1
|
Li Q, Faux P, Wentworth Winchester E, Yang G, Chen Y, Ramírez LM, Fuentes-Guajardo M, Poloni L, Steimetz E, Gonzalez-José R, Acuña V, Bortolini MC, Poletti G, Gallo C, Rothhammer F, Rojas W, Zheng Y, Cox JC, Patel V, Hoffman MP, Ding L, Peng C, Cotney J, Navarro N, Cox TC, Delgado M, Adhikari K, Ruiz-Linares A. PITX2 expression and Neanderthal introgression in HS3ST3A1 contribute to variation in tooth dimensions in modern humans. Curr Biol 2025; 35:131-144.e6. [PMID: 39672157 PMCID: PMC11789201 DOI: 10.1016/j.cub.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/29/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
Dental morphology varies greatly throughout evolution, including in the human lineage, but little is known about the biology of this variation. Here, we use multiomics analyses to examine the genetics of variation in tooth crown dimensions. In a human cohort with mixed continental ancestry, we detected genome-wide significant associations at 18 genome regions. One region includes EDAR, a gene known to impact dental features in East Asians. Furthermore, we find that EDAR variants increase the mesiodistal diameter of all teeth, following an anterior-posterior gradient of decreasing strength. Among the 17 novel-associated regions, we replicate 7/13 in an independent human cohort and find that 4/12 orthologous regions affect molar size in mice. Two association signals point to compelling candidate genes. One is ∼61 kb from PITX2, a major determinant of tooth development. Another overlaps HS3ST3A1, a paralogous neighbor of HS3ST3B1, a tooth enamel knot factor. We document the expression of Pitx2 and Hs3st3a1 in enamel knot and dental epithelial cells of developing mouse incisors. Furthermore, associated SNPs in PITX2 and HS3ST3A1 overlap enhancers active in these cells, suggesting a role for these SNPs in gene regulation during dental development. In addition, we document that Pitx2 and Hs3st3a1/Hs3st3b1 knockout mice show alterations in dental morphology. Finally, we find that associated SNPs in HS3ST3A1 are in a DNA tract introgressed from Neanderthals, consistent with an involvement of HS3ST3A1 in tooth size variation during human evolution.
Collapse
Affiliation(s)
- Qing Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200433, China; State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing 100730, China
| | - Pierre Faux
- Aix-Marseille Université, CNRS, EFS, ADES, 27 Boulevard Jean Moulin, Marseille 13005, France; GenPhySE Université de Toulouse, INRAE, ENVT, 24 Chemin de Borde Rouge, 31326 Castanet Tolosan, France
| | - Emma Wentworth Winchester
- Department of Genetics and Genome Sciences, University of Connecticut Health, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Guangrui Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200433, China; Exchange, Development & Service Center for Science & Technology Talents, Sanlihe Road, Beijing 100045, P.R. China
| | - Yingjie Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200433, China
| | - Luis Miguel Ramírez
- Facultad de Odontología, Universidad de Antioquia, Calle 64 N.º 52-59 Of. 107. Apartado Postal 1226, Medellín, Colombia
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Avenida 18 de Septiembre 2222, Arica 1000000, Chile
| | - Lauriane Poloni
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon 21000, France; EPHE, PSL University, Paris 75014, France
| | - Emilie Steimetz
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon 21000, France
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, U9129ACD Puerto Madryn, Argentina
| | - Victor Acuña
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 90040-060 Porto Alegre, Brasil
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31 Lima, Perú
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31 Lima, Perú
| | | | - Winston Rojas
- GENMOL (Genética Molecular), Universidad de Antioquia, 5001000 Medellín, Colombia
| | - Youyi Zheng
- State Key Lab of CAD&CG, Zhejiang University, Yuhangtang Road, Hangzhou 310058, China
| | - James C Cox
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Vaishali Patel
- Matrix and Morphogenesis Section, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - Li Ding
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200433, China
| | - Chenchen Peng
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200433, China
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut Health, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon 21000, France; EPHE, PSL University, Paris 75014, France
| | - Timothy C Cox
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA; Department of Pediatrics, School of Medicine, University of Missouri, 400 N Keene St., Kansas City, MO 64108, USA
| | - Miguel Delgado
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200433, China; División Antropología, Facultad de Ciencias Naturales y Museo, Paseo del Bosque s/n, Universidad Nacional de La Plata, La Plata 1900, República Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, 2290 Buenos Aires, República Argentina.
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK.
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200433, China; Aix-Marseille Université, CNRS, EFS, ADES, 27 Boulevard Jean Moulin, Marseille 13005, France; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Kantaputra P, Butali A, Eliason S, Chalkley C, Nakornchai S, Bongkochwilawan C, Kawasaki K, Kumchiang A, Ngamphiw C, Tongsima S, Ketudat Cairns JR, Olsen B, Intachai W, Ohazama A, Tucker AS, Amendt BA. CACNA1S mutation-associated dental anomalies: A calcium channelopathy. Oral Dis 2024; 30:1350-1359. [PMID: 36825457 PMCID: PMC11229413 DOI: 10.1111/odi.14551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES To identify the molecular etiology of distinct dental anomalies found in eight Thai patients and explore the mutational effects on cellular functions. MATERIALS AND METHODS Clinical and radiographic examinations were performed for eight patients. Whole exome sequencing, mutant protein modelling, qPCR, western blot analysis, scratch assays, immunofluorescence, confocal analysis, in situ hybridization, and scanning electron micrography of teeth were done. RESULTS All patients had molars with multiple supernumerary cusps, single-cusped premolars, and a reduction in root number. Mutation analysis highlighted a heterozygous c.865A>G; p.Ile289Val mutation in CACNA1S in the patients. CACNA1S is a component of the slowly inactivating L-type voltage-dependent calcium channel. Mutant protein modeling suggested that the mutation might allow leakage of Ca2+ or other cations, or a tightening, to restrict calcium flow. Immunohistochemistry analysis showed expression of Cacna1s in the developing murine tooth epithelium during stages of crown and root morphogenesis. In cell culture, the mutation resulted in abnormal cell migration of transfected CHO cells compared to wildtype CACNA1S, with changes to the cytoskeleton and markers of focal adhesion. CONCLUSIONS The malformations observed in our patients suggest a role for calcium signaling in organization of both cusps and roots, affecting cell dynamics within the dental epithelium.
Collapse
Affiliation(s)
- P Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - A Butali
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - S Eliason
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, Iowa, USA
| | - C Chalkley
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, Iowa, USA
| | - S Nakornchai
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - C Bongkochwilawan
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - K Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - A Kumchiang
- Na-Chauk Hospital, Na-Chauk, Maha Sarakham, Thailand
| | - C Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | - S Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | - J R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - B Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - W Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - A Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - A S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - B A Amendt
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
He B, Kram V, Furusawa T, Duverger O, Chu E, Nanduri R, Ishikawa M, Zhang P, Amendt B, Lee J, Bustin M. Epigenetic Regulation of Ameloblast Differentiation by HMGN Proteins. J Dent Res 2024; 103:51-61. [PMID: 37950483 PMCID: PMC10850876 DOI: 10.1177/00220345231202468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Dental enamel formation is coordinated by ameloblast differentiation, production of enamel matrix proteins, and crystal growth. The factors regulating ameloblast differentiation are not fully understood. Here we show that the high mobility group N (HMGN) nucleosomal binding proteins modulate the rate of ameloblast differentiation and enamel formation. We found that HMGN1 and HMGN2 proteins are downregulated during mouse ameloblast differentiation. Genetically altered mice lacking HMGN1 and HMGN2 proteins show faster ameloblast differentiation and a higher rate of enamel deposition in mice molars and incisors. In vitro differentiation of induced pluripotent stem cells to dental epithelium cells showed that HMGN proteins modulate the expression and chromatin accessibility of ameloblast-specific genes and affect the binding of transcription factors epiprofin and PITX2 to ameloblast-specific genes. Our results suggest that HMGN proteins regulate ameloblast differentiation and enamel mineralization by modulating lineage-specific chromatin accessibility and transcription factor binding to ameloblast regulatory sites.
Collapse
Affiliation(s)
- B. He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - V. Kram
- Molecular Biology of Bones & Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - T. Furusawa
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - O. Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - E.Y. Chu
- Department of General Dentistry, Operative Division, University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - R. Nanduri
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - M. Ishikawa
- Department of Pathology and Laboratory Medicine and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - P. Zhang
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - B.A. Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, the University of Iowa, Iowa City, IA, USA
| | - J.S. Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - M. Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Yang Y, Zhu J, Chiba Y, Fukumoto S, Qin M, Wang X. Enamel defects of Axenfeld-Rieger syndrome and the role of PITX2 in its pathogenesis. Oral Dis 2023; 29:3654-3664. [PMID: 35836351 DOI: 10.1111/odi.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate the detailed ultrastructural patterns of dental abnormalities affected by Axenfeld-Rieger syndrome (ARS) with a heterozygous microdeletion involving paired-like homeodomain 2 (PITX2) and explored the underlying molecular mechanisms driving enamel defects. SUBJECTS AND METHODS Sanger sequencing, genomic quantitative PCR analysis, and chromosomal microarray analysis (CMA) were used to screen the disease-causing mutation in one ARS proband. An exfoliated tooth from an ARS patient was analyzed with scanning electron microscopy and micro-computerized tomography. A stable Pitx2 knockdown cell line was generated to simulate PITX2 haploinsufficiency. Cell proliferation and ameloblast differentiation were analyzed, and the role of the Wnt/β-catenin pathway in proliferation of ameloblast precursor cells was investigated. RESULTS An approximately 0.216 Mb novel deletion encompassing PITX2 was identified. The affected tooth displayed a thinner and broken layer of enamel and abnormal enamel biomineralization. PITX2 downregulation inhibited the proliferation and differentiation of inner enamel epithelial cells, and LiCl stifmulation partially reversed the proliferation ability after Pitx2 knockdown. CONCLUSIONS Enamel formation is disturbed in some patients with ARS. Pitx2 knockdown can influence the proliferation and ameloblast differentiation of inner enamel epithelial cells, and PITX2 may regulate cell proliferation via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Junxia Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuta Chiba
- Division of Oral Health, Section of Oral Medicine for Children, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Satoshi Fukumoto
- Division of Oral Health, Section of Oral Medicine for Children, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
5
|
Eliason S, Su D, Pinho F, Sun Z, Zhang Z, Li X, Sweat M, Venugopalan SR, He B, Bustin M, Amendt BA. HMGN2 represses gene transcription via interaction with transcription factors Lef-1 and Pitx2 during amelogenesis. J Biol Chem 2022; 298:102295. [PMID: 35872015 PMCID: PMC9418915 DOI: 10.1016/j.jbc.2022.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022] Open
Abstract
The chromatin-associated high mobility group protein N2 (HMGN2) cofactor regulates transcription factor activity through both chromatin and protein interactions. Hmgn2 expression is known to be developmentally regulated, but the post-transcriptional mechanisms that regulate Hmgn2 expression and its precise roles in tooth development remain unclear. Here, we demonstrate that HMGN2 inhibits the activity of multiple transcription factors as a general mechanism to regulate early development. Bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays show that HMGN2 interacts with the transcription factor Lef-1 through its HMG-box domain as well as with other early development transcription factors, Dlx2, FoxJ1, and Pitx2. Furthermore, EMSAs demonstrate that HMGN2 binding to Lef-1 inhibits its DNA-binding activity. We found that Pitx2 and Hmgn2 associate with H4K5ac and H3K4me2 chromatin marks in the proximal Dlx2 promoter, demonstrating Hmgn2 association with open chromatin. In addition, we demonstrate that microRNAs (miRs) mir-23a and miR-23b directly target Hmgn2, promoting transcriptional activation at several gene promoters, including the amelogenin promoter. In vivo, we found that decreased Hmgn2 expression correlates with increased miR-23 expression in craniofacial tissues as the murine embryo develops. Finally, we show that ablation of Hmgn2 in mice results in increased amelogenin expression because of increased Pitx2, Dlx2, Lef-1, and FoxJ1 transcriptional activity. Taken together, our results demonstrate both post-transcriptional regulation of Hmgn2 by miR-23a/b and post-translational regulation of gene expression by Hmgn2–transcription factor interactions. We conclude that HMGN2 regulates tooth development through its interaction with multiple transcription factors.
Collapse
Affiliation(s)
- Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA
| | - Dan Su
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA
| | | | - Zhao Sun
- Washington University St. Louis, St. Louis, MO
| | | | - Xiao Li
- Texas Heart Institute, Houston, TX
| | | | | | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA; Department of Orthodontics, The University of Iowa, Iowa City, IA.
| |
Collapse
|
6
|
Yoshizaki K, Fukumoto S, Bikle DD, Oda Y. Transcriptional Regulation of Dental Epithelial Cell Fate. Int J Mol Sci 2020; 21:ijms21238952. [PMID: 33255698 PMCID: PMC7728066 DOI: 10.3390/ijms21238952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
Dental enamel is hardest tissue in the body and is produced by dental epithelial cells residing in the tooth. Their cell fates are tightly controlled by transcriptional programs that are facilitated by fate determining transcription factors and chromatin regulators. Understanding the transcriptional program controlling dental cell fate is critical for our efforts to build and repair teeth. In this review, we describe the current understanding of these regulators essential for regeneration of dental epithelial stem cells and progeny, which are identified through transgenic mouse models. We first describe the development and morphogenesis of mouse dental epithelium in which different subpopulations of epithelia such as ameloblasts contribute to enamel formation. Then, we describe the function of critical factors in stem cells or progeny to drive enamel lineages. We also show that gene mutations of these factors are associated with dental anomalies in craniofacial diseases in humans. We also describe the function of the master regulators to govern dental lineages, in which the genetic removal of each factor switches dental cell fate to that generating hair. The distinct and related mechanisms responsible for the lineage plasticity are discussed. This knowledge will lead us to develop a potential tool for bioengineering new teeth.
Collapse
Affiliation(s)
- Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan;
| | - Satoshi Fukumoto
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan;
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Daniel D. Bikle
- Departments of Medicine and Endocrinology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94158, USA;
| | - Yuko Oda
- Departments of Medicine and Endocrinology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94158, USA;
- Correspondence:
| |
Collapse
|
7
|
Yu W, Sun Z, Sweat Y, Sweat M, Venugopalan SR, Eliason S, Cao H, Paine ML, Amendt BA. Pitx2-Sox2-Lef1 interactions specify progenitor oral/dental epithelial cell signaling centers. Development 2020; 147:dev186023. [PMID: 32439755 PMCID: PMC7286298 DOI: 10.1242/dev.186023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that Pitx2 (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using Krt14Cre /Pitx2flox/flox (Pitx2cKO ) and Rosa26CreERT/Pitx2flox/flox mice that loss of Pitx2 delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation. Developmentally, Pitx2 regulates formation of the Sox2+ labial cervical loop (LaCL) stem cell niche in concert with two signaling centers: the initiation knot and enamel knot. The loss of Pitx2 disrupted the patterning of these two signaling centers, resulting in tooth arrest at E14.5. Mechanistically, Pitx2 transcriptional activity and DNA binding is inhibited by Sox2, and this interaction controls gene expression in specific Sox2 and Pitx2 co-expression progenitor cell domains. We demonstrate new transcriptional mechanisms regulating signaling centers by Pitx2, Sox2, Lef1 and Irx1.
Collapse
Affiliation(s)
- Wenjie Yu
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Division of Nephrology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yan Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
He B, Chiba Y, Li H, de Vega S, Tanaka K, Yoshizaki K, Ishijima M, Yuasa K, Ishikawa M, Rhodes C, Sakai K, Zhang P, Fukumoto S, Zhou X, Yamada Y. Identification of the Novel Tooth-Specific Transcription Factor AmeloD. J Dent Res 2018; 98:234-241. [PMID: 30426815 DOI: 10.1177/0022034518808254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Basic-helix-loop-helix (bHLH) transcription factors play an important role in various organs' development; however, a tooth-specific bHLH factor has not been reported. In this study, we identified a novel tooth-specific bHLH transcription factor, which we named AmeloD, by screening a tooth germ complementary DNA (cDNA) library using a yeast 2-hybrid system. AmeloD was mapped onto the mouse chromosome 1q32. Phylogenetic analysis showed that AmeloD belongs to the achaete-scute complex-like ( ASCL) gene family and is a homologue of ASCL5. AmeloD was uniquely expressed in the inner enamel epithelium (IEE), but its expression was suppressed after IEE cell differentiation into ameloblasts. Furthermore, AmeloD expression showed an inverse expression pattern with the epithelial cell-specific cell-cell adhesion molecule E-cadherin in the dental epithelium. Overexpression of AmeloD in dental epithelial cell line CLDE cells resulted in E-cadherin suppression. We found that AmeloD bound to E-box cis-regulatory elements in the proximal promoter region of the E-cadherin gene. These results reveal that AmeloD functions as a suppressor of E-cadherin transcription in IEE cells. Our study demonstrated that AmeloD is a novel tooth-specific bHLH transcription factor that may regulate tooth development through the suppression of E-cadherin in IEE cells.
Collapse
Affiliation(s)
- B He
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,3 Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Y Chiba
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,4 Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - H Li
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,5 Lifecare Acupuncture and Alternative Medicine Center, Colleyville, TX, USA
| | - S de Vega
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,6 Department of Pathophysiology for Locomotive and Neoplastic Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - K Tanaka
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,7 Department of Orthopedic Surgery, Oita University, Oita, Japan
| | - K Yoshizaki
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,8 Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Ishijima
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,9 Department of Medicine for Orthopedics and Motor Organ, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - K Yuasa
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,10 Pediatric Dentistry, St. Mary's Hospital, Kurume, Japan
| | - M Ishikawa
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,11 Division of Operative Dentistry, Laboratory of Cell and Department of Restorative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - C Rhodes
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - K Sakai
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,12 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - P Zhang
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S Fukumoto
- 4 Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - X Zhou
- 2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Yamada
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Sun Z, da Fontoura CSG, Moreno M, Holton NE, Sweat M, Sweat Y, Lee MK, Arbon J, Bidlack FB, Thedens DR, Nopoulos P, Cao H, Eliason S, Weinberg SM, Martin JF, Moreno-Uribe L, Amendt BA. FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genet 2018; 14:e1007675. [PMID: 30286078 PMCID: PMC6197693 DOI: 10.1371/journal.pgen.1007675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/22/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms that regulate post-natal growth of the craniofacial complex and that ultimately determine the size and shape of our faces are not well understood. Hippo signaling is a general mechanism to control tissue growth and organ size, and although it is known that Hippo signaling functions in neural crest specification and patterning during embryogenesis and before birth, its specific role in postnatal craniofacial growth remains elusive. We have identified the transcription factor FoxO6 as an activator of Hippo signaling regulating neonatal growth of the face. During late stages of mouse development, FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull. Enlargement of the mandible and maxilla and lengthening of the incisors in FoxO6-/- mice are associated with increases in cell proliferation. In vitro and in vivo studies demonstrated that FoxO6 activates Lats1 expression, thereby increasing Yap phosphorylation and activation of Hippo signaling. FoxO6-/- mice have significantly reduced Hippo Signaling caused by a decrease in Lats1 expression and decreases in Shh and Runx2 expression, suggesting that Shh and Runx2 are also linked to Hippo signaling. In vitro, FoxO6 activates Hippo reporter constructs and regulates cell proliferation. Furthermore PITX2, a regulator of Hippo signaling is associated with Axenfeld-Rieger Syndrome causing a flattened midface and we show that PITX2 activates FoxO6 expression. Craniofacial specific expression of FoxO6 postnatally regulates Hippo signaling and cell proliferation. Together, these results identify a FoxO6-Hippo regulatory pathway that controls skull growth, odontogenesis and face morphology.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Clarissa S. G. da Fontoura
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Nathan E. Holton
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Yan Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Myoung Keun Lee
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - Jed Arbon
- Private practice, Cary, North Carolina United States of America
| | | | - Daniel R. Thedens
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Peggy Nopoulos
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Seth M. Weinberg
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - James F. Martin
- Department of Physiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lina Moreno-Uribe
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
10
|
Yang Y, Wang X, Zhao Y, Qin M. A novel 4q25 microdeletion encompassing PITX2 associated with Rieger syndrome. Oral Dis 2018; 24:1247-1254. [PMID: 29774977 DOI: 10.1111/odi.12894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Rieger syndrome (RS) is a genetic disorder characterized by abnormal development of the eyes, teeth, and umbilicus, and the paired-like homeodomain 2 (PITX2) gene is often implicated in its pathogenesis. This study aimed to identify the underlying genetic defect in a Chinese patient with RS. SUBJECTS AND METHODS DNA samples were screened for PITX2 gene mutations and copy number variations (CNVs) using Sanger sequencing and genomic quantitative PCR analysis (qPCR). Chromosomal microarray analysis (CMA) was performed to fine-map the CNVs. RESULTS The proband suffered from severe hypodontia and conical teeth in her permanent dentition. No PITX2 point mutations were found in this Chinese family, but a heterozygous deletion involving PITX2 was suspected and verified by the SNPs analysis and qPCR in the proband. An approximately 0.47 Mb (chr4: 111, 334, 313-111, 799, 327, GRCh37/hg19) deletion including PITX2 was finally determined by CMA. CONCLUSIONS To our knowledge, this is the first reported case of RS caused by a CNV of the PITX2 gene in a Chinese patient. CNV screening must be considered if point mutation screens yield negative results in these patients. The distribution of SNP genotypes among family members may also provide clues about gene deletion.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
11
|
Atukorala ADS, Franz-Odendaal TA. Genetic linkage between altered tooth and eye development in lens-ablated Astyanax mexicanus. Dev Biol 2018; 441:235-241. [PMID: 30017604 DOI: 10.1016/j.ydbio.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022]
Abstract
The phenotype of lens-ablated Mexican tetra (Astyanax mexicanus) compared to wild-type surface fish has been described and includes, among other effects, eye degeneration, changes in tooth number and cranial bone changes. Here, we investigate the spatiotemporal expression patterns of several key genes involved in the development of these structures. Specifically, we show that the expression of pitx2, bmp4 and shh is altered in the eye, oral jaw, nasal pit and forebrain in these lens-ablated fish. Furthermore, for the first time, we show altered pitx2 expression in the cavefish, which also has altered eye and tooth phenotypes. We thus provide evidence for a genetic linkage between the eye and tooth modules in this fish species. Furthermore, the altered pitx2 expression pattern, together with the described morphological features of the lens-ablated fish suggests that Astyanax mexicanus could be considered as an alternative teleost model organism in which to study Axenfeld-Rieger syndrome (ARS), a rare autosomal dominant developmental disorder that is associated with PITX2 and which has both ocular and non-ocular abnormalities.
Collapse
|
12
|
Williams MA, Letra A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes (Basel) 2018; 9:genes9050255. [PMID: 29772684 PMCID: PMC5977195 DOI: 10.3390/genes9050255] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Despite much progress in understanding the genetics of syndromic tooth agenesis (TA), the causes of the most common, isolated TA remain elusive. Recent studies have identified novel genes and variants contributing to the etiology of TA, and revealed new pathways in which tooth development genes belong. Further, the use of new research approaches including next-generation sequencing has provided increased evidence supporting an oligogenic inheritance model for TA, and may explain the phenotypic variability of the condition. In this review, we present current knowledge about the genetic mechanisms underlying syndromic and isolated TA in humans, and highlight the value of incorporating next-generation sequencing approaches to identify causative and/or modifier genes that contribute to the etiology of TA.
Collapse
Affiliation(s)
- Meredith A Williams
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Williams MA, Biguetti C, Romero-Bustillos M, Maheshwari K, Dinckan N, Cavalla F, Liu X, Silva R, Akyalcin S, Uyguner ZO, Vieira AR, Amendt BA, Fakhouri WD, Letra A. Colorectal Cancer-Associated Genes Are Associated with Tooth Agenesis and May Have a Role in Tooth Development. Sci Rep 2018; 8:2979. [PMID: 29445242 PMCID: PMC5813178 DOI: 10.1038/s41598-018-21368-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/01/2018] [Indexed: 12/25/2022] Open
Abstract
Previously reported co-occurrence of colorectal cancer (CRC) and tooth agenesis (TA) and the overlap in disease-associated gene variants suggest involvement of similar molecular pathways. Here, we took an unbiased approach and tested genome-wide significant CRC-associated variants for association with isolated TA. Thirty single nucleotide variants (SNVs) in CRC-predisposing genes/loci were genotyped in a discovery dataset composed of 440 individuals with and without isolated TA. Genome-wide significant associations were found between TA and ATF1 rs11169552 (P = 4.36 × 10-10) and DUSP10 rs6687758 (P = 1.25 × 10-9), and positive association found with CASC8 rs10505477 (P = 8.2 × 10-5). Additional CRC marker haplotypes were also significantly associated with TA. Genotyping an independent dataset consisting of 52 cases with TA and 427 controls confirmed the association with CASC8. Atf1 and Dusp10 expression was detected in the mouse developing teeth from early bud stages to the formation of the complete tooth, suggesting a potential role for these genes and their encoded proteins in tooth development. While their individual contributions in tooth development remain to be elucidated, these genes may be considered candidates to be tested in additional populations.
Collapse
Affiliation(s)
- Meredith A Williams
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, 77054, USA
| | - Claudia Biguetti
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, 77054, USA
- Department of Biological Sciences, University of Sao Paulo Bauru Dental School, Bauru, 17012, Brazil
| | - Miguel Romero-Bustillos
- Iowa Institute for Oral Health, College of Dentistry, University of Iowa, Iowa City, 52242, USA
| | - Kanwal Maheshwari
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, 77054, USA
| | - Nuriye Dinckan
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, 77054, USA
- Department of Medical Genetics, School of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Franco Cavalla
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, 77054, USA
- Department of Biological Sciences, University of Sao Paulo Bauru Dental School, Bauru, 17012, Brazil
| | - Xiaoming Liu
- Department of Epidemiology and Human Genetics, University of Texas Health Science Center School of Public Health, Houston, 77054, USA
| | - Renato Silva
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, 77054, USA
- Department of Endodontics, University of Texas Health Science Center School of Dentistry, Houston, 77054, USA
- Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, 77054, USA
| | - Sercan Akyalcin
- Department of Orthodontics, Tufts University, Boston, 02111, USA
| | - Z Oya Uyguner
- Department of Medical Genetics, School of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Alexandre R Vieira
- Departments of Oral Biology and Pediatric Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, 15229, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health, College of Dentistry, University of Iowa, Iowa City, 52242, USA
- Craniofacial Anomalies Research Center, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, 77054, USA
- Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, 77054, USA
- Department of Diagnostic and Biomedical Sciences, Sciences University of Texas Health Science Center School of Dentistry, Houston, 77054, USA
| | - Ariadne Letra
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, 77054, USA.
- Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, 77054, USA.
- Department of Diagnostic and Biomedical Sciences, Sciences University of Texas Health Science Center School of Dentistry, Houston, 77054, USA.
| |
Collapse
|
14
|
Hassed SJ, Li S, Xu W, Taylor AC. A Novel Mutation in PITX2 in a Patient with Axenfeld-Rieger Syndrome. Mol Syndromol 2017; 8:107-109. [PMID: 28611552 DOI: 10.1159/000454963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
Axenfeld-Rieger syndrome is a rare autosomal dominant condition. Anomalies include anterior segment dysgenesis of the eye, dental anomalies, maxillary hypoplasia, periumbilical anomalies, and congenital heart defects. We report a patient with Peters anomaly, dysmorphic features, congenital heart defect, umbilical hernia, short stature, and developmental delay. Diagnostic sequencing of 23 genes known to be causally related to the condition was performed on the patient, parents, and maternal grandparents. A variant of uncertain significance in PITX2 was identified. The mother had the same mutation and the father did not. The mother had decreased vision, congenitally missing teeth, and required jaw surgery as a child. Her asymptomatic parents elected to be tested and were negative for the mutation. The mutation, NM_153427.2:c.272G>A (p.Arg91Gln), is predicted to be damaging by PolyPhen-2 (score of 0.997), identified as a missense mutation with an allele frequency of 1.648e-05 by the Exome Aggregation Consortium, and has been reported in ClinVar once, by the laboratory that analyzed our patient's sample. Due to the in silico predictions and the results of family studies, it is suggested that this variant can be classified as pathogenic according to the American College of Medical Genetics and Genomics 2015 rule Pathogenic(iii)(b), specifically rules PS2, PM2, PM5, PP1, and PP3.
Collapse
Affiliation(s)
- Susan J Hassed
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shibo Li
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Weihong Xu
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ashley C Taylor
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
15
|
Sun Z, Yu W, Sanz Navarro M, Sweat M, Eliason S, Sharp T, Liu H, Seidel K, Zhang L, Moreno M, Lynch T, Holton NE, Rogers L, Neff T, Goodheart MJ, Michon F, Klein OD, Chai Y, Dupuy A, Engelhardt JF, Chen Z, Amendt BA. Sox2 and Lef-1 interact with Pitx2 to regulate incisor development and stem cell renewal. Development 2016; 143:4115-4126. [PMID: 27660324 PMCID: PMC5117215 DOI: 10.1242/dev.138883] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022]
Abstract
Sox2 marks dental epithelial stem cells (DESCs) in both mammals and reptiles, and in this article we demonstrate several Sox2 transcriptional mechanisms that regulate dental stem cell fate and incisor growth. Conditional Sox2 deletion in the oral and dental epithelium results in severe craniofacial defects, including impaired dental stem cell proliferation, arrested incisor development and abnormal molar development. The murine incisor develops initially but is absorbed independently of apoptosis owing to a lack of progenitor cell proliferation and differentiation. Tamoxifen-induced inactivation of Sox2 demonstrates the requirement of Sox2 for maintenance of the DESCs in adult mice. Conditional overexpression of Lef-1 in mice increases DESC proliferation and creates a new labial cervical loop stem cell compartment, which produces rapidly growing long tusk-like incisors, and Lef-1 epithelial overexpression partially rescues the tooth arrest in Sox2 conditional knockout mice. Mechanistically, Pitx2 and Sox2 interact physically and regulate Lef-1, Pitx2 and Sox2 expression during development. Thus, we have uncovered a Pitx2-Sox2-Lef-1 transcriptional mechanism that regulates DESC homeostasis and dental development.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Maria Sanz Navarro
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Thad Sharp
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Huan Liu
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P.R.China
| | - Kerstin Seidel
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143-0442, USA
| | - Li Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P.R.China
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Lynch
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Nathan E Holton
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Laura Rogers
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Traci Neff
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael J Goodheart
- Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, IA 52242, USA
| | - Frederic Michon
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143-0442, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Adam Dupuy
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P.R.China
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Gollob MH. Toward Translation of Genomic Discovery to Clinical Efficacy in Atrial Fibrillation. J Am Coll Cardiol 2016; 68:1895-1897. [PMID: 27765192 DOI: 10.1016/j.jacc.2016.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Michael H Gollob
- Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Chu EY, Tamasas B, Fong H, Foster BL, LaCourse MR, Tran AB, Martin JF, Schutte BC, Somerman MJ, Cox TC. Full Spectrum of Postnatal Tooth Phenotypes in a Novel Irf6 Cleft Lip Model. J Dent Res 2016; 95:1265-73. [PMID: 27369589 DOI: 10.1177/0022034516656787] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Clefting of the lip, with or without palatal involvement (CLP), is associated with a higher incidence of developmental tooth abnormalities, including hypodontia and supernumerary teeth, aberrant crown and root morphologies, and enamel defects, although the underlying mechanistic link is poorly understood. As most CLP genes are expressed throughout the oral epithelium, the authors hypothesized that the expression of CLP genes may persist in the dental epithelium and thus, in addition to their earlier role in labiopalatine development, may play an important functional role in subsequent tooth patterning and amelogenesis. To address this, the authors generated a unique conditional knockout model involving the major CLP gene, Irf6, that overcomes the previously reported perinatal lethality to enable assessment of any posteruption dental phenotypes. A dental epithelium-specific Irf6 conditional knockout (Irf6-cKO) mouse was generated via a Pitx2-Cre driver line. Dental development was analyzed by microcomputed tomography, scanning electron microscopy, histology, immunohistochemistry, and quantitative polymerase chain reaction. Irf6-cKO mice displayed variable hypodontia, occasional supernumerary incisors and molars, as well as crown and root patterning anomalies, including peg-shaped first molars and taurodontic and C-shaped mandibular second molars. Enamel density was reduced in preeruption Irf6-cKO mice, and some shearing of enamel rods was noted in posteruption incisors. There was also rapid attrition of Irf6-cKO molars following eruption. Histologically, Irf6-cKO ameloblasts exhibited disturbances in adhesion and polarity, and delayed enamel formation was confirmed immunohistochemically. Altered structure of Hertwig's epithelial root sheath was also observed. These data support a role for IRF6 in tooth number, crown and root morphology and amelogenesis that is likely due to a functional role of Irf6 in organization and polarity of epithelial cell types. This data reinforce the notion that various isolated tooth defects could be considered part of the CLP spectrum in relatives of an affected individual.
Collapse
Affiliation(s)
- E Y Chu
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - B Tamasas
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - H Fong
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M R LaCourse
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - A B Tran
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, and Texas Heart Institute, Houston, TX, USA
| | - B C Schutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - T C Cox
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| |
Collapse
|
18
|
Cao H, Amendt BA. pySAPC, a python package for sparse affinity propagation clustering: Application to odontogenesis whole genome time series gene-expression data. Biochim Biophys Acta Gen Subj 2016; 1860:2613-8. [PMID: 27288587 DOI: 10.1016/j.bbagen.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Developmental dental anomalies are common forms of congenital defects. The molecular mechanisms of dental anomalies are poorly understood. Systematic approaches such as clustering genes based on similar expression patterns could identify novel genes involved in dental anomalies and provide a framework for understanding molecular regulatory mechanisms of these genes during tooth development (odontogenesis). METHODS A python package (pySAPC) of sparse affinity propagation clustering algorithm for large datasets was developed. Whole genome pair-wise similarity was calculated based on expression pattern similarity based on 45 microarrays of several stages during odontogenesis. RESULTS pySAPC identified 743 gene clusters based on expression pattern similarity during mouse tooth development. Three clusters are significantly enriched for genes associated with dental anomalies (with FDR <0.1). The three clusters of genes have distinct expression patterns during odontogenesis. CONCLUSIONS Clustering genes based on similar expression profiles recovered several known regulatory relationships for genes involved in odontogenesis, as well as many novel genes that may be involved with the same genetic pathways as genes that have already been shown to contribute to dental defects. GENERAL SIGNIFICANCE By using sparse similarity matrix, pySAPC use much less memory and CPU time compared with the original affinity propagation program that uses a full similarity matrix. This python package will be useful for many applications where dataset(s) are too large to use full similarity matrix. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52244, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52244, USA; Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52244, USA.
| |
Collapse
|
19
|
Sólia-Nasser L, de Aquino SN, Paranaíba LMR, Gomes A, Dos-Santos-Neto P, Coletta RD, Cardoso AF, Frota AC, Martelli-Júnior H. Waardenburg syndrome type I: Dental phenotypes and genetic analysis of an extended family. Med Oral Patol Oral Cir Bucal 2016; 21:e321-7. [PMID: 27031059 PMCID: PMC4867205 DOI: 10.4317/medoral.20789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 01/23/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The aim of this study was to describe the pattern of inheritance and the clinical features in a large family with Waardenburg syndrome type I (WS1), detailing the dental abnormalities and screening for PAX3 mutations. MATERIAL AND METHODS To characterize the pattern of inheritance and clinical features, 29 family members were evaluated by dermatologic, ophthalmologic, otorhinolaryngologic and orofacial examination. Molecular analysis of the PAX3 gene was performed. RESULTS The pedigree of the family,including the last four generations, was constructed and revealed non-consanguineous marriages. Out of 29 descendants, 16 family members showed features of WS1, with 9 members showing two major criteria indicative of WS1. Five patients showed white forelock and iris hypopigmentation, and four showed dystopia canthorum and iris hypopigmentation. Two patients had hearing loss. Dental abnormalities were identified in three family members, including dental agenesis, conical teeth and taurodontism. Sequencing analysis failed to identify mutations in the PAX3 gene. CONCLUSIONS These results confirm that WS1 was transmitted in this family in an autosomal dominant pattern with variable expressivity and high penetrance. The presence of dental manifestations, especially tooth agenesis and conical teeth which resulted in considerable aesthetic impact on affected individuals was a major clinical feature. CLINICAL RELEVANCE This article reveals the presence of well-defined dental changes associated with WS1 and tries to establish a possible association between these two entities showing a new spectrum of WS1.
Collapse
Affiliation(s)
- L Sólia-Nasser
- Rua Walter Ferreira Barreto, 57, Zip Code: 39401-347, Montes Claros, Minas Gerais, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu X, Dai FR, Wang J, Zhang Y, Tan ZP, Zhang Y. Novel BCOR mutation in a boy with Lenz microphthalmia/oculo-facio-cardio-dental (OFCD) syndrome. Gene 2015. [DOI: 10.1016/j.gene.2015.07.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Gokce G, Oren NC, Ozgonul C. Axenfeld-Rieger syndrome associated with severe maxillofacial and skeletal anomalies. J Oral Maxillofac Pathol 2015; 19:109. [PMID: 26097324 PMCID: PMC4451654 DOI: 10.4103/0973-029x.157219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 03/21/2015] [Indexed: 11/04/2022] Open
Abstract
This article reports an unusual case of Axenfeld-Rieger Syndrome (ARS) associated with severe maxillofacial and skeletal anomalies. A 55-year-old man with ARS revealed interesting and unexpected radiological findings. Severe maxillofacial and skeletal anomalies, in addition to the well-recognized extraocular findings, that occurs in patients with ARS is reported and our case highlights this possible rare association between ARS and maxillofacial and skeletal anomalies.
Collapse
Affiliation(s)
- Gokcen Gokce
- Department of Ophthalmology, Sarikamis Military Hospital, Kars, Turkey
| | - Nisa Cem Oren
- Department of Radiology, Sarıkamis Military Hospital, Kars, Turkey
| | - Cem Ozgonul
- Department of Ophthalmology, Anittepe Dispensary, Ankara, Turkey
| |
Collapse
|
22
|
Wu D, Zhu X, Jimenez-Cowell K, Mold AJ, Sollecito CC, Lombana N, Jiao M, Wei Q. Identification of the GTPase-activating protein DEP domain containing 1B (DEPDC1B) as a transcriptional target of Pitx2. Exp Cell Res 2015; 333:80-92. [PMID: 25704760 PMCID: PMC4387072 DOI: 10.1016/j.yexcr.2015.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/17/2015] [Accepted: 02/10/2015] [Indexed: 10/25/2022]
Abstract
Pitx2 is a bicoid-related homeobox transcription factor implicated in regulating left-right patterning and organogenesis. However, only a limited number of Pitx2 downstream target genes have been identified and characterized. Here we demonstrate that Pitx2 is a transcriptional repressor of DEP domain containing 1B (DEPDC1B). The first intron of the human and mouse DEP domain containing 1B genes contains multiple consensus DNA-binding sites for Pitx2. Chromatin immunoprecipitation assays revealed that Pitx2, along with histone deacetylase 1, was recruited to the first intron of Depdc1b. In contrast, RNAi-mediated depletion of Pitx2 not only enhanced the acetylation of histone H4 in the first intron of Depdc1b, but also increased the protein level of Depdc1b. Luciferase reporter assays also showed that Pitx2 could repress the transcriptional activity mediated by the first intron of human DEPDC1B. The GAP domain of DEPDC1B interacted with nucleotide-bound forms of RAC1 in vitro. In addition, exogenous expression of DEPDC1B suppressed RAC1 activation and interfered with actin polymerization induced by the guanine nucleotide exchange factor TRIO. Moreover, DEPDC1B interacted with various signaling molecules such as U2af2, Erh, and Salm. We propose that Pitx2-mediated repression of Depdc1b expression contributes to the regulation of multiple molecular pathways, such as Rho GTPase signaling.
Collapse
Affiliation(s)
- Di Wu
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Xiaoxi Zhu
- Experimental and Clinical Research Center (ECRC), a Cooperation between Max Delbrück Center and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany
| | - Kevin Jimenez-Cowell
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Alexander J Mold
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | | | - Nicholas Lombana
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Meng Jiao
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Qize Wei
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States.
| |
Collapse
|
23
|
Babajko S, de La Dure-Molla M, Jedeon K, Berdal A. MSX2 in ameloblast cell fate and activity. Front Physiol 2015; 5:510. [PMID: 25601840 PMCID: PMC4283505 DOI: 10.3389/fphys.2014.00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022] Open
Abstract
While many effectors have been identified in enamel matrix and cells via genetic studies, physiological networks underlying their expression levels and thus the natural spectrum of enamel thickness and degree of mineralization are now just emerging. Several transcription factors are candidates for enamel gene expression regulation and thus the control of enamel quality. Some of these factors, such as MSX2, are mainly confined to the dental epithelium. MSX2 homeoprotein controls several stages of the ameloblast life cycle. This chapter introduces MSX2 and its target genes in the ameloblast and provides an overview of knowledge regarding its effects in vivo in transgenic mouse models. Currently available in vitro data on the role of MSX2 as a transcription factor and its links to other players in ameloblast gene regulation are considered. MSX2 modulations are relevant to the interplay between developmental, hormonal and environmental pathways and in vivo investigations, notably in the rodent incisor, have provided insight into dental physiology. Indeed, in vivo models are particularly promising for investigating enamel formation and MSX2 function in ameloblast cell fate. MSX2 may be central to the temporal-spatial restriction of enamel protein production by the dental epithelium and thus regulation of enamel quality (thickness and mineralization level) under physiological and pathological conditions. Studies on MSX2 show that amelogenesis is not an isolated process but is part of the more general physiology of coordinated dental-bone complex growth.
Collapse
Affiliation(s)
- Sylvie Babajko
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France
| | - Muriel de La Dure-Molla
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France ; Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild Paris, France
| | - Katia Jedeon
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France ; Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild Paris, France
| |
Collapse
|
24
|
Gao S, Moreno M, Eliason S, Cao H, Li X, Yu W, Bidlack FB, Margolis HC, Baldini A, Amendt BA. TBX1 protein interactions and microRNA-96-5p regulation controls cell proliferation during craniofacial and dental development: implications for 22q11.2 deletion syndrome. Hum Mol Genet 2015; 24:2330-48. [PMID: 25556186 DOI: 10.1093/hmg/ddu750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1(cKO)) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1(cKO) mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS.
Collapse
Affiliation(s)
- Shan Gao
- Texas A&M University Health Science Center, Houston, TX, USA
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Steven Eliason
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Huojun Cao
- Texas A&M University Health Science Center, Houston, TX, USA
| | - Xiao Li
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | | | - Henry C Margolis
- Center for Biomineralization, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA and
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and the Institute of Genetics and Biophysics CNR, Naples, Italy
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA,
| |
Collapse
|