - Edzard Schwedhelm
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany;
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Priyadharshini Arunachalam
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (P.A.); (M.G.); (T.M.); (C.G.)
| | - Mathias Gelderblom
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (P.A.); (M.G.); (T.M.); (C.G.)
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (P.A.); (M.G.); (T.M.); (C.G.)
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (P.A.); (M.G.); (T.M.); (C.G.)
| | - Tanja Zeller
- University Heart and Vascular Centre Hamburg, Clinic for Cardiology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.J.); (C.M.); (T.Z.)
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany;
| | - Chi-un Choe
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany;
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (P.A.); (M.G.); (T.M.); (C.G.)
- Correspondence: ; Tel.: +49-40-7410-53770
| |
Collapse
|
39
|
Sasani A, Hornig S, Grzybowski R, Cordts K, Hanff E, Tsikas D, Böger R, Gerloff C, Isbrandt D, Neu A, Schwedhelm E, Choe CU. Muscle phenotype of AGAT- and GAMT-deficient mice after simvastatin exposure. Amino Acids 2019; 52:73-85. [DOI: 10.1007/s00726-019-02812-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/05/2019] [Indexed: 01/03/2023]
|
40
|
Faller KME, Atzler D, McAndrew DJ, Zervou S, Whittington HJ, Simon JN, Aksentijevic D, Ten Hove M, Choe CU, Isbrandt D, Casadei B, Schneider JE, Neubauer S, Lygate CA. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc Res 2019; 114:417-430. [PMID: 29236952 PMCID: PMC5982714 DOI: 10.1093/cvr/cvx242] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Aims Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dorothee Atzler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Institute for Cardiovascular Prevention (IPEK), Pettenkoferstraße 8a & 9, 80336 Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians University, Goethestrasse 33, 80336 Munich, Germany
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dunja Aksentijevic
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Michiel Ten Hove
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dirk Isbrandt
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,The Institute for Molecular and Behavioral Neuroscience, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jurgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
41
|
Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Rep 2018; 21:3317-3328. [PMID: 29241556 DOI: 10.1016/j.celrep.2017.11.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver dysfunction and low-grade inflammation during the development of diet-induced metabolic syndrome. We validated these model findings with additional experiments on mouse liver sections. In total, we present an integrative systems biology study of diet-induced hepatic insulin resistance that uncovered molecular features promoting the development and maintenance of metabolic disease.
Collapse
|
42
|
Stockebrand M, Sasani A, Das D, Hornig S, Hermans-Borgmeyer I, Lake HA, Isbrandt D, Lygate CA, Heerschap A, Neu A, Choe CU. A Mouse Model of Creatine Transporter Deficiency Reveals Impaired Motor Function and Muscle Energy Metabolism. Front Physiol 2018; 9:773. [PMID: 30013483 PMCID: PMC6036259 DOI: 10.3389/fphys.2018.00773] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022] Open
Abstract
Creatine serves as fast energy buffer in organs of high-energy demand such as brain and skeletal muscle. L-Arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase are responsible for endogenous creatine synthesis. Subsequent uptake into target organs like skeletal muscle, heart and brain is mediated by the creatine transporter (CT1, SLC6A8). Creatine deficiency syndromes are caused by defects of endogenous creatine synthesis or transport and are mainly characterized by intellectual disability, behavioral abnormalities, poorly developed muscle mass, and in some cases also muscle weakness. CT1-deficiency is estimated to be among the most common causes of X-linked intellectual disability and therefore the brain phenotype was the main focus of recent research. Unfortunately, very limited data concerning muscle creatine levels and functions are available from patients with CT1 deficiency. Furthermore, different CT1-deficient mouse models yielded conflicting results and detailed analyses of their muscular phenotype are lacking. Here, we report the generation of a novel CT1-deficient mouse model and characterized the effects of creatine depletion in skeletal muscle. HPLC-analysis showed strongly reduced total creatine levels in skeletal muscle and heart. MR-spectroscopy revealed an almost complete absence of phosphocreatine in skeletal muscle. Increased AGAT expression in skeletal muscle was not sufficient to compensate for insufficient creatine transport. CT1-deficient mice displayed profound impairment of skeletal muscle function and morphology (i.e., reduced strength, reduced endurance, and muscle atrophy). Furthermore, severely altered energy homeostasis was evident on magnetic resonance spectroscopy. Strongly reduced phosphocreatine resulted in decreased ATP/Pi levels despite an increased inorganic phosphate to ATP flux. Concerning glucose metabolism, we show increased glucose transporter type 4 expression in muscle and improved glucose clearance in CT1-deficient mice. These metabolic changes were associated with activation of AMP-activated protein kinase – a central regulator of energy homeostasis. In summary, creatine transporter deficiency resulted in a severe muscle weakness and atrophy despite different compensatory mechanisms.
Collapse
Affiliation(s)
- Malte Stockebrand
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany
| | - Ali Sasani
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Devashish Das
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Sönke Hornig
- Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Mouse Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dirk Isbrandt
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Arend Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Axel Neu
- Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Reichold M, Klootwijk ED, Reinders J, Otto EA, Milani M, Broeker C, Laing C, Wiesner J, Devi S, Zhou W, Schmitt R, Tegtmeier I, Sterner C, Doellerer H, Renner K, Oefner PJ, Dettmer K, Simbuerger JM, Witzgall R, Stanescu HC, Dumitriu S, Iancu D, Patel V, Mozere M, Tekman M, Jaureguiberry G, Issler N, Kesselheim A, Walsh SB, Gale DP, Howie AJ, Martins JR, Hall AM, Kasgharian M, O'Brien K, Ferreira CR, Atwal PS, Jain M, Hammers A, Charles-Edwards G, Choe CU, Isbrandt D, Cebrian-Serrano A, Davies B, Sandford RN, Pugh C, Konecki DS, Povey S, Bockenhauer D, Lichter-Konecki U, Gahl WA, Unwin RJ, Warth R, Kleta R. Glycine Amidinotransferase (GATM), Renal Fanconi Syndrome, and Kidney Failure. J Am Soc Nephrol 2018; 29:1849-1858. [PMID: 29654216 DOI: 10.1681/asn.2017111179] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background For many patients with kidney failure, the cause and underlying defect remain unknown. Here, we describe a novel mechanism of a genetic order characterized by renal Fanconi syndrome and kidney failure.Methods We clinically and genetically characterized members of five families with autosomal dominant renal Fanconi syndrome and kidney failure. We performed genome-wide linkage analysis, sequencing, and expression studies in kidney biopsy specimens and renal cells along with knockout mouse studies and evaluations of mitochondrial morphology and function. Structural studies examined the effects of recognized mutations.Results The renal disease in these patients resulted from monoallelic mutations in the gene encoding glycine amidinotransferase (GATM), a renal proximal tubular enzyme in the creatine biosynthetic pathway that is otherwise associated with a recessive disorder of creatine deficiency. In silico analysis showed that the particular GATM mutations, identified in 28 members of the five families, create an additional interaction interface within the GATM protein and likely cause the linear aggregation of GATM observed in patient biopsy specimens and cultured proximal tubule cells. GATM aggregates-containing mitochondria were elongated and associated with increased ROS production, activation of the NLRP3 inflammasome, enhanced expression of the profibrotic cytokine IL-18, and increased cell death.Conclusions In this novel genetic disorder, fully penetrant heterozygous missense mutations in GATM trigger intramitochondrial fibrillary deposition of GATM and lead to elongated and abnormal mitochondria. We speculate that this renal proximal tubular mitochondrial pathology initiates a response from the inflammasome, with subsequent development of kidney fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Mario Milani
- Italian National Research Council (CNR), Institute of Biophysics, Milan, Italy
| | | | | | | | - Sulochana Devi
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Weibin Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | - Ralph Witzgall
- Molecular and Cellular Anatomy, University Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | - Joana R Martins
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Kevin O'Brien
- NHGRI, National Institutes of Health, Bethesda, Maryland
| | | | | | - Mahim Jain
- Department of Bone and OI, Kennedy Krieger Institute, Baltimore, Maryland
| | - Alexander Hammers
- King's College London and Guy's and St. Thomas' PET Centre, London, United Kingdom
| | | | - Chi-Un Choe
- Department of Neurology, University Hamburg, Hamburg, Germany
| | - Dirk Isbrandt
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Research Group Experimental Neurophysiology, Bonn, Germany, and University of Cologne, Cologne, Germany
| | | | | | - Richard N Sandford
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Christopher Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Sue Povey
- Genetics, Evolution and Environment, University College London, London, United Kingdom
| | | | - Uta Lichter-Konecki
- Division of Medical Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William A Gahl
- NHGRI, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
44
|
Nazari-Ghadikolaei A, Mehrabani-Yeganeh H, Miarei-Aashtiani SR, Staiger EA, Rashidi A, Huson HJ. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat. Front Genet 2018; 9:105. [PMID: 29670642 PMCID: PMC5893768 DOI: 10.3389/fgene.2018.00105] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
The Markhoz goat provides an opportunity to study the genetics underlying coat color and mohair traits of an Angora type goat using genome-wide association studies (GWAS). This indigenous Iranian breed is valued for its quality mohair used in ceremonial garments and has the distinction of exhibiting an array of coat colors including black, brown, and white. Here, we performed 16 GWAS for different fleece (mohair) traits and coat color in 228 Markhoz goats sampled from the Markhoz Goat Research Station in Sanandaj, Kurdistan province, located in western Iran using the Illumina Caprine 50K beadchip. The Efficient Mixed Model Linear analysis was used to identify genomic regions with potential candidate genes contributing to coat color and mohair characteristics while correcting for population structure. Significant associations to coat color were found within or near the ASIP, ITCH, AHCY, and RALY genes on chromosome 13 for black and brown coat color and the KIT and PDGFRA genes on chromosome 6 for white coat color. Individual mohair traits were analyzed for genetic association along with principal components that allowed for a broader perspective of combined traits reflecting overall mohair quality and volume. A multitude of markers demonstrated significant association to mohair traits highlighting potential candidate genes of POU1F1 on chromosome 1 for mohair quality, MREG on chromosome 2 for mohair volume, DUOX1 on chromosome 10 for yearling fleece weight, and ADGRV1 on chromosome 7 for grease percentage. Variation in allele frequencies and haplotypes were identified for coat color and differentiated common markers associated with both brown and black coat color. This demonstrates the potential for genetic markers to be used in future breeding programs to improve selection for coat color and mohair traits. Putative candidate genes, both novel and previously identified in other species or breeds, require further investigation to confirm phenotypic causality and potential epistatic relationships.
Collapse
Affiliation(s)
- Anahit Nazari-Ghadikolaei
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hassan Mehrabani-Yeganeh
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed R. Miarei-Aashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Amir Rashidi
- Department of Animal Science, Faculty of Agriculture Engineering, University of Kurdistan, Sanandaj, Iran
| | - Heather J. Huson
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
45
|
Udobi KC, Kokenge AN, Hautman ER, Ullio G, Coene J, Williams MT, Vorhees CV, Mabondzo A, Skelton MR. Cognitive deficits and increases in creatine precursors in a brain-specific knockout of the creatine transporter gene Slc6a8. GENES BRAIN AND BEHAVIOR 2018; 17:e12461. [PMID: 29384270 DOI: 10.1111/gbb.12461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022]
Abstract
Creatine transporter (CrT; SLC6A8) deficiency (CTD) is an X-linked disorder characterized by severe cognitive deficits, impairments in language and an absence of brain creatine (Cr). In a previous study, we generated floxed Slc6a8 (Slc6a8 flox ) mice to create ubiquitous Slc6a8 knockout (Slc6a8-/y ) mice. Slc6a8-/y mice lacked whole body Cr and exhibited cognitive deficits. While Slc6a8-/y mice have a similar biochemical phenotype to CTD patients, they also showed a reduction in size and reductions in swim speed that may have contributed to the observed deficits. To address this, we created brain-specific Slc6a8 knockout (bKO) mice by crossing Slc6a8flox mice with Nestin-cre mice. bKO mice had reduced cerebral Cr levels while maintaining normal Cr levels in peripheral tissue. Interestingly, brain concentrations of the Cr synthesis precursor guanidinoacetic acid were increased in bKO mice. bKO mice had longer latencies and path lengths in the Morris water maze, without reductions in swim speed. In accordance with data from Slc6a8 -/y mice, bKO mice showed deficits in novel object recognition as well as contextual and cued fear conditioning. bKO mice were also hyperactive, in contrast with data from the Slc6a8 -/y mice. The results show that the loss of cerebral Cr is responsible for the learning and memory deficits seen in ubiquitous Slc6a8-/y mice.
Collapse
Affiliation(s)
- K C Udobi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - A N Kokenge
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - E R Hautman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - G Ullio
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, Université Paris Saclay, Gif-sur-Yvette Cedex, France
| | - J Coene
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, Université Paris Saclay, Gif-sur-Yvette Cedex, France
| | - M T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - C V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - A Mabondzo
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, Université Paris Saclay, Gif-sur-Yvette Cedex, France
| | - M R Skelton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| |
Collapse
|
46
|
Iqbal F, Hoeger H, Lubec G, Bodamer O. Biochemical and behavioral phenotype of AGAT and GAMT deficient mice following long-term Creatine monohydrate supplementation. Metab Brain Dis 2017; 32:1951-1961. [PMID: 28808834 DOI: 10.1007/s11011-017-0092-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
Abstract
The creatine/phosphocreatine system is essential for cellular phosphate coupled energy storage and production. We investigated the utility of creatine monohydrate supplementation in two different creatine deficient knockout mouse models. Following weaning, female Arginine: Glycine Amidinotransferase (AGAT) and Guanidinoacetate: methyltransferase (GAMT) knockouts and wild type mice were studied based on their genotypes and dietary supplementation (creatine free or 2% creatine monohydrate supplemented diet) for 10 weeks, using a series of behavioral tests and biochemical analyzes. An improved Rota rod performance was observed in both AGAT (p = 0.02) and GAMT knockout mice (p < 0.001) supplemented with 2% creatine. During Morris water maze probe trial, creatine supplemented AGAT knockout mice took less time to reach virtual platform (p = 0.03) and more frequently crossed this area (p = 0.001) than mice on creatine free diet. Similar observations were recorded for GAMT knockout mice. Urinary creatinine concentrations for AGAT (p = 0.001) and GAMT (p = 0.05) knockout mice were increased following creatine supplementation. Creatine supplementation has a potential to improve neuro-muscular coordination, spatial learning in both AGAT and GAMT knockout mice. Long term Creatine supplementation results in increased urine creatinine concentrations indicating improved creatine metabolism in knockout mice.
Collapse
Affiliation(s)
- Furhan Iqbal
- Department of Pediatrics and Adolescent Medicine, Laboratory for Inherited Metabolic Disorders, Medical University of Vienna, Vienna, Austria.
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Herald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Brauhausgasse 34, A-2235, Himberg, Austria
| | - Gurt Lubec
- Department of Pediatrics and Adolescent Medicine, Laboratory for Inherited Metabolic Disorders, Medical University of Vienna, Vienna, Austria
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
47
|
Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D, Dzeja P, Banks AS, Rosen ED, Spiegelman BM. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. Cell Metab 2017; 26:660-671.e3. [PMID: 28844881 PMCID: PMC5629120 DOI: 10.1016/j.cmet.2017.08.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/07/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Diet-induced thermogenesis is an important homeostatic mechanism that limits weight gain in response to caloric excess and contributes to the relative stability of body weight in most individuals. We previously demonstrated that creatine enhances energy expenditure through stimulation of mitochondrial ATP turnover, but the physiological role and importance of creatine energetics in adipose tissue have not been explored. Here, we have inactivated the first and rate-limiting enzyme of creatine biosynthesis, glycine amidinotransferase (GATM), selectively in fat (Adipo-Gatm KO). Adipo-Gatm KO mice are prone to diet-induced obesity due to the suppression of elevated energy expenditure that occurs in response to high-calorie feeding. This is paralleled by a blunted capacity for β3-adrenergic activation of metabolic rate, which is rescued by dietary creatine supplementation. These results provide strong in vivo genetic support for a role of GATM and creatine metabolism in energy expenditure, diet-induced thermogenesis, and defense against diet-induced obesity.
Collapse
Affiliation(s)
- Lawrence Kazak
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA.
| | - Edward T Chouchani
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Gina Z Lu
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Curtis J Bare
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amir I Mina
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Manju Kumari
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ivan Vuckovic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Günes DN, Kayacelebi AA, Hanff E, Lundgren J, Redfors B, Tsikas D. Metabolism and distribution of pharmacological homoarginine in plasma and main organs of the anesthetized rat. Amino Acids 2017; 49:2033-2044. [DOI: 10.1007/s00726-017-2465-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
49
|
The biomarker and causal roles of homoarginine in the development of cardiometabolic diseases: an observational and Mendelian randomization analysis. Sci Rep 2017; 7:1130. [PMID: 28442717 PMCID: PMC5430630 DOI: 10.1038/s41598-017-01274-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 02/05/2023] Open
Abstract
High L-homoarginine (hArg) levels are directly associated with several risk factors for cardiometabolic diseases whereas low levels predict increased mortality in prospective studies. The biomarker role of hArg in young adults remains unknown. To study the predictive value of hArg in the development of cardiometabolic risk factors and diseases, we utilized data on high-pressure liquid chromatography-measured hArg, cardiovascular risk factors, ultrasound markers of preclinical atherosclerosis and type 2 diabetes from the population-based Young Finns Study involving 2,106 young adults (54.6% females, aged 24–39). We used a Mendelian randomization approach involving tens to hundreds of thousands of individuals to test causal associations. In our 10-year follow-up analysis, hArg served as an independent predictor for future hyperglycaemia (OR 1.31, 95% CI 1.06–1.63) and abdominal obesity (OR 1.60, 95% 1.14–2.30) in men and type 2 diabetes in women (OR 1.55, 95% CI 1.02–2.41). The MR analysis revealed no evidence of causal associations between serum hArg and any of the studied cardiometabolic outcomes. In conclusion, lifetime exposure to higher levels of circulating hArg does not seem to alter cardiometabolic disease risk. Whether hArg could be used as a biomarker for identification of individuals at risk developing cardiometabolic abnormalities merits further investigation.
Collapse
|
50
|
Haan YC, Oudman I, Diemer FS, Karamat FA, van Valkengoed IG, van Montfrans GA, Brewster LM. Creatine kinase as a marker of obesity in a multi-ethnic population. Mol Cell Endocrinol 2017; 442:24-31. [PMID: 27894867 DOI: 10.1016/j.mce.2016.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Creatine kinase (CK), the central regulatory enzyme of energy metabolism, is particularly high in type II skeletal muscle fibers, which are associated with insulin resistance and obesity. As resting plasma CK is mainly derived from skeletal muscle, we assessed whether plasma CK is associated with markers of obesity. METHODS In this cross-sectional study, we analyzed a random sample of the multi-ethnic population of Amsterdam, the Netherlands, consisting of 1444 subjects aged 34-60 years. The primary outcome was the independent association between plasma CK after rest and waist circumference. Other outcomes included waist-to-hip ratio and body mass index. RESULTS Mean waist circumference increased from the first through the third CK tertile, respectively 90.3 (SD 13.4), 93.2 (SD 14.3), and 94.4 (SD 13.3) cm (p < 0.001 for differences between tertiles). The increase in waist circumference was 8.91 (95% CI 5.35 to 12.47) cm per log CK increase after adjustment for age, sex, African ethnicity, educational level, physical activity and plasma creatinine. Similarly, CK was independently associated with waist-to-hip ratio and body mass index, with an increase of respectively 0.05 (95% CI 0.03 to 0.07) and 3.6 (95% CI 2.3 to 5.0) kg/m2 per log CK increase. CONCLUSIONS Plasma CK is independently associated with measures of obesity in a multi-ethnic population. This is in line with the central role of type II skeletal muscle fibers in energy metabolism and obesity. Prospective studies should assess whether resting plasma CK could be an easy accessible marker of CK rich type II fiber predominance that helps identify individuals at risk for obesity.
Collapse
Affiliation(s)
- Yentl C Haan
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Inge Oudman
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Frederieke S Diemer
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Cardiology, Academic Hospital Paramaribo, Flustraat 1, Paramaribo, Suriname
| | - Fares A Karamat
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Irene G van Valkengoed
- Department of Social Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gert A van Montfrans
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lizzy M Brewster
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Social Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Public Health, Anton de Kom University of Suriname, Paramaribo, Suriname
| |
Collapse
|