1
|
Krzystek TJ, Rathnayake R, Zeng J, Huang J, Iacobucci G, Yu MC, Gunawardena S. Opposing roles for GSK3β and ERK1-dependent phosphorylation of huntingtin during neuronal dysfunction and cell death in Huntington's disease. Cell Death Dis 2025; 16:328. [PMID: 40263294 PMCID: PMC12015319 DOI: 10.1038/s41419-025-07524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that manifests from an N-terminal polyQ-expansion (>35) in the Huntingtin (HTT) gene leading to axonal degeneration and significant neuronal death. Despite evidence for a scaffolding role for HTT in membrane-related processes such as endocytosis, vesicle transport, and vesicle fusion, it remains unclear how polyQ-expansion alters membrane binding during these processes. Using quantitative Mass Spectrometry-based proteomics on HTT-containing light vesicle membranes isolated from healthy and HD iPSC-derived neurons, we found significant changes in the proteome and kinome of signal transduction, neuronal translation, trafficking, and axon guidance-related processes. Through a combination of in vitro kinase assays, Drosophila genetics, and pharmacological inhibitors, we identified that GSK3β and ERK1 phosphorylate HTT and that these events play distinct and opposing roles during HD with inhibition of GSK3β decreasing polyQ-mediated axonal transport defects and neuronal cell death, while inhibition of ERK enhancing these phenotypes. Together, this work proposes two novel pathways in which GSK3β phosphorylation events exacerbate and ERK phosphorylation events mitigate HD-dependent neuronal dysfunction highlighting a highly druggable pathway for targeted therapeutics using already available small molecules.
Collapse
Affiliation(s)
- Thomas J Krzystek
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Rasika Rathnayake
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jia Zeng
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Huang
- Neuroscience Program, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Gary Iacobucci
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael C Yu
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
2
|
Wang C, Cui Y, Xu T, Zhou Y, Yang R, Wang T. New insights into glycogen synthase kinase-3: A common target for neurodegenerative diseases. Biochem Pharmacol 2023; 218:115923. [PMID: 37981175 DOI: 10.1016/j.bcp.2023.115923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a highly conserved protein serine/threonine kinase that plays a central role in a wide variety of cellular processes to coordinate catabolic and anabolic pathways and regulate cell growth and fate. There is increasing evidence showing that abnormal glycogen synthase kinase 3 (GSK-3) is associated with the pathogenesis and progression of many disorders, such as cancer, diabetes, psychiatric diseases, and neurodegenerative diseases. In this review, we summarize recent findings about the regulatory role of GSK-3 in the occurrence and development of multiple neurodegenerative diseases, mainly focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The aim of this study is to provide new insight into the shared working mechanism of GSK-3 as a therapeutic target of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Chengfeng Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China
| | - Yu Cui
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Tong Xu
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China; Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China; Department of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266000, China.
| | - Rong Yang
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China.
| | - Ting Wang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| |
Collapse
|
3
|
Onkar A, Sheshadri D, Rai A, Gupta AK, Gupta N, Ganesh S. Increase in brain glycogen levels ameliorates Huntington's disease phenotype and rescues neurodegeneration in Drosophila. Dis Model Mech 2023; 16:dmm050238. [PMID: 37681238 PMCID: PMC10602008 DOI: 10.1242/dmm.050238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Under normal physiological conditions, the mammalian brain contains very little glycogen, most of which is stored in astrocytes. However, the aging brain and the subareas of the brain in patients with neurodegenerative disorders tend to accumulate glycogen, the cause and significance of which remain largely unexplored. Using cellular models, we have recently demonstrated a neuroprotective role for neuronal glycogen and glycogen synthase in the context of Huntington's disease. To gain insight into the role of brain glycogen in regulating proteotoxicity, we utilized a Drosophila model of Huntington's disease, in which glycogen synthase is either knocked down or expressed ectopically. Enhancing glycogen synthesis in the brains of flies with Huntington's disease decreased mutant Huntingtin aggregation and reduced oxidative stress by activating auto-lysosomal functions. Further, overexpression of glycogen synthase in the brain rescues photoreceptor degeneration, improves locomotor deficits and increases fitness traits in this Huntington's disease model. We, thus, provide in vivo evidence for the neuroprotective functions of glycogen synthase and glycogen in neurodegenerative conditions, and their role in the neuronal autophagy process.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
| | - Deepashree Sheshadri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
- Centre of Excellence in Neuroscience, Neurotechnology, and Mental Health, Gangwal School of Medical Sciences and Technology, IIT, Kanpur 208016, India
| | - Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
| | - Arjit Kant Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
- Centre of Excellence in Neuroscience, Neurotechnology, and Mental Health, Gangwal School of Medical Sciences and Technology, IIT, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
- Centre of Excellence in Neuroscience, Neurotechnology, and Mental Health, Gangwal School of Medical Sciences and Technology, IIT, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
4
|
Balboni B, Masi M, Rocchia W, Girotto S, Cavalli A. GSK-3β Allosteric Inhibition: A Dead End or a New Pharmacological Frontier? Int J Mol Sci 2023; 24:7541. [PMID: 37108703 PMCID: PMC10139115 DOI: 10.3390/ijms24087541] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Most kinase inhibitors are designed to bind to highly homologous ATP-binding sites, which leads to promiscuity and possible off-target effects. Allostery is an alternative approach to pursuing selectivity. However, allostery is difficult to exploit due to the wide variety of underlying mechanisms and the potential involvement of long-range conformational effects that are difficult to pinpoint. GSK-3β is involved in several pathologies. This critical target has an ATP-binding site that is highly homologous with the orthosteric sites of other kinases. Unsurprisingly, there is also great similarity between the ATP-binding sites of GSK-3β and its isomer, which is not redundant and thus would benefit from selective inhibition. Allostery would also allow for a moderate and tunable inhibition, which is ideal for GSK-3β, because this target is involved in multiple pathways, some of which must be preserved. However, despite considerable research efforts, only one allosteric GSK-3β inhibitor has reached the clinic. Moreover, unlike other kinases, there are no X-ray structures of GSK-3β in complex with allosteric inhibitors in the PDB data bank. This review aims to summarize the state of the art in allosteric GSK-3β inhibitor investigations, highlighting the aspects that make this target challenging for an allosteric approach.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Mirco Masi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Walter Rocchia
- Computational mOdelling of NanosCalE and bioPhysical sysTems (CONCEPT) Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Stefania Girotto
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| |
Collapse
|
5
|
Mees I, Nisbet R, Hannan A, Renoir T. Implications of Tau Dysregulation in Huntington's Disease and Potential for New Therapeutics. J Huntingtons Dis 2023; 12:1-13. [PMID: 37092231 DOI: 10.3233/jhd-230569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The disease, characterized by motor, cognitive, and psychiatric impairments, is caused by the expansion of a CAG repeat in the huntingtin gene. Despite the discovery of the mutation in 1993, no disease-modifying treatments are yet available. Understanding the molecular and cellular mechanisms involved in HD is therefore crucial for the development of novel treatments. Emerging research has found that HD might be classified as a secondary tauopathy, with the presence of tau insoluble aggregates in late HD. Increased total tau protein levels have been observed in both HD patients and animal models of HD. Tau hyperphosphorylation, the main feature of tau pathology, has also been investigated and our own published results suggest that the protein phosphorylation machinery is dysregulated in the early stages of HD in R6/1 transgenic mice, primarily in the cortex and striatum. Protein phosphorylation, catalysed by kinases, regulates numerous cellular mechanisms and has been shown to be dysregulated in other neurodegenerative disorders, including Alzheimer's disease. While it is still unclear how the mutation in the huntingtin gene leads to tau dysregulation in HD, several hypotheses have been explored. Evidence suggests that the mutant huntingtin does not directly interact with tau, but instead interacts with tau kinases, phosphatases, and proteins involved in tau alternative splicing, which could result in tau dysregulation as observed in HD. Altogether, there is increasing evidence that tau is undergoing pathological changes in HD and may be a good therapeutic target.
Collapse
Affiliation(s)
- Isaline Mees
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Rebecca Nisbet
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Salem S, Cicchetti F. Untangling the Role of Tau in Huntington's Disease Pathology. J Huntingtons Dis 2023; 12:15-29. [PMID: 36806513 DOI: 10.3233/jhd-220557] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
There is increasing evidence for the presence of pathological forms of tau in tissues of both Huntington's disease (HD) patients and animal models of this condition. While cumulative studies of the past decade have led to the proposition that this disorder could also be considered a tauopathy, the implications of tau in cellular toxicity and consequent behavioral impairments are largely unknown. In fact, recent animal work has challenged the contributory role of tau in HD pathogenesis/pathophysiology. This review presents the supporting and opposing arguments for the involvement of tau in HD, highlighting the discrepancies that have emerged. Reflecting on what is known in other tauopathies, the putative mechanisms through which tau could initiate and/or contribute to pathology are discussed, shedding light on the future research directions that could be considered to confirm, or rule out, the clinical relevance of tau in HD.
Collapse
Affiliation(s)
- Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
7
|
Mees I, Li S, Tran H, Ang CS, Williamson NA, Hannan AJ, Renoir T. Phosphoproteomic dysregulation in Huntington's disease mice is rescued by environmental enrichment. Brain Commun 2022; 4:fcac305. [PMID: 36523271 PMCID: PMC9746689 DOI: 10.1093/braincomms/fcac305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/05/2022] [Accepted: 11/21/2022] [Indexed: 09/05/2023] Open
Abstract
Huntington's disease is a fatal autosomal-dominant neurodegenerative disorder, characterized by neuronal cell dysfunction and loss, primarily in the striatum, cortex and hippocampus, causing motor, cognitive and psychiatric impairments. Unfortunately, no treatments are yet available to modify the progression of the disease. Recent evidence from Huntington's disease mouse models suggests that protein phosphorylation (catalysed by kinases and hydrolysed by phosphatases) might be dysregulated, making this major post-translational modification a potential area of interest to find novel therapeutic targets. Furthermore, environmental enrichment, used to model an active lifestyle in preclinical models, has been shown to alleviate Huntington's disease-related motor and cognitive symptoms. However, the molecular mechanisms leading to these therapeutic effects are still largely unknown. In this study, we applied a phosphoproteomics approach combined with proteomic analyses on brain samples from pre-motor symptomatic R6/1 Huntington's disease male mice and their wild-type littermates, after being housed either in environmental enrichment conditions, or in standard housing conditions from 4 to 8 weeks of age (n = 6 per group). We hypothesized that protein phosphorylation dysregulations occur prior to motor onset in this mouse model, in two highly affected brain regions, the striatum and hippocampus. Furthermore, we hypothesized that these phosphoproteome alterations are rescued by environmental enrichment. When comparing 8-week-old Huntington's disease mice and wild-type mice in standard housing conditions, our analysis revealed 229 differentially phosphorylated peptides in the striatum, compared with only 15 differentially phosphorylated peptides in the hippocampus (statistical thresholds fold discovery rate 0.05, fold change 1.5). At the same disease stage, minor differences were found in protein levels, with 24 and 22 proteins dysregulated in the striatum and hippocampus, respectively. Notably, we found no differences in striatal protein phosphorylation and protein expression when comparing Huntington's disease mice and their wild-type littermates in environmentally enriched conditions. In the hippocampus, only four peptides were differentially phosphorylated between the two genotypes under environmentally enriched conditions, and 22 proteins were differentially expressed. Together, our data indicates that protein phosphorylation dysregulations occur in the striatum of Huntington's disease mice, prior to motor symptoms, and that the kinases and phosphatases leading to these changes in protein phosphorylation might be viable drug targets to consider for this disorder. Furthermore, we show that an early environmental intervention was able to rescue the changes observed in protein expression and phosphorylation in the striatum of Huntington's disease mice and might underlie the beneficial effects of environmental enrichment, thus identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Isaline Mees
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Harvey Tran
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Khotimchenko YS, Silachev DN, Katanaev VL. Marine Natural Products from the Russian Pacific as Sources of Drugs for Neurodegenerative Diseases. Mar Drugs 2022; 20:708. [PMID: 36421986 PMCID: PMC9697637 DOI: 10.3390/md20110708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
Neurodegenerative diseases are growing to become one of humanity's biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region-the Northwestern or Russian Pacific-as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuri S. Khotimchenko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- A.V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
| | - Denis N. Silachev
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Vladimir L. Katanaev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
9
|
Soni D, Kumar P. GSK-3β-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders. Pharmacol Rep 2022; 74:557-569. [PMID: 35882765 DOI: 10.1007/s43440-022-00390-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Movement disorders are neurological conditions characterized by involuntary motor movements, such as dystonia, ataxia, chorea myoclonus, tremors, Huntington's disease (HD), and Parkinson's disease (PD). It is classified into two categories: hypokinetic and hyperkinetic movements. Globally, movement disorders are a major cause of death. The pathophysiological process is initiated by excessive ROS generation, mitochondrial dysfunction, neuroinflammation, and neurotransmitters imbalance that lead to motor dysfunction in PD and HD patients. Several endogenous targets including Nrf2 maintain oxidative balance in the body. Activation of Nrf2 signaling is regulated by the enzyme glycogen synthase kinase (GSK-3β). In the cytoplasm, inhibition of GSK-3β regulates cellular proliferation, homeostasis, and apoptotic process by stimulating the nuclear factor erythroid 2 (Nrf2) pathway which is involved in the elevation of the cellular antioxidant enzymes which controls the ROS generation. The activation of Nrf2 increases the expression of antioxidant response elements (ARE), such as (Hemeoxygenase-1) HO-1, which decreases excessive cellular stress, mitochondrial dysfunction, apoptosis, and neuronal degeneration, which is the major cause of motor dysfunction. The present review explores the GSK-3β-mediated neuroprotection in various movement disorders through the Nrf2/HO-1 antioxidant pathway. This review provides a link between GSK-3β and the Nrf2/HO-1 signaling pathway in the treatment of PD and HD. In addition to that it highlights various GSK-3β inhibitors and the Nrf2/HO-1 activators, which exert robust neuroprotection against motor disorders. Therefore, the present review will help in the discovery of new therapy for PD and HD patients.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
10
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
11
|
Mees I, Tran H, Roberts A, Lago L, Li S, Roberts BR, Hannan AJ, Renoir T. Quantitative Phosphoproteomics Reveals Extensive Protein Phosphorylation Dysregulation in the Cerebral Cortex of Huntington's Disease Mice Prior to Onset of Symptoms. Mol Neurobiol 2022; 59:2456-2471. [PMID: 35083661 DOI: 10.1007/s12035-021-02698-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Protein phosphorylation plays a role in many important cellular functions such as cellular plasticity, gene expression, and intracellular trafficking. All of these are dysregulated in Huntington's disease (HD), a devastating neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene. However, no studies have yet found protein phosphorylation differences in preclinical HD mouse models. Our current study investigated changes occurring in the cortical phosphoproteome of 8-week-old (prior to motor deficits) and 20-week-old (fully symptomatic) R6/1 transgenic HD mice. When comparing 8-week-old HD mice with their wild-type (WT) littermates, we found 660 peptides differentially phosphorylated, which were mapped to 227 phosphoproteins. These proteins were mainly involved in synaptogenesis, cytoskeleton organization, axon development, and nervous system development. Tau protein, found hyperphosphorylated at multiple sites in early symptomatic HD mice, also appeared as a main upstream regulator for the changes observed. Surprisingly, we found fewer changes in the phosphorylation profile of HD mice at the fully symptomatic stage, with 29 peptides differentially phosphorylated compared to WT mice, mapped to 25 phosphoproteins. These proteins were involved in cAMP signaling, dendrite development, and microtubule binding. Furthermore, huntingtin protein appeared as an upstream regulator for the changes observed at the fully symptomatic stage, suggesting impacts on kinases and phosphatases that extend beyond the mutated polyglutamine tract. In summary, our findings show that the most extensive changes in the phosphorylation machinery appear at an early presymptomatic stage in HD pathogenesis and might constitute a new target for the development of treatments.
Collapse
Affiliation(s)
- Isaline Mees
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Harvey Tran
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anne Roberts
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Larissa Lago
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Blaine R Roberts
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
12
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
13
|
Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022; 15:817013. [PMID: 35095429 PMCID: PMC8795088 DOI: 10.3389/fncel.2021.817013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Intracellular chloride (Cl–) levels in mature neurons must be tightly regulated for the maintenance of fast synaptic inhibition. In the mature central nervous system (CNS), synaptic inhibition is primarily mediated by gamma-amino butyric acid (GABA), which binds to Cl– permeable GABAA receptors (GABAARs). The intracellular Cl– concentration is primarily maintained by the antagonistic actions of two cation-chloride cotransporters (CCCs): Cl–-importing Na+-K+-Cl– co-transporter-1 (NKCC1) and Cl– -exporting K+-Cl– co-transporter-2 (KCC2). In mature neurons in the healthy brain, KCC2 expression is higher than NKCC1, leading to lower levels of intracellular Cl–, and Cl– influx upon GABAAR activation. However, in neurons of the immature brain or in neurological disorders such as epilepsy and traumatic brain injury, impaired KCC2 function and/or enhanced NKCC1 expression lead to intracellular Cl– accumulation and GABA-mediated excitation. In Huntington’s disease (HD), KCC2- and NKCC1-mediated Cl–-regulation are also altered, which leads to GABA-mediated excitation and contributes to the development of cognitive and motor impairments. This review summarizes the role of Cl– (dys)regulation in the healthy and HD brain, with a focus on the basal ganglia (BG) circuitry and CCCs as potential therapeutic targets in the treatment of HD.
Collapse
|
14
|
Picó S, Parras A, Santos-Galindo M, Pose-Utrilla J, Castro M, Fraga E, Hernández IH, Elorza A, Anta H, Wang N, Martí-Sánchez L, Belloc E, Garcia-Esparcia P, Garrido JJ, Ferrer I, Macías-García D, Mir P, Artuch R, Pérez B, Hernández F, Navarro P, López-Sendón JL, Iglesias T, Yang XW, Méndez R, Lucas JJ. CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington's disease. Sci Transl Med 2021; 13:eabe7104. [PMID: 34586830 DOI: 10.1126/scitranslmed.abe7104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sara Picó
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Alberto Parras
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - María Santos-Galindo
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Julia Pose-Utrilla
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - Margarita Castro
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain
| | - Enrique Fraga
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Ivó H Hernández
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Facultad de Ciencias, Departamento de Biología (Unidad Docente Fisiología Animal), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ainara Elorza
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Héctor Anta
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada I+D+i IMIM-IIBB (CSIC), Barcelona 08003, Spain.,Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Nan Wang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Laura Martí-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Barcelona 08950, Spain
| | - Eulàlia Belloc
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Paula Garcia-Esparcia
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Juan J Garrido
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal (CSIC), Madrid 28002, Spain
| | - Isidro Ferrer
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Daniel Macías-García
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Pablo Mir
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Barcelona 08950, Spain
| | - Belén Pérez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain
| | - Félix Hernández
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada I+D+i IMIM-IIBB (CSIC), Barcelona 08003, Spain.,Institute of Biomedical Research of Barcelona (IIBB-CSIC), Barcelona 08036, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - José Luis López-Sendón
- Department of Neurology, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Teresa Iglesias
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - José J Lucas
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| |
Collapse
|
15
|
Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease. Nat Commun 2021; 12:5305. [PMID: 34489447 PMCID: PMC8421361 DOI: 10.1038/s41467-021-25651-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial dysfunction is a common hallmark of neurological disorders, and reducing mitochondrial damage is considered a promising neuroprotective therapeutic strategy. Here, we used high-throughput small molecule screening to identify CHIR99021 as a potent enhancer of mitochondrial function. CHIR99021 improved mitochondrial phenotypes and enhanced cell viability in several models of Huntington’s disease (HD), a fatal inherited neurodegenerative disorder. Notably, CHIR99201 treatment reduced HD-associated neuropathology and behavioral defects in HD mice and improved mitochondrial function and cell survival in HD patient-derived neurons. Independent of its known inhibitory activity against glycogen synthase kinase 3 (GSK3), CHIR99021 treatment in HD models suppressed the proteasomal degradation of calpastatin (CAST), and subsequently inhibited calpain activation, a well-established effector of neural death, and Drp1, a driver of mitochondrial fragmentation. Our results established CAST-Drp1 as a druggable signaling axis in HD pathogenesis and highlighted CHIR99021 as a mitochondrial function enhancer and a potential lead for developing HD therapies. Mitochondrial dysfunction is a common hallmark of neurological disorders. Here, the authors identify CHIR99021 as a potent enhancer of mitochondrial function, which improved mitochondrial phenotypes in Huntington’s disease models. CHIR99021 was shown to stabilize calpastatin, which suppressed calpain activation and Drp1-induced mitochondrial fragmentation.
Collapse
|
16
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
17
|
Inhibition of GSK-3 ameliorates the pathogenesis of Huntington's disease. Neurobiol Dis 2021; 154:105336. [PMID: 33753290 DOI: 10.1016/j.nbd.2021.105336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In Huntington's disease (HD), the mutant huntingtin (mHtt) accumulates as toxic aggregates in the striatum tissue, with deleterious effects on motor-coordination and cognitive functions. Reducing the levels of mHtt is therefore a promising therapeutic strategy. We have previously reported that GSK-3 is a negative regulator of the autophagy/lysosome pathway, which is responsible for intracellular degradation, and is critically important for maintaining neuronal vitality. Thus, we hypothesized that inhibition of GSK-3 may trigger mHtt clearance thereby reducing mHtt cytotoxicity and improving HD symptoms. Here, we demonstrate that depletion or suppression of autophagy results in a massive accumulation of mHtt aggregates. Accordingly, mHtt aggregates were localized in lysosomes, but, mostly mislocalized from lysosomes in the absence of functional autophagy. Overexpression of GSK-3, particularly the α isozyme, increased the number of mHtt aggregates, while silencing GSK-3α/β, or treatment with a selective GSK-3 inhibitor, L807mts, previously described by us, reduced the amounts of mHtt aggregates. This effect was mediated by increased autophagic and lysosomal activity. Treating R6/2 mouse model of HD with L807mts, reduced striatal mHtt aggregates and elevated autophagic and lysosomal markers. The L807mts treatment also reduced hyperglycemia and improved motor-coordination functions in these mice. In addition, L807mts restored the expression levels of Sirt1, a critical neuroprotective factor in the HD striatum, along with its targets BDNF, DRPP-32, and active Akt, all provide neurotrophic/pro-survival support and typically decline in the HD brain. Our results provide strong evidence for a role for GSK-3 in the regulation of mHtt dynamics, and demonstrate the benefits of GSK-3 inhibition in reducing mHtt toxicity, providing neuroprotective support, and improving HD symptoms.
Collapse
|
18
|
Manickam N, Radhakrishnan RK, Vergil Andrews JF, Selvaraj DB, Kandasamy M. Cell cycle re-entry of neurons and reactive neuroblastosis in Huntington's disease: Possibilities for neural-glial transition in the brain. Life Sci 2020; 263:118569. [PMID: 33049278 DOI: 10.1016/j.lfs.2020.118569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant pathogenic condition that causes progressive degeneration of GABAergic neurons in the brain. The abnormal expansion of the CAG repeats in the exon 1 of the Huntingtin gene (HTT gene) has been associated with the onset and progression of movement disorders, psychiatric disturbance and cognitive decline in HD. Microglial activation and reactive astrogliosis have been recognized as the key pathogenic cellular events in the brains of HD subjects. Besides, HD has been characterized by induced quiescence of neural stem cells (NSCs), reactive neuroblastosis and reduced survival of newborn neurons in the brain. Strikingly, the expression of the mutant HTT gene has been reported to induce the cell cycle re-entry of neurons in HD brains. However, the underlying basis for the induction of cell cycle in neurons and the fate of dedifferentiating neurons in the pathological brain remain largely unknown. Thus, this review article revisits the reports on the regulation of key signaling pathways responsible for altered cell cycle events in diseased brains, with special reference to HD and postulates the occurrence of reactive neuroblastosis as a consequential cellular event of dedifferentiation of neurons. Meanwhile, a substantial number of studies indicate that many neuropathogenic events are associated with the expression of potential glial cell markers by neuroblasts. Taken together, this article represents a hypothesis that transdifferentiation of neurons into glial cells might be highly possible through the transient generation of reactive neuroblasts in the brain upon certain pathological conditions.
Collapse
Affiliation(s)
- Nivethitha Manickam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India.
| |
Collapse
|
19
|
Masnata M, Salem S, de Rus Jacquet A, Anwer M, Cicchetti F. Targeting Tau to Treat Clinical Features of Huntington's Disease. Front Neurol 2020; 11:580732. [PMID: 33329322 PMCID: PMC7710872 DOI: 10.3389/fneur.2020.580732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by severe motor, cognitive and psychiatric impairments. While motor deficits often confirm diagnosis, cognitive dysfunctions usually manifest early in the disease process and are consistently ranked among the leading factors that impact the patients' quality of life. The genetic component of HD, a mutation in the huntingtin (HTT) gene, is traditionally presented as the main contributor to disease pathology. However, accumulating evidence suggests the implication of the microtubule-associated tau protein to the pathogenesis and therefore, proposes an alternative conceptual framework where tau and mutant huntingtin (mHTT) act conjointly to drive neurodegeneration and cognitive dysfunction. This perspective on disease etiology offers new avenues to design therapeutic interventions and could leverage decades of research on Alzheimer's disease (AD) and other tauopathies to rapidly advance drug discovery. In this mini review, we examine the breadth of tau-targeting treatments currently tested in the preclinical and clinical settings for AD and other tauopathies, and discuss the potential application of these strategies to HD.
Collapse
Affiliation(s)
- Maria Masnata
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Mehwish Anwer
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
20
|
Creus-Muncunill J, Badillos-Rodríguez R, Garcia-Forn M, Masana M, Garcia-Díaz Barriga G, Guisado-Corcoll A, Alberch J, Malagelada C, Delgado-García JM, Gruart A, Pérez-Navarro E. Increased translation as a novel pathogenic mechanism in Huntington's disease. Brain 2020; 142:3158-3175. [PMID: 31365052 DOI: 10.1093/brain/awz230] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene. Striatal projection neurons are mainly affected, leading to motor symptoms, but molecular mechanisms involved in their vulnerability are not fully characterized. Here, we show that eIF4E binding protein (4E-BP), a protein that inhibits translation, is inactivated in Huntington's disease striatum by increased phosphorylation. Accordingly, we detected aberrant de novo protein synthesis. Proteomic characterization indicates that translation specifically affects sets of proteins as we observed upregulation of ribosomal and oxidative phosphorylation proteins and downregulation of proteins related to neuronal structure and function. Interestingly, treatment with the translation inhibitor 4EGI-1 prevented R6/1 mice motor deficits, although corticostriatal long-term depression was not markedly changed in behaving animals. At the molecular level, injection of 4EGI-1 normalized protein synthesis and ribosomal content in R6/1 mouse striatum. In conclusion, our results indicate that dysregulation of protein synthesis is involved in mutant huntingtin-induced striatal neuron dysfunction.
Collapse
Affiliation(s)
- Jordi Creus-Muncunill
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Raquel Badillos-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Marta Garcia-Forn
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Mercè Masana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Gerardo Garcia-Díaz Barriga
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Anna Guisado-Corcoll
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Alberch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cristina Malagelada
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | - Esther Pérez-Navarro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
21
|
Llorach-Pares L, Rodriguez-Urgelles E, Nonell-Canals A, Alberch J, Avila C, Sanchez-Martinez M, Giralt A. Meridianins and Lignarenone B as Potential GSK3β Inhibitors and Inductors of Structural Neuronal Plasticity. Biomolecules 2020; 10:E639. [PMID: 32326204 PMCID: PMC7226462 DOI: 10.3390/biom10040639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glycogen Synthase Kinase 3 (GSK3) is an essential protein, with a relevant role in many diseases such as diabetes, cancer and neurodegenerative disorders. Particularly, the isoform GSK3β is related to pathologies such as Alzheimer's disease (AD). This enzyme constitutes a very interesting target for the discovery and/or design of new therapeutic agents against AD due to its relation to the hyperphosphorylation of the microtubule-associated protein tau (MAPT), and therefore, its contribution to neurofibrillary tangles (NFT) formation. An in silico target profiling study identified two marine molecular families, the indole alkaloids meridianins from the tunicate genus Aplidium, and lignarenones, the secondary metabolites of the shelled cephalaspidean mollusc Scaphander lignarius, as possible GSK3β inhibitors. The analysis of the surface of GSK3β, aimed to find possible binding regions, and the subsequent in silico binding studies revealed that both marine molecular families can act over the ATP and/or substrate binding regions. The predicted inhibitory potential of the molecules from these two chemical families was experimentally validated in vitro by showing a ~50% of increased Ser9 phosphorylation levels of the GSK3β protein. Furthermore, we determined that molecules from both molecular families potentiate structural neuronal plasticity in vitro. These results allow us to suggest that meridianins and lignarenone B could be used as possible therapeutic candidates for the treatment of GSK3β involved pathologies, such as AD.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, (Spain); (L.L.-P.); (C.A.)
- Mind the Byte S.L., 08007 Barcelona, Catalonia, Spain;
| | - Ened Rodriguez-Urgelles
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (E.R.-U.); (J.A.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | | | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (E.R.-U.); (J.A.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, (Spain); (L.L.-P.); (C.A.)
| | | | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (E.R.-U.); (J.A.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
22
|
Fernández-Nogales M, Lucas JJ. Altered Levels and Isoforms of Tau and Nuclear Membrane Invaginations in Huntington's Disease. Front Cell Neurosci 2020; 13:574. [PMID: 32009905 PMCID: PMC6978886 DOI: 10.3389/fncel.2019.00574] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Since the early reports of neurofibrillary Tau pathology in brains of some Huntington’s disease (HD) patients, mounting evidence of multiple alterations of Tau in HD brain tissue has emerged in recent years. Such Tau alterations range from increased total levels, imbalance of isoforms generated by alternative splicing (increased 4R-/3R-Tau ratio) or by post-translational modifications such as hyperphosphorylation or truncation. Besides, the detection in HD brains of a new Tau histopathological hallmark known as Tau nuclear rods (TNRs) or Tau-positive nuclear indentations (TNIs) led to propose HD as a secondary Tauopathy. After their discovery in HD brains, TNIs have also been reported in hippocampal neurons of early Braak stage AD cases and in frontal and temporal cortical neurons of FTD-MAPT cases due to the intronic IVS10+16 mutation in the Tau gene (MAPT) which results in an increased 4R-/3R-Tau ratio similar to that observed in HD. TNIs are likely pathogenic for contributing to the disturbed nucleocytoplasmic transport observed in HD. A key question is whether correction of any of the mentioned Tau alterations might have positive therapeutic implications for HD. The beneficial effect of decreasing Tau expression in HD mouse models clearly implicates Tau in HD pathogenesis. Such beneficial effect might be exerted by diminishing the excess total levels of Tau or specifically by diminishing the excess 4R-Tau, as well as any of their downstream effects. In any case, since gene silencing drugs are under development to attenuate both Huntingtin (HTT) expression for HD and MAPT expression for FTD-MAPT, it is conceivable that the combined therapy in HD patients might be more effective than HTT silencing alone.
Collapse
Affiliation(s)
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa (CBMSO)(CSIC-UAM), Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Ghiglieri V, Campanelli F, Marino G, Natale G, Picconi B, Calabresi P. Corticostriatal synaptic plasticity alterations in the R6/1 transgenic mouse model of Huntington's disease. J Neurosci Res 2019; 97:1655-1664. [PMID: 31498496 DOI: 10.1002/jnr.24521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative condition characterized by abnormal dopamine (DA)-glutamate interactions, severe alterations in motor control, and reduced behavioral flexibility. Experimental models of disease show that during symptomatic phases, HD shares with other hyperkinetic disorders the loss of synaptic depotentiation in the striatal spiny projection neurons (SPNs). Here we test the hypothesis that corticostriatal long-term depression (LTD), a well-conserved synaptic scaling down response to environmental stimuli, is also altered in symptomatic male R6/1 mice, a HD model with gradual development of symptoms. In vitro patch-clamp and intracellular recordings of corticostriatal slices from R6/1 mice confirm that, similar to other models characterized by hyperkinesia and striatal DA D1 receptor pathway dysregulation, once long-term potentiation (LTP) is induced, synaptic depotentiation is lost. Our new observations show that activity-dependent LTD was abolished in SPNs of mutant mice. In an experimental condition in which N-methyl-d-aspartate (NMDA) receptors are normally not recruited, in vitro bath application of DA revealed an abnormal response of D1 receptors that caused a shift in synaptic plasticity direction resulting in an NMDA-dependent LTP. Our results demonstrate that corticostriatal LTD is lost in R6/1 mouse model and confirm the role of aberrant DA-glutamate interactions in the alterations of synaptic scaling down associated with HD symptoms.
Collapse
Affiliation(s)
- Veronica Ghiglieri
- Dipartimento di Filosofia, Scienze sociali, umane e della formazione, Università di Perugia, Perugia, Italy.,Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Gioia Marino
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Natale
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Barbara Picconi
- Università Telematica San Raffaele, Rome, Italy.,Laboratorio di Neurofisiologia Sperimentale, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paolo Calabresi
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy.,Clinica Neurologica, Dipartimento di Medicina, Università di Perugia, Perugia, Italy
| |
Collapse
|
24
|
Koch ET, Raymond LA. Dysfunctional striatal dopamine signaling in Huntington's disease. J Neurosci Res 2019; 97:1636-1654. [PMID: 31304622 DOI: 10.1002/jnr.24495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/06/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
Abstract
Dopamine signaling in the striatum is critical for a variety of behaviors including movement, behavioral flexibility, response to reward and many forms of learning. Alterations to dopamine transmission contribute to pathological features of many neurological diseases, including Huntington's disease (HD). HD is an autosomal dominant genetic disorder caused by a CAG repeat expansion in the Huntingtin gene. The striatum is preferentially degenerated in HD, and this region receives dopaminergic input from the substantia nigra. Studies of HD patients and genetic rodent models have shown changes to levels of dopamine and its receptors in the striatum, and alterations in dopamine receptor signaling and modulation of other neurotransmitters, notably glutamate. Throughout his career, Dr. Michael Levine's research has furthered our understanding of dopamine signaling in the striatum of healthy rodents and HD mouse models. This review will focus on the work of his group and others in elucidating alterations to striatal dopamine signaling that contribute to pathophysiology in HD mouse models, and how these findings relate to human HD studies. We will also discuss current and potential therapeutic interventions for HD that target the dopamine system, and future research directions for this field.
Collapse
Affiliation(s)
- Ellen T Koch
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Lynn A Raymond
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Engel T, Gómez-Sintes R, Alves M, Jimenez-Mateos EM, Fernández-Nogales M, Sanz-Rodriguez A, Morgan J, Beamer E, Rodríguez-Matellán A, Dunleavy M, Sano T, Avila J, Medina M, Hernandez F, Lucas JJ, Henshall DC. Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death Dis 2018; 9:969. [PMID: 30237424 PMCID: PMC6147910 DOI: 10.1038/s41419-018-0963-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed throughout the brain and involved in vital molecular pathways such as cell survival and synaptic reorganization and has emerged as a potential drug target for brain diseases. A causal role for GSK-3, in particular the brain-enriched GSK-3β isoform, has been demonstrated in neurodegenerative diseases such as Alzheimer’s and Huntington’s, and in psychiatric diseases. Recent studies have also linked GSK-3 dysregulation to neuropathological outcomes in epilepsy. To date, however, there has been no genetic evidence for the involvement of GSK-3 in seizure-induced pathology. Status epilepticus (prolonged, damaging seizure) was induced via a microinjection of kainic acid into the amygdala of mice. Studies were conducted using two transgenic mouse lines: a neuron-specific GSK-3β overexpression and a neuron-specific dominant-negative GSK-3β (GSK-3β-DN) expression in order to determine the effects of increased or decreased GSK-3β activity, respectively, on seizures and attendant pathological changes in the hippocampus. GSK-3 inhibitors were also employed to support the genetic approach. Status epilepticus resulted in a spatiotemporal regulation of GSK-3 expression and activity in the hippocampus, with decreased GSK-3 activity evident in non-damaged hippocampal areas. Consistent with this, overexpression of GSK-3β exacerbated status epilepticus-induced neurodegeneration in mice. Surprisingly, decreasing GSK-3 activity, either via overexpression of GSK-3β-DN or through the use of specific GSK-3 inhibitors, also exacerbated hippocampal damage and increased seizure severity during status epilepticus. In conclusion, our results demonstrate that the brain has limited tolerance for modulation of GSK-3 activity in the setting of epileptic brain injury. These findings caution against targeting GSK-3 as a treatment strategy for epilepsy or other neurologic disorders where neuronal hyperexcitability is an underlying pathomechanism.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Raquel Gómez-Sintes
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Marta Fernández-Nogales
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - James Morgan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Alberto Rodríguez-Matellán
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mark Dunleavy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Takanori Sano
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jesus Avila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel Medina
- CIEN Foundation-Queen Sofia Foundation Alzheimer Center and CIBERNED, Instituto de Salud Carlos III Madrid, Madrid, Spain
| | - Felix Hernandez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José J Lucas
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,FutureNeuro Research Centre, Dublin 2, Ireland
| |
Collapse
|
26
|
Saavedra A, García-Díaz Barriga G, Pérez-Navarro E, Alberch J. Huntington's disease: novel therapeutic perspectives hanging in the balance. Expert Opin Ther Targets 2018; 22:385-399. [PMID: 29671352 DOI: 10.1080/14728222.2018.1465930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Huntington's disease (HD), an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin gene, has long been characterized by the presence of motor symptoms due to the loss of striatal projection neurons. Cognitive dysfunction and neuropsychiatric symptoms are also present and they occur in the absence of cell death in most mouse models, pointing to neuronal dysfunction and abnormal synaptic plasticity as causative mechanisms. Areas covered: Here, we focus on those common mechanisms altered by the presence of mutant huntingtin affecting corticostriatal and hippocampal function as therapeutic targets that could prove beneficial to ameliorate both cognitive and motor function in HD. Specifically, we discuss the importance of reestablishing the balance in (1) synaptic/extrasynaptic N-methyl-D-aspartate receptor signaling, (2) mitochondrial dynamics/trafficking, (3) TrkB/p75NTR signaling, and (4) transcriptional activity. Expert opinion: Mutant huntingtin has a broad impact on multiple cellular processes, which makes it very challenging to design a curative therapeutic strategy. As we point out here, novel therapeutic interventions should look for multi-purpose drugs targeting common and early affected processes leading to corticostriatal and hippocampal dysfunction that additionally operate in a feedforward vicious cycle downstream the activation of extrasynaptic N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Ana Saavedra
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Gerardo García-Díaz Barriga
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Esther Pérez-Navarro
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Jordi Alberch
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| |
Collapse
|
27
|
Rangel-Barajas C, Rebec GV. Dysregulation of Corticostriatal Connectivity in Huntington's Disease: A Role for Dopamine Modulation. J Huntingtons Dis 2017; 5:303-331. [PMID: 27983564 PMCID: PMC5181679 DOI: 10.3233/jhd-160221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant communication between striatum, the main information processing unit of the basal ganglia, and cerebral cortex plays a critical role in the emergence of Huntington’s disease (HD), a fatal monogenetic condition that typically strikes in the prime of life. Although both striatum and cortex undergo substantial cell loss over the course of HD, corticostriatal circuits become dysfunctional long before neurons die. Understanding the dysfunction is key to developing effective strategies for treating a progressively worsening triad of motor, cognitive, and psychiatric symptoms. Cortical output neurons drive striatal activity through the release of glutamate, an excitatory amino acid. Striatal outputs, in turn, release γ-amino butyric acid (GABA) and exert inhibitory control over downstream basal ganglia targets. Ample evidence from transgenic rodent models points to dysregulation of corticostriatal glutamate transmission along with corresponding changes in striatal GABA release as underlying factors in the HD behavioral phenotype. Another contributor is dysregulation of dopamine (DA), a modulator of both glutamate and GABA transmission. In fact, pharmacological manipulation of DA is the only currently available treatment for HD symptoms. Here, we review data from animal models and human patients to evaluate the role of DA in HD, including DA interactions with glutamate and GABA within the context of dysfunctional corticostriatal circuitry.
Collapse
Affiliation(s)
| | - George V. Rebec
- Correspondence to: George V. Rebec, PhD, Department of Psychological and Brain Sciences, Program in
Neuroscience, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA. Tel.: +1 812 855 4832;
Fax: +1 812 855 4520; E-mail:
| |
Collapse
|
28
|
Fernández‐Nogales M, Santos‐Galindo M, Hernández IH, Cabrera JR, Lucas JJ. Faulty splicing and cytoskeleton abnormalities in Huntington's disease. Brain Pathol 2016; 26:772-778. [PMID: 27529534 PMCID: PMC8028924 DOI: 10.1111/bpa.12430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is caused by a CAG-repeat encoding a polyglutamine (polyQ) tract in the huntingtin protein. There is plenty of evidence of polyQ-driven toxicity. However, CAG repeat RNA-driven alteration of splicing has recently been proposed in analogy to CUG-repeat diseases. Here we review the reported alteration of the CAG-repeat associated splicing factor SRSF6 in brains of HD patients and mouse models and how this correlates with altered splicing of, at least, two microtubule-associated proteins in HD, namely MAPT (tau) and MAP2. Regarding tau, altered splicing of exon 10 has been reported, along with increased levels and 4R/3R-tau ratio and detection of tau in a new nuclear rod-shaped histopathological hallmark termed tau nuclear rod (TNR) or tau nuclear indentation (TNI). These findings, together with an attenuation of HD phenotype in R6/1 mice with tau deficiency and subsequent studies showing increased phosphorylation in mouse models and increased levels in CSF of patients, has led to proposing HD as a tauopathy. Regarding MAP2, an increase in its juvenile form and a decrease in total MAP2 together with redistribution from dendrites to soma is observed in HD patients, which may contribute to the dendritic atrophy in HD. Furthermore, MAP2 positive structures filling nuclear indentations have occasionally been found and co-localized with tau. Therefore, altered MAP function with imbalance in tau/MAP2 content could contribute to HD striatal atrophy and dysfunction. Besides, TNIs might be indicative of such MAP abnormalities. TNIs are also found in early pathology Alzheimer's disease and in tauopathy mice over-expressing mutant 4R-tau. This indicates that tau alteration is sufficient for TNI detection, which becomes a marker of increased total tau and/or altered 4R/3R-tau ratio and reporter of pathology-associated nuclear indentations. Altogether, these recent studies suggest that correcting the SRSF6-driven missplicing and/or microtubule-associated imbalance might be of therapeutic value in HD.
Collapse
Affiliation(s)
- Marta Fernández‐Nogales
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
- Present address:
Present address: Marta Fernández‐Nogales, CSIC/University of Miguel HernándezInstituto De Neurociencias De Alicante (INA)AlicanteSpain
| | - María Santos‐Galindo
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
| | - Ivó H. Hernández
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
| | - Jorge R. Cabrera
- Department of Microbiology and ImmunologyDartmouth CollegeLebanonNH
| | - José J. Lucas
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
| |
Collapse
|
29
|
Synthesis of pyrimidin-4-one-1,2,3-triazole conjugates as glycogen synthase kinase-3β inhibitors with anti-depressant activity. Bioorg Chem 2016; 68:41-55. [DOI: 10.1016/j.bioorg.2016.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/10/2016] [Accepted: 07/17/2016] [Indexed: 01/06/2023]
|
30
|
Cabrera JR, Lucas JJ. MAP2 Splicing is Altered in Huntington's Disease. Brain Pathol 2016; 27:181-189. [PMID: 27098187 DOI: 10.1111/bpa.12387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic alteration of striatal medium spiny neurons is one of the earliest morphological abnormalities in Huntington's disease (HD). The main microtubule-associated protein in dendrites is MAP2. The low-molecular weight isoforms of MAP2 (LMW-MAP2) are the juvenile forms resulting from exclusion of the sequence encoded by exons E7-E9 and are downregulated after the early stages of neuronal development when E7-E9 exon-including high-molecular weight isoforms (HMW-MAP2) are favored. Splicing alteration has recently been proposed to contribute to HD in view of two pathogenic missplicing events resulting in a highly toxic N-terminal version of mutant huntingtin and in a detrimental imbalance in MAP Tau isoforms with three or four tubulin-binding repeats. Both splicing events are postulated targets of the SR splicing factor SRSF6 which has recently been reported to be dramatically altered in HD. SR proteins often regulate functionally related sets of genes and SRSF6 targets are enriched in genes involved in brain organogenesis including several actin-and tubulin-binding proteins. Here we hypothesized that MAP2 might be target of SRSF6 and altered in HD. By SRSF6 knockdown in neuroblastoma cells, we demonstrate that splicing of MAP2 E7-E9 exons is affected by SRSF6. We then show a disbalance in LMW and HMW MAP2 mRNA isoforms in HD striatum in favor of the juvenile LMW forms together with a decrease in total MAP2 mRNA. This is accompanied by a global decrease in total MAP2 protein due to almost total disappearance of HMW-MAP2 isoforms with preservation of LMW-MAP2 isoforms. Accordingly, the predominant dendritic MAP2 staining in striatal neuropil of control subjects is absent in HD cases. In these, MAP2-immunoreactivity is faint and restricted to neuronal cell bodies often showing a sharp boundary at the base of dendrites. Together, our results highlight the importance of splicing alteration in HD and suggest that MAP2 alteration contributes to dendritic atrophy.
Collapse
Affiliation(s)
- Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, 28049, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, 28049, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
31
|
Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity. Sci Rep 2016; 6:29097. [PMID: 27377031 PMCID: PMC4932512 DOI: 10.1038/srep29097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the N-terminal of huntingtin. The amount of aggregate-prone protein is controlled by various mechanisms, including molecular chaperones. Vaccinia-related kinase 2 (VRK2) is known to negatively regulate chaperonin TRiC, and VRK2-facilitated degradation of TRiC increases polyQ protein aggregation, which is involved in HD. We found that VRK2 activity was negatively controlled by glycogen synthase kinase 3β (GSK3β). GSK3β directly bound to VRK2 and inhibited the catalytic activity of VRK2 in a kinase activity-independent manner. Furthermore, GSK3β increased the stability of TRiC and decreased the formation of HttQ103-GFP aggregates by inhibiting VRK2. These results indicate that GSK3β signaling may be a regulatory mechanism of HD progression and suggest targets for further therapeutic trials for HD.
Collapse
|
32
|
GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions. Cell Death Dis 2016; 7:e2206. [PMID: 27124580 PMCID: PMC4855649 DOI: 10.1038/cddis.2016.104] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.
Collapse
|
33
|
Gratuze M, Cisbani G, Cicchetti F, Planel E. Is Huntington's disease a tauopathy? Brain 2016; 139:1014-25. [DOI: 10.1093/brain/aww021] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022] Open
|
34
|
Kandimalla R, Reddy PH. Multiple faces of dynamin-related protein 1 and its role in Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1862:814-828. [PMID: 26708942 DOI: 10.1016/j.bbadis.2015.12.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023]
Abstract
Mitochondria play a large role in neuronal function by constantly providing energy, particularly at synapses. Recent studies suggest that amyloid beta (Aβ) and phosphorylated tau interact with the mitochondrial fission protein, dynamin-related protein 1 (Drp1), causing excessive fragmentation of mitochondria and leading to abnormal mitochondrial dynamics and synaptic degeneration in Alzheimer's disease (AD) neurons. Recent research also revealed Aβ-induced and phosphorylated tau-induced changes in mitochondria, particularly affecting mitochondrial shape, size, distribution and axonal transport in AD neurons. These changes affect mitochondrial health and, in turn, could affect synaptic function and neuronal damage and ultimately leading to memory loss and cognitive impairment in patients with AD. This article highlights recent findings in the role of Drp1 in AD pathogenesis. This article also highlights Drp1 and its relationships to glycogen synthase kinase 3, cyclin-dependent kinase 5, p53, and microRNAs in AD pathogenesis.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neurology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, TX 79413, United States.
| |
Collapse
|