1
|
Chao HWH, Chao WWJ, Chao HM. Catalpol Protects Against Retinal Ischemia Through Antioxidation, Anti-Ischemia, Downregulation of β-Catenin, VEGF, and Angiopoietin-2: In Vitro and In Vivo Studies. Int J Mol Sci 2025; 26:4019. [PMID: 40362263 PMCID: PMC12072090 DOI: 10.3390/ijms26094019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Retinal ischemic disorders present significant threats to vision, characterized by inadequate blood supply oxygen-glucose deprivation (OGD), oxidative stress, and cellular injury, often resulting in irreversible injury. Catalpol, an iridoid glycoside derived from Rehmannia glutinosa, has demonstrated antioxidative and neuroprotective effects. This study aimed at investigating the protective effects and mechanisms of catalpol against oxidative stress or OGD in vitro and retinal ischemia in vivo, focusing on the modulation of key biomarkers of retinal ischemia, including HIF-1α, vascular endothelial growth factor (VEGF), angiopoietin-2, MCP-1, and the Wnt/β-catenin pathway. Cellular viability was assessed using retinal ganglion cell-5 (RGC-5) cells cultured in DMEM; a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed. H2O2 (1 mM)/OGD was utilized. Vehicle or different catalpol concentrations were administered 15 min before the ischemic-like insults. The Wistar rat eyes' intraocular pressure was increased to 120 mmHg for 60 min to induce retinal ischemia. Intravitreous injections of catalpol (0.5 or 0.25 mM), Wnt inhibitor DKK1 (1 μg/4 μL), anti-VEGF Lucentis (40 μg/4 μL), or anti-VEGF Eylea (160 μg/4 μL) were administered to the rats' eyes 15 min before or after retinal ischemia. Electroretinogram (ERG), fluorogold retrograde labeling RGC, Western blotting, ELISA, RT-PCR, and TUNEL were utilized. In vitro, both H2O2 and OGD models significantly (p < 0.001/p < 0.001; H2O2 and OGD) induced oxidative stress/ischemic-like insults, decreasing RGC-5 cell viability (from 100% to 55.14 ± 2.19%/60.84 ± 4.57%). These injuries were insignificantly (53.85 ± 1.28% at 0.25 mM)/(63.46 ± 3.30% at 0.25 mM) and significantly (p = 0.003/p = 0.012; 64.15 ± 2.41%/77.63 ± 8.59% at 0.5 mM) altered by the pre-administration of catalpol, indicating a possible antioxidative and anti-ischemic effect of 0.5 mM catalpol. In vivo, catalpol had less effect at 0.25 mM for ERG amplitude ratio (median [Q1, Q3] 14.75% [12.64%, 20.48%]) and RGC viability (mean ± SE 63.74 ± 5.13%), whereas (p < 0.05 and p < 0.05) at 0.5 mM ERG's ratio (35.43% [24.35%, 43.08%]) and RGC's density (74.34 ± 5.10%) blunted the ischemia-associated significant (p < 0.05 and p < 0.01) reduction in ERG b-wave amplitude (6.89% [4.24%, 10.40%]) and RGC cell viability (45.64 ± 3.02%). Catalpol 0.5 mM also significantly protected against retinal ischemia supported by the increased amplitude ratio of ERG a-wave and oscillatory potential, along with recovering a delayed a-/b-wave response time ratio. When contrasted with DKK1 or Lucentis, catalpol exhibited similar protective effects against retinal ischemia via significantly (p < 0.05) blunting the ischemia-induced overexpression of β-catenin, VEGF, or angiopoietin-2. Moreover, ischemia-associated significant increases in apoptotic cells in the inner retina, inflammatory biomarker MCP-1, and ischemic indicator HIF-1α were significantly nullified by catalpol. Catalpol demonstrated antiapoptotic, anti-inflammatory, anti-ischemic (in vivo retinal ischemia or in vitro OGD), and antioxidative (in vitro) properties, counteracting retinal ischemia via suppressing upstream Wnt/β-catenin and inhibiting downstream HIF-1α, VEGF, and angiopoietin-2, together with its decreasing TUNEL apoptotic cell number and inflammatory MCP-1 concentration.
Collapse
Affiliation(s)
- Howard Wen-Haur Chao
- Department of Medicine, School of Medicine, Aston University, Birmingham B4 7ET, UK
- Department of Medical Education, Leeds University, Leeds LS2 9JT, UK
| | - Windsor Wen-Jin Chao
- Department of Medicine, School of Medicine, Aston University, Birmingham B4 7ET, UK
- Department of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hsiao-Ming Chao
- Department of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Institute of Pharmacology, Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Ophthalmology, Shin Kong Hospital, Taipei 105, Taiwan
| |
Collapse
|
2
|
Lähteenoja L, Palosaari T, Tiirikka T, Haanpää M, Moilanen J, Falck A, Rahikkala E. Clinical and genetic characteristics and natural history of Finnish families with familial exudative vitreoretinopathy due to pathogenic FZD4 variants. Acta Ophthalmol 2025; 103:152-161. [PMID: 38706142 PMCID: PMC11810545 DOI: 10.1111/aos.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To report clinical and genetic characteristics of familial exudative vitreoretinopathy (FEVR) in the Finnish population. METHODS Detailed clinical and genetic data of 35 individuals with heterozygous pathogenic variants in FZD4 were gathered and analysed. RESULTS Thirty-two individuals with FZD4 c.313A>G variant and three individuals with FZD4 c.40_49del were included in the study. The clinical phenotype was variable even among family members with the same FZD4 variant. Only 34% (N = 12/35) of variant-positive individuals had been clinically diagnosed with FEVR. The median age of the onset of symptoms was 2.3 years, ranging between 0 to 25 years. Median visual acuity was 0.1 logMAR (0.8 Snellen decimal), ranging between light perception and -0.1 logMAR (1.25 Snellen decimal). Most (N = 33/35, 94%) were classified as not visually impaired. Despite unilateral visual loss present in some, they did not meet the criteria of visual impairment according to the WHO classification. Two study patients (N = 2/35, 6%) had severe visual impairment. The most common FEVR stage in study patient's eyes (N = 28/70 eyes, 40%) was FEVR stage 1, that is, avascular periphery or abnormal vascularisation. Most of FZD4-variant-positive study patient's eyes (N = 31/50 eyes, 62%) were myopic. Two individuals presented with persistent hyperplastic primary vitreous expanding the phenotypic spectrum of FEVR. Shared haplotypes extending approximately 0.9 Mb around the recurrent FZD4 c.313A>G variant were identified. CONCLUSION Most study patients were unaffected or had mild clinical manifestations by FEVR. Myopia seemed to be overly common in FZD4-variant-positive individuals.
Collapse
Affiliation(s)
- Laura Lähteenoja
- Research Unit of Clinical Medicine and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
- Department of Clinical GeneticsOulu University HospitalOuluFinland
- Department of OphthalmologyOulu University HospitalOuluFinland
| | - Tapani Palosaari
- Research Unit of Clinical Medicine and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
- Department of OphthalmologyOulu University HospitalOuluFinland
| | - Timo Tiirikka
- Research Unit of Clinical Medicine and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
- Department of Clinical GeneticsOulu University HospitalOuluFinland
| | - Maria Haanpää
- Department of Clinical GeneticsTurku University HospitalTurkuFinland
| | - Jukka Moilanen
- Research Unit of Clinical Medicine and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
- Department of Clinical GeneticsOulu University HospitalOuluFinland
| | - Aura Falck
- Research Unit of Clinical Medicine and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
- Department of OphthalmologyOulu University HospitalOuluFinland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
- Department of Clinical GeneticsOulu University HospitalOuluFinland
| |
Collapse
|
3
|
van der Ende S, Bedard K, Wallace K, Mackley MP, Nightingale M, Gaston D, Beis MJ, Leblanc MA, Gillett R, Levin AV, Clark IH, Héon É, Muni RH, Traboulsi EI, Lyons CJ, McMaster CR, Robitaille JM, on behalf of The FEVR Consortium. Gene Variant Spectrum in Probands With Familial Exudative Vitreoretinopathy Using an Expanded Panel. Invest Ophthalmol Vis Sci 2025; 66:23. [PMID: 39918476 PMCID: PMC11809447 DOI: 10.1167/iovs.66.2.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/02/2025] [Indexed: 02/12/2025] Open
Abstract
Purpose To investigate the gene variant spectrum in patients with familial exudative vitreoretinopathy (FEVR). Methods Probands clinically diagnosed with FEVR and their relatives were enrolled and clinical information and DNA collected. An expanded FEVR panel was used, including six recognized FEVR genes (FZD4, NDP, LRP5, TSPAN12, ZNF408, and CTNNB1) and 19 genes previously associated with ocular features overlapping FEVR (FEVR-associated genes). Variants identified using targeted next-generation sequencing and/or Sanger sequencing were analyzed and classified using the American College of Medical Genetics and Clinical Genome Resource Sequence Variant Interpretation (ClinGen SVI) working group recommendations to detect disease-causing variants (DCVs). Results Analyses of data from a cohort of 94 probands provided a molecular diagnosis for 39 (41.5%) probands: 34 (87.2%) had a single DCV, whereas 5 (12.8%) harbored more than 1 DCV. Of 41 total DCVs in solved probands, 33 (80.5%) were in 4 of the 6 recognized genes, LRP5, FZD4, TSPAN12, and NDP, whereas 8 were found in FEVR-associated genes, 6 in KIF11, and 2 (LAMA1 and DOCK6) each in association with a KIF11 DCV. Reanalyzing variants using the latest criteria impacted the variant classification in five probands (5.3%), changing variants that were once deemed likely pathogenic to variants of uncertain significance. Conclusions The expanded FEVR gene panel detected DCVs in nearly one-half of our cohort. Including the criteria used in classification will improve transparency of variant calls as more data become available. Four FEVR genes account for most cases, and the role of rare FEVR genes and candidate genes requires further study.
Collapse
Affiliation(s)
- Sarah van der Ende
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Karen Bedard
- Department of Pathology, Dalhousie University, Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Karin Wallace
- Department of Surgery, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Michael P. Mackley
- Division of Clinical & Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mathew Nightingale
- Genomics Cores Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Gaston
- Department of Pathology, Dalhousie University, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - M. Jill Beis
- Maritime Medical Genetics Services, IWK Health, Halifax, Nova Scotia, Canada
| | - Marissa A. Leblanc
- Department of Psychiatry, Dalhousie University, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Roxanne Gillett
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Alex V. Levin
- Departments of Ophthalmology and Pediatrics, University of Rochester, Flaum Eye Institute, Golisano Children's Hospital, Rochester, New York, United States
| | - Ian H. Clark
- Department of Ophthalmology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Élise Héon
- Department of Ophthalmology and Vision Sciences, University of Toronto, Department of Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rajeev H. Muni
- Department of Ophthalmology and Vision Sciences, University of Toronto, Department of Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elias I. Traboulsi
- Department of Ophthalmology, Cleveland Clinic, Cole Eye Institute, Cleveland, Ohio, United States
| | - Christopher J. Lyons
- Department of Ophthalmology and Vision Sciences, University of British Columbia, Department of Ophthalmology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | | | - Johane M. Robitaille
- Departments of Ophthalmology and Visual Sciences, Pathology and Pediatrics, Dalhousie University, Department of Surgery, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - on behalf of The FEVR Consortium
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, Nova Scotia, Canada
- Department of Surgery, IWK Health Centre, Halifax, Nova Scotia, Canada
- Division of Clinical & Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Genomics Cores Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
- Maritime Medical Genetics Services, IWK Health, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Nova Scotia Health, Halifax, Nova Scotia, Canada
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
- Departments of Ophthalmology and Pediatrics, University of Rochester, Flaum Eye Institute, Golisano Children's Hospital, Rochester, New York, United States
- Department of Ophthalmology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Department of Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Department of Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Ophthalmology, Cleveland Clinic, Cole Eye Institute, Cleveland, Ohio, United States
- Department of Ophthalmology and Vision Sciences, University of British Columbia, Department of Ophthalmology, BC Children's Hospital, Vancouver, British Columbia, Canada
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Departments of Ophthalmology and Visual Sciences, Pathology and Pediatrics, Dalhousie University, Department of Surgery, IWK Health Centre, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Yaylacıoğlu Tuncay F, Reeves MJ, Yousaf S, Ullah E, Guan B, Goetz KE, Tumminia SJ, Hufnagel RB. Genotype-Phenotype Spectrum of eyeGENE Patients With Familial Exudative Vitreoretinopathy: Novel Variants in Norrin/β-Catenin Signaling Pathway Genes. Invest Ophthalmol Vis Sci 2025; 66:9. [PMID: 39903177 PMCID: PMC11801387 DOI: 10.1167/iovs.66.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Purpose To report the variants and genotype-phenotype correlations in patients with familial exudative vitreoretinopathy (FEVR) included in the eyeGENE database. Methods A retrospective study was conducted in a cohort of 122 eyeGENE patients from 114 families with FEVR. Clinical details and genetic test results were provided by referring clinicians and clinical laboratories in the eyeGENE network, respectively. Genotype and phenotype information was reviewed, and reported variants were reclassified. Results Genetic test reports of 50 probands revealed 52 variants in the four genes of the Norrin/β-catenin signaling pathway: LRP5, FZD4, TSPAN12, and NDP. Following variant reclassification, 35 of the reported variants were interpreted as pathogenic or likely pathogenic (12 in LRP5, 11 in FZD4, seven in TSPAN12 and five in NDP), providing a conclusive test result for nearly one-third (32%) of the probands. Among the reported variants, 18 were novel (34.6%) and two-thirds were missense. Retinal detachment was reported less in patients with variants in TSPAN12 (P = 0.017). One-third of the patients (33.3%) with an FZD4 variant had asymmetric findings. In contrast, asymmetry was less pronounced in patients with variants in TSPAN12 (11.1%). Conclusions This was one of the largest cohorts reviewed from North America, expanding the variant spectrum in FEVR. Among the eyeGENE FEVR patients, disease-associated variants in Norrin/β-catenin signaling pathway genes can explain one-third of the cohort. LRP5 and FZD4 variants were the most common. The genotype-phenotype correlations supported the phenotypic variability in FEVR.
Collapse
Affiliation(s)
- Fulya Yaylacıoğlu Tuncay
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
- Medical Biology Department, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey
| | - Melissa J. Reeves
- Office of Data Science and Health Informatics, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sairah Yousaf
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ehsan Ullah
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kerry E. Goetz
- Office of Data Science and Health Informatics, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Santa J. Tumminia
- Office of the Director, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
- Center for Integrated Healthcare Research, Kaiser Permanente Hawaii Region, Honolulu, Hawaii, United States
| |
Collapse
|
5
|
Holtes LK, de Bruijn SE, Cremers FPM, Roosing S. Dual inheritance patterns: A spectrum of non-syndromic inherited retinal disease phenotypes with varying molecular mechanisms. Prog Retin Eye Res 2025; 104:101308. [PMID: 39486507 DOI: 10.1016/j.preteyeres.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Inherited retinal diseases (IRDs) encompass a variety of disease phenotypes and are known to display both clinical and genetic heterogeneity. A further complexity is that for several IRD-associated genes, pathogenic variants have been reported to cause either autosomal dominant (AD) or autosomal recessive (AR) diseases. The possibility of dual inheritance can create a challenge for variant interpretation as well as the genetic counselling of patients. This review aims to determine whether the molecular mechanisms behind the dual inheritance of each IRD-associated gene is well established, not yet properly understood, or if the association is questionable. Each gene is discussed individually in detail due to different protein structures and functions, but there are overlapping characteristics. For example, eight genes only have a limited number of reported pathogenic variants or a hotspot region implicated in the second inheritance pattern. Whereas CRX and RP1 display distinct spatial patterns for AR and AD pathogenic variants based on the variant type and/or location. The genes with a questionable dual inheritance, namely AIPL1, CRB1, and RCBTB1 highlight the importance of carefully considering allele frequency data. Finally, the crucial role relevant functional studies in animal and cell models play in validating a variant's biochemical or molecular effect is emphasised.
Collapse
Affiliation(s)
- Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Kondo H, Tsukahara-Kawamura T, Matsushita I, Nagata T, Hayashi T, Nishina S, Higasa K, Uchio E, Kondo M, Sakamoto T, Kusaka S. Familial Exudative Vitreoretinopathy With and Without Pathogenic Variants of Norrin/β-Catenin Signaling Genes. OPHTHALMOLOGY SCIENCE 2024; 4:100514. [PMID: 38881609 PMCID: PMC11179410 DOI: 10.1016/j.xops.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
Purpose To determine the clinical characteristics of familial exudative vitreoretinopathy (FEVR) associated with or without pathogenic variants of the Norrin/β-catenin genes. Design This was a multicenter, cross-sectional, observational, and genetic study. Subjects Two-hundred eighty-one probands with FEVR were studied. Methods Whole-exome sequence and/or Sanger sequence was performed for the Norrin/β-catenin genes, the FZD4, LRP5, TSPAN12, and NDP genes on blood collected from the probands. The clinical symptoms of the probands with or without the pathogenic variants were assessed as well as differences in the inter Norrin/β-catenin genes. Main Outcome Measures The phenotype associated with or without pathogenic variants of the Norrin/β-catenin genes. Results One-hundred eight probands (38.4%) had 88 different pathogenic or likely pathogenic variants in the genes: 24 with the FZD4, 42 with the LRP5, 10 with the TSPAN12, and 12 with the NDP gene. Compared with the 173 probands without pathogenic variants, the 108 variant-positive probands had characteristics of familial predisposition (63.9% vs. 37.6%, P < 0.0001), progression during infancy (75.0% vs. 53.8%, P = 0.0004), asymmetrical severity between the 2 eyes (50.0% vs. 37.6%, P = 0.0472), and nonsyndromic characteristics (10.2% vs. 17.3%, P = 0.1185). The most frequent stage at which the more severe eye conditions was present was at stage 4 in both groups (40.7% vs. 34.7%). However, the advanced stages of 3 to 5 in the more severe eye were found more frequently in probands with variants than in those without variants (83.3% vs. 58.4%, P < 0.0001). Patients with rhegmatogenous retinal detachments progressed from stage 1 or 2 were found less frequently in the variant-positive probands (8.3% vs. 17.3%, P = 0.0346). Nine probands with NDP variants had features different from probands with typical Norrin/β-catenin gene variants including the sporadic, symmetrical, and systemic characteristics consistent with Norrie disease. Conclusions The results showed that the clinical characteristics of FEVR of patients with variants in the Norrin/β-catenin genes are different from those with other etiologies. We recommend that clinicians who diagnose a child with FEVR perform genetic testing so that the parents can be informed on the prognosis of the vision and general health in the child. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Faculty of Medicine, Tsu, Japan
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
7
|
Atac D, Maggi K, Feil S, Maggi J, Cuevas E, Sowden JC, Koller S, Berger W. Identification and Characterization of ATOH7-Regulated Target Genes and Pathways in Human Neuroretinal Development. Cells 2024; 13:1142. [PMID: 38994994 PMCID: PMC11240604 DOI: 10.3390/cells13131142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
The proneural transcription factor atonal basic helix-loop-helix transcription factor 7 (ATOH7) is expressed in early progenitors in the developing neuroretina. In vertebrates, this is crucial for the development of retinal ganglion cells (RGCs), as mutant animals show an almost complete absence of RGCs, underdeveloped optic nerves, and aberrations in retinal vessel development. Human mutations are rare and result in autosomal recessive optic nerve hypoplasia (ONH) or severe vascular changes, diagnosed as autosomal recessive persistent hyperplasia of the primary vitreous (PHPVAR). To better understand the role of ATOH7 in neuroretinal development, we created ATOH7 knockout and eGFP-expressing ATOH7 reporter human induced pluripotent stem cells (hiPSCs), which were differentiated into early-stage retinal organoids. Target loci regulated by ATOH7 were identified by Cleavage Under Targets and Release Using Nuclease with sequencing (CUT&RUN-seq) and differential expression by RNA sequencing (RNA-seq) of wildtype and mutant organoid-derived reporter cells. Additionally, single-cell RNA sequencing (scRNA-seq) was performed on whole organoids to identify cell type-specific genes. Mutant organoids displayed substantial deficiency in axon sprouting, reduction in RGCs, and an increase in other cell types. We identified 469 differentially expressed target genes, with an overrepresentation of genes belonging to axon development/guidance and Notch signaling. Taken together, we consolidate the function of human ATOH7 in guiding progenitor competence by inducing RGC-specific genes while inhibiting other cell fates. Furthermore, we highlight candidate genes responsible for ATOH7-associated optic nerve and retinovascular anomalies, which sheds light to potential future therapy targets for related disorders.
Collapse
Affiliation(s)
- David Atac
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Kevin Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Elisa Cuevas
- UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK (J.C.S.)
| | - Jane C. Sowden
- UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK (J.C.S.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Redden LD, Iaboni DS, van der Ende S, Nightingale M, Gaston D, McMaster CR, Robitaille JM, Gupta RR. Multimodal imaging of white preretinal lesions in atypical familial exudative vitreoretinopathy: Case report and literature review. Am J Ophthalmol Case Rep 2024; 34:102051. [PMID: 38628947 PMCID: PMC11019094 DOI: 10.1016/j.ajoc.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose To report a rare clinical finding of preretinal granules associated with atypical familial exudative vitreoretinopathy (FEVR) and perform a review of the literature. Observations An asymptomatic 18-year-old male was referred for unilateral peripheral avascular retina evaluation in association with presumed FEVR. He was first noted to have white preretinal granules on fundus examination at five years of age. The lesions remained unchanged over the subsequent years. Genetic testing did not reveal a pathogenic or likely pathogenic variant in a known FEVR gene. A review of the literature revealed five other cases of FEVR with similar findings. Conclusions and Importance Literature review suggests preretinal granules may present rarely in FEVR. Negative genetic screening of known FEVR genes in our patient with atypical FEVR suggests either a molecularly distinct etiology supporting the rarity of this association with FEVR or, alternatively, the presence of granules in developmental retinal vascular anomalies that are not specific to FEVR. Future study and genetic testing is necessary to better understand the cause of these preretinal granules and the clinical manifestations of FEVR.
Collapse
Affiliation(s)
- Liam D. Redden
- Dalhousie Medical School, Dalhousie University, Halifax, NS, Canada
| | - Douglas S.M. Iaboni
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Sarah van der Ende
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Daniel Gaston
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Christopher R. McMaster
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Johane M. Robitaille
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - R. Rishi Gupta
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Kiryakoza L, Cruz NFSD, Hoyek S, Berrocal AM. Retinopathy With Variant of Unknown Significance and Atypical Chorioretinal Coloboma in the Setting of Prematurity. Ophthalmic Surg Lasers Imaging Retina 2024; 55:285-288. [PMID: 38408227 DOI: 10.3928/23258160-20240202-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A 37-week-old girl underwent ophthalmic examination. Born at 32 weeks, the infant weighed 680 grams and received high-flow nasal cannula for respiratory distress of the newborn. Dilated fundus examination of the right eye revealed an atypical chorioretinal coloboma; the left eye revealed hyperpigmentary changes in the macula. Fluorescein angiography of both eyes showed retinal vascularization to zone II. Genetic testing revealed a heterozygous variant of uncertain significance in the catenin Alpha 1 (CTNNA1) gene. CTNNA1 gene abnormalities have been implicated as causes of familial exudative vitreoretinopathy (FEVR). It is important to recognize possible simultaneous retinopathy of prematurity and FEVR. [Ophthalmic Surg Lasers Imaging Retina 2024;55:285-288.].
Collapse
|
10
|
Wood EH, Moshfeghi DM, Capone A, Williams GA, Blumenkranz MS, Sieving PA, Harper CA, Hartnett ME, Drenser KA. A Literary Pediatric Retina Fellowship With Michael T. Trese, MD. Ophthalmic Surg Lasers Imaging Retina 2023; 54:701-712. [PMID: 38113364 DOI: 10.3928/23258160-20231020-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Michael T. Trese, MD (1946-2022), a vitreoretinal surgeon, made significant contributions to the field of retina. Although most known for his work in pediatric retina surgery, he was a pioneer in areas such as medical retina, translational research, and telemedicine. This article reviews his major contributions to spread his knowledge more widely to vitreoretinal trainees and specialists. We discuss six areas where Trese made a lasting impact: lens-sparing vitrectomy, familial exudative vitreoretinopathy, congenital X-linked retinoschisis, autologous plasmin enzyme, regenerative medicine, and telemedicine. [Ophthalmic Surg Lasers Imaging Retina 2023;54:701-712.].
Collapse
|
11
|
Govers BM, van Huet RAC, Roosing S, Keijser S, Los LI, den Hollander AI, Klevering BJ. The genetics and disease mechanisms of rhegmatogenous retinal detachment. Prog Retin Eye Res 2023; 97:101158. [PMID: 36621380 DOI: 10.1016/j.preteyeres.2022.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Rhegmatogenous retinal detachment (RRD) is a sight threatening condition that warrants immediate surgical intervention. To date, 29 genes have been associated with monogenic disorders involving RRD. In addition, RRD can occur as a multifactorial disease through a combined effect of multiple genetic variants and non-genetic risk factors. In this review, we provide a comprehensive overview of the spectrum of hereditary disorders involving RRD. We discuss genotype-phenotype correlations of these monogenic disorders, and describe genetic variants associated with RRD through multifactorial inheritance. Furthermore, we evaluate our current understanding of the molecular disease mechanisms of RRD-associated genetic variants on collagen proteins, proteoglycan versican, and the TGF-β pathway. Finally, we review the role of genetics in patient management and prevention of RRD. We provide recommendations for genetic testing and prophylaxis of at-risk patients, and hypothesize on novel therapeutic approaches beyond surgical intervention.
Collapse
Affiliation(s)
- Birgit M Govers
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Keijser
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonoor I Los
- Department of Ophthalmology, University Medical Center Groningen, Groningen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA
| | - B Jeroen Klevering
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Huang Z, Zhang D, Chen SC, Huang D, Mackey D, Chen FK, McLenachan S. Mitochondrial Dysfunction and Impaired Antioxidant Responses in Retinal Pigment Epithelial Cells Derived from a Patient with RCBTB1-Associated Retinopathy. Cells 2023; 12:1358. [PMID: 37408192 DOI: 10.3390/cells12101358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Mutations in the RCBTB1 gene cause inherited retinal disease; however, the pathogenic mechanisms associated with RCBTB1 deficiency remain poorly understood. Here, we investigated the effect of RCBTB1 deficiency on mitochondria and oxidative stress responses in induced pluripotent stem cell (iPSC)-derived retinal pigment epithelial (RPE) cells from control subjects and a patient with RCBTB1-associated retinopathy. Oxidative stress was induced with tert-butyl hydroperoxide (tBHP). RPE cells were characterized by immunostaining, transmission electron microscopy (TEM), CellROX assay, MitoTracker assay, quantitative PCR and immunoprecipitation assay. Patient-derived RPE cells displayed abnormal mitochondrial ultrastructure and reduced MitoTracker fluorescence compared with controls. Patient RPE cells displayed increased levels of reactive oxygen species (ROS) and were more sensitive to tBHP-induced ROS generation than control RPE. Control RPE upregulated RCBTB1 and NFE2L2 expression in response to tBHP treatment; however, this response was highly attenuated in patient RPE. RCBTB1 was co-immunoprecipitated from control RPE protein lysates by antibodies for either UBE2E3 or CUL3. Together, these results demonstrate that RCBTB1 deficiency in patient-derived RPE cells is associated with mitochondrial damage, increased oxidative stress and an attenuated oxidative stress response.
Collapse
Affiliation(s)
- Zhiqin Huang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia
- Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Dan Zhang
- Lions Eye Institute, Nedlands, WA 6009, Australia
| | | | - Di Huang
- Lions Eye Institute, Nedlands, WA 6009, Australia
| | - David Mackey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia
- Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia
- Lions Eye Institute, Nedlands, WA 6009, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia
- Lions Eye Institute, Nedlands, WA 6009, Australia
| |
Collapse
|
13
|
Tanenbaum R, Acon D, El Hamichi S, Negron C, Berrocal AM. Unrecognized ROPER in a child with a novel pathogenic variant in ZNF408 gene. Ophthalmic Genet 2023; 44:171-174. [PMID: 32530348 DOI: 10.1080/13816810.2020.1778735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a rare hereditary disorder characterized by abnormal or incomplete retinal angiogenesis commonly inherited in an autosomal dominant fashion. Up to 50% of FEVR cases are linked to known genetic mutations affecting retinal vasculature development. PURPOSE To report a case, a novel pathogenic variant of the ZNF408 gene associated with a case of FEVR in a premature male. MATERIALS AND METHODS Case report. RESULTS A 10-month-old male who was born prematurely at 34 weeks' gestation in the Dominican Republic was referred for persistent avascular retina. The baby was treated with bilateral intravitreal ranibizumab injections for retinopathy of prematurity (ROP) with the presence of plus disease. Fundus examination several months after treatment revealed the absence of tortuosity of the vessels with avascular periphery; fluorescein angiography (FA) confirmed peripheral avascularity and demonstrated irregular sprouts of vascularization in the absence of neovascularization. We performed genetic testing under the suspicion of FEVR and results identified a heterozygous mutation in the ZNF408 gene on chromosome 11, c.1307 C > T. CONCLUSION FEVR is an important differential diagnosis in premature infants with retinopathy, as clinical presentation can overlap with common findings in ROP. Maintaining high suspicion for the disease is especially critical in cases with findings unusual for ROP. FEVR in the presence of prematurity has been well described, falling under the proposed term ROPER. Genetic testing is key to confirm diagnosis.
Collapse
Affiliation(s)
- Rebecca Tanenbaum
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dhariana Acon
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sophia El Hamichi
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Murray Ocular Oncology and Retina, Miami, Florida, USA
| | - Catherin Negron
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Audina M Berrocal
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
14
|
He Y, Yang M, Zhao R, Peng L, Dai E, Huang L, Zhao P, Li S, Yang Z. Novel truncating variants in CTNNB1 cause familial exudative vitreoretinopathy. J Med Genet 2023; 60:174-182. [PMID: 35361685 DOI: 10.1136/jmedgenet-2021-108259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inheritable blinding disorder with clinical and genetic heterogeneity. Heterozygous variants in the CTNNB1 gene have been reported to cause FEVR. However, the pathogenic basis of CTNNB1-associated FEVR has not been fully explored. METHODS Whole-exome sequencing was performed on the genomic DNA of probands. Dual-luciferase reporter assay, western blotting and co-immunoprecipitation were used to characterise the impacts of variants. Quantitative real-time PCR, EdU (5-ethynyl-2'-deoxyuridine) incorporation assay and immunocytochemistry were performed on the primary human retinal microvascular endothelial cells (HRECs) to investigate the effect of CTNNB1 depletion on the downstream genes involved in Norrin/β-catenin signalling, cell proliferation and junctional integrity, respectively. Transendothelial electrical resistance assay was applied to measure endothelial permeability. Heterozygous endothelial-specific Ctnnb1-knockout mouse mice were generated to verify FEVR-like phenotypes in the retina. RESULTS We identified two novel heterozygous variants (p.Leu103Ter and p.Val199LeufsTer11) and one previously reported heterozygous variant (p.His369ThrfsTer2) in the CTNNB1 gene. These variants caused truncation and degradation of β-catenin that reduced Norrin/β-catenin signalling activity. Additionally, knockdown (KD) of CTNNB1 in HRECs led to diminished mRNA levels of Norrin/β-catenin targeted genes, reduced cell proliferation and compromised junctional integrity. The Cre-mediated heterozygous deletion of Ctnnb1 in mouse endothelial cells (ECs) resulted in FEVR-like phenotypes. Moreover, LiCl treatment partially rescued the defects in CTNNB1-KD HRECs and EC-specific Ctnnb1 heterozygous knockout mice. CONCLUSION Our findings reinforced the current pathogenesis of Norrin/β-catenin for FEVR and expanded the causative variant spectrum of CTNNB1 for the prenatal diagnosis and genetic counselling of FEVR.
Collapse
Affiliation(s)
- Yunqi He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China .,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China .,Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Mao J, Chen Y, Fang Y, Shao Y, Xiang Z, Li H, Zhao S, Chen Y, Shen L. Clinical characteristics and mutation spectrum in 33 Chinese families with familial exudative vitreoretinopathy. Ann Med 2022; 54:3286-3298. [PMID: 36411543 PMCID: PMC9704097 DOI: 10.1080/07853890.2022.2146744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To explore the clinical manifestations and search for the variants of six related genes (LRP5, FZD4, TSPAN12, NDP, KIF11 and ZNF408) in Chinese patients with familial exudative vitreoretinopathy (FEVR), and investigate the correlation between the genetic variants and the clinical characteristics. PATIENTS AND METHODS Clinical data, including the retinal artery angle, acquired from wide-field fundus imaging, structural and microvascular features of the retina obtained from optical coherence tomography (OCT) and OCT angiography (OCTA) were collected from 33 pedigrees. Furthermore, mutation screening was performed. Variants filtering, bioinformatics analysis and Sanger sequencing were conducted to verify the variants. RESULTS Twenty-one variants were successfully detected in 16 of 33 families, of which 10 variants were newly identified. The proportion of variants in LRP5, FZD4, TSPAN12, NDP and KIF11 was 38.1% (8/21), 33.3% (7/21), 19.1% (4/21), 4.8% (1/21) and 4.8% (1/21), respectively. Three new variants were considered to be pathogenic or likely pathogenic. The FEVR group tended to exhibit a smaller retinal artery angle, higher incidence of foveal hypoplasia and lower vascular density compared to the control group. Patients who harboured variants of FZD4 exhibited greater severity of FEVR than those with LRP5 variants. However, those who harboured LRP5 variants tended to possess lower foveal vascular density. CONCLUSIONS Six known pathogenic genes were screened in 33 pedigrees with FEVR in our study, which revealed 10 novel variants. These findings enrich the clinical features and mutation spectrum in Chinese patients with FEVR, revealing the genotype-phenotype relationship, and contributing to the diagnosis and treatment of the disease.Key messagesWe identified 21 variants in 5 genes (LRP5, FZD4, TSPAN12, NDP and KIF11) associated with FEVR, 10 of which are novel (three were pathogenic or likely pathogenic).The proportion of variants was the highest for the LRP5 gene.FZD4 variants may be responsible for greater FEVR severity than LRP5 variants.
Collapse
Affiliation(s)
- Jianbo Mao
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yijing Chen
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yuyan Fang
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yirun Shao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Ziyi Xiang
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Hanxiao Li
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Shixin Zhao
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yiqi Chen
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Lijun Shen
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| |
Collapse
|
16
|
Yu Y, Liu L, Windig J, Bosse M, Groenen MAM, Crooijmans RPMA. Unique genetic signature and selection footprints in Dutch population of German Longhaired Pointer dogs. Anim Genet 2022; 53:829-840. [PMID: 35993291 PMCID: PMC9804189 DOI: 10.1111/age.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/05/2023]
Abstract
The German Longhaired Pointer (GLP) breed is a versatile pointer dog breed. In the current study, we investigated the genetic diversity of these dogs based on SNP array data and compared it to 11 other pointer setter breeds. The results show that GLPs have a relatively low level of inbreeding among these pointer breeds. In addition, with the availability of pedigree information of the GLPs, we demonstrate that the correlation between pedigree-based inbreeding and genotype-based inbreeding coefficients was high (R = 0.89 and 0.85). By investigating population structure between these 12 pointer setter breeds we showed that GLP is a breed distinct from other pointers and shares common ancestry with a few other pointing breeds. Finally, we identified selection signatures in GLPs using the runs of homozygosity islands method. The most significant runs of homozygosity island was detected on chromosome 30 harboring the genes RYR3, FMN1, and GREM1. The RYR3 gene plays a role in skeletal muscle contraction while the FMN1 and GREM1 genes are involved in limb development. The selection on these three genes could have contributed to the excellent athletic performance of GLPs, which is an extremely important characteristic for this hunting dog.
Collapse
Affiliation(s)
- Yun Yu
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Langqing Liu
- Division of Evolutionary Biology, Faculty of BiologyLudwig‐Maximilians‐Universität (LMU) MünchenPlanegg‐MartinsriedGermany
| | - Jack Windig
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands,Centre for Genetic Resources the NetherlandsWageningen University & ResearchWageningenThe Netherlands
| | - Mirte Bosse
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands,Amsterdam Institute for Life and Environment (A‐Life)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Martien A. M. Groenen
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | | |
Collapse
|
17
|
Wu J, Chen J, Zhao R, Zeng L, Li T, Wang W, Jia H, Wang F, Zhu H, Tan W, Sun X. Status of Visual Impairment among Children with Special Needs in Rural China. Ophthalmic Res 2022; 66:99-107. [PMID: 35970143 DOI: 10.1159/000526494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Previous studies have reported a high prevalence of visual defects in children with special needs. However, routine ocular examinations for these children in rural areas of China are lacking. This study aimed to evaluate the status of visual impairment (VI) in children at special education schools in rural China. METHODS A total of 316 students from two special schools in Zunyi city, Guizhou province, were enrolled. Full ophthalmic examinations were performed, and gene-sequencing services were offered to potential patients. RESULTS The mean age of the 316 participants was 12.27 ± 3.49 years and 75 showed abnormal ophthalmic manifestations on slit-lamp examination. Visual acuity (VA) was assessed in 232 eyes, and the mean VA (logarithm of the minimum angle of resolution, logMAR) was 0.27 ± 0.34. Whole-exome sequencing identified 19 mutations in these children, which might explain their visual complaints. Children with Down syndrome had a significantly higher prevalence of ocular disorders than those without. CONCLUSION VI is common among children at special education schools in rural areas; however, routine screening and effective interventions have not been consistently implemented. Efforts should be made to address this issue in these already disadvantaged children.
Collapse
Affiliation(s)
- Jiali Wu
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China,
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China,
- National Clinical Research Center for Eye Diseases, Shanghai, China,
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China,
| | - Jieqiong Chen
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Ruyi Zhao
- Graduate School of Zunyi Medical University, Zunyi, China
- Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Lan Zeng
- Graduate School of Zunyi Medical University, Zunyi, China
- Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Tong Li
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Wenqiu Wang
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Huixun Jia
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Fenghua Wang
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Hong Zhu
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Wei Tan
- Graduate School of Zunyi Medical University, Zunyi, China
- Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Xiaodong Sun
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
18
|
Qu N, Li W, Han DM, Gao JY, Yang ZT, Jiang L, Liu TB, Chen YX, Jiang XS, Zhou L, Wu JH, Huang X. Mutation spectrum in a cohort with familial exudative vitreoretinopathy. Mol Genet Genomic Med 2022; 10:e2021. [PMID: 35876299 PMCID: PMC9482396 DOI: 10.1002/mgg3.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 07/08/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose To expand the mutation spectrum of patients with familial exudative vitreoretinopathy (FEVR) disease. Participants 74 probands (53 families and 21 sporadic probands) with familial exudative vitreoretinopathy (FEVR) disease and their available family members (n = 188) were recruited for sequencing. Methods Panel‐based targeted screening was performed on all subjects. Before sanger sequencing, variants of LRP5, NDP, FZD4, TSPAN12, ZNF408, KIF11, RCBTB1, JAG1, and CTNNA1 genes were verified by a series of bioinformatics tools and genotype–phenotype co‐segregation analysis. Results 40.54% (30/74) of the probands were sighted to possess at least one etiological mutation of the nine FEVR‐causative genes. The etiological mutation detection rate was 37.74% (20/53) in family‐attainable probands while 47.62% (10/21) in sporadic cases. The diagnosis rate of patients in the early‐onset subgroup (≤5 years old, 45.4%) is higher than that of the children or adolescence‐onset subgroup (6–16 years old, 42.1%) and the late‐onset subgroup (≥17 years old, 39.4%). A total of 36 etiological mutations were identified in this study, comprising 26 novel mutations and 10 reported mutations. LRP5 was the most prevalent mutant gene among the 36 mutation types with a percentage of 41.67% (15/36). Followed by FZD4 (10/36, 27.78%), TSPAN12 (5/36, 13.89%), NDP (4/36, 11.11%), KIF11 (1/36, 2.78%), and RCBTB1 (1/36, 2.78%). Among these mutations, 63.89% (23/36) were missense mutations, 25.00% (9/36) were frameshift mutations, 5.56% (2/36) were splicing mutations, 5.56% (2/36) were nonsense mutations. Moreover, the clinical pathogenicity of these variants was defined according to American College of Medical Genetics (ACMG) and genomics guidelines: 41.67% (15/36) were likely pathogenic variants, 27.78% (10/36) pathogenic variants, 30.55% (11/36) variants of uncertain significance. No etiological mutations discovered in the ZNF408, JAG1, and CTNNA1 genes in this FEVR cohort. Conclusions We systematically screened nine FEVR disease‐associated genes in a cohort of 74 Chinese probands with FEVR disease. With a detection rate of 40.54%, 36 etiological mutations of six genes were authenticated in 30 probands, including 26 novel mutations and 10 reported mutations. The most prevalent mutated gene is LRP5, followed by FZD4, TSPAN12, NDP, KIF11, and RCBTB1. In total, a de novo mutation was confirmed. Our study significantly clarified the mutation spectrum of variants bounded up to FEVR disease.
Collapse
Affiliation(s)
- Ning Qu
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, China
| | - Tian-Bin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Xian Chen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhou
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ji-Hong Wu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Huang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
19
|
Zhao R, Wang S, Zhao P, Dai E, Zhang X, Peng L, He Y, Yang M, Li S, Yang Z. Heterozygote loss-of-function variants in the LRP5 gene cause familial exudative vitreoretinopathy. Clin Exp Ophthalmol 2022; 50:441-448. [PMID: 35133048 DOI: 10.1111/ceo.14037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inherited ocular disease with clinical manifestations of aberrant retinal vasculature. We aimed to identify novel causative variants responsible for FEVR and provided evidence for the genetic counselling of FEVR. METHODS We applied whole-exome sequencing (WES) on the genomic DNA samples from the probands and performed Sanger sequencing for variant validation. Western blot analysis and luciferase assays were performed to test the expression levels and the activity of mutant proteins. RESULTS We identified one novel heterozygous nonsense variant, and three novel heterozygous frameshift variants including c.1801G>T (p.G601*), c.1965delC (p.H656Tfs*41), c.4445delC (p.S1482Cfs*17), and c.4482delC (p.P1495Rfs*4), which disabled the function of LRP5 on the Norrin/β-catenin signalling. Overexpression of variant-carrying LRP5 proteins resulted in down regulation of the protein levels of β-catenin and the Norrin/β-catenin signalling target genes c-Myc and Glut1. CONCLUSION Our study showed that four inherited LRP5 variants can cause autosomal dominant FEVR via down regulation of Norrin/β-catenin signalling and expanded the spectrum of FEVR-associated LRP5 variants.
Collapse
Affiliation(s)
- Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shiyuan Wang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Peiquan Zhao
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Erkuan Dai
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Xiang Zhang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Jiang YJ, Fann CSJ, Fuh JL, Chung MY, Huang HY, Chu KC, Wang YF, Hsu CL, Kao LS, Chen SP, Wang SJ. Genome-wide analysis identified novel susceptible genes of restless legs syndrome in migraineurs. J Headache Pain 2022; 23:39. [PMID: 35350973 PMCID: PMC8966278 DOI: 10.1186/s10194-022-01409-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Restless legs syndrome is a highly prevalent comorbidity of migraine; however, its genetic contributions remain unclear. Objectives To identify the genetic variants of restless legs syndrome in migraineurs and to investigate their potential pathogenic roles. Methods We conducted a two-stage genome-wide association study (GWAS) to identify susceptible genes for restless legs syndrome in 1,647 patients with migraine, including 264 with and 1,383 without restless legs syndrome, and also validated the association of lead variants in normal controls unaffected with restless legs syndrome (n = 1,053). We used morpholino translational knockdown (morphants), CRISPR/dCas9 transcriptional knockdown, transient CRISPR/Cas9 knockout (crispants) and gene rescue in one-cell stage embryos of zebrafish to study the function of the identified genes. Results We identified two novel susceptibility loci rs6021854 (in VSTM2L) and rs79823654 (in CCDC141) to be associated with restless legs syndrome in migraineurs, which remained significant when compared to normal controls. Two different morpholinos targeting vstm2l and ccdc141 in zebrafish demonstrated behavioural and cytochemical phenotypes relevant to restless legs syndrome, including hyperkinetic movements of pectoral fins and decreased number in dopaminergic amacrine cells. These phenotypes could be partially reversed with gene rescue, suggesting the specificity of translational knockdown. Transcriptional CRISPR/dCas9 knockdown and transient CRISPR/Cas9 knockout of vstm2l and ccdc141 replicated the findings observed in translationally knocked-down morphants. Conclusions Our GWAS and functional analysis suggest VSTM2L and CCDC141 are highly relevant to the pathogenesis of restless legs syndrome in migraineurs. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01409-9.
Collapse
Affiliation(s)
- Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Yi Chung
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hui-Ying Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Kuo-Chang Chu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chia-Lin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
21
|
Dan H, Wang D, Huang Z, Shi Q, Zheng M, Xiao Y, Song Z. Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes for 20 families with familial exudative vitreoretinopathy. BMC Med Genomics 2022; 15:54. [PMID: 35277167 PMCID: PMC8915523 DOI: 10.1186/s12920-022-01204-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a complex form of blindness-causing retinal degeneration. This study investigated the potential disease-causing variants in 20 Chinese families with FEVR. METHODS All available family members underwent detailed ophthalmological examinations, including best-corrected visual acuity and fundus examination. All probands and most family members underwent fluorescein fundus angiography. Twenty probands underwent whole exome sequencing; 16 of them also underwent copy number variant and mitochondrial genome analysis. Bioinformatics analysis and Sanger sequencing of available family members were used to confirm the disease-causing gene variant. RESULTS Twenty families were diagnosed with FEVR based on clinical symptoms, fundus manifestations, and fundus fluorescein angiography. Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes among the 13 families. These variants were predicted to be damaging or deleterious according to multiple lines of prediction algorithms; they were not frequently found in multiple population databases. Seven variants had not previously been reported to cause FEVR: c.1039T>G p.(Phe347Val) in the FZD4 gene; c.1612C>T p.(Arg538Trp) and c.3237-2A>C in the LRP5 gene; and c.77T>A p.(Ile26Asn), c.170dupT p.(Leu57Phe fsTer60), c.236T>G p.(Met79Arg) and c.550dupA p.(Arg184Lys fsTer16) in the TSPAN12 gene. We did not detect any variants in the remaining seven families. CONCLUSIONS These results expand the spectrum of variants in the NDP, FZD4, LRP5, and TSPAN12 genes and provide insights regarding accurate diagnosis, family genetic counseling, and future gene therapy for FEVR.
Collapse
Affiliation(s)
- Handong Dan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Dongdong Wang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Zixu Huang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Qianqian Shi
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Miao Zheng
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Yuanyuan Xiao
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Zongming Song
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
22
|
Wang Y, Zhao R, Dai E, Peng L, He Y, Yang M, Li S. Identification of Two Novel Variants in the LRP5 Gene that Cause Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers 2022; 26:146-151. [PMID: 35244470 DOI: 10.1089/gtmb.2021.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR, OMIM 133780) is a severe inherited eye disease characterized by abnormal development of the retinal vasculature. Variants in the reported genes account for ∼50% of total FEVR cases. However, the pathogenesis of other 50% of FEVR cases remains unclear. Therefore, it is crucial to identify novel variants responsible for the pathogenesis of FEVR. Aims: To find causative variants responsible for FEVR in two Han Chinses families. Materials and Methods: We recruited two families with two FEVR patients and applied exome sequencing on the genomic DNA samples from the probands. Sanger sequencing was performed for variant validation. Western blot analysis and luciferase assays were performed to test the expression levels and activity of mutant proteins. Results: We identified two novel missense variants in the LRP5 gene (NM_002335), namely c.1176 C > A (p.Asp392Glu) and c.2435 A>C (p.Asp812Ala), inherited in an autosomal dominant manner. Both variants significantly reduced Norrin/β-catenin signaling activity without affecting the expression of the LRP5 protein. Conclusion: This study expands the variant spectrum of the LRP5 gene for FEVR, providing valuable information for prenatal counseling and molecular diagnosis of FEVR.
Collapse
Affiliation(s)
- Yuze Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
23
|
Catomeris AJ, Ballios BG, Sangermano R, Wagner NE, Comander JI, Pierce EA, Place EM, Bujakowska KM, Huckfeldt RM. Novel RCBTB1 variants causing later-onset non-syndromic retinal dystrophy with macular chorioretinal atrophy. Ophthalmic Genet 2022; 43:332-339. [DOI: 10.1080/13816810.2021.2023196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Andrew J. Catomeris
- Georgetown School of Medicine, Washington, District of Columbia, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian G. Ballios
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Riccardo Sangermano
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Naomi E. Wagner
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason I. Comander
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily M. Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Kinga M. Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel M. Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Huang Z, Zhang D, Chen SC, Jennings L, Carvalho LS, Fletcher S, Chen FK, McLenachan S. Gene replacement therapy restores RCBTB1 expression and cilium length in patient-derived retinal pigment epithelium. J Cell Mol Med 2021; 25:10020-10027. [PMID: 34617687 PMCID: PMC8572767 DOI: 10.1111/jcmm.16911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Biallelic mutations in the RCBTB1 gene cause retinal dystrophy. Here, we characterized the effects of RCBTB1 gene deficiency in retinal pigment epithelial (RPE) cells derived from a patient with RCBTB1‐associated retinopathy and restored RCBTB1 expression in these cells using adeno‐associated viral (AAV) vectors. Induced pluripotent stem cells derived from a patient with compound heterozygous RCBTB1 mutations (c.170delG and c.707delA) and healthy control subjects were differentiated into RPE cells. RPE cells were treated with AAV vectors carrying a RCBTB1 transgene. Patient‐derived RPE cells showed reduced expression of RCBTB1. Expression of NFE2L2 showed a non‐significant reduction in patient RPE cells compared with controls, while expression of its target genes (RXRA, IDH1 and SLC25A25) was significantly reduced. Trans‐epithelial electrical resistance, surface microvillus densities and primary cilium lengths were reduced in patient‐derived RPE cells, compared with controls. Treatment of patient RPE with AAV vectors significantly increased RCBTB1, NFE2L2 and RXRA expression and cilium lengths. Our study provides the first report examining the phenotype of RPE cells derived from a patient with RCBTB1‐associated retinopathy. Furthermore, treatment of patient‐derived RPE with AAV‐RCBTB1 vectors corrected deficits in gene expression and RPE ultrastructure, supporting the use of gene replacement therapy for treating this inherited retinal disease.
Collapse
Affiliation(s)
- Zhiqin Huang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Lions Eye Institute, Nedlands, WA, Australia
| | - Dan Zhang
- Lions Eye Institute, Nedlands, WA, Australia
| | | | | | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Lions Eye Institute, Nedlands, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Lions Eye Institute, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Lions Eye Institute, Nedlands, WA, Australia
| |
Collapse
|
25
|
Zhu X, Yang M, Zhao P, Li S, Zhang L, Huang L, Huang Y, Fei P, Yang Y, Zhang S, Xu H, Yuan Y, Zhang X, Zhu X, Ma S, Hao F, Sundaresan P, Zhu W, Yang Z. Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating Norrin/β-catenin signaling. J Clin Invest 2021; 131:139869. [PMID: 33497368 DOI: 10.1172/jci139869] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe retinal vascular disease that causes blindness. FEVR has been linked to mutations in several genes associated with inactivation of the Norrin/β-catenin signaling pathway, but these account for only approximately 50% of cases. We report that mutations in α-catenin (CTNNA1) cause FEVR by overactivating the β-catenin pathway and disrupting cell adherens junctions. We identified 3 heterozygous mutations in CTNNA1 (p.F72S, p.R376Cfs*27, and p.P893L) by exome sequencing and further demonstrated that FEVR-associated mutations led to overactivation of Norrin/β-catenin signaling as a result of impaired protein interactions within the cadherin-catenin complex. The clinical features of FEVR were reproduced in mice lacking Ctnna1 in vascular endothelial cells (ECs) or with overactivated β-catenin signaling by an EC-specific gain-of-function allele of Ctnnb1. In isolated mouse lung ECs, both CTNNA1-P893L and F72S mutants failed to rescue either the disrupted F-actin arrangement or the VE-cadherin and CTNNB1 distribution. Moreover, we discovered that compound heterozygous Ctnna1 F72S and a deletion allele could cause a similar phenotype. Furthermore, in a FEVR family, we identified a mutation of LRP5, which activates Norrin/β-catenin signaling, and the corresponding knockin mice exhibited a partial FEVR-like phenotype. Our study demonstrates that the precise regulation of β-catenin activation is critical for retinal vascular development and provides new insights into the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shanshan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huijuan Xu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ye Yuan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiong Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shi Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Weiquan Zhu
- Department of Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
26
|
Chung MY, Chen SJ, Jiang YJ. Phenotype Variability in the Patients of Familial Exudative Vitreoretinopathy: the RCBTB1 case. Curr Eye Res 2021; 46:1931. [PMID: 34126825 DOI: 10.1080/02713683.2021.1924383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ming-Yi Chung
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
27
|
Yang J, Sun W, Zhang Q. Start and End with Genetics: RCBTB1 and Beyond. Curr Eye Res 2021; 46:1932-1933. [PMID: 34011215 DOI: 10.1080/02713683.2021.1933060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Heterozygous truncation variants in RCBTB1 have been reported to cause familial exudative vitreoretinopathy (FEVR). Such genotype-phenotype association is not supported by our recent study based on big data from our own, HGMD, and gnomAD. The authors, who reported association between RCBTB1 and FEVR, made further explanation on their own results without additional supporting data. In response to their comments, we would like to further clarify the pathogenesis of heterozygous truncation variants in RCBTB1 based on the current understanding of variant curation at individual gene level. Genes associated with FEVR are of great attention since it has been recognized as a common disease-causing blindness in children and adolescents. Curation of questionable causative genes or variant curation in well-known genes is a critical task in clinical gene test at the era of next-generation sequencing, since clinical application of biomarkers in questions may lead to inappropriate management or even disastrous consequence.
Collapse
Affiliation(s)
- Junxing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Chen C, Yang M, Huang L, Zhao R, Sundaresan P, Zhu X, Li S, Yang Z. Whole-Exome Sequencing Reveals Novel TSPAN12 Variants in Autosomal Dominant Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers 2021; 25:399-404. [PMID: 34077673 DOI: 10.1089/gtmb.2021.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR), a group of rare inherited retinal vascular disorders, is the major cause of vision loss in juveniles. At present, the diagnosis of FEVR remains difficult due to its clinical and genetic heterogeneities. Aims: To identify the causative genetic variants in two unrelated FEVR-affected families: one Indian family and one Chinese Han family. Materials and Methods: Five affected patients from two families were recruited for this study. Whole-exome sequencing was applied to the probands, and Sanger sequencing was performed for validation. Stringent whole-exome sequence data analyses were performed to evaluate all of the identified pathogenic variants. Results: Two novel variants in the TSPAN12 gene, were identified: a missense variant c.437 T > G (p.Leu146Arg); and a nonsense variant c.477 C > A (p.Cys159*). Both variants cosegregated with the disease in the investigated FEVR-affected families. Additionally, both variants inactivated the ability of TSPAN12 protein to enhance Norrin/β-catenin signaling. Conclusion: This study expands the mutational spectrum of TSPAN12 for FEVR.
Collapse
Affiliation(s)
- Chen Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, India
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
29
|
Zhang S, Li X, Liu W, Zhang X, Huang L, Li S, Yang M, Zhao P, Yang J, Fei P, Zhu X, Yang Z. Whole-Exome Sequencing Identified DLG1 as a Candidate Gene for Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers 2021; 25:309-316. [PMID: 33945310 DOI: 10.1089/gtmb.2021.0013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: Familial exudative vitreoretinopathy (FEVR) is a blinding retinal vascular disease. Clinically, FEVR is characterized by incomplete vascularization of the peripheral retina and pathological neovascularization. Only about 50% of FEVR cases can be explained by known FEVR disease gene variations. This study aimed to identify novel genes associated with the FEVR phenotype and explore their pathogenic mechanisms. Materials and Methods: Exome sequencing analyses were conducted on one Chinese family with FEVR whose affected members did not exhibit pathogenic variants in the known FEVR genes (verified using Sanger sequencing analysis). Functions of the affected proteins were evaluated using reporter assays. Western blot analysis was used to detect mutant protein expression and the genes' pathogenic mechanisms. Results: A rare novel heterozygous variant in DLG1 (c.1792A>G; p.S598G) was identified. The amino acid residues surrounding the identified variant are highly conserved among vertebrates. A luciferase reporter assay revealed that the mutant DLG1 protein DLG1-S598G lost its ability to activate Wnt signaling. Moreover, a knockdown (KD) of DLG1 in human primary retinal endothelial cells impaired tube formation. Mechanistically, DLG1 KD led to a reduction in phosphorylated VEGFR2, an essential receptor for the angiogenic potency that signals the vascular endothelial growth factor molecule. Conclusions: The data reported here demonstrate that DLG1 is a novel candidate gene for FEVR.
Collapse
Affiliation(s)
- Shanshan Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiao Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulin Huang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyun Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
30
|
Huang Z, Zhang D, Thompson JA, Jamuar SS, Roshandel D, Jennings L, Mellough C, Charng J, Chen SC, McLaren TL, Lamey TM, Chelva E, De Roach JN, Chan CM, McLenachan S, Chen FK. Deep clinical phenotyping and gene expression analysis in a patient with RCBTB1-associated retinopathy. Ophthalmic Genet 2021; 42:266-275. [PMID: 33624564 DOI: 10.1080/13816810.2021.1891551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Mutations in the RCC1 and BTB domain-containing protein 1 (RCBTB1) gene have been implicated in a rare form of retinal dystrophy. Herein, we report the clinical features of a 45-year-old Singaporean-Chinese female and her presymptomatic sibling, who each possesses compound heterozygous mutations in RCBTB1. Expression of RCBTB1 in patient-derived cells was evaluated.Materials and Methods: The natural history was documented by a series of ophthalmic examinations including electroretinography, fundus autofluorescence imaging, spectral-domain optical coherence tomography, visual field, microperimetry, and adaptive optics retinal imaging. Patient DNA was genetically analysed using a 537-gene Next Generation Sequencing panel and targeted Sanger sequencing. Expression of RCBTB1 in lymphocytes, fibroblasts, and induced pluripotent stem cells (iPSC) derived from the proband and healthy controls was characterized by quantitative PCR, Sanger sequencing, and western blotting.Results: The proband presented with left visual distortion at age 40 due to extrafoveal chorioretinal atrophy. Atrophy expanded at 1.3 (OD) and 1.0 (OS) mm2/year. Total macular volume declined by 0.09 (OD) and 0.13 (OS) mm3/year. Microperimetry demonstrated enlarging scotoma in both eyes. Generalised cone dysfunction was demonstrated by electroretinography. A retinal dystrophy panel testing revealed biallelic frameshifting mutations, c.170delG (p.Gly57Glufs*12) and c.707delA (p.Asn236Thrfs*11) in RCBTB1. The level of RCBTB1 mRNA expression was reduced in patient-derived lymphocytes compared to controls. RCBTB1 protein was detected in control fibroblasts and iPSC but was absent in patient-derived cells.Conclusions: Atrophy expansion rate and macular volume change are feasible endpoints for monitoring RCBTB1-associated retinopathy. We provide further functional evidence of pathogenicity for two disease-causing variants using patient-derived iPSCs.
Collapse
Affiliation(s)
- Zhiqin Huang
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Lions Eye Institute, Perth, Western Australia, Australia
| | - Dan Zhang
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Lions Eye Institute, Perth, Western Australia, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank (AIRDR), Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Saumya S Jamuar
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Lions Eye Institute, Perth, Western Australia, Australia
| | - Luke Jennings
- Lions Eye Institute, Perth, Western Australia, Australia
| | - Carla Mellough
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Lions Eye Institute, Perth, Western Australia, Australia
| | - Jason Charng
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Lions Eye Institute, Perth, Western Australia, Australia
| | | | - Terri L McLaren
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank (AIRDR), Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Tina M Lamey
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank (AIRDR), Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Enid Chelva
- Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - John N De Roach
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank (AIRDR), Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Choi Mun Chan
- Medical Retina Department, Singapore National Eye Centre, Singapore
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Lions Eye Institute, Perth, Western Australia, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, the University of Western Australia, Perth, Western Australia, Australia.,Lions Eye Institute, Perth, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank (AIRDR), Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
31
|
Yang J, Xiao X, Sun W, Li S, Jia X, Zhang Q. Variants in RCBTB1 are Associated with Autosomal Recessive Retinitis Pigmentosa but Not Autosomal Dominant FEVR. Curr Eye Res 2020; 46:839-844. [PMID: 33104391 DOI: 10.1080/02713683.2020.1842457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Variants in RCBTB1 have been reported in autosomal recessive inherited retinal dystrophies and autosomal dominant familial exudative vitreoretinopathy (FEVR). This study aims to verify the correlation between RCBTB1 variations and phenotypes. METHODS Variants in RCBTB1 were selected from 6303 unrelated families with different forms of eye conditions based on whole exome sequencing and targeted exome sequencing. Potential pathogenic truncation variants were filtered by multistep bioinformatics analysis and identified by Sanger sequencing. Segregation and enrichment analysis were used to evaluate the association of truncation variants in RCBTB1 with phenotypes. RESULTS Biallelic damaging variants in RCBTB1 were found in one family while heterozygous truncation variants were detected in 28 unrelated families based on our in-house data from 6303 unrelated families. Totally, 11 variants were present in the 29 families, including seven frameshift variants, three splicing variants, and one nonsense variant. The biallelic variants, c.170delG and c.905_906insTT, were identified in an isolated case with retinitis pigmentosa (RP). Heterozygous truncation variants were distributed in different forms of eye conditions (including normal) without significant enrichment in FEVR, suggesting unrelatedness to specific eye diseases. The frequency and location of truncation variants in the 6303 samples are comparable with the East Asian data from gnomAD. Segregation analysis of available family members further demonstrated the nonpathogenic nature of heterozygous truncation variants. CONCLUSIONS Contrary to the previous report, heterozygous truncation variants in RCBTB1 are not associated with FEVR based on our data. The extreme rareness of biallelic truncation variants present in a singleton case with RP further suggests that variants in RCBTB1 are responsible for autosomal recessive RP. This result reminds us that variants of a gene with certain diseases should be thoroughly verified before the use of such information in clinical practice.
Collapse
Affiliation(s)
- Junxing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Chao HWH, Chen YK, Liu JH, Pan HT, Lin HM, Chao HM. Emodin protected against retinal ischemia insulted neurons through the downregulation of protein overexpression of β-catenin and vascular endothelium factor. BMC Complement Med Ther 2020; 20:338. [PMID: 33167932 PMCID: PMC7654144 DOI: 10.1186/s12906-020-03136-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
Background Emodin has been proved to have an anti-ischemic effect on the brain, however little research has been done on its effect on vision-threatening retinal ischemia. Thus, an investigation was carried out into the hypothetical efficacy of emodin against retinal ischemia and the role of β-catenin/VEGF in its therapeutic mechanism. Methods Retinal ischemia, followed by reperfusion (IR), was inducted by raising the intraocular pressure of a Wistar rat’s eye to 120 mmHg for 60 min. Additionally, pre-ischemic/post-ischemic intravitreous injections of emodin (4, 10 and 20 μM) or vehicle were carried out on the eye with retinal ischemia. MTT assay, electroretinograms, cresyl violet staining retinal thickness measurements, and fluorogold retrograde labelling of retinal ganglion cells (RGCs) as well as Western blotting were carried out. Results Cultured RGC-5 cells subjected to oxygen glucose deprivation (OGD) were used to confirm the effective concentrations of emodin (administered 1 h pre-OGD, pre-OGD emodin). The most effective and significant (P = 0.04) dose of pre-OGD emodin was observed at 0.5 μM (cell viability: 47.52 ± 3.99%) as compared to pre-OGD vehicle treatment group (38.30 ± 2.51%). Furthermore, pre-ischemic intravitreous injection of 20 μM emodin (Emo20 + IR = 0.99 ± 0.18, P < 0.001) significantly attenuated the ischemia induced reduction in ERG b-wave amplitude, as compared to pre-ischemic intravitreous vehicle (Vehicle+IR = 0.04 ± 0.02). Post-ischemic intravitreous 20 μM emodin also significantly (P < 0.001) attenuated the ischemia associated b-wave reduction (IR + Em20 = 0.24 ± 0.09). Compared with pre-ischemic intravitreous vehicle (Vehicle+IR; whole retina thickness = 71.80 ± 1.08 μm; inner retina thickness = 20.97 ± 0.85 μm; RGC =2069.12 ± 212.82/0.17mm2), the significant (P < 0.001) protective effect was also present with pre-ischemic administration of emodin. This was shown by observing cresyl violet stained retinal thickness (Emo20 + IR: whole retina = 170.10 ± 0.10 μm; inner retina = 70.65 ± 2.06 μm) and retrograde fluorogold immunolabeled RGC density (4623.53 ± 179.48/0.17mm2). As compared to the normal control (the ratio of β-catenin/VEGF to β-actin was set as 1 in the Sham group), the β-catenin/VEGF protein level significantly (P < 0.001) increased after retinal ischemia and when pre-ischemic intravitreous vehicle (Vehicle+IR = 1.64 ± 0.14/7.67 ± 2.57) was carried out. However, these elevations were significantly (P = 0.02) attenuated by treatment with emodin 20 μM (Emo20 + IR = 1.00 ± 0.19/1.23 ± 0.44). Conclusions The present results suggest that emodin might protect against retinal ischemia insulted neurons such as RGCs by significantly downregulating the upregulation of β-catenin/VEGF protein that occurs during ischemia. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12906-020-03136-7.
Collapse
Affiliation(s)
| | - Yu-Kuang Chen
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jorn-Hon Liu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Hwai-Tzong Pan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-May Lin
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Hsiao-Ming Chao
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan. .,Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
33
|
Fortified S-Allyl L-Cysteine: Animal Safety, Effect on Retinal Ischemia, and Role of Wnt in the Underlying Therapeutic Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3025946. [PMID: 33082821 PMCID: PMC7556069 DOI: 10.1155/2020/3025946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
Purpose Retinal ischemia is a medical condition associated with numerous retinal vascular disorders, such as age-related macular degeneration, glaucoma, and diabetic retinopathy. This in vitro cell and in vivo animal study investigated not only the protective effect of S-allyl L-cysteine (SAC, an active component of garlic) against retinal ischemia but also its associated protective mechanisms. Methods Retinal ischemia was mimicked by raising the intraocular pressure to 120 mmHg for 1 hour in one eye. The effects of pre-/postischemic administration of vehicle vs. SAC 0.18 mg vs. SAC 0.018 mg vs. SAC 0.0018 mg treatments on retina cells were evaluated through cellular viability (MTT assay), flash electroretinograms (ERGs), and fluorogold retrograde labelling (retinal ganglion cell (RGC) counting). Also, protein immunoblot was utilized to assess the role of Wnt, hypoxia inducible factor (HIF)-1α, and vascular endothelium factor (VEGF) in the proposed anti-ischemic mechanism. Lastly, the safety of drug consumption was investigated for changes in the animal's body weight, ERG waves, and blood biochemical parameters (e.g., glucose levels). Results The characteristic ischemic changes including significant reduction in ERG b-wave ratio and RGC number were significantly counteracted by pre- and postischemic low dose of SAC. Additionally, ischemia-induced overexpression of Wnt/HIF-1α/VEGF protein was ameliorated significantly by preischemic low dose of SAC. In terms of the animal safety, no significant body weight and electrophysiological differences were observed among defined different concentrations of SAC without following ischemia. In low SAC dosage and vehicle groups, various blood biochemical parameters were normal; however, high and medium concentrations of SAC significantly lowered the levels of uric acid, Hb, and MCHC. Conclusion This study shows that preischemic administration of low SAC dosage has been proved to be safe and most effective against rat retinal ischemia electrophysiologically and/or histopathologically. Moreover, counteracting the ischemia-induced overexpression of Wnt/HIF-1α/VEGF might presently explain SAC's anti-ischemic mechanism.
Collapse
|
34
|
Zhu X, Sun K, Huang L, Ma S, Hao F, Yang Z, Sundaresan P, Zhu X. Identification of Novel Mutations in the FZD4 and NDP Genes in Patients with Familial Exudative Vitreoretinopathy in South India. Genet Test Mol Biomarkers 2020; 24:92-98. [PMID: 31999491 DOI: 10.1089/gtmb.2019.0212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR) is an inheritable retinal vascular disease, which often leads to severe vision loss and blindness in children. However, reported mutations can only account for 50-60% of patients with FEVR. The purpose of this study was to identify novel frizzled class receptor 4 (FZD4) and Norrin cystine knot growth factor NDP (NDP) mutations in a cohort of Indian patients with FEVR by whole-exome sequencing. Methods: We performed data filtering and bioinformatic analyses. Results: Two novel heterozygous mutations in FZD4 gene were identified, each in two different families: c.1499_1500del [p.500_500del] and c.G296C [p.C99S]. One novel mutation in NDP in another family was identified: c.A256G [p.K86E]. All FZD4 mutations affected conserved amino acid residues and were absent in 1000 control individuals. To assess the effect of these FZD4 mutations on the biological activity of the protein, we introduced each FZD4 mutation into FZD4 cDNA by the site-directed mutagenesis techniques. A Norrin/beta-catenin pathway-based luciferase reporter assay revealed that the c.1499_1500del failed to activate the luciferase reporter; in contrast, compared with the wild-type FZD4 protein, the, c.G296C [p.C99S] mutation exhibited increased luciferase reporter activity. Conclusion: Our study found two novel FZD4 mutations, with opposite effects regarding functional expression levels in Indian patients with FEVR and expands on the mutational spectrum of FZD4 in Indian FEVR patients.
Collapse
Affiliation(s)
- Xiong Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuanxiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shi Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, India
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
35
|
Amorelli GM, Barresi C, Ji MH, Orazi L, Molle F, Lepore D. Familial Exudative Vitreoretinopathy With Neurodevelopmental Delay and Hypoplasia of the Corpus Callosum. Ophthalmic Surg Lasers Imaging Retina 2020; 51:588-591. [DOI: 10.3928/23258160-20201005-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022]
|
36
|
Yang XR, Benson MD, MacDonald IM, Innes AM. A diagnostic approach to syndromic retinal dystrophies with intellectual disability. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:538-570. [PMID: 32918368 DOI: 10.1002/ajmg.c.31834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Inherited retinal dystrophies are a group of monogenic disorders that, as a whole, contribute significantly to the burden of ocular disease in both pediatric and adult patients. In their syndromic forms, retinal dystrophies can be observed in association with intellectual disability, frequently alongside other systemic manifestations. There are now over 80 genes implicated in syndromic retinal dystrophies with intellectual disability. Identifying and accurately characterizing these disorders allows the clinician to narrow the differential diagnosis, evaluate for relevant associated features, arrive at a timely and accurate diagnosis, and address both sight-threatening ocular manifestations and morbidity-causing systemic manifestations. The co-occurrence of retinal dystrophy and intellectual disability in an individual can be challenging to investigate, diagnose, and counsel given the considerable phenotypic and genotypic heterogeneity that exists within this broad group of disorders. We performed a review of the current literature and propose an algorithm to facilitate the evaluation, and clinical and mechanistic classification, of these individuals.
Collapse
Affiliation(s)
- Xiao-Ru Yang
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthew D Benson
- Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada
| | - Ian M MacDonald
- Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - A Micheil Innes
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
37
|
Role of NDP- and FZD4-Related Novel Mutations Identified in Patients with FEVR in Norrin/ β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7681926. [PMID: 32420371 PMCID: PMC7201721 DOI: 10.1155/2020/7681926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
Mutations in NDP and FZD4 have been closely related to a series of retinal diseases including familial exudative vitreoretinopathy (FEVR). Our study was designed to identify novel NDP and FZD4 mutations by whole exome sequencing (WES) in a cohort of patients with a definitive diagnosis of FEVR and explore the underlying molecular mechanism. During 2016, we investigated fifty nonconsanguineous families with affected individuals exhibiting FEVR phenotype and WES identified one recently reported mutation: NDP c.127C>A (p.H43N), and five novel mutations: NDP c.129_131del (p.44del), NDP c.320_353del (p.R107Pfs), NDP c.321delG (p.L108Cfs), NDP c.377G>T (p.C126F), and FZD4 c.314T>G (p.M105R) that cosegragated with the abnormal fundus vascular manifestations in six families. All the mutations were perceived to be pathogenic or likely pathogenic according to the standards and guidelines from the American College of Medical Genetics and Genomics (ACMG) and predicted to be deleterious by a series of bioinformatics analyses. We systematically performed functional analyses on the six mutations utilizing the Topflash reporter assay, where all NDP and FZD4 mutants revealed at least 50% loss of wild-type activity. Immunoprecipitation finally demonstrated that the six mutations could degrade the Norrin-Frizzled-4 pair-binding effect to varying degrees. Finally, our study underscores the correlation between the FEVR phenotype and genotype in NDP and FZD4, extending the mutation spectrum, allowing a reliable assessment of FEVR recurrence and improving genetic counseling. Further, our findings provide essential evidence for the follow-up study of animal models and drug targets by Topflash assays and immunoprecipitation.
Collapse
|
38
|
Zhu X, Li X, Tian W, Yang Y, Sun K, Li S, Zhu X. Identification of novel USH2A mutations in patients with autosomal recessive retinitis pigmentosa via targeted next‑generation sequencing. Mol Med Rep 2020; 22:193-200. [PMID: 32319668 PMCID: PMC7248525 DOI: 10.3892/mmr.2020.11087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/19/2020] [Indexed: 01/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of inheritable blindness retinal diseases characterized by the death of photoreceptor cells and a gradual loss of peripheral vision. Mutations in Usher syndrome type 2 (USH2A) have been reported in RP with or without hearing loss. The present study aimed to identify causative mutations in a cohort of families with RP from China. A cohort of 62 non‑syndromic families with RP and 30 sporadic cases were enrolled in this study. All affected members underwent a complete ophthalmic examination, including fundus photography, visual‑field test and optical coherence tomography examination. Next‑generation sequencing‑targeted sequencing of 163 genes involved in inheritable retinal disorders was performed on the probands. Stringent bioinformatics data analysis was applied to identify potential candidate variants. In total, 6 novel mutations and 2 known mutations of USH2A were identified in 4 families with RP. A stop‑gain mutation (c.C1731A) and a missense mutation (c.G8254A) were identified in RP family RP‑2148. In another RP family, RP‑2150, a known mutation (c.G802A) and a novel frameshift insertion mutation (c.12086dupA) were discovered. A novel stop‑gain mutation (c.G11754A) and a missense mutation (c.G13465A) were identified in family rpz05. A novel missense mutation (c.C9328G) and a known missense mutation (c.G8232C) were also identified. These mutations were subsequently confirmed by Sanger sequencing. All 6 novel mutations affected highly conserved amino acid residues, and were absent in 1,000 ethnically matched controls. Taken together, the present study has reported on 6 novel USH2A mutations in 4 families with RP, and has expanded the mutation spectrum of USH2A in autosomal recessive RP in the Chinese population, thus providing important information for the molecular diagnosis and screening of RP.
Collapse
Affiliation(s)
- Xiong Zhu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Xiao Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Wanli Tian
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yeming Yang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Kuanxiang Sun
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Shuzhen Li
- Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Xianjun Zhu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
39
|
Karjosukarso DW, Ali Z, Peters TA, Zhang JQC, Hoogendoorn ADM, Garanto A, van Wijk E, Jensen LD, Collin RWJ. Modeling ZNF408-Associated FEVR in Zebrafish Results in Abnormal Retinal Vasculature. Invest Ophthalmol Vis Sci 2020; 61:39. [PMID: 32097476 PMCID: PMC7329629 DOI: 10.1167/iovs.61.2.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disease in which the retinal vasculature is affected. Patients with FEVR typically lack or have abnormal vasculature in the peripheral retina, the outcome of which can range from mild visual impairment to complete blindness. A missense mutation (p.His455Tyr) in ZNF408 was identified in an autosomal dominant FEVR family. Little, however, is known about the molecular role of ZNF408 and how its defect leads to the clinical features of FEVR. Methods Using CRISPR/Cas9 technology, two homozygous mutant zebrafish models with truncated znf408 were generated, as well as one heterozygous and one homozygous missense znf408 model in which the human p.His455Tyr mutation is mimicked. Results Intriguingly, all three znf408-mutant zebrafish strains demonstrated progressive retinal vascular pathology, initially characterized by a deficient hyaloid vessel development at 5 days postfertilization (dpf) leading to vascular insufficiency in the retina. The generation of stable mutant lines allowed long-term follow up studies, which showed ectopic retinal vascular hyper-sprouting at 90 dpf and extensive vascular leakage at 180 dpf. Conclusions Together, our data demonstrate an important role for znf408 in the development and maintenance of the vascular system within the retina.
Collapse
|
40
|
Díaz-Coránguez M, Lin CM, Liebner S, Antonetti DA. Norrin restores blood-retinal barrier properties after vascular endothelial growth factor-induced permeability. J Biol Chem 2020; 295:4647-4660. [PMID: 32086377 DOI: 10.1074/jbc.ra119.011273] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) contributes to blood-retinal barrier (BRB) dysfunction in several blinding eye diseases, including diabetic retinopathy. Signaling via the secreted protein norrin through the frizzled class receptor 4 (FZD4)/LDL receptor-related protein 5-6 (LRP5-6)/tetraspanin 12 (TSPAN12) receptor complex is required for developmental vascularization and BRB formation. Here, we tested the hypothesis that norrin restores BRB properties after VEGF-induced vascular permeability in diabetic rats or in animals intravitreally injected with cytokines. Intravitreal co-injection of norrin with VEGF completely ablated VEGF-induced BRB permeability to Evans Blue-albumin. Likewise, 5-month diabetic rats exhibited increased permeability of FITC-albumin, and a single norrin injection restored BRB properties. These results were corroborated in vitro, where co-stimulation of norrin with VEGF or stimulation of norrin after VEGF exposure restored barrier properties, indicated by electrical resistance or 70-kDa RITC-dextran permeability in primary endothelial cell culture. Interestingly, VEGF promoted norrin signaling by increasing the FZD4 co-receptor TSPAN12 at cell membranes in an MAPK/ERK kinase (MEK)/ERK-dependent manner. Norrin signaling through β-catenin was required for BRB restoration, but glycogen synthase kinase 3 α/β (GSK-3α/β) inhibition did not restore BRB properties. Moreover, levels of the tight junction protein claudin-5 were increased with norrin and VEGF or with VEGF alone, but both norrin and VEGF were required for enriched claudin-5 localization at the tight junction. These results suggest that VEGF simultaneously induces vascular permeability and promotes responsiveness to norrin. Norrin, in turn, restores tight junction complex organization and BRB properties in a β-catenin-dependent manner.
Collapse
Affiliation(s)
- Mónica Díaz-Coránguez
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, 60538 Frankfurt, Germany
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
41
|
Xu H, Zhang S, Huang L, Zhao P, Zhang X, Yang Z, Zhang L. Identification of novel variants in the FZD4 gene associated with familial exudative vitreoretinopathy in Chinese families. Clin Exp Ophthalmol 2019; 48:356-365. [PMID: 31765079 DOI: 10.1111/ceo.13690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/05/2019] [Accepted: 11/20/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR, OMIM 133780) is a severe hereditary retinal disease characterized by incomplete retinal vascular development and pathological neovascularization. It has been reported that variants in nine genes are associated with FEVR, but they can only explain approximately 50% of FEVR patients, suggesting that other FEVR-associated variants or genes remain to be discovered. METHODS Whole-exome sequencing (WES) was carried out to analyse genomic DNA samples from the probands of 68 families with FEVR. Sanger sequencing was used to verify all identified variants. Western blot analysis was utilized to detect the expression of the variant mutant proteins. A luciferase assay was conducted to test the receptor activity of the mutant FZD4 proteins in Norrin-β-catenin signaling. RESULTS Seven heterozygous FZD4 variants were found to cause FEVR in seven families, including six missense variants and one deletion variant: c.182C>T (p.T61I), c.205C>T (p.H69Y), c.217_234del (p.73T_78Qdel), c.264C>A (p.Y88X), c.344G>T (p.G115V), c.678G>A (p.W226X) and c.1310T>C (p.I437T). Among these variants, c.205C>T (p.H69Y) and c.678G>A (p.W226X) are known FEVR-causing variants, while the other five variants are novel pathogenic variants. CONCLUSION Our study revealed the cause of FEVR in seven Chinese families and identified five novel pathogenic variants in FZD4, which expanded the mutation spectrum of FEVR in the Chinese population. These findings also provided further support for using WES in the clinical diagnosis of FEVR.
Collapse
Affiliation(s)
- Huijuan Xu
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shanshan Zhang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China.,Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Zhang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
42
|
Familial Exudative Vitreoretinopathy-Related Disease-Causing Genes and Norrin/ β-Catenin Signal Pathway: Structure, Function, and Mutation Spectrums. J Ophthalmol 2019; 2019:5782536. [PMID: 31827910 PMCID: PMC6885210 DOI: 10.1155/2019/5782536] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/07/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by incomplete vascularization/abnormality of peripheral retina. Four of the identified disease-causing genes of FEVR were NDP, FZD4, LRP5, and TSPAN12, the protein coded by which were the components of the Norrin/β-catenin signal pathway. In this review, we summarized and discussed the spectrum of mutations involving these four genes. By the end of 2017, the number of FEVR causing mutations reported for NDP, FZD4, LRP5, and TSPAN12 was, respectively, 26, 121, 58, and 40. Three most frequently reported mutations were c. 362G > A (p.R121Q) of NDP, c. 313A > G (p.M105V), and c.1282_1285delGACA (p.D428SfsX2) of FZD4. Mutations have a tendency to cluster in some “hotspots” domains which may be responsible for protein interactions.
Collapse
|
43
|
Caceres L, Prykhozhij SV, Cairns E, Gjerde H, Duff NM, Collett K, Ngo M, Nasrallah GK, McMaster CR, Litvak M, Robitaille JM, Berman JN. Frizzled 4 regulates ventral blood vessel remodeling in the zebrafish retina. Dev Dyn 2019; 248:1243-1256. [PMID: 31566834 DOI: 10.1002/dvdy.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a rare congenital disorder characterized by a lack of blood vessel growth to the periphery of the retina with secondary fibrovascular proliferation at the vascular-avascular junction. These structurally abnormal vessels cause leakage and hemorrhage, while the fibroproliferative scarring results in retinal dragging, detachment and blindness. Mutations in the FZD4 gene represent one of the most common causes of FEVR. METHODS A loss of function mutation resulting from a 10-nucleotide insertion into exon 1 of the zebrafish fzd4 gene was generated using transcription activator-like effector nucleases (TALENs). Structural and functional integrity of the retinal vasculature was examined by fluorescent microscopy and optokinetic responses. RESULTS Zebrafish retinal vasculature is asymmetrically distributed along the dorsoventral axis, with active vascular remodeling on the ventral surface of the retina throughout development. fzd4 mutants exhibit disorganized ventral retinal vasculature with discernable tubular fusion by week 8 of development. Furthermore, fzd4 mutants have impaired optokinetic responses requiring increased illumination. CONCLUSION We have generated a visually impaired zebrafish FEVR model exhibiting abnormal retinal vasculature. These fish provide a tractable system for studying vascular biology in retinovascular disorders, and demonstrate the feasibility of using zebrafish for evaluating future FEVR genes identified in humans.
Collapse
Affiliation(s)
- Lucia Caceres
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sergey V Prykhozhij
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth Cairns
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Harald Gjerde
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicole M Duff
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Keon Collett
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mike Ngo
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Matthew Litvak
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Johane M Robitaille
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason N Berman
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
44
|
Huang Z, Zhang D, Chen SC, Thompson JA, McLaren T, Lamey T, De Roach JN, McLenachan S, Chen FK. Generation of three induced pluripotent stem cell lines from an isolated inherited retinal dystrophy patient with RCBTB1 frameshifting mutations. Stem Cell Res 2019; 40:101549. [DOI: 10.1016/j.scr.2019.101549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
|
45
|
Yuan Y, Xu H, Zhang S, Zhang X, Zhang L, Yang Z. Whole-Exome Sequencing Analysis Identified Novel Mutations in the TSPAN12 Gene in Chinese Families with Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers 2019; 23:722-727. [PMID: 31513438 DOI: 10.1089/gtmb.2019.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR, OMIM 133780), characterized by incomplete retinal vascular development and pathological neovascularization, is a severe inherited retinal disorder. Mutations in 10 genes have been reported to be associated with FEVR, but this still leaves ∼50% of FEVR cases to be genetically explained. Purpose: The purpose of this study was to identify novel FEVR-causing mutations and explore the causative mutations in Chinese FEVR families. Methods: Whole-exome sequencing was performed to analyze the genomic DNA of the probands from 121 Chinese FEVR families. Sanger sequencing was carried out to verify all identified mutations. Luciferase assays were used to test the activity of a mutant protein in the Norrin-β-catenin signaling pathway. Results: Four novel heterozygous TSPAN12 (Tetraspanin 12) mutations, including two single-base substitution mutations and two small-deletion mutations, were identified in these FEVR families: c.1A>G (p.0), c.614G>A (p.G205D), c.695delT (p.V232Gfs*7), and c.833_842del (p.L278Qfs*25). Conclusion: This study revealed the causative mutations in four Chinese FEVR families and identified four novel FEVR-causing mutations, thus expanding the mutation spectrum of FEVR in the Chinese population.
Collapse
Affiliation(s)
- Ye Yuan
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huijuan Xu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shanshan Zhang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
46
|
Fernandez RJ, Johnson FB. A regulatory loop connecting WNT signaling and telomere capping: possible therapeutic implications for dyskeratosis congenita. Ann N Y Acad Sci 2019; 1418:56-68. [PMID: 29722029 DOI: 10.1111/nyas.13692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/15/2022]
Abstract
The consequences of telomere dysfunction are most apparent in rare inherited syndromes caused by genetic deficiencies in factors that normally maintain telomeres. The principal disease is known as dyskeratosis congenita (DC), but other syndromes with similar underlying genetic defects share some clinical aspects with this disease. Currently, there are no curative therapies for these diseases of telomere dysfunction. Here, we review recent findings demonstrating that dysfunctional (i.e., uncapped) telomeres can downregulate the WNT pathway, and that restoration of WNT signaling helps to recap telomeres by increasing expression of shelterins, proteins that naturally bind and protect telomeres. We discuss how these findings are different from previous observations connecting WNT and telomere biology, and discuss potential links between WNT and clinical manifestations of the DC spectrum of diseases. Finally, we argue for exploring the use of WNT agonists, specifically lithium, as a possible therapeutic approach for patients with DC.
Collapse
Affiliation(s)
- Rafael Jesus Fernandez
- Cell and Molecular Biology Program, Biomedical Graduate Studies, Medical Scientist Training Program, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Iwata A, Kusaka S, Ishimaru M, Kondo H, Kuniyoshi K. Early vitrectomy to reverse macular dragging in a one-month-old boy with familial exudative vitreoretinopathy. Am J Ophthalmol Case Rep 2019; 15:100493. [PMID: 31294129 PMCID: PMC6595075 DOI: 10.1016/j.ajoc.2019.100493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/30/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022] Open
Abstract
Purpose Vitrectomy is usually only indicated for familial exudative vitreoretinopathy (FEVR) cases with progressive retinal folds or macular dragging. In this report, we present our experience reversing the progression of macular dragging by performing early eye vitrectomies in a 1-month-old male baby with FEVR. Observations A 7-day-old, full-term male baby was examined by a pediatric ophthalmologist. His sister had a laser ablation treatment after being diagnosed with FEVR. The ophthalmologist found the baby had avascular retinas, fibrovascular membranes, and vitreous hemorrhages in both eyes, and performed retinal photocoagulations the next day. Although the retinal folds had not yet formed, the arcade vessels began to linearize after the procedure, strongly suggesting disease progression. Therefore, we performed lens-sparing vitrectomies in both eyes on the twenty-ninth day of life. After surgery, the macular dragging reversed, as evidenced by vascular arcade angle measurements. Three years after the surgery, the boy's visual acuity was 0.4 in both eyes. Conclusions and Importance In this case, we believe the good postoperative outcomes were due to early vitrectomies before the vitreoretinal traction became severe. In addition, the retinal photocoagulation performed on the eighth day of life may have reduced disease activity, at least partially. This case highlights the importance of prompt diagnosis and appropriate treatment of FEVR.
Collapse
Affiliation(s)
- Akiko Iwata
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Mayumi Ishimaru
- Shikoku Medical Center for Children and Adults, Zentsuji, Japan
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyusyu, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
48
|
Zhang L, Zhang X, Xu H, Huang L, Zhang S, Liu W, Yang Y, Fei P, Li S, Yang M, Zhao P, Zhu X, Yang Z. Exome sequencing revealed Notch ligand JAG1 as a novel candidate gene for familial exudative vitreoretinopathy. Genet Med 2019; 22:77-84. [DOI: 10.1038/s41436-019-0571-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/28/2019] [Indexed: 01/12/2023] Open
|
49
|
Karjosukarso DW, van Gestel SHC, Qu J, Kouwenhoven EN, Duijkers L, Garanto A, Zhou H, Collin RWJ. An FEVR-associated mutation in ZNF408 alters the expression of genes involved in the development of vasculature. Hum Mol Genet 2019; 27:3519-3527. [PMID: 29982478 DOI: 10.1093/hmg/ddy244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disorder hallmarked by an abnormal development of retinal vasculature. A missense mutation in ZNF408 (p.H455Y) was reported to underlie autosomal dominant FEVR in a large Dutch family, and ZNF408 was shown to play a role in the development of vasculature. Nonetheless, little is known about the molecular mechanism of ZNF408-associated FEVR. To investigate this, an in vitro model of ZNF408-associated FEVR was generated by overexpressing wild-type and p.H455Y ZNF408 in human umbilical vein endothelial cells. Cells overexpressing mutant ZNF408 were unable to form a capillary-like network in an in vitro tube formation assay, thereby mimicking the clinical feature observed in patients with FEVR. Intriguingly, transcriptome analysis revealed that genes involved in the development of vasculature were deregulated by the p.H455Y mutation. Chromatin immunoprecipitation showed that p.H455Y ZNF408 has reduced DNA-binding ability, as compared to the wild-type protein. The fact that the p.H455Y mutation disrupts the expression of genes important for the development of vasculature sheds further light on the molecular mechanisms underlying ZNF408-associated FEVR.
Collapse
Affiliation(s)
- Dyah W Karjosukarso
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sebastianus H C van Gestel
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Evelyn N Kouwenhoven
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
50
|
Hanany M, Sharon D. Allele frequency analysis of variants reported to cause autosomal dominant inherited retinal diseases question the involvement of 19% of genes and 10% of reported pathogenic variants. J Med Genet 2019; 56:536-542. [PMID: 30910914 DOI: 10.1136/jmedgenet-2018-105971] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Next generation sequencing (NGS) generates a large amount of genetic data that can be used to better characterise disease-causing variants. Our aim was to examine allele frequencies of sequence variants reported to cause autosomal dominant inherited retinal diseases (AD-IRDs). METHODS Genetic information was collected from various databases, including PubMed, the Human Genome Mutation Database, RETNET and gnomAD. RESULTS We generated a database of 1223 variants reported in 58 genes, including their allele frequency in gnomAD that contains NGS data of over 138 000 individuals. While the majority of variants are not represented in gnomAD, 138 had an allele count of >1 and were examined carefully for various aspects including cosegregation and functional analyses. The analysis revealed 122 variants that were reported pathogenic but unlikely to cause AD-IRDs. Interestingly, in some cases, these unlikely pathogenic variants were the only ones reported to cause disease in AD inheritance pattern for a particular gene, therefore raising doubt regarding the involvement of 11 (19%) of the genes in AD-IRDs. CONCLUSION We predict that these data are not limited to a specific disease or inheritance pattern since non-pathogenic variants were mistakenly reported as pathogenic in various diseases. Our results should serve as a warning sign for geneticists, variant database curators and sequencing panels' developers not to automatically accept reported variants as pathogenic but cross-reference the information with large databases.
Collapse
Affiliation(s)
- Mor Hanany
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|