1
|
Wu T, Xu H, Cheng L, Wu R, Guo F, Chen X. The nuclear envelope and nuclear pore complexes in neurodegenerative diseases. Front Cell Dev Biol 2025; 13:1550859. [PMID: 40433544 PMCID: PMC12106417 DOI: 10.3389/fcell.2025.1550859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The nuclear envelope (NE) and nuclear pore complexes (NPCs) play a critical role in maintaining the balance between the nucleus and cytoplasm, which is essential for the structural integrity and gene regulatory functions of eukaryotic cells. Disruptions in the nucleocytoplasmic trafficking mediated by the NE and NPCs can compromise nuclear integrity and transport homeostasis, ultimately threatening cellular viability. Recent research has highlighted a strong link between dysfunction of the NE and NPCs and the onset of neurodegenerative disorders. In this review, we summarize the current understanding of how impairments in nuclear transport contribute to the pathogenesis of neurodegenerative diseases, with a particular focus on the NE and NPCs. We aim to shed light on the intricate relationship between these molecular gatekeepers and the pathological cascade leading to neuronal degeneration, while also exploring potential strategies to restore cellular homeostasis and mitigate the progression of these devastating neurological conditions.
Collapse
Affiliation(s)
- Tingyan Wu
- Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haochen Xu
- Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Cheng
- Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruoxin Wu
- Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuzheng Guo
- Department of Neurology, School of Medicine, University of California, Sacramento, CA, United States
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Stang TE, Salapa HE, Clarke JPWE, Popescu BF, Levin MC. Heterogeneous Nuclear Ribonucleoprotein A1 Knockdown Alters Constituents of Nucleocytoplasmic Transport. Brain Sci 2024; 14:1039. [PMID: 39452051 PMCID: PMC11505608 DOI: 10.3390/brainsci14101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Changes in nuclear morphology, alterations to the nuclear pore complex (NPC), including loss, aggregation, and dysfunction of nucleoporins (Nups), and nucleocytoplasmic transport (NCT) abnormalities have become hallmarks of neurodegenerative diseases. Previous RNA sequencing data utilizing knockdown of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) identified enrichment for pathways and changes in RNAs related to nuclear morphology and showed differential expression of key nuclear targets. This suggests that dysfunction of hnRNP A1, which is observed in neurodegenerative diseases, may contribute to abnormalities in nuclear morphology, NPC, and NCT. METHODS We performed knockdown of hnRNP A1 in Neuro-2A cells, a neuronal cell line, to examine nuclear morphology, NPC, and NCT. RESULTS First, we examined nuclear morphology using Lamin B, wherein we observed increased nuclear envelope abnormalities in cells with hnRNP A1 knockdown as compared to control. To quantify changes in Lamin B, we designed and validated an automated computer-based model, which quantitatively confirmed our observations. Next, we investigated the impact of hnRNP A1 knockdown on components of the NPC and NCT. In line with the previous literature, we found changes in Nups, including altered distribution and reduced protein expression, as well as disrupted NCT. Finally, we validated our findings in multiple sclerosis (MS) brains, a disease with a significant neurodegenerative component caused by hnRNP A1 dysfunction, where neuronal nuclear envelope alterations were significantly increased as compared to controls. CONCLUSIONS Together, these data implicate hnRNP A1 as an important contributor to nuclear morphology, Nup expression and distribution, and NCT and suggest that hnRNP A1 dysfunction may lead to defects in these processes in neurodegenerative diseases.
Collapse
Affiliation(s)
- Todd E. Stang
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, Cameco MS Neuroscience Research Centre, Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, Cameco MS Neuroscience Research Centre, Department of Medicine, Neurology Division, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (H.E.S.); (J.-P.W.E.C.)
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, Cameco MS Neuroscience Research Centre, Department of Medicine, Neurology Division, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (H.E.S.); (J.-P.W.E.C.)
| | - Bogdan F. Popescu
- Cameco MS Neuroscience Research Centre, Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, Cameco MS Neuroscience Research Centre, Department of Anatomy, Physiology and Pharmacology, Department of Medicine, Neurology Division, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada
| |
Collapse
|
4
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
5
|
Ho DM, Shaban M, Mahmood F, Ganguly P, Todeschini L, Van Vactor D, Artavanis-Tsakonas S. cAMP/PKA signaling regulates TDP-43 aggregation and mislocalization. Proc Natl Acad Sci U S A 2024; 121:e2400732121. [PMID: 38838021 PMCID: PMC11181030 DOI: 10.1073/pnas.2400732121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Cytoplasmic mislocalization and aggregation of TDP-43 protein are hallmarks of amyotrophic lateral sclerosis (ALS) and are observed in the vast majority of both familial and sporadic cases. How these two interconnected processes are regulated on a molecular level, however, remains enigmatic. Genome-wide screens for modifiers of the ALS-associated genes TDP-43 and FUS have identified the phospholipase D (Pld) pathway as a key regulator of ALS-related phenotypes in the fruit fly Drosophila melanogaster [M. W. Kankel et al., Genetics 215, 747-766 (2020)]. Here, we report the results of our search for downstream targets of the enzymatic product of Pld, phosphatidic acid. We identify two conserved negative regulators of the cAMP/PKA signaling pathway, the phosphodiesterase dunce and the inhibitory subunit PKA-R2, as modifiers of pathogenic phenotypes resulting from overexpression of the Drosophila TDP-43 ortholog TBPH. We show that knockdown of either of these genes results in a mitigation of both TBPH aggregation and mislocalization in larval motor neuron cell bodies, as well as an amelioration of adult-onset motor defects and shortened lifespan induced by TBPH. We determine that PKA kinase activity is downstream of both TBPH and Pld and that overexpression of the PKA target CrebA can rescue TBPH mislocalization. These findings suggest a model whereby increasing cAMP/PKA signaling can ameliorate the molecular and functional effects of pathological TDP-43.
Collapse
Affiliation(s)
- Diana M. Ho
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Muhammad Shaban
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA02115
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA02115
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Payel Ganguly
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | | | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
6
|
Dubucs C, Rendu J, Michel-Calemard L, Menassa R, Langeois M, Nicaise Y, Ousselin J, Aziza J, Uro-Coste E. Muscular phenotype description of abnormal THOC2 splicing. Neuromuscul Disord 2023; 33:978-982. [PMID: 37945483 DOI: 10.1016/j.nmd.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Until recently, the disease known to be associated with THOC2 mutations was Intellectual developmental disorder, X-linked 12 (MIM300957). However, recently, fetal arthrogryposis multiplex congenita has been associated with a specific splice site mutation in the THOC2 gene. We report a family with the same splice site mutation in the THOC2 gene involved in fetal arthrogryposis as well. We provide the first description of the muscular phenotype of this disease which reveals the presence of cytoplasmic bodies. Our findings expand the clinical phenotype of THOC2 gene related defects.
Collapse
Affiliation(s)
- Charlotte Dubucs
- Pathology Department, Institut Universitaire du cancer de Toulouse, Toulouse, France; Genetic Medical Department, Toulouse University Hospital, Toulouse, France.
| | - John Rendu
- Grenoble Alpes University, Inserm, U1216, Grenoble Alpes University Hospital, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Laurence Michel-Calemard
- Service Biochimie et Biologie Moléculaire - Pathologies endocriniennes rénales, musculaires et mucoviscidose, Centre de Biologie et Pathologie Est, CHU de Lyon HCL - GH Est, France
| | - Rita Menassa
- Service Biochimie et Biologie Moléculaire - Pathologies endocriniennes rénales, musculaires et mucoviscidose, Centre de Biologie et Pathologie Est, CHU de Lyon HCL - GH Est, France
| | - Maud Langeois
- Genetic Medical Department, Toulouse University Hospital, Toulouse, France
| | - Yvan Nicaise
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Jessie Ousselin
- Pathology Department, Institut Universitaire du cancer de Toulouse, Toulouse, France
| | - Jacqueline Aziza
- Pathology Department, Institut Universitaire du cancer de Toulouse, Toulouse, France
| | - Emmanuelle Uro-Coste
- Pathology Department, Institut Universitaire du cancer de Toulouse, Toulouse, France
| |
Collapse
|
7
|
McGoldrick P, Robertson J. Unraveling the impact of disrupted nucleocytoplasmic transport systems in C9orf72-associated ALS. Front Cell Neurosci 2023; 17:1247297. [PMID: 37720544 PMCID: PMC10501458 DOI: 10.3389/fncel.2023.1247297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two adult-onset neurodegenerative diseases that are part of a common disease spectrum due to clinical, genetic, and pathological overlap. A prominent genetic factor contributing to both diseases is a hexanucleotide repeat expansion in a non-coding region of the C9orf72 gene. This mutation in C9orf72 leads to nuclear depletion and cytoplasmic aggregation of Tar DNA-RNA binding protein 43 (TDP-43). TDP-43 pathology is characteristic of the majority of ALS cases, irrespective of disease causation, and is present in ~50% of FTD cases. Defects in nucleocytoplasmic transport involving the nuclear pore complex, the Ran-GTPase cycle, and nuclear transport factors have been linked with the mislocalization of TDP-43. Here, we will explore and discuss the implications of these system abnormalities of nucleocytoplasmic transport in C9orf72-ALS/FTD, as well as in other forms of familial and sporadic ALS.
Collapse
Affiliation(s)
- Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
McGoldrick P, Lau A, You Z, Durcan TM, Robertson J. Loss of C9orf72 perturbs the Ran-GTPase gradient and nucleocytoplasmic transport, generating compositionally diverse Importin β-1 granules. Cell Rep 2023; 42:112134. [PMID: 36821445 DOI: 10.1016/j.celrep.2023.112134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/05/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
A hexanucleotide (GGGGCC)n repeat expansion in C9orf72 causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), eliciting toxic effects through generation of RNA foci, dipeptide repeat proteins, and/or loss of C9orf72 protein. Defects in nucleocytoplasmic transport (NCT) have been implicated as a pathogenic mechanism underlying repeat expansion toxicity. Here, we show that loss of C9orf72 disrupts the Ran-GTPase gradient and NCT in vitro and in vivo. NCT disruption in vivo is enhanced by the presence of compositionally different types of cytoplasmic Importin β-1 granule that exhibit neuronal subtype-specific properties. We show that the abundance of Importin β-1 granules is increased in the context of C9orf72 deficiency, disrupting interactions with nuclear pore complex proteins. These granules appear to associate with the nuclear envelope and are co-immunoreactive for G3BP1 and K63-ubiquitin. These findings link loss of C9orf72 protein to gain-of-function mechanisms and defects in NCT.
Collapse
Affiliation(s)
- Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.
| | - Agnes Lau
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, 27 King's College Circle, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
9
|
Megat S, Mora N, Sanogo J, Roman O, Catanese A, Alami NO, Freischmidt A, Mingaj X, De Calbiac H, Muratet F, Dirrig-Grosch S, Dieterle S, Van Bakel N, Müller K, Sieverding K, Weishaupt J, Andersen PM, Weber M, Neuwirth C, Margelisch M, Sommacal A, Van Eijk KR, Veldink JH, Lautrette G, Couratier P, Camuzat A, Le Ber I, Grassano M, Chio A, Boeckers T, Ludolph AC, Roselli F, Yilmazer-Hanke D, Millecamps S, Kabashi E, Storkebaum E, Sellier C, Dupuis L. Integrative genetic analysis illuminates ALS heritability and identifies risk genes. Nat Commun 2023; 14:342. [PMID: 36670122 PMCID: PMC9860017 DOI: 10.1038/s41467-022-35724-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has substantial heritability, in part shared with fronto-temporal dementia (FTD). We show that ALS heritability is enriched in splicing variants and in binding sites of 6 RNA-binding proteins including TDP-43 and FUS. A transcriptome wide association study (TWAS) identified 6 loci associated with ALS, including in NUP50 encoding for the nucleopore basket protein NUP50. Independently, rare variants in NUP50 were associated with ALS risk (P = 3.71.10-03; odds ratio = 3.29; 95%CI, 1.37 to 7.87) in a cohort of 9,390 ALS/FTD patients and 4,594 controls. Cells from one patient carrying a NUP50 frameshift mutation displayed a decreased level of NUP50. Loss of NUP50 leads to death of cultured neurons, and motor defects in Drosophila and zebrafish. Thus, our study identifies alterations in splicing in neurons as critical in ALS and provides genetic evidence linking nuclear pore defects to ALS.
Collapse
Affiliation(s)
- Salim Megat
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France.
| | - Natalia Mora
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jason Sanogo
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Olga Roman
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Najwa Ouali Alami
- Clinical Neuroanatomy, Department of Neurology, Ulm University, Ulm, Germany
| | - Axel Freischmidt
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
| | - Xhuljana Mingaj
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, Université de Paris, INSERM UMR 1163, 75015, Paris, France
| | - Hortense De Calbiac
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, Université de Paris, INSERM UMR 1163, 75015, Paris, France
| | - François Muratet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Sylvie Dirrig-Grosch
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Stéphane Dieterle
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Nick Van Bakel
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Kathrin Müller
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
- Institute of Human Genetics, Ulm University, Ulm, Germany
| | | | - Jochen Weishaupt
- Division for Neurodegenerative Diseases, Neurology Department, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Markus Weber
- Neuromuscular Disease Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Christoph Neuwirth
- Neuromuscular Disease Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Markus Margelisch
- Institute for Pathology, Kanstonsspital St. Gallen, St. Gallen, Switzerland
| | - Andreas Sommacal
- Institute for Pathology, Kanstonsspital St. Gallen, St. Gallen, Switzerland
| | - Kristel R Van Eijk
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Géraldine Lautrette
- Service de Neurologie, Centre de Référence SLA et autres maladies du neurone moteur, CHU Dupuytren 1, Limoges, France
| | - Philippe Couratier
- Service de Neurologie, Centre de Référence SLA et autres maladies du neurone moteur, CHU Dupuytren 1, Limoges, France
| | - Agnès Camuzat
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Maurizio Grassano
- ALS Center "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Adriano Chio
- ALS Center "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Tobias Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Albert C Ludolph
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
| | - Francesco Roselli
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Edor Kabashi
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, Université de Paris, INSERM UMR 1163, 75015, Paris, France
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Chantal Sellier
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France.
| |
Collapse
|
10
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
11
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
12
|
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis has shifted immensely with a number of well-defined ALS disease-causing genes, each with related phenotypical and cellular motor neuron processes that have come to light. Yet in spite of decades of research and clinical investigation, there is still no etiology for sporadic amyotrophic lateral sclerosis, and treatment options even for those with well-defined familial syndromes are still limited. This chapter provides a comprehensive review of the genetic basis of amyotrophic lateral sclerosis, highlighting factors that contribute to its heritability and phenotypic manifestations, and an overview of past, present, and upcoming therapeutic strategies.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Robert H Brown
- Department of Neurology, UMass Chan Medical School, Donna M. and Robert J. Manning Chair in Neurosciences and Director in Neurotherapeutics, Worcester, MA, United States
| |
Collapse
|
13
|
Petrovic S, Mobbs GW, Bley CJ, Nie S, Patke A, Hoelz A. Structure and Function of the Nuclear Pore Complex. Cold Spring Harb Perspect Biol 2022; 14:a041264. [PMID: 36096637 PMCID: PMC9732903 DOI: 10.1101/cshperspect.a041264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus, a genome-containing organelle eponymous of eukaryotes, is enclosed by a double membrane continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) is an ∼110-MDa, ∼1000-protein channel that selectively transports macromolecules across the nuclear envelope and thus plays a central role in the regulated flow of genetic information from transcription to translation. Its size, complexity, and flexibility have hindered determination of atomistic structures of intact NPCs. Recent studies have overcome these hurdles by combining biochemical reconstitution and docking of high-resolution structures of NPC subcomplexes into cryo-electron tomographic reconstructions with biochemical and physiological validation. Here, we provide an overview of the near-atomic composite structure of the human NPC, a milestone toward unlocking a molecular understanding of mRNA export, NPC-associated diseases, and viral host-pathogen interactions, serving as a paradigm for studying similarly large complexes.
Collapse
Affiliation(s)
- Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
14
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
15
|
Spead O, Zaepfel BL, Rothstein JD. Nuclear Pore Dysfunction in Neurodegeneration. Neurotherapeutics 2022; 19:1050-1060. [PMID: 36070178 PMCID: PMC9587172 DOI: 10.1007/s13311-022-01293-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 10/14/2022] Open
Abstract
The nuclear pore complex (NPC) is a large multimeric structure that is interspersed throughout the membrane of the nucleus and consists of at least 33 protein components. Individual components cooperate within the nuclear pore to facilitate selective passage of materials between the nucleus and cytoplasm while simultaneously performing pore-independent roles throughout the cell. NPC dysfunction is a hallmark of neurodegenerative disorders including Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). NPC components can become mislocalized or altered in expression in neurodegeneration. These alterations in NPC structure are often detrimental to the neuronal function and ultimately lead to neuronal loss. This review highlights the importance of nucleocytoplasmic transport and NPC integrity and how dysfunction of such may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin L Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Park HS, Lee J, Lee HS, Ahn SH, Ryu HY. Nuclear mRNA Export and Aging. Int J Mol Sci 2022; 23:5451. [PMID: 35628261 PMCID: PMC9142925 DOI: 10.3390/ijms23105451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
The relationship between transcription and aging is one that has been studied intensively and experimentally with diverse attempts. However, the impact of the nuclear mRNA export on the aging process following its transcription is still poorly understood, although the nuclear events after transcription are coupled closely with the transcription pathway because the essential factors required for mRNA transport, namely TREX, TREX-2, and nuclear pore complex (NPC), physically and functionally interact with various transcription factors, including the activator/repressor and pre-mRNA processing factors. Dysregulation of the mediating factors for mRNA export from the nucleus generally leads to the aberrant accumulation of nuclear mRNA and further impairment in the vegetative growth and normal lifespan and the pathogenesis of neurodegenerative diseases. The optimal stoichiometry and density of NPC are destroyed during the process of cellular aging, and their damage triggers a defect of function in the nuclear permeability barrier. This review describes recent findings regarding the role of the nuclear mRNA export in cellular aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Jongbok Lee
- Department of Biological and Chemical Engineering, Hongik University, 2639, Sejong-ro, Jochiwon-eup, Sejong-si 30016, Korea;
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, ERICA Campus, Hanyang University, Ansan 15588, Korea
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
18
|
Konopka A, Atkin JD. DNA Damage, Defective DNA Repair, and Neurodegeneration in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:786420. [PMID: 35572138 PMCID: PMC9093740 DOI: 10.3389/fnagi.2022.786420] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is under constant attack from both endogenous and exogenous sources, and when damaged, specific cellular signalling pathways respond, collectively termed the “DNA damage response.” Efficient DNA repair processes are essential for cellular viability, although they decline significantly during aging. Not surprisingly, DNA damage and defective DNA repair are now increasingly implicated in age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). ALS affects both upper and lower motor neurons in the brain, brainstem and spinal cord, leading to muscle wasting due to denervation. DNA damage is increasingly implicated in the pathophysiology of ALS, and interestingly, the number of DNA damage or repair proteins linked to ALS is steadily growing. This includes TAR DNA binding protein 43 (TDP-43), a DNA/RNA binding protein that is present in a pathological form in almost all (97%) cases of ALS. Hence TDP-43 pathology is central to neurodegeneration in this condition. Fused in Sarcoma (FUS) bears structural and functional similarities to TDP-43 and it also functions in DNA repair. Chromosome 9 open reading frame 72 (C9orf72) is also fundamental to ALS because mutations in C9orf72 are the most frequent genetic cause of both ALS and related condition frontotemporal dementia, in European and North American populations. Genetic variants encoding other proteins involved in the DNA damage response (DDR) have also been described in ALS, including FUS, SOD1, SETX, VCP, CCNF, and NEK1. Here we review recent evidence highlighting DNA damage and defective DNA repair as an important mechanism linked to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka,
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Julie D. Atkin,
| |
Collapse
|
19
|
De Magistris P. The Great Escape: mRNA Export through the Nuclear Pore Complex. Int J Mol Sci 2021; 22:ijms222111767. [PMID: 34769195 PMCID: PMC8583845 DOI: 10.3390/ijms222111767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Nuclear export of messenger RNA (mRNA) through the nuclear pore complex (NPC) is an indispensable step to ensure protein translation in the cytoplasm of eukaryotic cells. mRNA is not translocated on its own, but it forms ribonuclear particles (mRNPs) in association with proteins that are crucial for its metabolism, some of which; like Mex67/MTR2-NXF1/NXT1; are key players for its translocation to the cytoplasm. In this review, I will summarize our current body of knowledge on the basic characteristics of mRNA export through the NPC. To be granted passage, the mRNP cargo needs to bind transport receptors, which facilitate the nuclear export. During NPC transport, mRNPs undergo compositional and conformational changes. The interactions between mRNP and the central channel of NPC are described; together with the multiple quality control steps that mRNPs undergo at the different rings of the NPC to ensure only proper export of mature transcripts to the cytoplasm. I conclude by mentioning new opportunities that arise from bottom up approaches for a mechanistic understanding of nuclear export.
Collapse
|
20
|
Torres P, Cabral-Miranda F, Gonzalez-Teuber V, Hetz C. Proteostasis deregulation as a driver of C9ORF72 pathogenesis. J Neurochem 2021; 159:941-957. [PMID: 34679204 DOI: 10.1111/jnc.15529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related neurodegenerative disorders that display overlapping features. The hexanucleotide repeat expansion GGGGCC (G4 C2 ) in C9ORF72 gene has been causally linked to both ALS and FTD emergence, thus opening a novel potential therapeutic target for disease intervention. The main driver of C9ORF72 pathology is the disruption of distinct cellular processes involved in the function of the proteostasis network. Here we discuss main findings relating to the induction of neurodegeneration by C9ORF72 mutation and proteostasis deregulation, highlighting the role of the endoplasmic reticulum stress, nuclear transport, and autophagy in the disease process. We further discuss possible points of intervention to target proteostasis mediators to treat C9ORF72-linked ALS/FTD.
Collapse
Affiliation(s)
- Paulina Torres
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile
| | - Felipe Cabral-Miranda
- Instituto de Ciências Biomédicas, Universidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vicente Gonzalez-Teuber
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
21
|
Mutation spectrum of amyotrophic lateral sclerosis in Central South China. Neurobiol Aging 2021; 107:181-188. [PMID: 34275688 DOI: 10.1016/j.neurobiolaging.2021.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023]
Abstract
To analyze the mutational spectrum of known ALS causative genes in China ALS patients. We comprehensively analyzed 51 ALS causative genes by combining different sequencing technologies in 753 unrelated ALS patients from Central South China. The mean age at onset (AAO) was 53.7±11.4 years. The AAO was earlier in the autosomal dominant (AD) ALS patients than in the sporadic ALS (sALS) patients. Bulbar onset was more frequent in females than in males. SOD1 was the most frequently mutated gene in the AD-ALS and the sALS patients, followed by the ATXN2 and FUS genes in the AD-ALS patients and the NEK1 and CACNA1H genes in the sALS patients. Patients with RDVs in the SOD1 or FUS genes had an earlier AAO than the mean AAO of all the patients, while the patients with RDVs in the NEK1 gene showed later onset. SOD1 gene was the most commonly mutated gene in ALS patients in China, followed by ATXN2 and NEK1. The phenotype might be determined synergistically by sex and genetic variants.
Collapse
|
22
|
Li Y, Sun B, Wang Z, He Z, Yang F, Wang H, Cui F, Chen Z, Ling L, Wang C, Huang X. Mutation Screening of the GLE1 Gene in a Large Chinese Cohort of Amyotrophic Lateral Sclerosis Patients. Front Neurosci 2021; 15:595775. [PMID: 34025336 PMCID: PMC8131544 DOI: 10.3389/fnins.2021.595775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease involving the upper and lower motor neurons of the spinal cord, brainstem, and cerebral cortex. At least 30 genes have been implicated in familial ALS (fALS) and sporadic ALS (sALS). Kaneb et al. (2015) first carried out a large-scale sequencing study in ALS patients and identified two loss-of-function (LOF) variants in the GLE1 gene. The LOF mutation-induced disruption of RNA metabolism through the haploinsufficiency mechanism is implicated in ALS pathogenesis. A total of 628 ALS patients and 522 individuals without neurodegenerative disorders were enrolled in this study to explore the GLE1 gene contribution to ALS in the Chinese population. All 16 exons and the flanking intron of GLE1 were screened by Sanger sequencing. In total, we identified seven rare GLE1 coding variants, including one novel nonsense mutation and six rare missense mutations in 628 ALS patients. The frequency of GLE1 LOF mutations was 0.16% (1/628) among Chinese sALS patients, implying that it is an uncommon genetic determinant of ALS in Chinese patients. Additionally, the rare missense variants in the hCG1-binding domain of GLE1 impairing the distribution of the hGle1B isoform at the nuclear pore complex (NPC) region may be involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Yanran Li
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Sun
- Geriatric Neurological Department of the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhengqing He
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Yang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fang Cui
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Chen
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li Ling
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xusheng Huang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Tziortzouda P, Van Den Bosch L, Hirth F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 2021; 22:197-208. [PMID: 33654312 DOI: 10.1038/s41583-021-00431-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Cytoplasmic aggregation of TAR DNA-binding protein 43 (TDP43; also known as TARDBP or TDP-43) is a key pathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 typically resides in the nucleus but can shuttle between the nucleus and the cytoplasm to exert its multiple functions, which include regulation of the splicing, trafficking and stabilization of RNA. Cytoplasmic mislocalization and nuclear loss of TDP43 have both been associated with ALS and FTD, suggesting that calibrated levels and correct localization of TDP43 - achieved through an autoregulatory loop and tightly controlled nucleocytoplasmic transport - safeguard its normal function. Furthermore, TDP43 can undergo phase transitions, including its dispersion into liquid droplets and its accumulation into irreversible cytoplasmic aggregates. Thus, autoregulation, nucleocytoplasmic transport and phase transition are all part of an intrinsic control system regulating the physiological levels and localization of TDP43, and together are essential for the cellular homeostasis that is affected in neurodegenerative disease.
Collapse
Affiliation(s)
- Paraskevi Tziortzouda
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
24
|
Tsai YL, Manley JL. Multiple ways to a dead end: diverse mechanisms by which ALS mutant genes induce cell death. Cell Cycle 2021; 20:631-646. [PMID: 33722167 DOI: 10.1080/15384101.2021.1886661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a deadly neuromuscular disorder caused by progressive motor neuron loss in the brain and spinal cord. Over the past decades, a number of genetic mutations have been identified that cause or are associated with ALS disease progression. Numerous genes harbor ALS mutations, and they encode proteins displaying a wide range of physiological functions, with limited overlap. Despite the divergent functions, mutations in these genes typically trigger protein aggregation, which can confer gain- and/or loss-of-function to a number of essential cellular processes. Nuclear processes such as mRNA splicing and the response to DNA damage are significantly affected in ALS patients. Cytoplasmic organelles such as mitochondria are damaged by ALS mutant proteins. Processes that maintain cellular homeostasis such as autophagy, nonsense-mediated mRNA decay and nucleocytoplasmic transport, are also impaired by ALS mutations. Here, we review the multiple mechanisms by which mutations in major ALS-associated genes, such as TARDBP, C9ORF72 and FUS, lead to impairment of essential cellular processes.
Collapse
Affiliation(s)
- Yueh-Lin Tsai
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, United States
| |
Collapse
|
25
|
Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122687. [PMID: 33333804 PMCID: PMC7765192 DOI: 10.3390/cells9122687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease and a neurodegenerative disorder, affecting the upper and/or lower motor neurons. Notably, it invariably leads to death within a few years of onset. Although most ALS cases are sporadic, familial amyotrophic lateral sclerosis (fALS) forms 10% of the cases. In 1993, the first causative gene (SOD1) of fALS was identified. With rapid advances in genetics, over fifty potentially causative or disease-modifying genes have been found in ALS so far. Accordingly, routine diagnostic tests should encompass the oldest and most frequently mutated ALS genes as well as several new important genetic variants in ALS. Herein, we discuss current literatures on the four newly identified ALS-associated genes (CYLD, S1R, GLT8D1, and KIF5A) and the previously well-known ALS genes including SOD1, TARDBP, FUS, and C9orf72. Moreover, we review the pathogenic implications and disease mechanisms of these genes. Elucidation of the cellular and molecular functions of the mutated genes will bring substantial insights for the development of therapeutic approaches to treat ALS.
Collapse
|
26
|
Out or decay: fate determination of nuclear RNAs. Essays Biochem 2020; 64:895-905. [DOI: 10.1042/ebc20200005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Abstract
In eukaryotes, RNAs newly synthesized by RNA polymerase II (RNAPII) undergo several processing steps prior to transport to the cytoplasm. It has long been known that RNAs with defects in processing or export are removed in the nucleus. Recent studies revealed that RNAs without apparent defects are also subjected to nuclear degradation, indicating that nuclear RNA fate is determined in a more complex and dynamic way than previously thought. Nuclear RNA sorting directly determines the quality and quantity of RNA pools for future translation and thus is of significant importance. In this essay, we will summarize recent studies on this topic, mainly focusing on findings in mammalian system, and discuss about important remaining questions and possible biological relevance for nuclear RNA fate determination.
Collapse
|
27
|
Mason AC, Wente SR. Functions of Gle1 are governed by two distinct modes of self-association. J Biol Chem 2020; 295:16813-16825. [PMID: 32981894 PMCID: PMC7864074 DOI: 10.1074/jbc.ra120.015715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/23/2020] [Indexed: 11/08/2022] Open
Abstract
Gle1 is a conserved, essential regulator of DEAD-box RNA helicases, with critical roles defined in mRNA export, translation initiation, translation termination, and stress granule formation. Mechanisms that specify which, where, and when DDXs are targeted by Gle1 are critical to understand. In addition to roles for stress-induced phosphorylation and inositol hexakisphosphate binding in specifying Gle1 function, Gle1 oligomerizes via its N-terminal domain in a phosphorylation-dependent manner. However, a thorough analysis of the role for Gle1 self-association is lacking. Here, we find that Gle1 self-association is driven by two distinct regions: a coiled-coil domain and a novel 10-amino acid aggregation-prone region, both of which are necessary for proper Gle1 oligomerization. By exogenous expression in HeLa cells, we tested the function of a series of mutations that impact the oligomerization domains of the Gle1A and Gle1B isoforms. Gle1 oligomerization is necessary for many, but not all aspects of Gle1A and Gle1B function, and the requirements for each interaction domain differ. Whereas the coiled-coil domain and aggregation-prone region additively contribute to competent mRNA export and stress granule formation, both self-association domains are independently required for regulation of translation under cellular stress. In contrast, Gle1 self-association is dispensable for phosphorylation and nonstressed translation initiation. Collectively, we reveal self-association functions as an additional mode of Gle1 regulation to ensure proper mRNA export and translation. This work also provides further insight into the mechanisms underlying human gle1 disease mutants found in prenatally lethal forms of arthrogryposis.
Collapse
Affiliation(s)
- Aaron C Mason
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
28
|
Gagliardi D, Costamagna G, Taiana M, Andreoli L, Biella F, Bersani M, Bresolin N, Comi GP, Corti S. Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Res Rev 2020; 64:101172. [PMID: 32971256 DOI: 10.1016/j.arr.2020.101172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
In 2011, a hexanucleotide repeat expansion (HRE) in the noncoding region of C9orf72 was associated with the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The main pathogenic mechanisms in C9-ALS/FTD are haploinsufficiency of the C9orf72 protein and gain of function toxicity from bidirectionally-transcribed repeat-containing RNAs and dipeptide repeat proteins (DPRs) resulting from non-canonical RNA translation. Additionally, abnormalities in different downstream cellular mechanisms, such as nucleocytoplasmic transport and autophagy, play a role in pathogenesis. Substantial research efforts using in vitro and in vivo models have provided valuable insights into the contribution of each mechanism in disease pathogenesis. However, conflicting evidence exists, and a unifying theory still lacks. Here, we provide an overview of the recently published literature on clinical, neuropathological and molecular features of C9-ALS/FTD. We highlight the supposed neuronal role of C9orf72 and the HRE pathogenic cascade, mainly focusing on the contribution of RNA foci and DPRs to neurodegeneration and discussing the several downstream mechanisms. We summarize the emerging biochemical and neuroimaging biomarkers, as well as the potential therapeutic approaches. Despite promising results, a specific disease-modifying treatment is still not available to date and greater insights into disease mechanisms may help in this direction.
Collapse
Affiliation(s)
- Delia Gagliardi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Gianluca Costamagna
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Luca Andreoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio Biella
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Margherita Bersani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
29
|
Sun Y, Curle AJ, Haider AM, Balmus G. The role of DNA damage response in amyotrophic lateral sclerosis. Essays Biochem 2020; 64:847-861. [PMID: 33078197 PMCID: PMC7588667 DOI: 10.1042/ebc20200002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly disabling and fatal neurodegenerative disease. Due to insufficient disease-modifying treatments, there is an unmet and urgent need for elucidating disease mechanisms that occur early and represent common triggers in both familial and sporadic ALS. Emerging evidence suggests that impaired DNA damage response contributes to age-related somatic accumulation of genomic instability and can trigger or accelerate ALS pathological manifestations. In this review, we summarize and discuss recent studies indicating a direct link between DNA damage response and ALS. Further mechanistic understanding of the role genomic instability is playing in ALS disease pathophysiology will be critical for discovering new therapeutic avenues.
Collapse
Affiliation(s)
- Yu Sun
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Annabel J Curle
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Arshad M Haider
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| |
Collapse
|
30
|
Vishnoi N, Dhanasekeran K, Chalfant M, Surovstev I, Khokha MK, Lusk CP. Differential turnover of Nup188 controls its levels at centrosomes and role in centriole duplication. J Cell Biol 2020; 219:133835. [PMID: 32211895 PMCID: PMC7055002 DOI: 10.1083/jcb.201906031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/18/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
NUP188 encodes a scaffold component of the nuclear pore complex (NPC) and has been implicated as a congenital heart disease gene through an ill-defined function at centrioles. Here, we explore the mechanisms that physically and functionally segregate Nup188 between the pericentriolar material (PCM) and NPCs. Pulse-chase fluorescent labeling indicates that Nup188 populates centrosomes with newly synthesized protein that does not exchange with NPCs even after mitotic NPC breakdown. In addition, the steady-state levels of Nup188 are controlled by the sensitivity of the PCM pool, but not the NPC pool, to proteasomal degradation. Proximity-labeling and super-resolution microscopy show that Nup188 is vicinal to the inner core of the interphase centrosome. Consistent with this, we demonstrate direct binding between Nup188 and Cep152. We further show that Nup188 functions in centriole duplication at or upstream of Sas6 loading. Together, our data establish Nup188 as a component of PCM needed to duplicate the centriole with implications for congenital heart disease mechanisms.
Collapse
Affiliation(s)
- Nidhi Vishnoi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | | | | | - Ivan Surovstev
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, New Haven, CT
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
31
|
Diez L, Wegmann S. Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Front Neurol 2020; 11:1056. [PMID: 33101165 PMCID: PMC7546323 DOI: 10.3389/fneur.2020.01056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Tau is a cytosolic microtubule binding protein that is highly abundant in the axons of the central nervous system. However, alternative functions of tau also in other cellular compartments are suggested, for example, in the nucleus, where interactions of tau with specific nuclear entities such as DNA, the nucleolus, and the nuclear envelope have been reported. We would like to review the current knowledge about tau-nucleus interactions and lay out possible neurotoxic mechanisms that are based on the (pathological) interactions of tau with the nucleus.
Collapse
Affiliation(s)
- Lisa Diez
- German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, Berlin, Germany
| |
Collapse
|
32
|
Lattante S, Marangi G, Doronzio PN, Conte A, Bisogni G, Zollino M, Sabatelli M. High-Throughput Genetic Testing in ALS: The Challenging Path of Variant Classification Considering the ACMG Guidelines. Genes (Basel) 2020; 11:genes11101123. [PMID: 32987860 PMCID: PMC7600768 DOI: 10.3390/genes11101123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
The development of high-throughput sequencing technologies and screening of big patient cohorts with familial and sporadic amyotrophic lateral sclerosis (ALS) led to the identification of a significant number of genetic variants, which are sometimes difficult to interpret. The American College of Medical Genetics and Genomics (ACMG) provided guidelines to help molecular geneticists and pathologists to interpret variants found in laboratory testing. We assessed the application of the ACMG criteria to ALS-related variants, combining data from literature with our experience. We analyzed a cohort of 498 ALS patients using massive parallel sequencing of ALS-associated genes and identified 280 variants with a minor allele frequency < 1%. Examining all variants using the ACMG criteria, thus considering the type of variant, inheritance, familial segregation, and possible functional studies, we classified 20 variants as “pathogenic”. In conclusion, ALS’s genetic complexity, such as oligogenic inheritance, presence of genes acting as risk factors, and reduced penetrance, needs to be considered when interpreting variants. The goal of this work is to provide helpful suggestions to geneticists and clinicians dealing with ALS.
Collapse
Affiliation(s)
- Serena Lattante
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
| | - Giuseppe Marangi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-0630154606
| | - Paolo Niccolò Doronzio
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
| | - Amelia Conte
- Adult NEMO Clinical Center, Complex Operational Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy; (A.C.); (G.B.); (M.S.)
| | - Giulia Bisogni
- Adult NEMO Clinical Center, Complex Operational Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy; (A.C.); (G.B.); (M.S.)
| | - Marcella Zollino
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
| | - Mario Sabatelli
- Adult NEMO Clinical Center, Complex Operational Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy; (A.C.); (G.B.); (M.S.)
- Section of Neurology, Department of Neuroscience, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy
| |
Collapse
|
33
|
Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 2020; 9:25. [PMID: 32616075 PMCID: PMC7333321 DOI: 10.1186/s40035-020-00205-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
34
|
Cerino M, Di Meglio C, Albertini F, Audic F, Riccardi F, Boulay C, Philip N, Bartoli M, Lévy N, Krahn M, Chabrol B. Extension of the phenotypic spectrum of GLE1-related disorders to a mild congenital form resembling congenital myopathy. Mol Genet Genomic Med 2020; 8:e1277. [PMID: 32537934 PMCID: PMC7434744 DOI: 10.1002/mgg3.1277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background GLE1 (GLE1, RNA Export Mediator, OMIM#603371) variants are associated with severe autosomal recessive motor neuron diseases, that are lethal congenital contracture syndrome 1 (LCCS1, OMIM#253310) and congenital arthrogryposis with anterior horn cell disease (CAAHD, OMIM#611890). The clinical spectrum of GLE1‐related disorders has been expanding these past years, including with adult‐onset amyotrophic lateral sclerosis (ALS) GLE1‐related forms, especially through the new molecular diagnosis strategies associated with the emergence of next‐generation sequencing (NGS) technologies. However, despite this phenotypic variability, reported congenital or ALS adult‐onset forms remain severe, leading to premature death. Methods Through multidisciplinary interactions between our Neuropediatric and Medical Genetics departments, we were able to diagnose two siblings presenting with congenital disorder, using an NGS approach accordingly to the novel French national recommendations. Results Two siblings with very similar clinical features, meaning neuromuscular disorder of neonatal onset with progressive improvement, were examined in our Neuropediatrics department. The clinical presentation evoked initially congenital myopathy with autosomal recessive inheritance. However, additional symptoms such as mild dysmorphic features including high anterior hairline, downslanted palpebral fissures, anteverted nares, smooth philtrum with thin upper‐lip, narrow mouth and microretrognathia or delayed expressive language and postnatal growth retardation were suggestive of a more complex clinical presentation and molecular diagnosis. Our NGS approach revealed an unexpected molecular diagnosis for these two siblings, meaning the presence of the homozygous c.1808G>T GLE1 variant. Conclusions We here report the mildest phenotype ever described, in two siblings carrying the homozygous c.1808G>T GLE1 variant, further widening the clinical spectrum of GLE1‐related diseases. Moreover, by reflecting current medical practice, this case report confirms the importance of establishing regular multidisciplinary meetings, essential for discussing such difficult clinical presentations to finally enable molecular diagnosis, especially when NGS technologies are used.
Collapse
Affiliation(s)
- Mathieu Cerino
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France.,APHM, Hôpital de la Conception, Laboratoire de Biochimie, Marseille, France
| | - Chloé Di Meglio
- APHM, Hôpital Timone Enfants, Service de Neurologie Pédiatrique, Marseille, France
| | - Francesca Albertini
- APHM, Hôpital Timone Enfants, Service de Neurologie Pédiatrique, Marseille, France
| | - Frédérique Audic
- APHM, Hôpital Timone Enfants, Service de Neurologie Pédiatrique, Marseille, France
| | - Florence Riccardi
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France
| | - Christophe Boulay
- APHM, Hôpital Timone Enfants, Service de Neurologie Pédiatrique, Marseille, France
| | - Nicole Philip
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France
| | - Martin Krahn
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France
| | - Brigitte Chabrol
- GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France.,APHM, Hôpital Timone Enfants, Service de Neurologie Pédiatrique, Marseille, France
| |
Collapse
|
35
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
36
|
Fallini C, Khalil B, Smith CL, Rossoll W. Traffic jam at the nuclear pore: All roads lead to nucleocytoplasmic transport defects in ALS/FTD. Neurobiol Dis 2020; 140:104835. [PMID: 32179176 DOI: 10.1016/j.nbd.2020.104835] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/25/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset neurodegenerative disease that specifically affects the function and survival of spinal and cortical motor neurons. ALS shares many genetic, clinical, and pathological characteristics with frontotemporal dementia (FTD), and these diseases are now recognized as presentations of a disease spectrum known as ALS/FTD. The molecular determinants of neuronal loss in ALS/FTD are still debated, but the recent discovery of nucleocytoplasmic transport defects as a common denominator of most if not all forms of ALS/FTD has dramatically changed our understanding of the pathogenic mechanisms of this disease. Loss of nuclear pores and nucleoporin aggregation, altered nuclear morphology, and impaired nuclear transport are some of the most prominent features that have been identified using a variety of animal, cellular, and human models of disease. Here, we review the experimental evidence linking nucleocytoplasmic transport defects to the pathogenesis of ALS/FTD and propose a unifying view on how these defects may lead to a vicious cycle that eventually causes neuronal death.
Collapse
Affiliation(s)
- Claudia Fallini
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| | - Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Courtney L Smith
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
37
|
Hutten S, Dormann D. Nucleocytoplasmic transport defects in neurodegeneration — Cause or consequence? Semin Cell Dev Biol 2020; 99:151-162. [DOI: 10.1016/j.semcdb.2019.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
|
38
|
Kumar R, Palmer E, Gardner AE, Carroll R, Banka S, Abdelhadi O, Donnai D, Elgersma Y, Curry CJ, Gardham A, Suri M, Malla R, Brady LI, Tarnopolsky M, Azmanov DN, Atkinson V, Black M, Baynam G, Dreyer L, Hayeems RZ, Marshall CR, Costain G, Wessels MW, Baptista J, Drummond J, Leffler M, Field M, Gecz J. Expanding Clinical Presentations Due to Variations in THOC2 mRNA Nuclear Export Factor. Front Mol Neurosci 2020; 13:12. [PMID: 32116545 PMCID: PMC7026477 DOI: 10.3389/fnmol.2020.00012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Multiple TREX mRNA export complex subunits (e.g., THOC1, THOC2, THOC5, THOC6, THOC7) have now been implicated in neurodevelopmental disorders (NDDs), neurodegeneration and cancer. We previously implicated missense and splicing-defective THOC2 variants in NDDs and a broad range of other clinical features. Here we report 10 individuals from nine families with rare missense THOC2 variants including the first case of a recurrent variant (p.Arg77Cys), and an additional individual with an intragenic THOC2 microdeletion (Del-Ex37-38). Ex vivo missense variant testing and patient-derived cell line data from current and published studies show 9 of the 14 missense THOC2 variants result in reduced protein stability. The splicing-defective and deletion variants result in a loss of small regions of the C-terminal THOC2 RNA binding domain (RBD). Interestingly, reduced stability of THOC2 variant proteins has a flow-on effect on the stability of the multi-protein TREX complex; specifically on the other NDD-associated THOC subunits. Our current, expanded cohort refines the core phenotype of THOC2 NDDs to language disorder and/or ID, with a variable severity, and disorders of growth. A subset of affected individuals' has severe-profound ID, persistent hypotonia and respiratory abnormalities. Further investigations to elucidate the pathophysiological basis for this severe phenotype are warranted.
Collapse
Affiliation(s)
- Raman Kumar
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Elizabeth Palmer
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Alison E. Gardner
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Renee Carroll
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Siddharth Banka
- Faculty of Biology, Medicine and Health, Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom
| | - Ola Abdelhadi
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom
| | - Dian Donnai
- Faculty of Biology, Medicine and Health, Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Cynthia J. Curry
- Genetic Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Alice Gardham
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, United Kingdom
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, and the 100,000 Genomes Project and the Genomics England Research Consortium, Nottingham, United Kingdom
| | - Rishikesh Malla
- Division of Pediatric Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Lauren Ilana Brady
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Dimitar N. Azmanov
- Department of Diagnostic Genomics, PathWest, Nedlands, WA, Australia
- Division of Pathology and Laboratory Medicine, Medical School, University of Western Australia, Crawley, WA, Australia
| | - Vanessa Atkinson
- Department of Diagnostic Genomics, PathWest, Nedlands, WA, Australia
- Division of Pathology and Laboratory Medicine, Medical School, University of Western Australia, Crawley, WA, Australia
| | - Michael Black
- Department of Diagnostic Genomics, PathWest, Nedlands, WA, Australia
- Division of Pathology and Laboratory Medicine, Medical School, University of Western Australia, Crawley, WA, Australia
| | - Gareth Baynam
- Faculty of Health and Medical Sciences, University of Western Australia Medical School, Perth, WA, Australia
| | - Lauren Dreyer
- Genetic Services of Western Australia, Undiagnosed Diseases Program, Department of Health, Government of Western Australia, Perth, WA, Australia
- Linear Clinical Research, Perth, WA, Australia
| | - Robin Z. Hayeems
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, and Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Christian R. Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Julia Baptista
- Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - James Drummond
- Neuroradiology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Melanie Leffler
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Jozef Gecz
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Childhood Disability Prevention, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
39
|
Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat Rev Neurol 2020; 15:272-286. [PMID: 30890779 DOI: 10.1038/s41582-019-0157-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomolecular condensation arising through phase transitions has emerged as an essential organizational strategy that governs many aspects of cell biology. In particular, the role of phase transitions in the assembly of large, complex ribonucleoprotein (RNP) granules has become appreciated as an important regulator of RNA metabolism. In parallel, genetic, histopathological and cell and molecular studies have provided evidence that disturbance of phase transitions is an important driver of neurological diseases, notably amyotrophic lateral sclerosis (ALS), but most likely also other diseases. Indeed, our growing knowledge of the biophysics underlying biological phase transitions suggests that this process offers a unifying mechanism to explain the numerous and diverse disturbances in RNA metabolism that have been observed in ALS and some related diseases - specifically, that these diseases are driven by disturbances in the material properties of RNP granules. Here, we review the evidence for this hypothesis, emphasizing the reciprocal roles in which disease-related protein and disease-related RNA can lead to disturbances in the material properties of RNP granules and consequent pathogenesis. Additionally, we review evidence that implicates aberrant phase transitions as a contributing factor to a larger set of neurodegenerative diseases, including frontotemporal dementia, certain repeat expansion diseases and Alzheimer disease.
Collapse
|
40
|
Xie Y, Ren Y. Mechanisms of nuclear mRNA export: A structural perspective. Traffic 2019; 20:829-840. [PMID: 31513326 DOI: 10.1111/tra.12691] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
Export of mRNA from the nucleus to the cytoplasm is a critical process for all eukaryotic gene expression. As mRNA is synthesized, it is packaged with a myriad of RNA-binding proteins to form ribonucleoprotein particles (mRNPs). For each step in the processes of maturation and export, mRNPs must have the correct complement of proteins. Much of the mRNA export pathway revolves around the heterodimeric export receptor yeast Mex67•Mtr2/human NXF1•NXT1, which is recruited to signal the completion of nuclear mRNP assembly, mediates mRNP targeting/translocation through the nuclear pore complex (NPC), and is displaced at the cytoplasmic side of the NPC to release the mRNP into the cytoplasm. Directionality of the transport is governed by at least two DEAD-box ATPases, yeast Sub2/human UAP56 in the nucleus and yeast Dbp5/human DDX19 at the cytoplasmic side of the NPC, which respectively mediate the association and dissociation of Mex67•Mtr2/NXF1•NXT1 onto the mRNP. Here we review recent progress from structural studies of key constituents in different steps of nuclear mRNA export. These findings have laid the foundation for further studies to obtain a comprehensive mechanistic view of the mRNA export pathway.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
41
|
Cho KI, Yoon D, Yu M, Peachey NS, Ferreira PA. Microglial activation in an amyotrophic lateral sclerosis-like model caused by Ranbp2 loss and nucleocytoplasmic transport impairment in retinal ganglion neurons. Cell Mol Life Sci 2019; 76:3407-3432. [PMID: 30944974 PMCID: PMC6698218 DOI: 10.1007/s00018-019-03078-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Nucleocytoplasmic transport is dysregulated in sporadic and familial amyotrophic lateral sclerosis (ALS) and retinal ganglion neurons (RGNs) are purportedly involved in ALS. The Ran-binding protein 2 (Ranbp2) controls rate-limiting steps of nucleocytoplasmic transport. Mice with Ranbp2 loss in Thy1+-motoneurons develop cardinal ALS-like motor traits, but the impairments in RGNs and the degree of dysfunctional consonance between RGNs and motoneurons caused by Ranbp2 loss are unknown. This will help to understand the role of nucleocytoplasmic transport in the differential vulnerability of neuronal cell types to ALS and to uncover non-motor endophenotypes with pathognomonic signs of ALS. Here, we ascertain Ranbp2's function and endophenotypes in RGNs of an ALS-like mouse model lacking Ranbp2 in motoneurons and RGNs. Thy1+-RGNs lacking Ranbp2 shared with motoneurons the dysregulation of nucleocytoplasmic transport. RGN abnormalities were comprised morphologically by soma hypertrophy and optic nerve axonopathy and physiologically by a delay of the visual pathway's evoked potentials. Whole-transcriptome analysis showed restricted transcriptional changes in optic nerves that were distinct from those found in sciatic nerves. Specifically, the level and nucleocytoplasmic partition of the anti-apoptotic and novel substrate of Ranbp2, Pttg1/securin, were dysregulated. Further, acetyl-CoA carboxylase 1, which modulates de novo synthesis of fatty acids and T-cell immunity, showed the highest up-regulation (35-fold). This effect was reflected by the activation of ramified CD11b+ and CD45+-microglia, increase of F4\80+-microglia and a shift from pseudopodial/lamellipodial to amoeboidal F4\80+-microglia intermingled between RGNs of naive mice. Further, there was the intracellular sequestration in RGNs of metalloproteinase-28, which regulates macrophage recruitment and polarization in inflammation. Hence, Ranbp2 genetic insults in RGNs and motoneurons trigger distinct paracrine signaling likely by the dysregulation of nucleocytoplasmic transport of neuronal-type selective substrates. Immune-modulators underpinning RGN-to-microglial signaling are regulated by Ranbp2, and this neuronal-glial system manifests endophenotypes that are likely useful in the prognosis and diagnosis of motoneuron diseases, such as ALS.
Collapse
Affiliation(s)
- Kyoung-In Cho
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
42
|
Halpern M, Brennand KJ, Gregory J. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiol Dis 2019; 132:104562. [PMID: 31381978 DOI: 10.1016/j.nbd.2019.104562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex and fatal neurodegenerative disease for which the causes of disease onset and progression remain unclear. Recent advances in human induced pluripotent stem cell (hiPSC)-based models permit the study of the genetic factors associated with ALS in patient-derived neural cell types, including motor neurons and glia. While astrocyte dysfunction has traditionally been thought to exacerbate disease progression, astrocytic dysfunction may play a more direct role in disease initiation and progression. Such non-cell autonomous mechanisms expand the potential targets of therapeutic intervention, but only a handful of ALS risk-associated genes have been examined for their impact on astrocyte dysfunction and neurodegeneration. This review summarizes what is currently known about astrocyte function in ALS and suggests ways in which hiPSC-based models can be used to more effectively study the role of astrocytes in neurodegenerative disease.
Collapse
Affiliation(s)
- Madeline Halpern
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - James Gregory
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, United States of America.
| |
Collapse
|
43
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
44
|
Parakh S, Perri ER, Jagaraj CJ, Ragagnin AMG, Atkin JD. Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 2019; 53:623-651. [PMID: 30741580 DOI: 10.1080/10409238.2018.1553926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rab GTPases are becoming increasingly implicated in neurodegenerative disorders, although their role in amyotrophic lateral sclerosis (ALS) has been somewhat overlooked. However, dysfunction of intracellular transport is gaining increasing attention as a pathogenic mechanism in ALS. Many previous studies have focused axonal trafficking, and the extreme length of axons in motor neurons may contribute to their unique susceptibility in this disorder. In contrast, the role of transport defects within the cell body has been relatively neglected. Similarly, whilst Rab GTPases control all intracellular membrane trafficking events, their role in ALS is poorly understood. Emerging evidence now highlights this family of proteins in ALS, particularly the discovery that C9orf72 functions in intra transport in conjunction with several Rab GTPases. Here, we summarize recent updates on cellular transport defects in ALS, with a focus on Rab GTPases and how their dysfunction may specifically target neurons and contribute to pathophysiology. We discuss the molecular mechanisms associated with dysfunction of Rab proteins in ALS. Finally, we also discuss dysfunction in other modes of transport recently implicated in ALS, including nucleocytoplasmic transport and the ER-mitochondrial contact regions (MAM compartment), and speculate whether these may also involve Rab GTPases.
Collapse
Affiliation(s)
- S Parakh
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - E R Perri
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - C J Jagaraj
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - A M G Ragagnin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - J D Atkin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
45
|
Thaller DJ, Allegretti M, Borah S, Ronchi P, Beck M, Lusk CP. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 2019; 8:e45284. [PMID: 30942170 PMCID: PMC6461442 DOI: 10.7554/elife.45284] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
The integrity of the nuclear membranes coupled to the selective barrier of nuclear pore complexes (NPCs) are essential for the segregation of nucleoplasm and cytoplasm. Mechanical membrane disruption or perturbation to NPC assembly triggers an ESCRT-dependent surveillance system that seals nuclear pores: how these pores are sensed and sealed is ill defined. Using a budding yeast model, we show that the ESCRT Chm7 and the integral inner nuclear membrane (INM) protein Heh1 are spatially segregated by nuclear transport, with Chm7 being actively exported by Xpo1/Crm1. Thus, the exposure of the INM triggers surveillance with Heh1 locally activating Chm7. Sites of Chm7 hyperactivation show fenestrated sheets at the INM and potential membrane delivery at sites of nuclear envelope herniation. Our data suggest that perturbation to the nuclear envelope barrier would lead to local nuclear membrane remodeling to promote membrane sealing. Our findings have implications for disease mechanisms linked to NPC assembly and nuclear envelope integrity.
Collapse
Affiliation(s)
- David J Thaller
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Matteo Allegretti
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Sapan Borah
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Paolo Ronchi
- Electron Microscopy Core FacilityEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Martin Beck
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - C Patrick Lusk
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| |
Collapse
|
46
|
Benarroch EE. Nucleocytoplasmic transport: Mechanisms and involvement in neurodegenerative disease. Neurology 2019; 92:757-764. [PMID: 30894450 DOI: 10.1212/wnl.0000000000007305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
47
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
48
|
Pampalakis G, Mitropoulos K, Xiromerisiou G, Dardiotis E, Deretzi G, Anagnostouli M, Katsila T, Rentzos M, Patrinos GP. New molecular diagnostic trends and biomarkers for amyotrophic lateral sclerosis. Hum Mutat 2019; 40:361-373. [DOI: 10.1002/humu.23697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Georgios Pampalakis
- Department of PharmacyAristotle University of Thessaloniki Thessaloniki Greece
| | | | | | | | | | - Maria Anagnostouli
- University of Athens School of MedicineAiginition Hospital Athens Greece
| | - Theodora Katsila
- Department of PharmacySchool of Health SciencesUniversity of Patras Patras Greece
| | - Michail Rentzos
- University of Athens School of MedicineAiginition Hospital Athens Greece
| | - George P. Patrinos
- Department of PharmacySchool of Health SciencesUniversity of Patras Patras Greece
- Department of PharmacyCollege of Medicine and Health SciencesUnited Arab Emirates University Al Ain UAE
| |
Collapse
|
49
|
Aizawa H, Yamashita T, Kato H, Kimura T, Kwak S. Impaired Nucleoporins Are Present in Sporadic Amyotrophic Lateral Sclerosis Motor Neurons that Exhibit Mislocalization of the 43-kDa TAR DNA-Binding Protein. J Clin Neurol 2019; 15:62-67. [PMID: 30618218 PMCID: PMC6325357 DOI: 10.3988/jcn.2019.15.1.62] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Disruption of nucleoporins has been reported in the motor neurons of patients with sporadic amyotrophic lateral sclerosis (sALS). However, the precise changes in the morphology of nucleoporins associated with the pathology of the 43-kDa TAR DNA-binding protein (TDP-43) in the disease process remain unknown. We investigated the expression of nucleoporins that constitute the nuclear pore complex (NPC) in spinal motor neurons that exhibit sALS in relation to TDP-43 pathology, which is a reliable neuropathological hallmark of sALS. METHODS Paraffin-embedded sections of the lumbar spinal cord were obtained for immunofluorescence analysis from seven control subjects and six sALS patients. Anti-TDP-43 antibody, anti-nucleoporin p62 (NUP62) antibody, and anti-karyopherin beta 1 (KPNB1) antibody were applied as primary antibodies, and then visualized using appropriate secondary antibodies. The sections were then examined under a fluorescence microscope. RESULTS NUP62 and KPNB1 immunoreactivity appeared as a smooth round rim bordering the nuclear margin in normal spinal motor neurons that exhibited nuclear TDP-43 immunoreactivity. sALS spinal motor neurons with apparent TDP-43 mislocalization demonstrated irregular, disrupted nuclear staining for NUP62 or KPNB1. Some atrophic sALS spinal motor neurons with TDP-43 mislocalization presented no NUP62 immunoreactivity. CONCLUSIONS Our findings suggest a close relationship between NPC alterations and TDP-43 pathology in the degenerative process of the motor neurons of sALS patients.
Collapse
Affiliation(s)
- Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, Tokyo, Japan.
| | - Takenari Yamashita
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruhisa Kato
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Kimura
- Department of Neurology, Asahikawa Medical Center, National Hospital Organization, Asahikawa, Japan
| | - Shin Kwak
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Neueder A. RNA-Mediated Disease Mechanisms in Neurodegenerative Disorders. J Mol Biol 2018; 431:1780-1791. [PMID: 30597161 DOI: 10.1016/j.jmb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
RNA is accurately entangled in virtually all pathways that maintain cellular homeostasis. To name but a few, RNA is the "messenger" between DNA encoded information and the resulting proteins. Furthermore, RNAs regulate diverse processes by forming DNA::RNA or RNA::RNA interactions. Finally, RNA itself can be the scaffold for ribonucleoprotein complexes, for example, ribosomes or cellular bodies. Consequently, disruption of any of these processes can lead to disease. This review describes known and emerging RNA-based disease mechanisms like interference with regular splicing, the anomalous appearance of RNA-protein complexes and uncommon RNA species, as well as non-canonical translation. Due to the complexity and entanglement of the above-mentioned pathways, only few drugs are available that target RNA-based disease mechanisms. However, advances in our understanding how RNA is involved in and modulates cellular homeostasis might pave the way to novel treatments.
Collapse
Affiliation(s)
- Andreas Neueder
- Experimental Neurology, Department of Neurology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|