1
|
Yadav R, Patel B. Insights on effects of Wnt pathway modulation on insulin signaling and glucose homeostasis for the treatment of type 2 diabetes mellitus: Wnt activation or Wnt inhibition? Int J Biol Macromol 2024; 261:129634. [PMID: 38272413 DOI: 10.1016/j.ijbiomac.2024.129634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a major worldwide chronic disease and can lead to serious diabetic complications. Despite the availability of many anti-diabetic agents in the market, they are unable to meet the long-term treatment goals. Also, they cause many side effects which justify the need for novel class of anti-diabetic drugs with newer mechanism of action. Wnt signaling is one of such novel target pathways which can be explored for metabolic disorders. Many key components of the Wnt signaling are involved in the regulation of glucose homeostasis. Polymorphism in the Transcription factor 7-like 2 (TCF7L2) gene, and mutations in the LRP5 (LDL Receptor Related Protein 5) gene lead to disturbed glucose metabolism and obesity. Despite of several years of research in this field, there is no concrete proof of concept available on whether Wnt activation or Wnt inhibition is the beneficial approach for the treatment of T2DM. Here, we have summarized the conclusions of relevant published research studies to give structured insights into possibilities to explore Wnt modulation as a novel target pathway for the treatment of T2DM. The review also highlights the present challenges and future opportunities towards the development of anti-diabetic small molecules targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
2
|
Verma M, Loh NY, Sabaratnam R, Vasan SK, van Dam AD, Todorčević M, Neville MJ, Toledo E, Karpe F, Christodoulides C. TCF7L2 plays a complex role in human adipose progenitor biology, which might contribute to genetic susceptibility to type 2 diabetes. Metabolism 2022; 133:155240. [PMID: 35697299 DOI: 10.1016/j.metabol.2022.155240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Non-coding genetic variation at TCF7L2 is the strongest genetic determinant of type 2 diabetes (T2D) risk in humans. TCF7L2 encodes a transcription factor mediating the nuclear effects of WNT signaling in adipose tissue (AT). In vivo studies in transgenic mice have highlighted important roles for TCF7L2 in adipose tissue biology and systemic metabolism. OBJECTIVE To map the expression of TCF7L2 in human AT, examine its role in human adipose cell biology in vitro, and investigate the effects of the fine-mapped T2D-risk allele at rs7903146 on AT morphology and TCF7L2 expression. METHODS Ex vivo gene expression studies of TCF7L2 in whole and fractionated human AT. In vitro TCF7L2 gain- and/or loss-of-function studies in primary and immortalized human adipose progenitor cells (APCs) and mature adipocytes (mADs). AT phenotyping of rs7903146 T2D-risk variant carriers and matched controls. RESULTS Adipose progenitors (APs) exhibited the highest TCF7L2 mRNA abundance compared to mature adipocytes and adipose-derived endothelial cells. Obesity was associated with reduced TCF7L2 transcript levels in whole subcutaneous abdominal AT but paradoxically increased expression in APs. In functional studies, TCF7L2 knockdown (KD) in abdominal APs led to dose-dependent activation of WNT/β-catenin signaling, impaired proliferation and dose-dependent effects on adipogenesis. Whilst partial KD enhanced adipocyte differentiation, near-total KD impaired lipid accumulation and adipogenic gene expression. Over-expression of TCF7L2 accelerated adipogenesis. In contrast, TCF7L2-KD in gluteal APs dose-dependently enhanced lipid accumulation. Transcriptome-wide profiling revealed that TCF7L2 might modulate multiple aspects of AP biology including extracellular matrix secretion, immune signaling and apoptosis. The T2D-risk allele at rs7903146 was associated with reduced AP TCF7L2 expression and enhanced AT insulin sensitivity. CONCLUSIONS TCF7L2 plays a complex role in AP biology and has both dose- and depot-dependent effects on adipogenesis. In addition to regulating pancreatic insulin secretion, genetic variation at TCF7L2 might also influence T2D risk by modulating AP function.
Collapse
Affiliation(s)
- Manu Verma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Nellie Y Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Senthil K Vasan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrea D van Dam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Matthew J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Enrique Toledo
- Department of Computational Biology, Novo Nordisk Research Centre Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford OX3 7LE, UK
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford OX3 7LE, UK.
| |
Collapse
|
3
|
Fry JL, Munson BD, Thompson KL, Fry CS, Paddon-Jones D, Arentson-Lantz EJ. The T allele of TCF7L2 rs7903146 is associated with decreased glucose tolerance after bed rest in healthy older adults. Sci Rep 2022; 12:6897. [PMID: 35477971 PMCID: PMC9046412 DOI: 10.1038/s41598-022-10683-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Inpatient populations are at increased risk of hyperglycemia due to factors such as medications, physical inactivity and underlying illness, which increases morbidity and mortality. Unfortunately, clinicians have limited tools available to prospectively identify those at greatest risk. We evaluated the ability of 10 common genetic variants associated with development of type 2 diabetes to predict impaired glucose metabolism. Our research model was a simulated inpatient hospital stay (7 day bed rest protocol, standardized diet, and physical inactivity) in a cohort of healthy older adults (n = 31, 65 ± 8 years) with baseline fasting blood glucose < 100 mg/dL. Participants completed a standard 75 g oral glucose tolerance test (OGTT) at baseline and post-bed rest. Bed rest increased 2-h OGTT blood glucose and insulin independent of genetic variant. In multiple regression modeling, the transcription factor 7-like 2 (TCF7L2) rs7903146 T allele predicted increases in 2-h OGTT blood glucose (p = 0.039). We showed that the TCF7L2 rs7903146 T allele confers risk for loss of glucose tolerance in nondiabetic older adults following 7 days of bed rest.
Collapse
Affiliation(s)
- Jean L Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, 40536-0200, USA.
| | - Brooke D Munson
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, 40536-0200, USA
| | - Katherine L Thompson
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, KY, 40536-0082, USA
| | - Christopher S Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, 40536-0200, USA
| | - Douglas Paddon-Jones
- Department of Nutrition & Metabolism, Center for Rehabilitation, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, TX, 77555-1028, USA
| | - Emily J Arentson-Lantz
- Department of Nutrition & Metabolism, Center for Rehabilitation, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, TX, 77555-1028, USA
| |
Collapse
|
4
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
5
|
Tagi VM, Samvelyan S, Chiarelli F. An update of the consensus statement on insulin resistance in children 2010. Front Endocrinol (Lausanne) 2022; 13:1061524. [PMID: 36465645 PMCID: PMC9709113 DOI: 10.3389/fendo.2022.1061524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
In our modern society, where highly palatable and calorie-rich foods are readily available, and sedentary lifestyle is common among children and adolescents, we face the pandemic of obesity, nonalcoholic fatty liver disease, hypertension, atherosclerosis, and T2D. Insulin resistance (IR) is known to be the main underlying mechanism of all these associated health consequences; therefore, the early detection of IR is fundamental for preventing them.A Consensus Statement, internationally supported by all the major scientific societies in pediatric endocrinology, was published in 2010, providing all the most recent reliable evidence to identify the definition of IR in children, its measurement, its risk factors, and the effective strategies to prevent and treat it. However, the 2010 Consensus concluded that further research was necessary to assess some of the discussed points, in particular the best way to measure insulin sensitivity, standardization of insulin measurements, identification of strong surrogate biomarkers of IR, and the effective role of lifestyle intervention and medications in the prevention and treatment of IR.The aim of this review is to update each point of the consensus with the most recent available studies, with the goal of giving a picture of the current state of the scientific literature regarding IR in children, with a particular regard for issues that are not yet fully clarified.
Collapse
Affiliation(s)
- Veronica Maria Tagi
- Department of Pediatrics, University of Chieti, Chieti, Italy
- *Correspondence: Veronica Maria Tagi,
| | | | | |
Collapse
|
6
|
Zhang Z, Xu L, Xu X. The role of transcription factor 7-like 2 in metabolic disorders. Obes Rev 2021; 22:e13166. [PMID: 33615650 DOI: 10.1111/obr.13166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Transcription factor 7-like 2 (TCF7L2), a member of the T cell factor/lymphoid enhancer factor family, generally forms a complex with β-catenin to regulate the downstream target genes as an effector of the canonical Wnt signalling pathway. TCF7L2 plays a vital role in various biological processes and functions in many organs and tissues, including the liver, islet and adipose tissues. Further, TCF7L2 down-regulates hepatic gluconeogenesis and promotes lipid accumulation. In islets, TCF7L2 not only affects the insulin secretion of the β-cells but also has an impact on other cells. In addition, TCF7L2 influences adipogenesis in adipose tissues. Thus, an out-of-control TCF7L2 expression can result in metabolic disorders. The TCF7L2 gene is composed of 17 exons, generating 13 different transcripts, and has many single-nucleotide polymorphisms (SNPs). The discovery that these SNPs have an impact on the risk of type 2 diabetes (T2D) has attracted thorough investigations in the study of TCF7L2. Apart from T2D, TCF7L2 SNPs are also associated with type 1, posttransplant and other types of diabetes. Furthermore, TCF7L2 variants affect the progression of other disorders, such as obesity, cancers, metabolic syndrome and heart diseases. Finally, the interaction between TCF7L2 variants and diet also needs to be investigated.
Collapse
Affiliation(s)
- Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
7
|
Sheppard B, Rappoport N, Loh PR, Sanders SJ, Zaitlen N, Dahl A. A model and test for coordinated polygenic epistasis in complex traits. Proc Natl Acad Sci U S A 2021; 118:e1922305118. [PMID: 33833052 PMCID: PMC8053945 DOI: 10.1073/pnas.1922305118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interactions between genetic variants-epistasis-is pervasive in model systems and can profoundly impact evolutionary adaption, population disease dynamics, genetic mapping, and precision medicine efforts. In this work, we develop a model for structured polygenic epistasis, called coordinated epistasis (CE), and prove that several recent theories of genetic architecture fall under the formal umbrella of CE. Unlike standard epistasis models that assume epistasis and main effects are independent, CE captures systematic correlations between epistasis and main effects that result from pathway-level epistasis, on balance skewing the penetrance of genetic effects. To test for the existence of CE, we propose the even-odd (EO) test and prove it is calibrated in a range of realistic biological models. Applying the EO test in the UK Biobank, we find evidence of CE in 18 of 26 traits spanning disease, anthropometric, and blood categories. Finally, we extend the EO test to tissue-specific enrichment and identify several plausible tissue-trait pairs. Overall, CE is a dimension of genetic architecture that can capture structured, systemic forms of epistasis in complex human traits.
Collapse
Affiliation(s)
- Brooke Sheppard
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143
| | - Nadav Rappoport
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA 94143
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143
| | - Noah Zaitlen
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143;
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Andy Dahl
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095;
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Section of Genetic Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
Weng C, Xi J, Li H, Cui J, Gu A, Lai S, Leskov K, Ke L, Jin F, Li Y. Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nat Metab 2020; 2:1443-1458. [PMID: 33257854 PMCID: PMC7744443 DOI: 10.1038/s42255-020-00314-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/22/2020] [Indexed: 11/08/2022]
Abstract
The in vitro differentiation of insulin-producing beta-like cells can model aspects of human pancreatic development. Here, we generate 95,308 single-cell transcriptomes and reconstruct a lineage tree of the entire differentiation process from human embryonic stem cells to beta-like cells to study temporally regulated genes during differentiation. We identify so-called 'switch genes' at the branch point of endocrine/non-endocrine cell fate choice, revealing insights into the mechanisms of differentiation-promoting reagents, such as NOTCH and ROCKII inhibitors, and providing improved differentiation protocols. Over 20% of all detectable genes are activated multiple times during differentiation, even though their enhancer activation is usually unimodal, indicating extensive gene reuse driven by different enhancers. We also identify a stage-specific enhancer at the TCF7L2 locus for diabetes, uncovered by genome-wide association studies, that drives a transient wave of gene expression in pancreatic progenitors. Finally, we develop a web app to visualize gene expression on the lineage tree, providing a comprehensive single-cell data resource for researchers studying islet biology and diabetes.
Collapse
Affiliation(s)
- Chen Weng
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiajia Xi
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Haiyan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jian Cui
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anniya Gu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sisi Lai
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Konstantin Leskov
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Luxin Ke
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Master of Science in Biology Program, Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Department of Electrical Engineering and Computer Science, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Young RM, Ewan KB, Ferrer VP, Allende ML, Godovac-Zimmermann J, Dale TC, Wilson SW. Developmentally regulated Tcf7l2 splice variants mediate transcriptional repressor functions during eye formation. eLife 2019; 8:e51447. [PMID: 31829936 PMCID: PMC6908431 DOI: 10.7554/elife.51447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
Tcf7l2 mediates Wnt/β-Catenin signalling during development and is implicated in cancer and type-2 diabetes. The mechanisms by which Tcf7l2 and Wnt/β-Catenin signalling elicit such a diversity of biological outcomes are poorly understood. Here, we study the function of zebrafish tcf7l2alternative splice variants and show that only variants that include exon five or an analogous human tcf7l2 variant can effectively provide compensatory repressor function to restore eye formation in embryos lacking tcf7l1a/tcf7l1b function. Knockdown of exon five specific tcf7l2 variants in tcf7l1a mutants also compromises eye formation, and these variants can effectively repress Wnt pathway activity in reporter assays using Wnt target gene promoters. We show that the repressive activities of exon5-coded variants are likely explained by their interaction with Tle co-repressors. Furthermore, phosphorylated residues in Tcf7l2 coded exon5 facilitate repressor activity. Our studies suggest that developmentally regulated splicing of tcf7l2 can influence the transcriptional output of the Wnt pathway.
Collapse
Affiliation(s)
- Rodrigo M Young
- Department of Cell and Developmental BiologyUCLLondonUnited Kingdom
| | - Kenneth B Ewan
- School of Bioscience, Cardiff UniversityCardiffUnited Kingdom
| | | | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de ChileSantiagoChile
| | | | - Trevor C Dale
- School of Bioscience, Cardiff UniversityCardiffUnited Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental BiologyUCLLondonUnited Kingdom
| |
Collapse
|
10
|
Grant SFA. The TCF7L2 Locus: A Genetic Window Into the Pathogenesis of Type 1 and Type 2 Diabetes. Diabetes Care 2019; 42:1624-1629. [PMID: 31409726 PMCID: PMC6702598 DOI: 10.2337/dci19-0001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 02/03/2023]
Abstract
Over the past ∼15 years there has been great progress in our understanding of the genetics of both type 1 diabetes and type 2 diabetes. This has been driven principally by genome-wide association studies (GWAS) in increasingly larger sample sizes, where many distinct loci have now been reported for both traits. One of the loci that dominates these studies is the TCF7L2 locus for type 2 diabetes. This genetic signal has been leveraged to explore multiple aspects of disease risk, including developments in genetic risk scores, genetic commonalities with cancer, and for gaining insights into diabetes-related molecular pathways. Furthermore, the TCF7L2 locus has aided in providing insights into the genetics of both latent autoimmune diabetes in adults and various presentations of type 1 diabetes. This review outlines the knowledge gained to date and highlights how work with this locus leads the way in guiding how many other genetic loci could be similarly used to gain insights into the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Struan F A Grant
- Divisions of Human Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Macedo CES, da Conti G, Catena AS, Bruneska D, Rosa M, Noronha CG, Santa Cruz F, Ferraz ÁAB. Assessment of TCF7L2 expression after bariatric surgery. PLoS One 2019; 14:e0216627. [PMID: 31083695 PMCID: PMC6513086 DOI: 10.1371/journal.pone.0216627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/24/2019] [Indexed: 01/18/2023] Open
Abstract
Objective To assess the influence of bariatric surgery on transcription factor 7-like 2 (TCF7L2) expression and its association with body mass index (BMI) and Type 2 diabetes mellitus (T2DM). Methods Prospective study performed between 2016 and 2018, where 26 obese patients undergoing bariatric surgery were divided into two subgroups: diabetics and non-diabetics. The RNAs were extracted from peripheral blood samples that were obtained from each patient in two different moments: before surgery and after 12 months of follow-up. The relative expression of TCF7L2 was determined according to the delta-Ct method. Results The linear regression model of BMI x delta-Ct showed a positive correlation (p = 0.037). In the subgroups, an inversely proportional relationship was found between delta-Ct and BMI in the diabetic group and a directly proportional relationship in the non-diabetic group (p>0.05 in both). In the postoperative period, the regression model was similar to the preoperative, except when analyzing the subgroups, where diabetic patients showed a directly proportional relationship (p>0.05). The relative expression of TCF7L2 showed an average of 1.16 ± 0.91, CI-95% 0.79–1.53. There was an increase in relative expression of 48% in the non-diabetic group (p = 0.021), and a decrease of 27% in the T2DM group (p>0.05) in the postoperative. There was a positive correlation between a greater decrease in BMI and increased relative expression (p = 0.027). Conclusion Our results showed that generally, the TCF7L2 expression increase with a decrease in BMI, however, for patients with T2DM, it exhibits an inverse pattern, which is normalized one year after bariatric surgery.
Collapse
Affiliation(s)
- Carlos Eduardo S. Macedo
- General Surgery Unit, Hospital das Clínicas, Federal University of Pernambuco, Recife, PE, Brazil
| | - Guilherme da Conti
- General Surgery Unit, Hospital das Clínicas, Federal University of Pernambuco, Recife, PE, Brazil
| | - Andriu S. Catena
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, PE, Brazil
| | - Danyelly Bruneska
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, PE, Brazil
- Department of Biochemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Malu Rosa
- Federal University of Pernambuco School of Medicine, Recife, PE, Brazil
| | - Clarissa G. Noronha
- General Surgery Unit, Hospital das Clínicas, Federal University of Pernambuco, Recife, PE, Brazil
| | - Fernando Santa Cruz
- Federal University of Pernambuco School of Medicine, Recife, PE, Brazil
- * E-mail:
| | - Álvaro A. B. Ferraz
- General Surgery Unit, Hospital das Clínicas, Federal University of Pernambuco, Recife, PE, Brazil
- Department of Surgery, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
12
|
Fernández-Rhodes L, Howard AG, Graff M, Isasi CR, Highland HM, Young KL, Parra E, Below JE, Qi Q, Kaplan RC, Justice AE, Papanicolaou G, Laurie CC, Grant SFA, Haiman C, Loos RJF, North KE. Complex patterns of direct and indirect association between the transcription Factor-7 like 2 gene, body mass index and type 2 diabetes diagnosis in adulthood in the Hispanic Community Health Study/Study of Latinos. BMC OBESITY 2018; 5:26. [PMID: 30305909 PMCID: PMC6167893 DOI: 10.1186/s40608-018-0200-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/23/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Genome-wide association studies have implicated the transcription factor 7-like 2 (TCF7L2) gene in type 2 diabetes risk, and more recently, in decreased body mass index. Given the contrary direction of genetic effects on these two traits, it has been suggested that the observed association with body mass index may reflect either selection bias or a complex underlying biology at TCF7L2. METHODS Using 9031 Hispanic/Latino adults (21-76 years) with complete weight history and genetic data from the community-based Hispanic Community Health Study/Study of Latinos (HCHS/SOL, Baseline 2008-2011), we estimated the multivariable association between the additive number of type 2 diabetes increasing-alleles at TCF7L2 (rs7903146-T) and body mass index. We then used structural equation models to simultaneously model the genetic association on changes in body mass index across the life course and estimate the odds of type 2 diabetes per TCF7L2 risk allele. RESULTS We observed both significant increases in type 2 diabetes prevalence at examination (independent of body mass index) and decreases in mean body mass index and waist circumference across genotypes at rs7903146. We observed a significant multivariable association between the additive number of type 2 diabetes-risk alleles and lower body mass index at examination. In our structured modeling, we observed non-significant inverse direct associations between rs7903146-T and body mass index at ages 21 and 45 years, and a significant positive association between rs7903146-T and type 2 diabetes onset in both middle and late adulthood. CONCLUSIONS Herein, we replicated the protective effect of rs7930146-T on body mass index at multiple time points in the life course, and observed that these effects were not explained by past type 2 diabetes status in our structured modeling. The robust replication of the negative effects of TCF7L2 on body mass index in multiple samples, including in our diverse Hispanic/Latino community-based sample, supports a growing body of literature on the complex biologic mechanism underlying the functional consequences of TCF7L2 on obesity and type 2 diabetes across the life course.
Collapse
Affiliation(s)
- Lindsay Fernández-Rhodes
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
- Carolina Population Center, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| | - Annie Green Howard
- Carolina Population Center, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mariaelisa Graff
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| | - Carmen R. Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY USA
| | - Heather M. Highland
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| | - Kristin L. Young
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| | - Esteban Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON Canada
| | - Jennifer E. Below
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY USA
| | - Anne E. Justice
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA USA
| | - George Papanicolaou
- Epidemiology Branch, National Heart Lung and Blood Institute, Bethesda, MD USA
| | - Cathy C. Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA USA
| | - Struan F. A. Grant
- Divisions of Human Genetics and Endocrinology, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA USA
| | - Christopher Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Ruth J. F. Loos
- Charles R. Bronfman Instituted for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Kari E. North
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| |
Collapse
|
13
|
Rosen ED, Kaestner KH, Natarajan R, Patti ME, Sallari R, Sander M, Susztak K. Epigenetics and Epigenomics: Implications for Diabetes and Obesity. Diabetes 2018; 67:1923-1931. [PMID: 30237160 PMCID: PMC6463748 DOI: 10.2337/db18-0537] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022]
Abstract
The American Diabetes Association convened a research symposium, "Epigenetics and Epigenomics: Implications for Diabetes and Obesity" on 17-19 November 2017. International experts in genetics, epigenetics, computational biology, and physiology discussed the current state of understanding of the relationships between genetics, epigenetics, and environment in diabetes and examined existing evidence for the role of epigenetic factors in regulating metabolism and the risk of diabetes and its complications. The authors summarize the presentations, which highlight how the complex interactions between genes and environment may in part be mediated through epigenetic changes and how information about nutritional and other environmental stimuli can be transmitted to the next generation. In addition, the authors present expert consensus on knowledge gaps and research recommendations for the field.
Collapse
Affiliation(s)
- Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Klaus H Kaestner
- Department of Genetics and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Mary-Elizabeth Patti
- Harvard Medical School, Boston, MA
- Research Division, Joslin Diabetes Center, Boston, MA
| | | | - Maike Sander
- University of California, San Diego, La Jolla, CA
| | - Katalin Susztak
- Department of Genetics and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
14
|
Adams JD, Vella A. What Can Diabetes-Associated Genetic Variation in TCF7L2 Teach Us About the Pathogenesis of Type 2 Diabetes? Metab Syndr Relat Disord 2018; 16:383-389. [PMID: 29993315 DOI: 10.1089/met.2018.0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a polygenic metabolic disorder characterized by hyperglycemia occurring as a result of impaired insulin secretion and/or insulin resistance. Among the various genetic factors associated with T2DM, a common genetic variant within the transcription factor 7-like 2 locus (TCF7L2) confers the greatest genetic risk for development of the disease. However, the mechanism(s) by which TCF7L2 predisposes to diabetes remain uncertain. Here we review the current literature pertaining to the potential mechanisms by which TCF7L2 confers risk of T2DM, using genetic variation as a probe to understand the pathogenesis of the disease.
Collapse
Affiliation(s)
- J D Adams
- Endocrine Research Unit, Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Adrian Vella
- Endocrine Research Unit, Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
15
|
McEwen HJL, Cognard E, Ladyman SR, Khant-Aung Z, Tups A, Shepherd PR, Grattan DR. Feeding and GLP-1 receptor activation stabilize β-catenin in specific hypothalamic nuclei in male rats. J Neuroendocrinol 2018; 30:e12607. [PMID: 29752762 DOI: 10.1111/jne.12607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
β-catenin is a multifunctional protein that can act in the canonical Wnt/β-catenin pathway to regulate gene expression but can also bind to cadherin proteins in adherens junctions where it plays a key role in regulating cytoskeleton linked with these junctions. Recently, evidence has been presented indicating an essential role for β-catenin in regulating trafficking of insulin vesicles in β-cells and showing that changes in nutrient levels rapidly alter levels of β-catenin in these cells. Given the importance of neuroendocrine hormone secretion in the regulation of whole body glucose homeostasis, the objective of this study was to investigate whether β-catenin signalling is regulated in the hypothalamus during the normal physiological response to food intake. Rats were subjected to a fasting/re-feeding paradigm, and then samples collected at specific timepoints for analysis of β-catenin expression by immunohistochemistry and Western blotting. Changes in gene expression were assessed by RT-qPCR. Using immunohistochemistry, feeding acutely increased detectable cytoplasmic levels of β-catenin ('stabilized β-catenin') in neurons in specific regions of the hypothalamus involved in metabolic regulation, including the arcuate, dorsomedial and paraventricular nuclei of the hypothalamus. Feeding-induced elevations in β-catenin in these nuclei were associated with increased transcription of several genes that are known to be responsive to Wnt/β-catenin signalling. The effect of feeding was mimicked by administration of the GLP-1 agonist exendin-4, and was characterized by cAMP-dependent phosphorylation of β-catenin at serine residues 552 and 675. The data suggest that β-catenin/TCF signalling is involved in metabolic sensing in the hypothalamus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hayden J L McEwen
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Emmanuelle Cognard
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Zin Khant-Aung
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Alexander Tups
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| |
Collapse
|
16
|
Li R, Ou J, Li L, Yang Y, Zhao J, Wu R. The Wnt Signaling Pathway Effector TCF7L2 Mediates Olanzapine-Induced Weight Gain and Insulin Resistance. Front Pharmacol 2018; 9:379. [PMID: 29713286 PMCID: PMC5911481 DOI: 10.3389/fphar.2018.00379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
Olanzapine is a widely used atypical antipsychotic medication for treatment of schizophrenia and is often associated with serious metabolic abnormalities including weight gain and impaired glucose tolerance. These metabolic side effects are severe clinical problems but the underpinning mechanism remains poorly understood. Recently, growing evidence suggests that Wnt signaling pathway has a critical role in the pathogenesis of schizophrenia and molecular cascades of antipsychotics action, of which Wnt signaling pathway key effector TCF7L2 is strongly associated with glucose homeostasis. In this study, we aim to explore the characteristics of metabolic disturbance induced by olanzapine and to elucidate the role of TCF7L2 in this process. C57BL/6 mice were subject to olanzapine (4 mg/kg/day), or olanzapine plus metformin (150 mg/kg/day), or saline, respectively, for 8 weeks. Metabolic indices and TCF7L2 expression levels in liver, skeletal muscle, adipose, and pancreatic tissues were closely monitored. Olanzapine challenge induced remarkably increased body weight, fasting insulin, homeostasis model assessment-insulin resistance index, and TCF7L2 protein expression in liver, skeletal muscle, and adipose tissues. Notably, these effects could be effectively ameliorated by metformin. In addition, we found that olanzapine-induced body weight gain and insulin resistance actively influence the expression of TCF7L2 in liver and skeletal muscle, and elevated level of insulin determines the increased expression of TCF7L2 in adipose tissue. Our results demonstrate that TCF7L2 participates in olanzapine-induced metabolic disturbance, which presents a novel mechanism for olanzapine-induced metabolic disturbance and a potential therapeutic target to prevent the associated metabolic side effects.
Collapse
Affiliation(s)
- Ranran Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ye Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Srinivasan S, Kaur V, Chamarthi B, Littleton KR, Chen L, Manning AK, Merino J, Thomas MK, Hudson M, Goldfine A, Florez JC. TCF7L2 Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care 2018; 41:554-561. [PMID: 29326107 PMCID: PMC5829963 DOI: 10.2337/dc17-1386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/07/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The rs7903146 T allele in transcription factor 7 like 2 (TCF7L2) is strongly associated with type 2 diabetes (T2D), but the mechanisms for increased risk remain unclear. We evaluated the physiologic and hormonal effects of TCF7L2 genotype before and after interventions that influence glucose physiology. RESEARCH DESIGN AND METHODS We genotyped rs7903146 in 608 individuals without diabetes and recorded biochemical data before and after 1) one dose of glipizide (5 mg) on visit 1 and 2) a 75-g oral glucose tolerance test (OGTT) performed after administration of metformin 500 mg twice daily over 2 days. Incretin levels were measured in 150 of the 608 participants. RESULTS TT risk-allele homozygotes had 1.6 mg/dL higher baseline fasting glucose levels and 2.5 pg/mL lower glucagon levels per T allele than carriers of other genotypes at baseline. In a subset of participants, the T allele was associated with higher basal glucagon-like peptide 1 (GLP-1) levels at visit 1 (β = 1.52, P = 0.02 and β = 0.96, P = 0.002 for total and active GLP-1, respectively), and across all points of the OGTT after metformin administration. Regarding drug response, the T allele was associated with a shorter time (β = -7.00, P = 0.03) and a steeper slope (β = 0.23, P = 0.04) to trough glucose levels after glipizide administration, and lower visit 2 fasting glucose level adjusted for visit 1 fasting glucose level (β = -1.02, P = 0.04) and a greater decline in glucose level between visits (β = -1.61, P = 0.047) after metformin administration. CONCLUSIONS Our findings demonstrate that common variation at TCF7L2 influences acute responses to both glipizide and metformin in people without diabetes and highlight altered incretin signaling as a potential mechanism by which TCF7L2 variation increases T2D risk.
Collapse
Affiliation(s)
- Shylaja Srinivasan
- Pediatric Endocrine Unit, Massachusetts General Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Varinderpal Kaur
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Bindu Chamarthi
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Katherine R Littleton
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Ling Chen
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Alisa K Manning
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA.,Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Jordi Merino
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Margo Hudson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Allison Goldfine
- Department of Medicine, Harvard Medical School, Boston, MA.,Joslin Diabetes Center, Boston, MA
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA .,Department of Medicine, Harvard Medical School, Boston, MA.,Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
18
|
Sakhneny L, Rachi E, Epshtein A, Guez HC, Wald-Altman S, Lisnyansky M, Khalifa-Malka L, Hazan A, Baer D, Priel A, Weil M, Landsman L. Pancreatic Pericytes Support β-Cell Function in a Tcf7l2-Dependent Manner. Diabetes 2018; 67:437-447. [PMID: 29246974 DOI: 10.2337/db17-0697] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023]
Abstract
Polymorphism in TCF7L2, a component of the canonical Wnt signaling pathway, has a strong association with β-cell dysfunction and type 2 diabetes through a mechanism that has yet to be defined. β-Cells rely on cells in their microenvironment, including pericytes, for their proper function. Here, we show that Tcf7l2 activity in pancreatic pericytes is required for β-cell function. Transgenic mice in which Tcf7l2 was selectively inactivated in their pancreatic pericytes exhibited impaired glucose tolerance due to compromised β-cell function and glucose-stimulated insulin secretion. Inactivation of pericytic Tcf7l2 was associated with impaired expression of genes required for β-cell function and maturity in isolated islets. In addition, we identified Tcf7l2-dependent pericytic expression of secreted factors shown to promote β-cell function, including bone morphogenetic protein 4 (BMP4). Finally, we show that exogenous BMP4 is sufficient to rescue the impaired glucose-stimulated insulin secretion of transgenic mice, pointing to a potential mechanism through which pericytic Tcf7l2 activity affects β-cells. To conclude, we suggest that pancreatic pericytes produce secreted factors, including BMP4, in a Tcf7l2-dependent manner to support β-cell function. Our findings thus propose a potential cellular mechanism through which abnormal TCF7L2 activity predisposes individuals to diabetes and implicates abnormalities in the islet microenvironment in this disease.
Collapse
Affiliation(s)
- Lina Sakhneny
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eleonor Rachi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alona Epshtein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Helen C Guez
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shane Wald-Altman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Lisnyansky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laura Khalifa-Malka
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adina Hazan
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daria Baer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Priel
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miguel Weil
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Affiliation(s)
- R David Leslie
- Department of Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.
| | - Struan F A Grant
- Divisions of Human Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA .,Departments of Pediatrics and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Abstract
Insulin resistance and the metabolic syndrome are complex metabolic traits and key risk factors for the development of cardiovascular disease. They result from the interplay of environmental and genetic factors but the full extent of the genetic background to these conditions remains incomplete. Large-scale genome-wide association studies have helped advance the identification of common genetic variation associated with insulin resistance and the metabolic syndrome, and more recently, exome sequencing has allowed the identification of rare variants associated with the pathogenesis of these conditions. Many variants associated with insulin resistance are directly involved in glucose metabolism; however, functional studies are required to assess the contribution of other variants to the development of insulin resistance. Many genetic variants involved in the pathogenesis of the metabolic syndrome are associated with lipid metabolism.
Collapse
Affiliation(s)
- Audrey E Brown
- Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Newcastle, NE2 4HH, UK
| | - Mark Walker
- Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Newcastle, NE2 4HH, UK.
| |
Collapse
|
21
|
Sharma A, Vella A. Obstacles to Translating Genotype-Phenotype Correlates in Metabolic Disease. Physiology (Bethesda) 2017; 32:42-50. [PMID: 27927804 DOI: 10.1152/physiol.00009.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes mellitus is a polygenic disease with a variable phenotype. Many genetic associations have been described; however, understanding their underlying pathophysiological role in Type 2 diabetes mellitus is important for development of future therapeutic targets. Here, we review the physiological mechanisms of diabetes-associated variants that affect glycemia.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Adrian Vella
- Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Florez JC. Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool? Diabetologia 2017; 60:800-807. [PMID: 28283684 DOI: 10.1007/s00125-017-4227-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
In recent years, technological and analytical advances have led to an explosion in the discovery of genetic loci associated with type 2 diabetes. However, their ability to improve prediction of disease outcomes beyond standard clinical risk factors has been limited. On the other hand, genetic effects on drug response may be stronger than those commonly seen for disease incidence. Pharmacogenetic findings may aid in identifying new drug targets, elucidate pathophysiology, unravel disease heterogeneity, help prioritise specific genes in regions of genetic association, and contribute to personalised or precision treatment. In diabetes, precedent for the successful application of pharmacogenetic concepts exists in its monogenic subtypes, such as MODY or neonatal diabetes. Whether similar insights will emerge for the much more common entity of type 2 diabetes remains to be seen. As genetic approaches advance, the progressive deployment of candidate gene, large-scale genotyping and genome-wide association studies has begun to produce suggestive results that may transform clinical practice. However, many barriers to the translation of diabetes pharmacogenetic discoveries to the clinic still remain. This perspective offers a contemporary overview of the field with a focus on sulfonylureas and metformin, identifies the major uses of pharmacogenetics, and highlights potential limitations and future directions.
Collapse
Affiliation(s)
- Jose C Florez
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Simches Research Building-CPZN 5.250, 185 Cambridge Street, Boston, MA, 02114, USA.
- Metabolism Program, Broad Institute, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Corella D, Coltell O, Sorlí JV, Estruch R, Quiles L, Martínez-González MÁ, Salas-Salvadó J, Castañer O, Arós F, Ortega-Calvo M, Serra-Majem L, Gómez-Gracia E, Portolés O, Fiol M, Díez Espino J, Basora J, Fitó M, Ros E, Ordovás JM. Polymorphism of the Transcription Factor 7-Like 2 Gene (TCF7L2) Interacts with Obesity on Type-2 Diabetes in the PREDIMED Study Emphasizing the Heterogeneity of Genetic Variants in Type-2 Diabetes Risk Prediction: Time for Obesity-Specific Genetic Risk Scores. Nutrients 2016; 8:793. [PMID: 27929407 PMCID: PMC5188448 DOI: 10.3390/nu8120793] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 11/24/2022] Open
Abstract
Nutrigenetic studies analyzing gene-diet interactions of the TCF7L2-rs7903146 C > T polymorphism on type-2 diabetes (T2D) have shown controversial results. A reason contributing to this may be the additional modulation by obesity. Moreover, TCF7L2-rs7903146 is one of the most influential variants in T2D-genetic risk scores (GRS). Therefore, to increase the predictive value (PV) of GRS it is necessary to first see whether the included polymorphisms have heterogeneous effects. We comprehensively investigated gene-obesity interactions between the TCF7L2-rs7903146 C > T polymorphism on T2D (prevalence and incidence) and analyzed other T2D-polymorphisms in a sub-sample. We studied 7018 PREDIMED participants at baseline and longitudinally (8.7 years maximum follow-up). Obesity significantly interacted with the TCF7L2-rs7903146 on T2D prevalence, associations being greater in non-obese subjects. Accordingly, we prospectively observed in non-T2D subjects (n = 3607) that its association with T2D incidence was stronger in non-obese (HR: 1.81; 95% CI: 1.13-2.92, p = 0.013 for TT versus CC) than in obese subjects (HR: 1.01; 95% CI: 0.61-1.66; p = 0.979; p-interaction = 0.048). Accordingly, TCF7L2-PV was higher in non-obese subjects. Additionally, we created obesity-specific GRS with ten T2D-polymorphisms and demonstrated for the first time their higher strata-specific PV. In conclusion, we provide strong evidence supporting the need for considering obesity when analyzing the TCF7L2 effects and propose the use of obesity-specific GRS for T2D.
Collapse
Affiliation(s)
- Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Computer Languages and Systems, School of Technology and Experimental Sciences, Universitat Jaume I, 12071 Castellón, Spain.
| | - Jose V Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ramón Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Internal Medicine, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain.
| | - Laura Quiles
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Miguel Ángel Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, University of Navarra-Navarra Institute for Health Research (IdisNa), 31009 Pamplona, Spain.
| | - Jordi Salas-Salvadó
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Human Nutrition Unit, Biochemistry and Biotechnology Department, IISPV, University Rovira i Virgili, 43003 Reus, Spain.
| | - Olga Castañer
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.
| | - Fernando Arós
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Cardiology, Hospital Txagorritxu, 01009 Vitoria, Spain.
| | - Manuel Ortega-Calvo
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, Centro de Salud Las Palmeritas, 41003 Sevilla, Spain.
| | - Lluís Serra-Majem
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain.
| | - Enrique Gómez-Gracia
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Epidemiology, School of Medicine, University of Malaga, 29071 Malaga, Spain.
| | - Olga Portolés
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Miquel Fiol
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Palma Institute of Health Research (IdISPa), Hospital Son Espases, 07014 Palma de Mallorca, Spain.
| | - Javier Díez Espino
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, University of Navarra-Navarra Institute for Health Research (IdisNA)-Servicio Navarro de Salud-Osasunbidea, 31009 Pamplona, Spain.
| | - Josep Basora
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Human Nutrition Unit, Biochemistry and Biotechnology Department, IISPV, University Rovira i Virgili, 43003 Reus, Spain.
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, 08036 Barcelona, Spain.
| | - José M Ordovás
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029-IMDEA Alimentación, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Zhou Y, Oskolkov N, Shcherbina L, Ratti J, Kock KH, Su J, Martin B, Oskolkova MZ, Göransson O, Bacon J, Li W, Bucciarelli S, Cilio C, Brazma A, Thatcher B, Rung J, Wierup N, Renström E, Groop L, Hansson O. HMGB1 binds to the rs7903146 locus in TCF7L2 in human pancreatic islets. Mol Cell Endocrinol 2016; 430:138-45. [PMID: 26845344 DOI: 10.1016/j.mce.2016.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 02/03/2023]
Abstract
The intronic SNP rs7903146 in the T-cell factor 7-like 2 gene (TCF7L2) is the common genetic variant most highly associated with Type 2 diabetes known to date. The risk T-allele is located in an open chromatin region specific to human pancreatic islets of Langerhans, thereby accessible for binding of regulatory proteins. The risk T-allele locus exhibits stronger enhancer activity compared to the non-risk C-allele. The aim of this study was to identify transcriptional regulators that bind the open chromatin region in the rs7903146 locus and thereby potentially regulate TCF7L2 expression and activity. Using affinity chromatography followed by Edman sequencing, we identified one candidate regulatory protein, i.e. high-mobility group protein B1 (HMGB1). The binding of HMGB1 to the rs7903146 locus was confirmed in pancreatic islets from human deceased donors, in HCT116 and in HEK293 cell lines using: (i) protein purification on affinity columns followed by Western blot, (ii) chromatin immunoprecipitation followed by qPCR and (iii) electrophoretic mobility shift assay. The results also suggested that HMGB1 might have higher binding affinity to the C-allele of rs7903146 compared to the T-allele, which was supported in vitro using Dynamic Light Scattering, possibly in a tissue-specific manner. The functional consequence of HMGB1 depletion in HCT116 and INS1 cells was reduced insulin and TCF7L2 mRNA expression, TCF7L2 transcriptional activity and glucose stimulated insulin secretion. These findings suggest that the rs7903146 locus might exert its enhancer function by interacting with HMGB1 in an allele dependent manner.
Collapse
Affiliation(s)
- Yuedan Zhou
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Nikolay Oskolkov
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Liliya Shcherbina
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Joyce Ratti
- Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
| | - Kian-Hong Kock
- Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
| | - Jing Su
- European Bioinformatics Institute, Functional Genomics, Hinxton, Cambridge CB10 1SD, UK
| | - Brian Martin
- National Institute of Mental Health NIMH, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Olga Göransson
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Julie Bacon
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Weimin Li
- Department of Physical Chemistry, Lund University, Lund, 22100, Sweden
| | | | - Corrado Cilio
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Alvis Brazma
- European Bioinformatics Institute, Functional Genomics, Hinxton, Cambridge CB10 1SD, UK
| | - Bradley Thatcher
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Johan Rung
- European Bioinformatics Institute, Functional Genomics, Hinxton, Cambridge CB10 1SD, UK
| | - Nils Wierup
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Erik Renström
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Leif Groop
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Ola Hansson
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden.
| |
Collapse
|
25
|
McCormack SE, Grant SFA. Allelic expression imbalance: tipping the scales to elucidate the function of type 2 diabetes-associated loci. Diabetes 2015; 64:1102-4. [PMID: 25805763 PMCID: PMC4876688 DOI: 10.2337/db14-1836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shana E McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA Department of Pediatrics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Struan F A Grant
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA Department of Pediatrics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
26
|
Shao W, Xiong X, Ip W, Xu F, Song Z, Zeng K, Hernandez M, Liang T, Weng J, Gaisano H, Nostro MC, Jin T. The expression of dominant negative TCF7L2 in pancreatic beta cells during the embryonic stage causes impaired glucose homeostasis. Mol Metab 2015; 4:344-52. [PMID: 25830097 PMCID: PMC4354927 DOI: 10.1016/j.molmet.2015.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 12/13/2022] Open
Abstract
Objective Disruption of TCF7L2 in mouse pancreatic β-cells has generated different outcomes in several investigations. Here we aim to clarify role of β-cell TCF7L2 and Wnt signaling using a functional-knockdown approach. Methods Adenovirus-mediated dominant negative TCF7L2 (TCF7L2DN) expression was conducted in Ins-1 cells. The fusion gene in which TCF7L2DN expression is driven by PTRE3G was utilized to generate the transgenic mouse line TCF7L2DNTet. The double transgenic line was created by mating TCF7L2DNTet with Ins2-rtTA, designated as βTCFDN. β-cell specific TCF7L2DN expression was induced in βTCFDN by doxycycline feeding. Results TCF7L2DN expression in Ins-1 cells reduced GSIS, cell proliferation and expression of a battery of genes including incretin receptors and β-cell transcription factors. Inducing TCF7L2DN expression in βTCFDN during adulthood or immediately after weaning generated no or very modest metabolic defect, while its expression during embryonic development by doxycycline feeding in pregnant mothers resulted in significant glucose intolerance associated with altered β-cell gene expression and reduced β-cell mass. Conclusions Our observations support a cell autonomous role for TCF7L2 in pancreatic β-cells suggested by most, though not all, investigations. βTCFDN is a novel model for further exploring the role of TCF7L2 in β-cell genesis and metabolic homeostasis.
Collapse
Affiliation(s)
- Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Xiaoquan Xiong
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Wilfred Ip
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2J7, Canada
| | - Fenghao Xu
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Zhuolun Song
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Kejing Zeng
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Marcela Hernandez
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Tao Liang
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 7368, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jianping Weng
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Herbert Gaisano
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 7368, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - M. Cristina Nostro
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 7368, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2J7, Canada
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada
- Corresponding author. Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|