1
|
Chang ES, Song K, Song JY, Sung M, Lee MS, Oh JH, Kim JY, Park YH, Jung K, Choi YL. Real-time assessment of relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE). Cancer Metab 2024; 12:25. [PMID: 39210390 PMCID: PMC11363686 DOI: 10.1186/s40170-024-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Mitochondria are known to synthesize adenosine triphosphate (ATP) through oxidative phosphorylation. Understanding and accurately measuring mitochondrial ATP synthesis rate can provide insights into the functional status of mitochondria and how it contributes to overall cellular energy homeostasis. Traditional methods only estimate mitochondrial function by measuring ATP levels at a single point in time or through oxygen consumption rates. This study introduced the relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE), designed to detect real-time changes in ATP levels as the cells respond to substrates. METHODS The sensitivity and specificity of the MitoRAISE assay were verified under various conditions, including the isolation of mitochondria, variations in cell numbers, cells exhibiting mitochondrial damage, and heterogeneous mixtures. Using peripheral blood mononuclear cells (PBMCs), we analyzed MitoRAISE data from 19 patients with breast cancer and 23 healthy women. RESULTS The parameters observed in the MitoRAISE data increased depending on the quantity of isolated mitochondria and cell count, whereas it remained unmeasured in mitochondrial-damaged cell lines. Basal ATP, rotenone response, malonate response, and mitochondrial DNA copy numbers were lower in PBMCs from patients with breast cancer than in those from healthy women. CONCLUSIONS The MitoRAISE assay has demonstrated its sensitivity and specificity by measuring relative ATP synthesis rates under various conditions. We propose MitoRAISE assay as a potential tool for monitoring changes in the mitochondrial metabolic status associated with various diseases.
Collapse
Affiliation(s)
- Eun Sol Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-Ro 81, Gangnam-Go, Seoul, 06351, South Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Ji-Young Song
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-Ro 81, Gangnam-Go, Seoul, 06351, South Korea
| | - Minjung Sung
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-Ro 81, Gangnam-Go, Seoul, 06351, South Korea
| | - Mi-Sook Lee
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-Ro 81, Gangnam-Go, Seoul, 06351, South Korea
| | - Jung Han Oh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-Ro 81, Gangnam-Go, Seoul, 06351, South Korea
| | - Ji-Yeon Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yeon Hee Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyungsoo Jung
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-Ro 81, Gangnam-Go, Seoul, 06351, South Korea.
| | - Yoon-La Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-Ro 81, Gangnam-Go, Seoul, 06351, South Korea.
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-Ro 81, Gangnam-Go, Seoul, 06351, South Korea.
| |
Collapse
|
2
|
Ciccarone F, Ciriolo MR. Reprogrammed mitochondria: a central hub of cancer cell metabolism. Biochem Soc Trans 2024; 52:1305-1315. [PMID: 38716960 DOI: 10.1042/bst20231090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria represent the metabolic hub of normal cells and play this role also in cancer but with different functional purposes. While cells in differentiated tissues have the prerogative of maintaining basal metabolism and support the biosynthesis of specialized products, cancer cells have to rewire the metabolic constraints imposed by the differentiation process. They need to balance the bioenergetic supply with the anabolic requirements that entail the intense proliferation rate, including nucleotide and membrane lipid biosynthesis. For this aim, mitochondrial metabolism is reprogrammed following the activation of specific oncogenic pathways or due to specific mutations of mitochondrial proteins. The main process leading to mitochondrial metabolic rewiring is the alteration of the tricarboxylic acid cycle favoring the appropriate orchestration of anaplerotic and cataplerotic reactions. According to the tumor type or the microenvironmental conditions, mitochondria may decouple glucose catabolism from mitochondrial oxidation in favor of glutaminolysis or disable oxidative phosphorylation for avoiding harmful production of free radicals. These and other metabolic settings can be also determined by the neo-production of oncometabolites that are not specific for the tissue of origin or the accumulation of metabolic intermediates able to boost pro-proliferative metabolism also impacting epigenetic/transcriptional programs. The full characterization of tumor-specific mitochondrial signatures may provide the identification of new biomarkers and therapeutic opportunities based on metabolic approaches.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
3
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
4
|
Sharma S, Sandhir R, Ganju L, Kumar B, Singh Y. Unique mutations in mitochondrial DNA and associated pathways involved in high altitude pulmonary edema susceptibility in Indian lowlanders. J Biomol Struct Dyn 2022:1-16. [PMID: 35666092 DOI: 10.1080/07391102.2022.2081610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
High altitude pulmonary edema (HAPE) is a life threatening non-cardiogenic pulmonary edema that occurs in an otherwise healthy individuals travelling to altitude above 2500 m. Earlier studies have reported association of mutations in nuclear (nDNA) and mitochondrial DNA (mtDNA) with HAPE susceptibility. However, the molecular mechanisms involved in the pathobiology of HAPE have not been fully understood. The present study investigates the genetic predisposition to HAPE by analyzing the mtDNA mutations in HAPE susceptibles (n = 23) and acclimatized controls (n = 23) using next generation sequencing. Structural analysis of mutations was done using SWISS Model server and stability was determined using ΔΔG values. Meta-analysis of GSE52209 dataset was done to identify differentially expressed genes (DEGs) in HAPE susceptibles and acclimatized controls. Fourteen non-synonymous, conserved and pathogenic mutations were predicted using SIFT and PolyPhen scoring in protein coding genes, whereas six mutations in mt-tRNA genes showed association with HAPE (p ≤ 0.05). The structural analysis of these mutations revealed conformational changes in critical regions in Complexes I-V which are involved in subunit assembly and proton pumping activity. The protein-protein interaction network analysis of DEGs showed that HIF1α, EGLN2, EGLN3, PDK1, TFAM, PPARGC1α and NRF1 genes form highly interconnected cluster. Further, pathway enrichment analysis using DAVID revealed that "HIF-1 signaling", "oxidative phosphorylation" and "Metabolic pathways" had strong association with HAPE. Based on the findings it appears that the identified mtDNA mutations may be a potential risk factor in development of HAPE with the associated pathways providing mechanistic insight into the understanding of pathobiology of HAPE and sites for development of therapeutic targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Swati Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, Delhi, India.,Department of Biochemistry, Basic Medical Sciences Block II, Panjab University, Chandigarh, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block II, Panjab University, Chandigarh, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, Delhi, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, Delhi, India
| | - Yamini Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, Delhi, India
| |
Collapse
|
5
|
Zhang Y, Zhang L, Fan K, Gou Y, Zang Z, Ding X, Yang H, Li S. Drp1 Regulated Mitochondrial Hypofission Promotes the Invasion and Proliferation of Growth Hormone-Secreting Pituitary Adenomas via Activating STAT3. Front Oncol 2022; 12:739631. [PMID: 35463323 PMCID: PMC9021862 DOI: 10.3389/fonc.2022.739631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
The invasiveness and high proliferation rate of growth hormone-secreting pituitary adenomas (GHPAs) are closely related to poor prognosis in patients. We previously reported that abnormal glycolysis participates in this process; however, the role of mitochondria in the invasion and proliferation of GHPAs remains unknown. In the current study, stereological methods were first used to quantitatively calculate the number and morphology of mitochondria. The results revealed that the numbers, volumes and membrane areas of mitochondria were decreased in invasive GHPAs (IGHPAs) samples compared to noninvasive GHPAs (NIGHPAs) samples. Furthermore, significantly downregulated mRNA and protein levels of dynamin-related protein 1 (Drp1) were detected in IGHPAs, but no notable changes in fusion related molecules (Mfn1, Mfn2 and OPA1) were detected, suggesting that the abnormal mitochondrial dynamics in IGHPAs are characterized by hypofission. Mitochondrial hypofission caused by Mdivi-1, a specific Drp1 inhibitor, enhanced the invasion and proliferation of GH3 cell lines and primary cells from patients with GHPAs in vitro and in vivo, while overexpression of Drp1 reversed these processes. Mechanistically, mitochondrial hypofission might activate signal transducer and activator of transcription 3 (STAT3). Specifically, elevated nuclear pSTAT3Y705 may promote GH3 cell invasion by upregulating the activity of matrix metalloproteinase 2/9, and elevated mitochondrial pSTAT3S727 may promote GH3 cell proliferation by inhibiting the mitochondria-dependent apoptotic pathway. Taken together, our findings suggest that mitochondrial hypofission induced by Drp1 might strengthen the invasion and proliferation of GHPA tumor cells by activating STAT3, providing us with a new perspective on how mitochondria regulate the development of IGHPAs.
Collapse
Affiliation(s)
- Yin Zhang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Neurosurgery, People's Hospital of Shapingba District, Chongqing, China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Kexia Fan
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yajun Gou
- Department of Neurosurgery, People's Hospital of Shapingba District, Chongqing, China
| | - Zhenle Zang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao Ding
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Brian and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Song Li
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Brian and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| |
Collapse
|
6
|
Tsybrovskyy O, De Luise M, de Biase D, Caporali L, Fiorini C, Gasparre G, Carelli V, Hackl D, Imamovic L, Haim S, Sobrinho‐Simões M, Tallini G. Papillary thyroid carcinoma tall cell variant shares accumulation of mitochondria, mitochondrial DNA mutations, and loss of oxidative phosphorylation complex I integrity with oncocytic tumors. J Pathol Clin Res 2022; 8:155-168. [PMID: 34792302 PMCID: PMC8822387 DOI: 10.1002/cjp2.247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Papillary thyroid carcinoma tall cell variant (PTC-TCV), a form of PTC regarded as an aggressive subtype, shares several morphologic features with oncocytic tumors. Pathogenic homoplasmic/highly heteroplasmic somatic mitochondrial DNA (mtDNA) mutations, usually affecting oxidative phosphorylation (OXPHOS) complex I subunits, are hallmarks of oncocytic cells. To clarify the relationship between PTC-TCV and oncocytic thyroid tumors, 17 PTC-TCV and 16 PTC non-TCV controls (cPTC) were subjected to: (1) transmission electron microscopy (TEM) to assess mitochondria accumulation, (2) next-generation sequencing to analyze mtDNA and nuclear genes frequently mutated in thyroid carcinoma, and (3) immunohistochemistry (IHC) for prohibitin and complex I subunit NDUFS4 to evaluate OXPHOS integrity. TEM showed replacement of cytoplasm by mitochondria in PTC-TCV but not in cPTC cells. All 17 PTC-TCV had at least one mtDNA mutation, totaling 21 mutations; 3/16 cPTC (19%) had mtDNA mutations (p < 0.001). PTC-TCV mtDNA mutations were homoplasmic/highly heteroplasmic, 16/21 (76%) mapping within mtDNA-encoded complex I subunits. MtDNA mutations in cPTC were homoplasmic in 2 cases and at low heteroplasmy in the third case, 2/3 mapping to mtDNA-encoded complex I subunits; 2/3 cPTC with mtDNA mutations had small tall cell subpopulations. PTC-TCV showed strong prohibitin expression and cPTC low-level expression, consistent with massive and limited mitochondrial content, respectively. All 17 PTC-TCV showed NDUFS4 loss (partial or complete) and 3 of 16 cPTC (19%) had (partial) NDUFS4 loss, consistent with lack of complex I integrity in PTC-TCV (p < 0.001). IHC loss of NDUFS4 was associated with mtDNA mutations (p < 0.001). Four BRAF V600E mutated PTCs had loss of NDUSF4 expression limited to neoplastic cell subpopulations with tall cell features, indicating that PTCs first acquire BRAF V600E and then mtDNA mutations. Similar to oncocytic thyroid tumors, PTC-TCV is characterized by mtDNA mutations, massive accumulation of mitochondria, and loss of OXPHOS integrity. IHC loss of NDUFS-4 can be used as a surrogate marker for OXPHOS disruption and to reliably diagnose PTC-TCV.
Collapse
Affiliation(s)
- Oleksiy Tsybrovskyy
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
- Department of Clinical PathologyOrdensklinikum/Hospital of the Sisters of CharityLinzAustria
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC) and Center for Applied Biomedical Research (CRBA)University of BolognaBolognaItaly
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Leonardo Caporali
- Programma di NeurogeneticaIRCCS Istituto delle Scienze NeurologicheBolognaItaly
| | - Claudio Fiorini
- Programma di NeurogeneticaIRCCS Istituto delle Scienze NeurologicheBolognaItaly
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC) and Center for Applied Biomedical Research (CRBA)University of BolognaBolognaItaly
| | - Valerio Carelli
- Programma di NeurogeneticaIRCCS Istituto delle Scienze NeurologicheBolognaItaly
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Dominik Hackl
- Department of General and Visceral SurgeryOrdensklinikum/Hospital of the Sisters of CharityLinzAustria
| | - Larisa Imamovic
- Department of Nuclear Medicine & Endocrinology, PET‐CT Center LinzOrdensklinikum/Hospital of the Sisters of CharityLinzAustria
| | - Silke Haim
- Department of Nuclear Medicine & Endocrinology, PET‐CT Center LinzOrdensklinikum/Hospital of the Sisters of CharityLinzAustria
| | - Manuel Sobrinho‐Simões
- IpatimupInstitute of Molecular Pathology and Immunology of the University of PortoPortoPortugal
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
| |
Collapse
|
7
|
De Luise M, Iommarini L, Marchio L, Tedesco G, Coadă CA, Repaci A, Turchetti D, Tardio ML, Salfi N, Pagotto U, Kurelac I, Porcelli AM, Gasparre G. Pathogenic Mitochondrial DNA Mutation Load Inversely Correlates with Malignant Features in Familial Oncocytic Parathyroid Tumors Associated with Hyperparathyroidism-Jaw Tumor Syndrome. Cells 2021; 10:2920. [PMID: 34831144 PMCID: PMC8616364 DOI: 10.3390/cells10112920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
While somatic disruptive mitochondrial DNA (mtDNA) mutations that severely affect the respiratory chain are counter-selected in most human neoplasms, they are the genetic hallmark of indolent oncocytomas, where they appear to contribute to reduce tumorigenic potential. A correlation between mtDNA mutation type and load, and the clinical outcome of a tumor, corroborated by functional studies, is currently lacking. Recurrent familial oncocytomas are extremely rare entities, and they offer the chance to investigate the determinants of oncocytic transformation and the role of both germline and somatic mtDNA mutations in cancer. We here report the first family with Hyperparathyroidism-Jaw Tumor (HPT-JT) syndrome showing the inherited predisposition of four individuals to develop parathyroid oncocytic tumors. MtDNA sequencing revealed a rare ribosomal RNA mutation in the germline of all HPT-JT affected individuals whose pathogenicity was functionally evaluated via cybridization technique, and which was counter-selected in the most aggressive infiltrating carcinoma, but positively selected in adenomas. In all tumors different somatic mutations accumulated on this genetic background, with an inverse clear-cut correlation between the load of pathogenic mtDNA mutations and the indolent behavior of neoplasms, highlighting the importance of the former both as modifiers of cancer fate and as prognostic markers.
Collapse
Affiliation(s)
- Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Luisa Iommarini
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Lorena Marchio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Greta Tedesco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Camelia Alexandra Coadă
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Division of Medical Genetics, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Maria Lucia Tardio
- Unit of Pathology, IRCCS S.Orsola University Hospital, 40138 Bologna, Italy;
| | - Nunzio Salfi
- Pathology Unit, IRCCS Giannina Gaslini Children’s Research Hospital, 16147 Genova, Italy;
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Anna Maria Porcelli
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| |
Collapse
|
8
|
Umlai UKI, Bangarusamy DK, Estivill X, Jithesh PV. Genome sequencing data analysis for rare disease gene discovery. Brief Bioinform 2021; 23:6366880. [PMID: 34498682 DOI: 10.1093/bib/bbab363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/24/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Rare diseases occur in a smaller proportion of the general population, which is variedly defined as less than 200 000 individuals (US) or in less than 1 in 2000 individuals (Europe). Although rare, they collectively make up to approximately 7000 different disorders, with majority having a genetic origin, and affect roughly 300 million people globally. Most of the patients and their families undergo a long and frustrating diagnostic odyssey. However, advances in the field of genomics have started to facilitate the process of diagnosis, though it is hindered by the difficulty in genome data analysis and interpretation. A major impediment in diagnosis is in the understanding of the diverse approaches, tools and datasets available for variant prioritization, the most important step in the analysis of millions of variants to select a few potential variants. Here we present a review of the latest methodological developments and spectrum of tools available for rare disease genetic variant discovery and recommend appropriate data interpretation methods for variant prioritization. We have categorized the resources based on various steps of the variant interpretation workflow, starting from data processing, variant calling, annotation, filtration and finally prioritization, with a special emphasis on the last two steps. The methods discussed here pertain to elucidating the genetic basis of disease in individual patient cases via trio- or family-based analysis of the genome data. We advocate the use of a combination of tools and datasets and to follow multiple iterative approaches to elucidate the potential causative variant.
Collapse
Affiliation(s)
- Umm-Kulthum Ismail Umlai
- Division of Genomics & Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, B-147, Penrose House, PO Box 34110, Education City, Doha, Qatar
| | - Dhinoth Kumar Bangarusamy
- Division of Genomics & Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, B-147, Penrose House, PO Box 34110, Education City, Doha, Qatar
| | - Xavier Estivill
- Quantitative Genomics Laboratories (qGenomics), Barcelona, Catalonia, Spain
| | - Puthen Veettil Jithesh
- Division of Genomics & Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, B-147, Penrose House, PO Box 34110, Education City, Doha, Qatar
| |
Collapse
|
9
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
10
|
Preste R, Vitale O, Clima R, Gasparre G, Attimonelli M. HmtVar: a new resource for human mitochondrial variations and pathogenicity data. Nucleic Acids Res 2020; 47:D1202-D1210. [PMID: 30371888 PMCID: PMC6323908 DOI: 10.1093/nar/gky1024] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Interest in human mitochondrial genetic data is constantly increasing among both clinicians and researchers, due to the involvement of mitochondrial DNA (mtDNA) in a number of physiological and pathological processes. Thanks to new sequencing technologies and modern databases, the large amount of information on mtDNA variability may be exploited to gain insights into the relationship between mtDNA variants, phenotypes and diseases. To facilitate this process, we have developed the HmtVar resource, a variant-focused database that allows the exploration of a dataset of over 40 000 human mitochondrial variants. Mitochondrial variation data, initially gathered from the HmtDB platform, are integrated with in-house pathogenicity assessments based on various evaluation criteria and with a set of additional annotations from third-party resources. The result is a comprehensive collection of information of crucial importance for human mitochondrial variation studies and investigation of common and rare diseases in which the mitochondrion may be involved. HmtVar is accessible at https://www.hmtvar.uniba.it and data may be retrieved using either a web interface through the Query page or a state-of-the-art API for programmatic access.
Collapse
Affiliation(s)
- Roberto Preste
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Ornella Vitale
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Rosanna Clima
- Department of Medical and Surgical Sciences - DIMEC, Medical Genetics Unit, University of Bologna, Bologna 40126, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences - DIMEC, Medical Genetics Unit, University of Bologna, Bologna 40126, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70126, Italy
| |
Collapse
|
11
|
Schubert AD, Channah Broner E, Agrawal N, London N, Pearson A, Gupta A, Wali N, Seiwert TY, Wheelan S, Lingen M, Macleod K, Allen H, Chatterjee A, Vassiliki S, Gaykalova D, Hoque MO, Sidransky D, Suresh K, Izumchenko E. Somatic mitochondrial mutation discovery using ultra-deep sequencing of the mitochondrial genome reveals spatial tumor heterogeneity in head and neck squamous cell carcinoma. Cancer Lett 2020; 471:49-60. [PMID: 31830557 PMCID: PMC6980748 DOI: 10.1016/j.canlet.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) have been linked to risk, progression, and treatment response of head and neck squamous cell carcinoma (HNSCC). Due to their clonal nature and high copy number, mitochondrial mutations could serve as powerful molecular markers for detection of cancer cells in bodily fluids, surgical margins, biopsies and lymph node (LN) metastasis, especially at sites where tumor involvement is not histologically apparent. Despite a pressing need for high-throughput, cost-effective mtDNA mutation profiling system, current methods for library preparation are still imperfect for detection of low prevalence heteroplasmic mutations. To this end, we have designed an ultra-deep amplicon-based sequencing library preparation approach that covers the entire mitochondrial genome. We sequenced mtDNA in 28 HNSCCs, matched LNs, surgical margins and bodily fluids, and applied multiregional sequencing approach on 14 primary tumors. Our results demonstrate that this quick, sensitive and cost-efficient method allows obtaining a snapshot on the mitochondrial heterogeneity, and can be used for detection of low frequency tumor-associated mtDNA mutations in LNs, sputum and serum specimens. These findings provide the foundation for using mitochondrial sequencing for risk assessment, early detection, and tumor surveillance.
Collapse
Affiliation(s)
- Adrian D Schubert
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Esther Channah Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nishant Agrawal
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Nyall London
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alexander Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Neha Wali
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Tanguy Y Seiwert
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Sarah Wheelan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mark Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Kay Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Hailey Allen
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Saloura Vassiliki
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Daria Gaykalova
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mohammad O Hoque
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Karthik Suresh
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine. Baltimore, MD, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Genetics of Pituitary Tumours. EXPERIENTIA. SUPPLEMENTUM 2019. [PMID: 31588533 DOI: 10.1007/978-3-030-25905-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Pituitary tumours are relatively common in the general population. Most often they occur sporadically, with somatic mutations accounting for a significant minority of somatotroph and corticotroph adenomas. Pituitary tumours can also develop secondary to germline mutations as part of a complex syndrome or as familial isolated pituitary adenomas. Tumours occurring in a familial setting may present at a younger age and can behave more aggressively with resistance to treatment. This chapter will focus on the genetics and molecular pathogenesis of pituitary tumours.
Collapse
|
13
|
Németh K, Darvasi O, Likó I, Szücs N, Czirják S, Reiniger L, Szabó B, Kurucz PA, Krokker L, Igaz P, Patócs A, Butz H. Next-generation sequencing identifies novel mitochondrial variants in pituitary adenomas. J Endocrinol Invest 2019; 42:931-940. [PMID: 30684245 PMCID: PMC6647476 DOI: 10.1007/s40618-019-1005-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/08/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Disrupted mitochondrial functions and genetic variants of mitochondrial DNA (mtDNA) have been observed in different human neoplasms. Next-generation sequencing (NGS) can be used to detect even low heteroplasmy-level mtDNA variants. We aimed to investigate the mitochondrial genome in pituitary adenomas by NGS. METHODS We analysed 11 growth hormone producing and 33 non-functioning [22 gonadotroph and 11 hormone immunonegative] pituitary adenomas using VariantPro™ Mitochondrion Panel on Illumina MiSeq instrument. Revised Cambridge Reference Sequence (rCRS) of the mtDNA was used as reference. Heteroplasmy was determined using a 3% cutoff. RESULTS 496 variants were identified in pituitary adenomas with overall low level of heteroplasmy (7.22%). On average, 35 variants were detected per sample. Samples harbouring the highest number of variants had the highest Ki-67 indices independently of histological subtypes. We identified eight variants (A11251G, T4216C, T16126C, C15452A, T14798C, A188G, G185A, and T16093C) with different prevalences among different histological groups. T16189C was found in 40% of non-recurrent adenomas, while it was not present in the recurrent ones. T14798C and T4216C were confirmed by Sanger sequencing in all 44 samples. 100% concordance was found between NGS and Sanger method. CONCLUSIONS NGS is a reliable method for investigating mitochondrial genome and heteroplasmy in pituitary adenomas. Out of the 496 detected variants, 414 have not been previously reported in pituitary adenoma. The high number of mtDNA variants may contribute to adenoma genesis, and some variants (i.e., T16189C) might associate with benign behaviour.
Collapse
Affiliation(s)
- K Németh
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - O Darvasi
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary
| | - I Likó
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary
| | - N Szücs
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - S Czirják
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - L Reiniger
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - B Szabó
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - P A Kurucz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - L Krokker
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - P Igaz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - A Patócs
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - H Butz
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
14
|
Barshad G, Zlotnikov-Poznianski N, Gal L, Schuldiner M, Mishmar D. Disease-causing mutations in subunits of OXPHOS complex I affect certain physical interactions. Sci Rep 2019; 9:9987. [PMID: 31292494 PMCID: PMC6620328 DOI: 10.1038/s41598-019-46446-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial complex I (CI) is the largest multi-subunit oxidative phosphorylation (OXPHOS) protein complex. Recent availability of a high-resolution human CI structure, and from two non-human mammals, enabled predicting the impact of mutations on interactions involving each of the 44 CI subunits. However, experimentally assessing the impact of the predicted interactions requires an easy and high-throughput method. Here, we created such a platform by cloning all 37 nuclear DNA (nDNA) and 7 mitochondrial DNA (mtDNA)-encoded human CI subunits into yeast expression vectors to serve as both 'prey' and 'bait' in the split murine dihydrofolate reductase (mDHFR) protein complementation assay (PCA). We first demonstrated the capacity of this approach and then used it to examine reported pathological OXPHOS CI mutations that occur at subunit interaction interfaces. Our results indicate that a pathological frame-shift mutation in the MT-ND2 gene, causing the replacement of 126 C-terminal residues by a stretch of only 30 amino acids, resulted in loss of specificity in ND2-based interactions involving these residues. Hence, the split mDHFR PCA is a powerful assay for assessing the impact of disease-causing mutations on pairwise protein-protein interactions in the context of a large protein complex, thus offering a possible mechanistic explanation for the underlying pathogenicity.
Collapse
Affiliation(s)
- Gilad Barshad
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
15
|
Badrinath N, Yoo SY. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 2019; 39:1419-1430. [PMID: 30357389 DOI: 10.1093/carcin/bgy148] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023] Open
Abstract
Mitochondria play pivotal roles in most eukaryotic cells, ranging from energy production to regulation of apoptosis. As sites of cellular respiration, mitochondria experience accumulation of reactive oxygen species (ROS) due to damage in electron transport chain carriers. Mutations in mitochondrial DNA (mtDNA) as well as nuclear DNA are reported in various cancers. Mitochondria have a dual role in cancer: the development of tumors due to mutations in mitochondrial genome and the generation of ROS. Impairment in the mitochondria-regulated apoptosis pathway accelerates tumorigenesis. Numerous strategies targeting mitochondria have been developed to induce the mitochondrial (i.e. intrinsic) apoptosis pathway in cancer cells. This review elaborates the roles of mitochondria in cancer with respect to mutations and apoptosis and discusses mitochondria-targeting strategies as cancer therapies to enhance the killing of cancer cells.
Collapse
Affiliation(s)
- Narayanasamy Badrinath
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - So Young Yoo
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,BIO-IT Foundry Technology Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
16
|
Differentially Expressed miRNAs Influence Metabolic Processes in Pituitary Oncocytoma. Neurochem Res 2019; 44:2360-2371. [PMID: 30945144 PMCID: PMC6776564 DOI: 10.1007/s11064-019-02789-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
Spindle cell oncocytomas (SCO) of the pituitary are rare tumors accounting for 0.1–0.4% of all sellar tumors. Due to their rarity, little information is available regarding their pathogenesis. Our aim was to investigate miRNA expression profile of pituitary oncocytomas. Total RNA was extracted from 9 formalin-fixed paraffin embedded pituitary samples (4 primary, 3 recurrent oncocytomas and 2 normal tissues). Next-generation sequencing was performed for miRNA profiling. Transcriptome data of additional 6 samples’ were obtained from NBCI GEO database for gene expression reanalysis and tissue-specific target prediction. Bioinformatical analysis, in vitro miRNA mimics transfection, luciferase reporter system and AlamarBlue assay were applied to characterize miRNA’s function. 54 differentially expressed miRNAs and 485 genes in pituitary SCO vs. normal tissue and 8 miRNAs in recurrent vs. primary SCO were determined. Global miRNA downregulation and decreased level of DROSHA were detected in SCO samples vs. normal tissue. Transcriptome analysis revealed cell cycle alterations while miRNAs influenced mainly metabolic processes (tricarboxylic acid cycle-TCA, carbohydrate, lipid metabolism). Through miRNA-target interaction network the overexpressed Aconitase 2 potentially targeted by two downregulated miRNAs (miR-744-5p, miR-127-3p) was revealed. ACO2 and miR-744-5p interaction was validated by luciferase assay. MiR-127-3p and miR-744-5p significantly decreased cell proliferation in vitro. Our study firstly reported miRNA profile of pituitary oncocytoma. Our results suggest that tumor suppressor miRNAs may have an essential role in the pathogenesis of pituitary oncocytoma. Earlier reports showed downregulated TCA cycle in SCO which is extended by our results adding the role of miR-744-5p targeting ACO2.
Collapse
|
17
|
Feng J, Zhang Q, Li C, Zhou Y, Zhao S, Hong L, Song Q, Yu S, Hu C, Wang H, Mao C, Shepard MJ, Hao S, Dominah G, Sun M, Wan H, Park DM, Gilbert MR, Xu G, Zhuang Z, Zhang Y. Enhancement of mitochondrial biogenesis and paradoxical inhibition of lactate dehydrogenase mediated by 14-3-3η in oncocytomas. J Pathol 2018; 245:361-372. [PMID: 29704241 DOI: 10.1002/path.5090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Oncocytomas represent a subset of benign pituitary adenomas that are characterized by significant mitochondrial hyperplasia. Mitochondria are key organelles for energy generation and metabolic intermediate production for biosynthesis in tumour cells, so understanding the mechanism underlying mitochondrial biogenesis and its impact on cellular metabolism in oncocytoma is vital. Here, we studied surgically resected pituitary oncocytomas by using multi-omic analyses. Whole-exome sequencing did not reveal any nuclear mutations, but identified several somatic mutations of mitochondrial DNA, and dysfunctional respiratory complex I. Metabolomic analysis suggested that oxidative phosphorylation was reduced within individual mitochondria, and that there was no reciprocal increase in glycolytic activity. Interestingly, we found a reduction in the cellular lactate level and reduced expression of lactate dehydrogenase A (LDHA), which contributed to mitochondrial biogenesis in an in vitro cell model. It is of note that the hypoxia-response signalling pathway was not upregulated in pituitary oncocytomas, thereby failing to enhance glycolysis. Proteomic analysis showed that 14-3-3η was exclusively overexpressed in oncocytomas, and that 14-3-3η was capable of inhibiting glycolysis, leading to mitochondrial biogenesis in the presence of rotenone. In particular, 14-3-3η inhibited LDHA by direct interaction in the setting of complex I dysfunction, highlighting the role of 14-3-3η overexpression and inefficient oxidative phosphorylation in oncocytoma mitochondrial biogenesis. These findings deepen our understanding of the metabolic changes that occur within oncocytomas, and shine a light on the mechanism of mitochondrial biogenesis, providing a novel perspective on metabolic adaptation in tumour cells. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Qi Zhang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yang Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Sida Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Lichuan Hong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Qi Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Shenyuan Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyuan Mao
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Matthew J Shepard
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Shuyu Hao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Gifty Dominah
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell Sun
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hong Wan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Deric M Park
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.,Beijing Institute for Brain Disorders Brain Tumor Center, Capital Medical University, Beijing, PR China.,China National Clinical Research Centre for Neurological Diseases, Beijing, PR China
| |
Collapse
|
18
|
Iommarini L, Ghelli A, Tropeano CV, Kurelac I, Leone G, Vidoni S, Lombes A, Zeviani M, Gasparre G, Porcelli AM. Unravelling the Effects of the Mutation m.3571insC/MT-ND1 on Respiratory Complexes Structural Organization. Int J Mol Sci 2018; 19:E764. [PMID: 29518970 PMCID: PMC5877625 DOI: 10.3390/ijms19030764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
Mammalian respiratory complex I (CI) biogenesis requires both nuclear and mitochondria-encoded proteins and is mostly organized in respiratory supercomplexes. Among the CI proteins encoded by the mitochondrial DNA, NADH-ubiquinone oxidoreductase chain 1 (ND1) is a core subunit, evolutionary conserved from bacteria to mammals. Recently, ND1 has been recognized as a pivotal subunit in maintaining the structural and functional interaction among the hydrophilic and hydrophobic CI arms. A critical role of human ND1 both in CI biogenesis and in the dynamic organization of supercomplexes has been depicted, although the proof of concept is still missing and the critical amount of ND1 protein necessary for a proper assembly of both CI and supercomplexes is not defined. By exploiting a unique model in which human ND1 is allotopically re-expressed in cells lacking the endogenous protein, we demonstrated that the lack of this protein induces a stall in the multi-step process of CI biogenesis, as well as the alteration of supramolecular organization of respiratory complexes. We also defined a mutation threshold for the m.3571insC truncative mutation in mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1), below which CI and its supramolecular organization is recovered, strengthening the notion that a certain amount of human ND1 is required for CI and supercomplexes biogenesis.
Collapse
Affiliation(s)
- Luisa Iommarini
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Anna Ghelli
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Concetta Valentina Tropeano
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Ivana Kurelac
- Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, via Massarenti 9, 40138 Bologna, Italy.
| | - Giulia Leone
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Sara Vidoni
- Medical Research Council, Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| | - Anne Lombes
- Inserm U1016, Institut Cochin, F-75014 Paris, France.
| | - Massimo Zeviani
- Medical Research Council, Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| | - Giuseppe Gasparre
- Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, via Massarenti 9, 40138 Bologna, Italy.
| | - Anna Maria Porcelli
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy.
- Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, 40100 Bologna, Italy.
| |
Collapse
|
19
|
Girolimetti G, Guerra F, Iommarini L, Kurelac I, Vergara D, Maffia M, Vidone M, Amato LB, Leone G, Dusi S, Tiranti V, Perrone AM, Bucci C, Porcelli AM, Gasparre G. Platinum-induced mitochondrial DNA mutations confer lower sensitivity to paclitaxel by impairing tubulin cytoskeletal organization. Hum Mol Genet 2018; 26:2961-2974. [PMID: 28486623 DOI: 10.1093/hmg/ddx186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
Development of chemoresistance is a cogent clinical issue in oncology, whereby combination of anticancer drugs is usually preferred also to enhance efficacy. Paclitaxel (PTX), combined with carboplatin, represents the standard first-line chemotherapy for different types of cancers. We here depict a double-edge role of mitochondrial DNA (mtDNA) mutations induced in cancer cells after treatment with platinum. MtDNA mutations were positively selected by PTX, and they determined a decrease in the mitochondrial respiratory function, as well as in proliferative and tumorigenic potential, in terms of migratory and invasive capacity. Moreover, cells bearing mtDNA mutations lacked filamentous tubulin, the main target of PTX, and failed to reorient the Golgi body upon appropriate stimuli. We also show that the bioenergetic and cytoskeletal phenotype were transferred along with mtDNA mutations in transmitochondrial hybrids, and that this also conferred PTX resistance to recipient cells. Overall, our data show that platinum-induced deleterious mtDNA mutations confer resistance to PTX, and confirm what we previously reported in an ovarian cancer patient treated with carboplatin and PTX who developed a quiescent yet resistant tumor mass harboring mtDNA mutations.
Collapse
Affiliation(s)
- Giulia Girolimetti
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Michele Vidone
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Laura Benedetta Amato
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Giulia Leone
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sabrina Dusi
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute Carlo Besta, 20126 Milan, Italy
| | - Anna Myriam Perrone
- Unit of Gynecologic Oncology, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Interdepartmental Center for Industrial Research, Health Sciences and Technologies (CIRI-HST), University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| |
Collapse
|
20
|
Hertweck KL, Dasgupta S. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities. Front Oncol 2017; 7:262. [PMID: 29164061 PMCID: PMC5673620 DOI: 10.3389/fonc.2017.00262] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Mitochondria from normal and cancerous cells represent a tale of two cities, wherein both execute similar processes but with different cellular and molecular effects. Given the number of reviews currently available which describe the functional implications of mitochondrial mutations in cancer, this article focuses on documenting current knowledge in the abundance and distribution of somatic mitochondrial mutations, followed by elucidation of processes which affect the fate of mutations in cancer cells. The conclusion includes an overview of translational implications for mtDNA mutations, as well as recommendations for future research uniting mitochondrial variants and tumorigenesis.
Collapse
Affiliation(s)
- Kate L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, TX, United States
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| |
Collapse
|
21
|
Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 2017; 114:E9066-E9075. [PMID: 29073103 PMCID: PMC5664494 DOI: 10.1073/pnas.1704862114] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence suggests that extracellular vesicles (EVs) can transfer genetic material to recipient cells. However, the mechanism and role of this phenomenon are largely unknown. Here we have made a remarkable discovery: EVs can harbor the full mitochondrial genome. These extracellular vesicles can in turn transfer their mtDNA to cells with impaired metabolism, leading to restoration of metabolic activity. We determined that hormonal therapy induces oxidative phosphorylation-deficient breast cancer cells, which can be rescued via the transfer of mtDNA-laden extracellular vesicles. Horizontal transfer of mtDNA occurred in cancer stem-like cells and was associated with increased self-renewal potential of these cells, leading to resistance to hormonal therapy. We propose that mtDNA transfer occurs in human cancer via EVs. The horizontal transfer of mtDNA and its role in mediating resistance to therapy and an exit from dormancy have never been investigated. Here we identified the full mitochondrial genome in circulating extracellular vesicles (EVs) from patients with hormonal therapy-resistant (HTR) metastatic breast cancer. We generated xenograft models of HTR metastatic disease characterized by EVs in the peripheral circulation containing mtDNA. Moreover, these human HTR cells had acquired host-derived (murine) mtDNA promoting estrogen receptor-independent oxidative phosphorylation (OXPHOS). Functional studies identified cancer-associated fibroblast (CAF)-derived EVs (from patients and xenograft models) laden with whole genomic mtDNA as a mediator of this phenotype. Specifically, the treatment of hormone therapy (HT)-naive cells or HT-treated metabolically dormant populations with CAF-derived mtDNAhi EVs promoted an escape from metabolic quiescence and HTR disease both in vitro and in vivo. Moreover, this phenotype was associated with the acquisition of EV mtDNA, especially in cancer stem-like cells, expression of EV mtRNA, and restoration of OXPHOS. In summary, we have demonstrated that the horizontal transfer of mtDNA from EVs acts as an oncogenic signal promoting an exit from dormancy of therapy-induced cancer stem-like cells and leading to endocrine therapy resistance in OXPHOS-dependent breast cancer.
Collapse
|
22
|
De Luise M, Girolimetti G, Okere B, Porcelli AM, Kurelac I, Gasparre G. Molecular and metabolic features of oncocytomas: Seeking the blueprints of indolent cancers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:591-601. [DOI: 10.1016/j.bbabio.2017.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
|
23
|
Lleonart ME, Grodzicki R, Graifer DM, Lyakhovich A. Mitochondrial dysfunction and potential anticancer therapy. Med Res Rev 2017; 37:1275-1298. [DOI: 10.1002/med.21459] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
Affiliation(s)
| | - Robert Grodzicki
- Thomas Steitz Laboratory; Department of Molecular Biophysics & Biochemistry, Center for Structural Biology, Howard Hughes Medical Institute; Yale University; New Haven Connecticut
| | | | - Alex Lyakhovich
- Oncology Program; Vall D'Hebron Research Institute; Barcelona Spain
- Institute of Molecular Biology and Biophysics, Novosibirsk; Russia
- International Clinical Research Center and St. Anne's University Hospital Brno; Czech Republic
| |
Collapse
|
24
|
Correia M, Pinheiro P, Batista R, Soares P, Sobrinho-Simões M, Máximo V. Etiopathogenesis of oncocytomas. Semin Cancer Biol 2017; 47:82-94. [PMID: 28687249 DOI: 10.1016/j.semcancer.2017.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023]
Abstract
Oncocytomas are distinct tumors characterized by an abnormal accumulation of defective and (most probably) dysfunctional mitochondria in cell cytoplasm of such tumors. This particular phenotype has been studied for the last decades and the clarification of the etiopathogenic causes are still needed. Several mechanisms involved in the formation and maintenance of oncocytomas are accepted as reasonable causes, but the relevance and contribution of each one for oncocytic transformation may depend on different cancer etiopathogenic contexts. In this review, we describe the current knowledge of the etiopathogenic events that may lead to oncocytic transformation and discuss their contribution for tumor progression and mitochondrial accumulation.
Collapse
Affiliation(s)
- Marcelo Correia
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Pedro Pinheiro
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rui Batista
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal
| | - Paula Soares
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal
| | - Manuel Sobrinho-Simões
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Valdemar Máximo
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal.
| |
Collapse
|
25
|
Abstract
Recent evidence highlights that the cancer cell energy requirements vary greatly from normal cells and that cancer cells exhibit different metabolic phenotypes with variable participation of both glycolysis and oxidative phosphorylation. NADH-ubiquinone oxidoreductase (Complex I) is the largest complex of the mitochondrial electron transport chain and contributes about 40% of the proton motive force required for mitochondrial ATP synthesis. In addition, Complex I plays an essential role in biosynthesis and redox control during proliferation, resistance to cell death, and metastasis of cancer cells. Although knowledge about the structure and assembly of Complex I is increasing, information about the role of Complex I subunits in tumorigenesis is scarce and contradictory. Several small molecule inhibitors of Complex I have been described as selective anticancer agents; however, pharmacologic and genetic interventions on Complex I have also shown pro-tumorigenic actions, involving different cellular signaling. Here, we discuss the role of Complex I in tumorigenesis, focusing on the specific participation of Complex I subunits in proliferation and metastasis of cancer cells.
Collapse
Affiliation(s)
- Félix A Urra
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe Muñoz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
26
|
Abstract
Although most of pituitary adenomas are benign, they may cause significant burden to patients. Sporadic adenomas represent the vast majority of the cases, where recognized somatic mutations (eg, GNAS or USP8), as well as altered gene-expression profile often affecting cell cycle proteins have been identified. More rarely, germline mutations predisposing to pituitary adenomas -as part of a syndrome (eg, MEN1 or Carney complex), or isolated to the pituitary (AIP or GPR101) can be identified. These alterations influence the biological behavior, clinical presentations and therapeutic responses, and their full understanding helps to provide appropriate care for these patients.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
27
|
Caimari F, Korbonits M. Novel Genetic Causes of Pituitary Adenomas. Clin Cancer Res 2016; 22:5030-5042. [DOI: 10.1158/1078-0432.ccr-16-0452] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
|
28
|
Santorsola M, Calabrese C, Girolimetti G, Diroma MA, Gasparre G, Attimonelli M. A multi-parametric workflow for the prioritization of mitochondrial DNA variants of clinical interest. Hum Genet 2015; 135:121-36. [PMID: 26621530 PMCID: PMC4698288 DOI: 10.1007/s00439-015-1615-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023]
Abstract
Assigning a pathogenic role to mitochondrial DNA (mtDNA) variants and unveiling the potential involvement of the mitochondrial genome in diseases are challenging tasks in human medicine. Assuming that rare variants are more likely to be damaging, we designed a phylogeny-based prioritization workflow to obtain a reliable pool of candidate variants for further investigations. The prioritization workflow relies on an exhaustive functional annotation through the mtDNA extraction pipeline MToolBox and includes Macro Haplogroup Consensus Sequences to filter out fixed evolutionary variants and report rare or private variants, the nucleotide variability as reported in HmtDB and the disease score based on several predictors of pathogenicity for non-synonymous variants. Cutoffs for both the disease score as well as for the nucleotide variability index were established with the aim to discriminate sequence variants contributing to defective phenotypes. The workflow was validated on mitochondrial sequences from Leber’s Hereditary Optic Neuropathy affected individuals, successfully identifying 23 variants including the majority of the known causative ones. The application of the prioritization workflow to cancer datasets allowed to trim down the number of candidate for subsequent functional analyses, unveiling among these a high percentage of somatic variants. Prioritization criteria were implemented in both standalone (http://sourceforge.net/projects/mtoolbox/) and web version (https://mseqdr.org/mtoolbox.php) of MToolBox.
Collapse
Affiliation(s)
- Mariangela Santorsola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E.Orabona 4, 70126, Bari, Italy.,Department of Science and Technologies, University of Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
| | - Claudia Calabrese
- Department of Medical and Surgical Sciences, Medical Genetics, University of Bologna Medical School, via Massarenti 9, 40138, Bologna, Italy
| | - Giulia Girolimetti
- Department of Medical and Surgical Sciences, Medical Genetics, University of Bologna Medical School, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Angela Diroma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E.Orabona 4, 70126, Bari, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, Medical Genetics, University of Bologna Medical School, via Massarenti 9, 40138, Bologna, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E.Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
29
|
Lang M, Vocke CD, Merino MJ, Schmidt LS, Linehan WM. Mitochondrial DNA mutations distinguish bilateral multifocal renal oncocytomas from familial Birt-Hogg-Dubé tumors. Mod Pathol 2015; 28:1458-69. [PMID: 26428318 PMCID: PMC4628590 DOI: 10.1038/modpathol.2015.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/10/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023]
Abstract
Oncocytomas are mostly benign tumors characterized by accumulation of defective mitochondria, and in sporadic cases, are associated with disruptive mitochondrial DNA (mtDNA) mutations. However, the role mtDNA mutations have in renal tumors of Birt-Hogg-Dubé (BHD) patients and other renal oncocytomas with an apparent genetic component has not been investigated to date. Here we characterize the mitochondrial genome in different renal tumors and investigate the possibility of employing mtDNA sequencing analyses of biopsy specimens to aid in the differential diagnosis of oncocytomas. The entire mitochondrial genome was sequenced in 25 samples of bilateral and multifocal (BMF) renal oncocytomas, 30 renal tumors from BHD patients and 36 non-oncocytic renal tumors of different histologies as well as in biopsy samples of kidney tumors. mtDNA sequencing in BMF oncocytomas revealed that all tumors carry disruptive mutations, which impair the assembly of the NADH-ubiquinone oxidoreductase. Multiple tumors from a given BMF oncocytoma patient mainly harbor the same somatic mutation and the kidneys of these patients display diffuse oncocytosis. In contrast, renal oncocytomas of patients with BHD syndrome and renal tumors with different histologies do not show disruptive mtDNA mutations. Moreover, we demonstrate that it is feasible to amplify and sequence the entire mtDNA in biopsy specimens, and that these sequences are representative of the tumor DNA. These results show that pathogenic mtDNA mutations affecting complex I of the respiratory chain are strongly correlated with the oncocytoma phenotype in non-BHD-related renal tumors and that mtDNA sequences from biopsies are predictive of the tumor genotype. This work supports a role for mtDNA mutations in respiratory chain complexes as diagnostic markers for renal oncocytomas.
Collapse
Affiliation(s)
- Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Cathy D. Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Maria J. Merino
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
30
|
de Araujo LF, Fonseca AS, Muys BR, Plaça JR, Bueno RBL, Lorenzi JCC, Santos ARD, Molfetta GA, Zanette DL, Souza JES, Valente V, Silva WA. Mitochondrial genome instability in colorectal adenoma and adenocarcinoma. Tumour Biol 2015; 36:8869-79. [PMID: 26069104 DOI: 10.1007/s13277-015-3640-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial dysfunction is regarded as a hallmark of cancer progression. In the current study, we evaluated mitochondrial genome instability and copy number in colorectal cancer using Next Generation Sequencing approach and qPCR, respectively. The results revealed higher levels of heteroplasmy and depletion of the relative mtDNA copy number in colorectal adenocarcinoma. Adenocarcinoma samples also presented an increased number of mutations in nuclear genes encoding proteins which functions are related with mitochondria fusion, fission and localization. Moreover, we found a set of mitochondrial and nuclear genes, which cooperate in the same mitochondrial function simultaneously mutated in adenocarcinoma. In summary, these results support an important role for mitochondrial function and genomic instability in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Luiza F de Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Aline S Fonseca
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Bruna R Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Jessica R Plaça
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Rafaela B L Bueno
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Julio C C Lorenzi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Anemari R D Santos
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Greice A Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil
| | - Dalila L Zanette
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil
| | - Jorge E S Souza
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil
| | - Valeria Valente
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil.,Department of Clinical Analysis, Faculty of Pharmaceutical Science of Araraquara, University of São Paulo State, Araraquara, Brazil
| | - Wilson A Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil. .,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil.
| |
Collapse
|
31
|
Evangelisti C, de Biase D, Kurelac I, Ceccarelli C, Prokisch H, Meitinger T, Caria P, Vanni R, Romeo G, Tallini G, Gasparre G, Bonora E. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors. BMC Cancer 2015; 15:157. [PMID: 25880213 PMCID: PMC4374372 DOI: 10.1186/s12885-015-1122-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/24/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. METHODS Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. RESULTS In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. CONCLUSIONS These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Cell Signaling Laboratory, University of Bologna, Bologna, Italy.
| | - Dario de Biase
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Claudio Ceccarelli
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomy, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy.
| | - Holger Prokisch
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Thomas Meitinger
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Giovanni Romeo
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Giovanni Tallini
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| |
Collapse
|
32
|
Lloyd RE, Keatley K, Littlewood DTJ, Meunier B, Holt WV, An Q, Higgins SC, Polyzoidis S, Stephenson KF, Ashkan K, Fillmore HL, Pilkington GJ, McGeehan JE. Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma. Neuro Oncol 2015; 17:942-52. [PMID: 25731774 PMCID: PMC4474231 DOI: 10.1093/neuonc/nov020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/23/2015] [Indexed: 12/30/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary brain tumor in adults, with a dismal prognosis. Treatment is hampered by GBM's unique biology, including differential cell response to therapy. Although several mitochondrial abnormalities have been identified, how mitochondrial DNA (mtDNA) mutations contribute to GBM biology and therapeutic response remains poorly described. We sought to determine the spectrum of functional complex III and IV mtDNA mutations in GBM. Methods The complete mitochondrial genomes of 10 GBM cell lines were obtained using next-generation sequencing and combined with another set obtained from 32 GBM tissues. Three-dimensional structural mapping and analysis of all the nonsynonymous mutations identified in complex III and IV proteins was then performed to investigate functional importance. Results Over 200 mutations were identified in the mtDNAs, including a significant proportion with very low mutational loads. Twenty-five were nonsynonymous mutations in complex III and IV, 9 of which were predicted to be functional and affect mitochondrial respiratory chain activity. Most of the functional candidates were GBM specific and not found in the general population, and 2 were present in the germ-line. Patient-specific maps reveal that 43% of tumors carry at least one functional candidate. Conclusions We reveal that the spectrum of GBM-associated mtDNA mutations is wider than previously thought, as well as novel structural-functional links between specific mtDNA mutations, abnormal mitochondria, and the biology of GBM. These results could provide tangible new prognostic indicators as well as targets with which to guide the development of patient-specific mitochondrially mediated chemotherapeutic approaches.
Collapse
Affiliation(s)
- Rhiannon E Lloyd
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Kathleen Keatley
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - D Timothy J Littlewood
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Brigitte Meunier
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - William V Holt
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Qian An
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Samantha C Higgins
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Stavros Polyzoidis
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Katie F Stephenson
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Keyoumars Ashkan
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Helen L Fillmore
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - John E McGeehan
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| |
Collapse
|
33
|
Dénes J, Swords F, Rattenberry E, Stals K, Owens M, Cranston T, Xekouki P, Moran L, Kumar A, Wassif C, Fersht N, Baldeweg SE, Morris D, Lightman S, Agha A, Rees A, Grieve J, Powell M, Boguszewski CL, Dutta P, Thakker RV, Srirangalingam U, Thompson CJ, Druce M, Higham C, Davis J, Eeles R, Stevenson M, O'Sullivan B, Taniere P, Skordilis K, Gabrovska P, Barlier A, Webb SM, Aulinas A, Drake WM, Bevan JS, Preda C, Dalantaeva N, Ribeiro-Oliveira A, Garcia IT, Yordanova G, Iotova V, Evanson J, Grossman AB, Trouillas J, Ellard S, Stratakis CA, Maher ER, Roncaroli F, Korbonits M. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J Clin Endocrinol Metab 2015; 100:E531-41. [PMID: 25494863 PMCID: PMC4333031 DOI: 10.1210/jc.2014-3399] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Pituitary adenomas and pheochromocytomas/paragangliomas (pheo/PGL) can occur in the same patient or in the same family. Coexistence of the two diseases could be due to either a common pathogenic mechanism or a coincidence. OBJECTIVE The objective of the investigation was to study the possible coexistence of pituitary adenoma and pheo/PGL. DESIGN Thirty-nine cases of sporadic or familial pheo/PGL and pituitary adenomas were investigated. Known pheo/PGL genes (SDHA-D, SDHAF2, RET, VHL, TMEM127, MAX, FH) and pituitary adenoma genes (MEN1, AIP, CDKN1B) were sequenced using next generation or Sanger sequencing. Loss of heterozygosity study and pathological studies were performed on the available tumor samples. SETTING The study was conducted at university hospitals. PATIENTS Thirty-nine patients with sporadic of familial pituitary adenoma and pheo/PGL participated in the study. OUTCOME Outcomes included genetic screening and clinical characteristics. RESULTS Eleven germline mutations (five SDHB, one SDHC, one SDHD, two VHL, and two MEN1) and four variants of unknown significance (two SDHA, one SDHB, and one SDHAF2) were identified in the studied genes in our patient cohort. Tumor tissue analysis identified LOH at the SDHB locus in three pituitary adenomas and loss of heterozygosity at the MEN1 locus in two pheochromocytomas. All the pituitary adenomas of patients affected by SDHX alterations have a unique histological feature not previously described in this context. CONCLUSIONS Mutations in the genes known to cause pheo/PGL can rarely be associated with pituitary adenomas, whereas mutation in a gene predisposing to pituitary adenomas (MEN1) can be associated with pheo/PGL. Our findings suggest that genetic testing should be considered in all patients or families with the constellation of pheo/PGL and a pituitary adenoma.
Collapse
Affiliation(s)
- Judit Dénes
- Department of Endocrinology (J.D., U.S., M.D., P.G., W.M.D., M.K.), Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom; Semmelweis University, School of PhD studies, Doctoral School of Clinical Medicine, Budapest, Hungary (J.D.), Endocrinology Directorate (F.S.), Norfolk and Norwich University Hospital, Norwich NR4 7UZ, United Kingdom; Department of Medical and Molecular Genetics (E.R., E.R.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Molecular Genetics (K.S., M.O., S.E.), Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom; University of Exeter Medical School (S.E.), Exeter EX4 4PY, United Kingdom; Oxford Medical Genetics Laboratories (T.C.), Oxford University Hospitals National Health Service Trust, The Churchill Hospital, Oxford OX3 7LJ, United Kingdom; Section on Endocrinology and Genetics (P.X., C.A.S.) and Section on Molecular Dysmorphology (C.W.), Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Electron Microscopy Unit (L.M.), Department Histopathology, Charing Cross Hospital, Imperial College Healthcare National Health Service Trust, London W6 8RF, United Kingdom; Department of Clinical Genetics (A.K.), Great Ormond Street Hospital, London WC1N 1LE, United Kingdom; Departments of Oncology (N.F.) and Endocrinology (S.E.B.), University College London Hospitals, London WC1E 6BT, United Kingdom; Department of Diabetes and Endocrinology (D.M.), The Ipswich Hospital National Health Service Trust, Ipswich IP4 5PD, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS1 3NY, United Kingdom; Department of Endocrinology (A.Ag., C.J.T.), Beaumont Hospital, Dublin 9, Ireland; Institute of Molecular and Experimental Medicine (A.R.), Cardiff University, Cardiff CF10 3US, United Kingd
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vidone M, Clima R, Santorsola M, Calabrese C, Girolimetti G, Kurelac I, Amato LB, Iommarini L, Trevisan E, Leone M, Soffietti R, Morra I, Faccani G, Attimonelli M, Porcelli AM, Gasparre G. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. Int J Biochem Cell Biol 2015; 63:46-54. [PMID: 25668474 DOI: 10.1016/j.biocel.2015.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/31/2015] [Indexed: 12/30/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
Affiliation(s)
- Michele Vidone
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Rosanna Clima
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Claudia Calabrese
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Giulia Girolimetti
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Laura Benedetta Amato
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elisa Trevisan
- Division of Neurology, Hospital of Rivoli, Rivoli, Italy
| | - Marco Leone
- Department of Pathology OIRM-S. Anna Hospital, A.O.U. City of Health and Science, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and A.O.U. City of Health and Science, Turin, Italy
| | - Isabella Morra
- Department of Pathology OIRM-S. Anna Hospital, A.O.U. City of Health and Science, Turin, Italy
| | - Giuliano Faccani
- Department of Neurosurgery CTO Hospital, A.O.U. City of Health and Science, Turin, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy.
| |
Collapse
|
35
|
Cormio A, Cormio G, Musicco C, Sardanelli AM, Gasparre G, Gadaleta MN. Mitochondrial changes in endometrial carcinoma: possible role in tumor diagnosis and prognosis (review). Oncol Rep 2014; 33:1011-8. [PMID: 25530491 DOI: 10.3892/or.2014.3690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/21/2014] [Indexed: 11/05/2022] Open
Abstract
Endometrial carcinoma (EC) is a solid neoplasia for which a role for mitochondria in cancer progression is currently emerging and yet represents a diagnostic and prognostic challenge. EC is one of the most frequently occurring gynecological malignancies in the Western world whose incidence has increased significantly during the last decades. Here, we review the literature data on mitochondrial changes reported in EC, namely, mitochondrial DNA (mtDNA) mutations, increase in mitochondrial biogenesis and discuss whether they may be used as new cancer biomarkers for early detection and prognosis of this cancer.
Collapse
Affiliation(s)
- Antonella Cormio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Oncologico 'Giovanni Paolo II', Bari, Italy
| | - Clara Musicco
- CNR-Institute of Biomembranes and Bioenergetics, Bari, Italy
| | - Anna Maria Sardanelli
- Department of Basical Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University of Bologna, Bologna, Italy
| | | |
Collapse
|
36
|
Diaz-Rodriguez E, Garcia-Rendueles AR, Ibáñez-Costa A, Gutierrez-Pascual E, Garcia-Lavandeira M, Leal A, Japon MA, Soto A, Venegas E, Tinahones FJ, Garcia-Arnes JA, Benito P, Angeles Galvez M, Jimenez-Reina L, Bernabeu I, Dieguez C, Luque RM, Castaño JP, Alvarez CV. Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF. Endocrinology 2014; 155:4329-40. [PMID: 25137025 DOI: 10.1210/en.2014-1034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in acromegaly.
Collapse
Affiliation(s)
- Esther Diaz-Rodriguez
- Centre for Investigations in Medicine of the USC (E.D.-R., A.R.G.-G., M.G.-L., C.D., C.V.A.), University of Santiago de Compostela, Santiago de Compostela, Spain 15782; Department of Endocrinology (I.B.), University Hospital (University Hospital of Santiago de Compostela), Instituto de Investigación Sanitaria, Santiago de Compostela, Spain 15706; Departments of Cell Biology, Physiology, and Immunology (A.I.-C., E.G.-P., R.M.L., J.P.C.), and Morphological Sciences (L.J.-R.), University of Cordoba, and Reina Sofia University Hospital (P.B., M.A.G.), Maimonides Institute for Research in Biomedicine of Cordoba, Córdoba, Spain 14014; Departments of Endocrinology and Pathology (A.L., M.A.J., A.S., E.V.), Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, University of Sevilla, Sevilla, Spain 41013; Department of Endocrinology (F.J.T.), Hospital Virgen de la Victoria, and Department of Endocrinology (J.A.G.-A.), Hospital Carlos Haya, Malaga, Spain 29010; and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, spain (A.I.-C., F.J.T., P.B., I.B., C.D., R.M.L., J.P.C., C.V.A.), Spain 15706
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Guerra F, Girolimetti G, Perrone AM, Procaccini M, Kurelac I, Ceccarelli C, De Biase D, Caprara G, Zamagni C, De Iaco P, Santini D, Gasparre G. Mitochondrial DNA genotyping efficiently reveals clonality of synchronous endometrial and ovarian cancers. Mod Pathol 2014; 27:1412-1420. [PMID: 24633194 DOI: 10.1038/modpathol.2014.39] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 02/08/2023]
Abstract
Simultaneous independent primary tumors of the female genital tract occur in 1-2% of gynecological cancer patients, 50-70% of which are synchronous tumors of the endometrium and ovary. Recognition of synchrony upon multiple tumors is crucial for correct prognosis, therapeutic choice, and patient management. Current guidelines for determining synchrony, based on surgical and histopathological findings, are often ambiguous and may require further molecular analyses. However, because of the uniqueness of each tumor and of its intrinsic heterogeneity, these analyses may sometimes be inconclusive. A role for mitochondrial DNA genotyping was previously demonstrated in the diagnosis of synchronous endometrial and ovarian carcinoma. We have analyzed 11 sample pairs of simultaneously revealed endometrial and ovarian cancers and have thereby applied conventional histopathological criteria, current molecular analyses (microsatellite instability, β-catenin immunohistochemical staining/CTNNB1 mutation screening), and mitochondrial DNA sequencing to distinguish separate independent tumors from metastases, comparing the performance and the informative potential of such methods. We have demonstrated that in ambiguous interpretations where histopathological criteria and canonical molecular methods fail to be conclusive, mitochondrial DNA analysis may act as a needle of balance and allow to formulate a diagnosis in 45.5% of our cases. Additional advantages of mitochondrial DNA genotyping, besides the high level of information we demonstrated here, are the easy implementation and the need for small amounts of starting material. Our results show that mitochondrial DNA genotyping may provide a substantial contribution to indisputably recognize the metastatic nature of simultaneously detected endometrial and ovarian cancers and may change the final staging and clinical management of these patients.
Collapse
Affiliation(s)
- Flora Guerra
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Giulia Girolimetti
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Anna Myriam Perrone
- Department of Obstetrics and Gynecology, Oncologic Gynecology Unit, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Martina Procaccini
- Department of Obstetrics and Gynecology, Oncologic Gynecology Unit, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Claudio Ceccarelli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Dario De Biase
- Laboratory of Molecular Pathology, Anatomic Pathology, Bellaria Hospital, Bologna, Italy
| | - Giacomo Caprara
- Unit of Oncology and Transplant Pathology, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Claudio Zamagni
- Institute of Oncology, Medical Oncology Unit, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Pierandrea De Iaco
- Department of Obstetrics and Gynecology, Oncologic Gynecology Unit, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Donatella Santini
- Department of Pathology, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
38
|
Shokolenko IN, Wilson GL, Alexeyev MF. The "fast" and the "slow" modes of mitochondrial DNA degradation. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:490-8. [PMID: 24724936 DOI: 10.3109/19401736.2014.905829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a living cell, oxidative stress resulting from an external or internal insult can result in mitochondrial DNA (mtDNA) damage and degradation. Here, we show that in HeLa cells, mtDNA can withstand relatively high levels of extracellular oxidant H2O2 before it is damaged to a point of degradation, and that mtDNA levels in these cells quickly recover after removal of the stressor. In contrast, mtDNA degradation in mouse fibroblast cells is induced at eight-fold lower concentrations of H2O2, and restoration of the lost mtDNA proceeds much slower. Importantly, mtDNA levels in HeLa cells continue to decline even after withdrawal of the stressor thus marking the "slow" mode of mtDNA degradation. Conversely, in mouse fibroblasts maximal loss of mtDNA is achieved during treatment, and is already detectable at 5 min after exposure, indicating the "fast" mode. These differences may modulate susceptibility to oxidative stress of those organs, which consist of multiple cell types.
Collapse
Affiliation(s)
- Inna N Shokolenko
- a Department of Cell Biology and Neuroscience , University of South Alabama , Mobile , AL , USA
| | - Glenn L Wilson
- a Department of Cell Biology and Neuroscience , University of South Alabama , Mobile , AL , USA
| | - Mikhail F Alexeyev
- a Department of Cell Biology and Neuroscience , University of South Alabama , Mobile , AL , USA
| |
Collapse
|
39
|
Human papillomavirus infection and pathogenic mitochondrial DNA mutation in bilateral multinodular oncocytic hyperplasia of the carotid. Pathology 2014; 46:250-3. [DOI: 10.1097/pat.0000000000000079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Iommarini L, Kurelac I, Capristo M, Calvaruso MA, Giorgio V, Bergamini C, Ghelli A, Nanni P, De Giovanni C, Carelli V, Fato R, Lollini PL, Rugolo M, Gasparre G, Porcelli AM. Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Hum Mol Genet 2013; 23:1453-66. [DOI: 10.1093/hmg/ddt533] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
41
|
Pradella LM, Lang M, Kurelac I, Mariani E, Guerra F, Zuntini R, Tallini G, MacKay A, Reis-Filho JS, Seri M, Turchetti D, Gasparre G. Where Birt-Hogg-Dubé meets Cowden syndrome: mirrored genetic defects in two cases of syndromic oncocytic tumours. Eur J Hum Genet 2013; 21:1169-72. [PMID: 23386036 PMCID: PMC3778364 DOI: 10.1038/ejhg.2013.8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/14/2012] [Accepted: 01/10/2013] [Indexed: 01/25/2023] Open
Abstract
Birt-Hogg-Dubè (BHD) is an autosomal dominant syndrome characterised by skin fibrofolliculomas, lung cysts, spontaneous pneumothorax and renal cancer. The association of benign cutaneous lesions and increased cancer risk is also a feature of Cowden Syndrome (CS), an autosomal dominant disease caused by PTEN mutations. BHD and CS patients may develop oncocytomas, rare neoplasias that are phenotypically characterised by a prominent mitochondrial hyperplasia. We here describe the genetic analysis of a parotid and a thyroid oncocytoma, developed by a BHD and a CS patient, respectively. The BHD lesion was shown to maintain the wild-type allele of FLCN, while losing one PTEN allele. On the other hand, a double heterozygosity for the same two genes was found to be the only detectable tumorigenic hit in the CS oncocytoma. Both conditions occurred in a context of high chromosomal stability, as highlighted by comparative genomic hybridisation analysis. We conclude that, similarly to PTEN, FLCN may not always follow the classical Two Hits model of tumorigenesis and may hence belong to a class of non-canonical tumour suppressor genes. We hence introduce a role of PTEN/FLCN double heterozygosity in syndromic oncocytic tumorigenesis, suggesting this to be an alternative determinant to pathogenic mitochondrial DNA mutations, which are instead the genetic hallmark of sporadic oncocytic tumours.
Collapse
Affiliation(s)
- Laura Maria Pradella
- Dip. Sc. Mediche e Chirurgiche-DIMEC, U.O. Genetica Medica, Policlinico Universitario S.Orsola-Malpighi, Bologna, Italy
| | - Martin Lang
- Dip. Sc. Mediche e Chirurgiche-DIMEC, U.O. Genetica Medica, Policlinico Universitario S.Orsola-Malpighi, Bologna, Italy
| | - Ivana Kurelac
- Dip. Sc. Mediche e Chirurgiche-DIMEC, U.O. Genetica Medica, Policlinico Universitario S.Orsola-Malpighi, Bologna, Italy
| | - Elisa Mariani
- Dip. Sc. Mediche e Chirurgiche-DIMEC, U.O. Genetica Medica, Policlinico Universitario S.Orsola-Malpighi, Bologna, Italy
| | - Flora Guerra
- Dip. Sc. Mediche e Chirurgiche-DIMEC, U.O. Genetica Medica, Policlinico Universitario S.Orsola-Malpighi, Bologna, Italy
| | - Roberta Zuntini
- Dip. Sc. Mediche e Chirurgiche-DIMEC, U.O. Genetica Medica, Policlinico Universitario S.Orsola-Malpighi, Bologna, Italy
| | - Giovanni Tallini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Bologna, Italy
| | - Alan MacKay
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, ICR, London, UK
| | - Jorge S Reis-Filho
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, ICR, London, UK
| | - Marco Seri
- Dip. Sc. Mediche e Chirurgiche-DIMEC, U.O. Genetica Medica, Policlinico Universitario S.Orsola-Malpighi, Bologna, Italy
| | - Daniela Turchetti
- Dip. Sc. Mediche e Chirurgiche-DIMEC, U.O. Genetica Medica, Policlinico Universitario S.Orsola-Malpighi, Bologna, Italy
| | - Giuseppe Gasparre
- Dip. Sc. Mediche e Chirurgiche-DIMEC, U.O. Genetica Medica, Policlinico Universitario S.Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
42
|
Shokolenko IN, Wilson GL, Alexeyev MF. Persistent damage induces mitochondrial DNA degradation. DNA Repair (Amst) 2013; 12:488-99. [PMID: 23721969 PMCID: PMC3683391 DOI: 10.1016/j.dnarep.2013.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 01/12/2023]
Abstract
Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by 6h after induction of mutant uracil-N-glycosylase and by 12h after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and "foaming" of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence of mtDNA damage.
Collapse
Affiliation(s)
- Inna N. Shokolenko
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL (USA) 36688. Tel (251) 460-6772, Fax (251) 460-6771
| | - Glenn L. Wilson
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL (USA) 36688. Tel (251) 460-6765, Fax (251) 460-6771
| | - Mikhail F. Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL (USA) 36688
| |
Collapse
|
43
|
Calabrese C, Iommarini L, Kurelac I, Calvaruso MA, Capristo M, Lollini PL, Nanni P, Bergamini C, Nicoletti G, Giovanni CD, Ghelli A, Giorgio V, Caratozzolo MF, Marzano F, Manzari C, Betts CM, Carelli V, Ceccarelli C, Attimonelli M, Romeo G, Fato R, Rugolo M, Tullo A, Gasparre G, Porcelli AM. Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer Metab 2013; 1:11. [PMID: 24280190 PMCID: PMC4178211 DOI: 10.1186/2049-3002-1-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/27/2013] [Indexed: 01/04/2023] Open
Abstract
Background Aerobic glycolysis, namely the Warburg effect, is the main hallmark of cancer cells. Mitochondrial respiratory dysfunction has been proposed to be one of the major causes for such glycolytic shift. This hypothesis has been revisited as tumors appear to undergo waves of gene regulation during progression, some of which rely on functional mitochondria. In this framework, the role of mitochondrial complex I is still debated, in particular with respect to the effect of mitochondrial DNA mutations in cancer metabolism. The aim of this work is to provide the proof of concept that functional complex I is necessary to sustain tumor progression. Methods Complex I-null osteosarcoma cells were complemented with allotopically expressed complex I subunit 1 (MT-ND1). Complex I re-assembly and function recovery, also in terms of NADH consumption, were assessed. Clones were tested for their ability to grow in soft agar and to generate tumor masses in nude mice. Hypoxia levels were evaluated via pimonidazole staining and hypoxia-inducible factor-1α (HIF-1α) immunoblotting and histochemical staining. 454-pyrosequencing was implemented to obtain global transcriptomic profiling of allotopic and non-allotopic xenografts. Results Complementation of a truncative mutation in the gene encoding MT-ND1, showed that a functional enzyme was required to perform the glycolytic shift during the hypoxia response and to induce a Warburg profile in vitro and in vivo, fostering cancer progression. Such trigger was mediated by HIF-1α, whose stabilization was regulated after recovery of the balance between α-ketoglutarate and succinate due to a recuperation of NADH consumption that followed complex I rescue. Conclusion Respiratory complex I is essential for the induction of Warburg effect and adaptation to hypoxia of cancer cells, allowing them to sustain tumor growth. Differently from other mitochondrial tumor suppressor genes, therefore, a complex I severe mutation such as the one here reported may confer anti-tumorigenic properties, highlighting the prognostic values of such genetic markers in cancer.
Collapse
Affiliation(s)
- Claudia Calabrese
- Dip, Scienze Mediche e Chirurgiche (DIMEC), U,O, Genetica Medica, Pol, Universitario S, Orsola-Malpighi, Università di Bologna, via Massarenti 9, Bologna, 40138, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|