1
|
Ma Z, Cen Y, Xun W, Mou C, Yu J, Hu Y, Liu C, Sun J, Bi R, Qiu Y, Ding M, Jin L. Exercise enhances cardiomyocyte mitochondrial homeostasis to alleviate left ventricular dysfunction in pressure overload induced remodelling. Sci Rep 2025; 15:11698. [PMID: 40188200 PMCID: PMC11972341 DOI: 10.1038/s41598-025-95637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
This study aims to explore how exercise enhances mitochondrial regulation and mitigates pathological cardiac hypertrophy. Rat groups were assigned as the control group (CN, n = 8), sham group (sham, n = 8), model group (SC, n = 16) and exercise group (SE, n = 20). A bioinformatics analysis was conducted to uncover the underlying mechanisms.H9C2 cells were divided into: the Ang II 0 h group (CON), Ang II 48 h group (Ang II), Ang II 48 h + sh-control group (sh-GFP + Ang II), Ang II 48 h + sh-ndufb10 group (sh-ndufb10 + Ang II), Ang II 48 h + overexpressedndufb10 control group (Ad-GFP + Ang II) and Ang II 48 h + over-expressedndufb10group (Ad-ndufb10 + Ang II). Mitochondrial function was measured. mRNA and protein expression were assessed by qPCR or western blot analysis respectively. In the SC group, a significant increase was observed in cardiomyocyte diameter, cardiac function, autophagy, and apoptosis. After 8 weeks of swimming exercise, there was a substantial reduction in cardiomyocyte diameter, an improvement in cardiac function, a mitigation of mitochondrial fission and autophagy. Ndufb10 was markedly enriched in oxidative phosphorylation and downregulated in the SC group, while it was upregulated in the SE group. In the sh-ndufb10 group, mitochondrial fusion was suppressed; fission and autophagy were further facilitated; mitochondrial membrane potential, mPTP, and ROS levels increased; and TUNEL positive nuclei and apoptosis-related proteins showed significant upregulation. Overexpression of ndufb10 reversed pathological hypertrophy, mitochondrial autophagy, mitochondrial dysfunction, and cardiomyocyte apoptosis in vitro. Swimming exercise improves mitochondrial abnormalities and reduces cardiomyocyte hypertrophy through regulation of the ndufb10 in left ventricular hypertrophy.
Collapse
Affiliation(s)
- Zhichao Ma
- School of Physical Education, Wuhan Business University, Wuhan, 430056, China.
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China.
- Equine Science Research and Horse Doping Control Laboratory, Wuhan Business University, Wuhan, 430056, China.
| | - Yanling Cen
- School of Physical Education, Wuhan Business University, Wuhan, 430056, China
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China
- Hubei Exercise Training and Monitoring Key Laboratory, Wuhan Sports University, Wuhan, 430079, China
| | - Weiwei Xun
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China
- Hubei Exercise Training and Monitoring Key Laboratory, Wuhan Sports University, Wuhan, 430079, China
| | - Caiying Mou
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China
- Hubei Exercise Training and Monitoring Key Laboratory, Wuhan Sports University, Wuhan, 430079, China
| | - Junwen Yu
- Aquinas International Academy, Ontario, CA, 90623, USA
| | - Yarui Hu
- Chiko Sports Institute, Sichuan University of Science and Technology, Meishan, 620000, China
| | - Chen Liu
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China
- Hubei Exercise Training and Monitoring Key Laboratory, Wuhan Sports University, Wuhan, 430079, China
| | - Jun Sun
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China
- Hubei Exercise Training and Monitoring Key Laboratory, Wuhan Sports University, Wuhan, 430079, China
| | - Rui Bi
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China
- Hubei Exercise Training and Monitoring Key Laboratory, Wuhan Sports University, Wuhan, 430079, China
| | - Yanli Qiu
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China
- Hubei Exercise Training and Monitoring Key Laboratory, Wuhan Sports University, Wuhan, 430079, China
| | - Mingchao Ding
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China
- Hubei Exercise Training and Monitoring Key Laboratory, Wuhan Sports University, Wuhan, 430079, China
| | - Li Jin
- College of Health Science, Wuhan Sports University, Wuhan, 430079, China.
- Hubei Exercise Training and Monitoring Key Laboratory, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Peker E, Weiss K, Song J, Zarges C, Gerlich S, Boehm V, Trifunovic A, Langer T, Gehring NH, Becker T, Riemer J. A two-step mitochondrial import pathway couples the disulfide relay with matrix complex I biogenesis. J Cell Biol 2023; 222:e202210019. [PMID: 37159021 PMCID: PMC10174193 DOI: 10.1083/jcb.202210019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Mitochondria critically rely on protein import and its tight regulation. Here, we found that the complex I assembly factor NDUFAF8 follows a two-step import pathway linking IMS and matrix import systems. A weak targeting sequence drives TIM23-dependent NDUFAF8 matrix import, and en route, allows exposure to the IMS disulfide relay, which oxidizes NDUFAF8. Import is closely surveyed by proteases: YME1L prevents accumulation of excess NDUFAF8 in the IMS, while CLPP degrades reduced NDUFAF8 in the matrix. Therefore, NDUFAF8 can only fulfil its function in complex I biogenesis if both oxidation in the IMS and subsequent matrix import work efficiently. We propose that the two-step import pathway for NDUFAF8 allows integration of the activity of matrix complex I biogenesis pathways with the activity of the mitochondrial disulfide relay system in the IMS. Such coordination might not be limited to NDUFAF8 as we identified further proteins that can follow such a two-step import pathway.
Collapse
Affiliation(s)
- Esra Peker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Konstantin Weiss
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christine Zarges
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Niels H. Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Wall SW, Sanchez L, Tuttle KS, Pearson SJ, Soma S, Wyatt GL, Carter HN, Jenschke RM, Tan L, Martinez SA, Lorenzi PL, Gohil VM, Rijnkels M, Porter WW. Noncanonical role of singleminded-2s in mitochondrial respiratory chain formation in breast cancer. Exp Mol Med 2023; 55:1046-1063. [PMID: 37121978 PMCID: PMC10238511 DOI: 10.1038/s12276-023-00996-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 05/02/2023] Open
Abstract
Dysregulation of cellular metabolism is a hallmark of breast cancer progression and is associated with metastasis and therapeutic resistance. Here, we show that the breast tumor suppressor gene SIM2 promotes mitochondrial oxidative phosphorylation (OXPHOS) using breast cancer cell line models. Mechanistically, we found that SIM2s functions not as a transcription factor but localizes to mitochondria and directly interacts with the mitochondrial respiratory chain (MRC) to facilitate functional supercomplex (SC) formation. Loss of SIM2s expression disrupts SC formation through destabilization of MRC Complex III, leading to inhibition of electron transport, although Complex I (CI) activity is retained. A metabolomic analysis showed that knockout of SIM2s leads to a compensatory increase in ATP production through glycolysis and accelerated glutamine-driven TCA cycle production of NADH, creating a favorable environment for high cell proliferation. Our findings indicate that SIM2s is a novel stabilizing factor required for SC assembly, providing insight into the impact of the MRC on metabolic adaptation and breast cancer progression.
Collapse
Affiliation(s)
- Steven W Wall
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Lilia Sanchez
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | | | - Scott J Pearson
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Shivatheja Soma
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Garhett L Wyatt
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Hannah N Carter
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Ramsey M Jenschke
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Vishal M Gohil
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston W Porter
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Arroum T, Borowski MT, Marx N, Schmelter F, Scholz M, Psathaki OE, Hippler M, Enriquez JA, Busch KB. Loss of respiratory complex I subunit NDUFB10 affects complex I assembly and supercomplex formation. Biol Chem 2023; 404:399-415. [PMID: 36952351 DOI: 10.1515/hsz-2022-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
The orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH2) into ATP, the cell's energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress. Complex I, the NADH-dehydrogenase, is part of the largest supercomplex (CI + CIII2 + CIVn). Here, we demonstrate the role of NDUFB10, a subunit of the membrane arm of complex I, in complex I and supercomplex assembly on the one hand and bioenergetics function on the other. NDUFB10 knockout was correlated with a decrease of SCAF1, a supercomplex assembly factor, and a reduction of respiration and mitochondrial membrane potential. This likely is due to loss of proton pumping since the CI P P -module is downregulated and the P D -module is completely abolished in NDUFB10 knock outs.
Collapse
Affiliation(s)
- Tasnim Arroum
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Marie-Theres Borowski
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Nico Marx
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Frank Schmelter
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Martin Scholz
- Institute of Plant Biotechnology, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Olympia Ekaterini Psathaki
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Michael Hippler
- Institute of Plant Biotechnology, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - José Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
- Centro de Investigaciones Biomédicas en Red en Fraglidad y Envejecimiento Saludable (CIBERFES), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, E-28029 Madrid, Spain
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| |
Collapse
|
5
|
Dumoulin B, Heydeck D, Jähn D, Lassé M, Sofi S, Ufer C, Kuhn H. Male guanine-rich RNA sequence binding factor 1 knockout mice (Grsf1 -/-) gain less body weight during adolescence and adulthood. Cell Biosci 2022; 12:199. [PMID: 36494688 PMCID: PMC9733283 DOI: 10.1186/s13578-022-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the heterogenous nuclear ribonucleoprotein H/F (hnRNP H/F) family that binds to guanine-rich RNA sequences forming G-quadruplex structures. In mice and humans there are single copy GRSF1 genes, but multiple transcripts have been reported. GRSF1 has been implicated in a number of physiological processes (e.g. embryogenesis, erythropoiesis, redox homeostasis, RNA metabolism) but also in the pathogenesis of viral infections and hyperproliferative diseases. These postulated biological functions of GRSF1 originate from in vitro studies rather than complex in vivo systems. To assess the in vivo relevance of these findings, we created systemic Grsf1-/- knockout mice lacking exons 4 and 5 of the Grsf1 gene and compared the basic functional characteristics of these animals with those of wildtype controls. We found that Grsf1-deficient mice are viable, reproduce normally and have fully functional hematopoietic systems. Up to an age of 15 weeks they develop normally but when male individuals grow older, they gain significantly less body weight than wildtype controls in a gender-specific manner. Profiling Grsf1 mRNA expression in different mouse tissues we observed high concentrations in testis. Comparison of the testicular transcriptomes of Grsf1-/- mice and wildtype controls confirmed near complete knock-out of Grsf1 but otherwise subtle differences in transcript regulations. Comparative testicular proteome analyses suggested perturbed mitochondrial respiration in Grsf1-/- mice which may be related to compromised expression of complex I proteins. Here we present, for the first time, an in vivo complete Grsf1 knock-out mouse with comprehensive physiological, transcriptomic and proteomic characterization to improve our understanding of the GRSF1 beyond in vitro cell culture models.
Collapse
Affiliation(s)
- Bernhard Dumoulin
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany ,grid.13648.380000 0001 2180 3484Present Address: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar Heydeck
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Desiree Jähn
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Moritz Lassé
- grid.13648.380000 0001 2180 3484Present Address: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sajad Sofi
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, York, YO10 5DD UK
| | - Christoph Ufer
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Hartmut Kuhn
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
6
|
Proteolytic regulation of mitochondrial oxidative phosphorylation components in plants. Biochem Soc Trans 2022; 50:1119-1132. [PMID: 35587610 PMCID: PMC9246333 DOI: 10.1042/bst20220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Mitochondrial function relies on the homeostasis and quality control of their proteome, including components of the oxidative phosphorylation (OXPHOS) pathway that generates energy in form of ATP. OXPHOS subunits are under constant exposure to reactive oxygen species due to their oxidation-reduction activities, which consequently make them prone to oxidative damage, misfolding, and aggregation. As a result, quality control mechanisms through turnover and degradation are required for maintaining mitochondrial activity. Degradation of OXPHOS subunits can be achieved through proteomic turnover or modular degradation. In this review, we present multiple protein degradation pathways in plant mitochondria. Specifically, we focus on the intricate turnover of OXPHOS subunits, prior to protein import via cytosolic proteasomal degradation and post import and assembly via intra-mitochondrial proteolysis involving multiple AAA+ proteases. Together, these proteolytic pathways maintain the activity and homeostasis of OXPHOS components.
Collapse
|
7
|
Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment. Nat Commun 2022; 13:2769. [PMID: 35589699 PMCID: PMC9120069 DOI: 10.1038/s41467-022-30236-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compensatory increase remains unknown. Here, we find that increases in the uniporter are due to impairment in Complex I of the electron transport chain. In normal physiology, Complex I promotes uniporter degradation via an interaction with the uniporter pore-forming subunit, a process we term Complex I-induced protein turnover. When Complex I dysfunction ensues, contact with the uniporter is inhibited, preventing degradation, and leading to a build-up in functional channels. Preventing uniporter activity leads to early demise in Complex I-deficient animals. Conversely, enhancing uniporter stability rescues survival and function in Complex I deficiency. Taken together, our data identify a fundamental pathway producing compensatory increases in calcium influx during Complex I impairment.
Collapse
|
8
|
A Rare Case of Polysplenia Syndrome Associated with Severe Cardiac Malformations and Congenital Alveolar Dysplasia in a One-Month-Old Infant: A Complete Macroscopic and Histopathologic Study. J Cardiovasc Dev Dis 2022; 9:jcdd9050135. [PMID: 35621846 PMCID: PMC9144318 DOI: 10.3390/jcdd9050135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Polysplenia syndrome represents a type of left atrial isomerism characterized by multiple small spleens, often associated with cardiac malformations and with situs ambiguus of the abdominal organs. The case presented is of a one-month-old male infant, weighing approximately 3000 g, born at the County Clinical Emergency Hospital of Sibiu, who was hospitalized from birth until death. The patient suffered cardio-respiratory arrest due to severe hypoxia and septicemia on the background of a series of complex cardiac malformations associated with congenital abdominal organ anomalies. Examination of the body revealed a common atrium with complete atrioventricular canal defect, left ventricular hypertrophy, right ventricle hypoplasia, truncus arteriosus, superior vena cava duplication, bilobation of the lungs, situs ambiguous of the abdominal organs with right-sided stomach, a midline liver, gall bladder agenesis, multiple right-sided spleens and complete inversion of the intestines and pancreas. Histopathology concluded that the patient suffered cardiac lesions consistent with infantile lactic acidosis, as well as pulmonary modifications suggesting congenital alveolar dysplasia and altered hepatic architecture compatible with fibrosis.
Collapse
|
9
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
10
|
Padavannil A, Ayala-Hernandez MG, Castellanos-Silva EA, Letts JA. The Mysterious Multitude: Structural Perspective on the Accessory Subunits of Respiratory Complex I. Front Mol Biosci 2022; 8:798353. [PMID: 35047558 PMCID: PMC8762328 DOI: 10.3389/fmolb.2021.798353] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
Complex I (CI) is the largest protein complex in the mitochondrial oxidative phosphorylation electron transport chain of the inner mitochondrial membrane and plays a key role in the transport of electrons from reduced substrates to molecular oxygen. CI is composed of 14 core subunits that are conserved across species and an increasing number of accessory subunits from bacteria to mammals. The fact that adding accessory subunits incurs costs of protein production and import suggests that these subunits play important physiological roles. Accordingly, knockout studies have demonstrated that accessory subunits are essential for CI assembly and function. Furthermore, clinical studies have shown that amino acid substitutions in accessory subunits lead to several debilitating and fatal CI deficiencies. Nevertheless, the specific roles of CI’s accessory subunits have remained mysterious. In this review, we explore the possible roles of each of mammalian CI’s 31 accessory subunits by integrating recent high-resolution CI structures with knockout, assembly, and clinical studies. Thus, we develop a framework of experimentally testable hypotheses for the function of the accessory subunits. We believe that this framework will provide inroads towards the complete understanding of mitochondrial CI physiology and help to develop strategies for the treatment of CI deficiencies.
Collapse
Affiliation(s)
- Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Maria G Ayala-Hernandez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Eimy A Castellanos-Silva
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Marra F, Lunetti P, Curcio R, Lasorsa FM, Capobianco L, Porcelli V, Dolce V, Fiermonte G, Scarcia P. An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules 2021; 11:1633. [PMID: 34827632 PMCID: PMC8615828 DOI: 10.3390/biom11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.
Collapse
Affiliation(s)
- Federica Marra
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Rosita Curcio
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Francesco Massimo Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Pasquale Scarcia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| |
Collapse
|
12
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
13
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
15
|
Friederich MW, Geddes GC, Wortmann SB, Punnoose A, Wartchow E, Knight KM, Prokisch H, Creadon-Swindell G, Mayr JA, Van Hove JLK. Pathogenic variants in MRPL44 cause infantile cardiomyopathy due to a mitochondrial translation defect. Mol Genet Metab 2021; 133:362-371. [PMID: 34140213 PMCID: PMC8289749 DOI: 10.1016/j.ymgme.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Cardiac dysfunction is a common phenotypic manifestation of primary mitochondrial disease with multiple nuclear and mitochondrial DNA pathogenic variants as a cause, including disorders of mitochondrial translation. To date, five patients have been described with pathogenic variants in MRPL44, encoding the ml44 protein which is part of the large subunit of the mitochondrial ribosome (mitoribosome). Three presented as infants with hypertrophic cardiomyopathy, mild lactic acidosis, and easy fatigue and muscle weakness, whereas two presented in adolescence with myopathy and neurological symptoms. We describe two infants who presented with cardiomyopathy from the neonatal period, failure to thrive, hypoglycemia and in one infant lactic acidosis. A decompensation of the cardiac function in the first year resulted in demise. Exome sequencing identified compound heterozygous variants in the MRPL44 gene including the known pathogenic variant c.467 T > G and two novel pathogenic variants. We document a combined respiratory chain enzyme deficiency with emphasis on complex I and IV, affecting heart muscle tissue more than skeletal muscle or fibroblasts. We show this to be caused by reduced mitochondrial DNA encoded protein synthesis affecting all subunits, and resulting in dysfunction of complex I and IV assembly. The degree of oxidative phosphorylation dysfunction correlated with the impairment of mitochondrial protein synthesis due to different pathogenic variants. These functional studies allow for improved understanding of the pathogenesis of MRPL44-associated mitochondrial disorder.
Collapse
Affiliation(s)
- Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Services, Children's Hospital Colorado, Aurora, CO, USA
| | - Gabrielle C Geddes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Molecular and Medical Genetics, Indiana University, Indianapolis, IN, USA
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, RadboudUMC, Nijmegen, the Netherlands
| | - Ann Punnoose
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Eric Wartchow
- Department of Pathology and Laboratory Services, Children's Hospital Colorado, Aurora, CO, USA
| | - Kaz M Knight
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | | | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Services, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
16
|
Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes (Basel) 2021; 12:genes12071031. [PMID: 34356047 PMCID: PMC8305315 DOI: 10.3390/genes12071031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.
Collapse
|
17
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
18
|
Wiggs JL. DNAJC30 biallelic mutations extend mitochondrial complex I-deficient phenotypes to include recessive Leber's hereditary optic neuropathy. J Clin Invest 2021; 131:147734. [PMID: 33720041 DOI: 10.1172/jci147734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disease and in most cases is caused by mutations in mitochondrial DNA-encoded (mtDNA-encoded) respiratory complex I subunit ND1, ND4, or ND6. In this issue of the JCI, Stenton et al. describe biallelic mutations in a nuclear DNA-encoded gene, DNAJC30, establishing recessively inherited LHON (arLHON). Functional studies suggest that DNAJC30 is a protein chaperone required for exchange of damaged complex I subunits. Hallmark mtDNA LHON features were also found in arLHON, including incomplete penetrance, male predominance, and positive response to idebenone therapy. These results extend complex I-deficient phenotypes to include recessively inherited optic neuropathy, with important clinical implications for genetic counseling and therapeutic considerations.
Collapse
|
19
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
20
|
Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021; 11:210002. [PMID: 33715390 PMCID: PMC8061763 DOI: 10.1098/rsob.210002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial intermembrane space (IMS) is the most constricted sub-mitochondrial compartment, housing only about 5% of the mitochondrial proteome, and yet is endowed with the largest variability of protein import mechanisms. In this review, we summarize our current knowledge of the major IMS import pathway based on the oxidative protein folding pathway and discuss the stunning variability of other IMS protein import pathways. As IMS-localized proteins only have to cross the outer mitochondrial membrane, they do not require energy sources like ATP hydrolysis in the mitochondrial matrix or the inner membrane electrochemical potential which are critical for import into the matrix or insertion into the inner membrane. We also explore several atypical IMS import pathways that are still not very well understood and are guided by poorly defined or completely unknown targeting peptides. Importantly, many of the IMS proteins are linked to several human diseases, and it is therefore crucial to understand how they reach their normal site of function in the IMS. In the final part of this review, we discuss current understanding of how such IMS protein underpin a large spectrum of human disorders.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
21
|
CHCHD4 (MIA40) and the mitochondrial disulfide relay system. Biochem Soc Trans 2021; 49:17-27. [PMID: 33599699 PMCID: PMC7925007 DOI: 10.1042/bst20190232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions. One such import pathway is the highly evolutionarily conserved disulfide relay system (DRS) within the mitochondrial intermembrane space (IMS), whereby proteins undergo a form of oxidation-dependent protein import. A central component of the DRS is the oxidoreductase coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein 4 (CHCHD4, also known as MIA40), the human homologue of yeast Mia40. Here, we summarise the recent advances made to our understanding of the role of CHCHD4 and the DRS in physiology and disease, with a specific focus on the emerging importance of CHCHD4 in regulating the cellular response to low oxygen (hypoxia) and metabolism in cancer.
Collapse
|
22
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
23
|
Helman G, Compton AG, Hock DH, Walkiewicz M, Brett GR, Pais L, Tan TY, De Paoli-Iseppi R, Clark MB, Christodoulou J, White SM, Thorburn DR, Stroud DA, Stark Z, Simons C. Multiomic analysis elucidates Complex I deficiency caused by a deep intronic variant in NDUFB10. Hum Mutat 2021; 42:19-24. [PMID: 33169436 PMCID: PMC7902361 DOI: 10.1002/humu.24135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/06/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
Abstract
The diagnosis of Mendelian disorders following uninformative exome and genome sequencing remains a challenging and often unmet need. Following uninformative exome and genome sequencing of a family quartet including two siblings with suspected mitochondrial disorder, RNA sequencing (RNAseq) was pursued in one sibling. Long-read amplicon sequencing was used to determine and quantify transcript structure. Immunoblotting studies and quantitative proteomics were performed to demonstrate functional impact. Differential expression analysis of RNAseq data identified significantly decreased expression of the mitochondrial OXPHOS Complex I subunit NDUFB10 associated with a cryptic exon in intron 1 of NDUFB10, that included an in-frame stop codon. The cryptic exon contained a rare intronic variant that was homozygous in both affected siblings. Immunoblot and quantitative proteomic analysis of fibroblasts revealed decreased abundance of Complex I subunits, providing evidence of isolated Complex I deficiency. Through multiomic analysis we present data implicating a deep intronic variant in NDUFB10 as the cause of mitochondrial disease in two individuals, providing further support of the gene-disease association. This study highlights the importance of transcriptomic and proteomic analyses as complementary diagnostic tools in patients undergoing genome-wide diagnostic evaluation.
Collapse
Affiliation(s)
- Guy Helman
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Alison G. Compton
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Daniella H. Hock
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, 3052, Australia
| | - Marzena Walkiewicz
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
| | - Gemma R. Brett
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Tiong Y. Tan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
| | - Ricardo De Paoli-Iseppi
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3052, Australia
| | - Michael B. Clark
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3052, Australia
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
| | - Susan M. White
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
| | - David A. Stroud
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, 3052, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
| | - Cas Simons
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, 3052, Australia
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| |
Collapse
|
24
|
Zhang Y, Guo L, Han S, Chen L, Li C, Zhang Z, Hong Y, Zhang X, Zhou X, Jiang D, Liang X, Qiu J, Zhang J, Li X, Zhong S, Liao C, Yan B, Tse HF, Lian Q. Adult mesenchymal stem cell ageing interplays with depressed mitochondrial Ndufs6. Cell Death Dis 2020; 11:1075. [PMID: 33323934 PMCID: PMC7738680 DOI: 10.1038/s41419-020-03289-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a novel strategy to treat many degenerative diseases. Accumulating evidence shows that the function of MSCs declines with age, thus limiting their regenerative capacity. Nonetheless, the underlying mechanisms that control MSC ageing are not well understood. We show that compared with bone marrow-MSCs (BM-MSCs) isolated from young and aged samples, NADH dehydrogenase (ubiquinone) iron-sulfur protein 6 (Ndufs6) is depressed in aged MSCs. Similar to that of Ndufs6 knockout (Ndufs6-/-) mice, MSCs exhibited a reduced self-renewal and differentiation capacity with a tendency to senescence in the presence of an increased p53/p21 level. Downregulation of Ndufs6 by siRNA also accelerated progression of wild-type BM-MSCs to an aged state. In contrast, replenishment of Ndufs6 in Ndufs6-/--BM-MSCs significantly rejuvenated senescent cells and restored their proliferative ability. Compared with BM-MSCs, Ndufs6-/--BM-MSCs displayed increased intracellular and mitochondrial reactive oxygen species (ROS), and decreased mitochondrial membrane potential. Treatment of Ndufs6-/--BM-MSCs with mitochondrial ROS inhibitor Mito-TEMPO notably reversed the cellular senescence and reduced the increased p53/p21 level. We provide direct evidence that impairment of mitochondrial Ndufs6 is a putative accelerator of adult stem cell ageing that is associated with excessive ROS accumulation and upregulation of p53/p21. It also indicates that manipulation of mitochondrial function is critical and can effectively protect adult stem cells against senescence.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liyan Guo
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuo Han
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Ling Chen
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Cheng Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Zhao Zhang
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xiaoxian Zhang
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoya Zhou
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dan Jiang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Xiaoting Liang
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxiang Qiu
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinqiu Zhang
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Shilong Zhong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Can Liao
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Yan
- Department of Computer Science, Faculty of Engineering, the University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
25
|
Dang QCL, Phan DH, Johnson AN, Pasapuleti M, Alkhaldi HA, Zhang F, Vik SB. Analysis of Human Mutations in the Supernumerary Subunits of Complex I. Life (Basel) 2020; 10:life10110296. [PMID: 33233646 PMCID: PMC7699753 DOI: 10.3390/life10110296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
Complex I is the largest member of the electron transport chain in human mitochondria. It comprises 45 subunits and requires at least 15 assembly factors. The subunits can be divided into 14 "core" subunits that carry out oxidation-reduction reactions and proton translocation, as well as 31 additional supernumerary (or accessory) subunits whose functions are less well known. Diminished levels of complex I activity are seen in many mitochondrial disease states. This review seeks to tabulate mutations in the supernumerary subunits of humans that appear to cause disease. Mutations in 20 of the supernumerary subunits have been identified. The mutations were analyzed in light of the tertiary and quaternary structure of human complex I (PDB id = 5xtd). Mutations were found that might disrupt the folding of that subunit or that would weaken binding to another subunit. In some cases, it appeared that no protein was made or, at least, could not be detected. A very common outcome is the lack of assembly of complex I when supernumerary subunits are mutated or missing. We suggest that poor assembly is the result of disrupting the large network of subunit interactions that the supernumerary subunits typically engage in.
Collapse
|
26
|
Ugarteburu O, Teresa Garcia-Silva M, Aldamiz-Echevarria L, Gort L, Garcia-Villoria J, Tort F, Ribes A. Complex I deficiency, due to NDUFAF4 mutations, causes severe mitochondrial dysfunction and is associated to early death and dysmorphia. Mitochondrion 2020; 55:78-84. [DOI: 10.1016/j.mito.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
|
27
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
28
|
Knight KM, Shelkowitz E, Larson AA, Mirsky DM, Wang Y, Chen T, Wong LJ, Friederich MW, Van Hove JLK. The mitochondrial DNA variant m.9032T > C in MT-ATP6 encoding p.(Leu169Pro) causes a complex mitochondrial neurological syndrome. Mitochondrion 2020; 55:8-13. [PMID: 32931937 DOI: 10.1016/j.mito.2020.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/09/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Diagnosing complex V deficiencies caused by new variants in mitochondrial DNA is challenging due to the rarity, phenotypic diversity, and limited functional assessments. We describe a child with the m.9032T > C variant in MT-ATP6 encoding p.(Leu169Pro), with primary presentation of microcephaly, ataxia, hearing loss, and lactic acidosis. Functional studies reveal abnormal fragment F1 of complex V on blue native gel electrophoresis. Respirometry showed excessively tight coupling through complex V depressing oxygen consumption upon ADP stimulation and an excessive increase following uncoupling, in the presence of upregulation of mitochondrial biogenesis. These data add evidence about pathogenicity and functional impact of this variant.
Collapse
Affiliation(s)
- Kaz M Knight
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Emily Shelkowitz
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - David M Mirsky
- Department of Radiology, University of Colorado, and Children's Hospital Colorado, Aurora, CO, USA
| | - Yue Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ting Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, China
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Marisa W Friederich
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, 13121 East 16th Avenue, Aurora, CO, USA
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, 13121 East 16th Avenue, Aurora, CO, USA.
| |
Collapse
|
29
|
Friederich MW, Elias AF, Kuster A, Laugwitz L, Larson AA, Landry AP, Ellwood‐Digel L, Mirsky DM, Dimmock D, Haven J, Jiang H, MacLean KN, Styren K, Schoof J, Goujon L, Lefrancois T, Friederich M, Coughlin CR, Banerjee R, Haack TB, Van Hove JLK. Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease. J Inherit Metab Dis 2020; 43:1024-1036. [PMID: 32160317 PMCID: PMC7484123 DOI: 10.1002/jimd.12232] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.
Collapse
Affiliation(s)
- Marisa W. Friederich
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColorado
| | - Abdallah F. Elias
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Alice Kuster
- Department of NeurometabolismUniversity Hospital of NantesNantesFrance
- INRAE, UMR1280, PhAN, Nantes UniversitéNantesFrance
| | - Lucia Laugwitz
- Institut für Medizinische Genetik und Angewandte GenomikUniversitätsklinikum, University of TübingenTübingenGermany
| | - Austin A. Larson
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Aaron P. Landry
- Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Logan Ellwood‐Digel
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - David M. Mirsky
- Department of RadiologyUniversity of Colorado, and Children's Hospital ColoradoAuroraColorado
| | - David Dimmock
- Rady Children's Institute for Genomic MedicineSan DiegoCalifornia
| | - Jaclyn Haven
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Hua Jiang
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Kenneth N. MacLean
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Katie Styren
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Jonathan Schoof
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Louise Goujon
- Department of NeurometabolismUniversity Hospital of NantesNantesFrance
- Service de Génétique CliniqueUniversity Hospital of RennesRennesFrance
| | | | - Maike Friederich
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Curtis R. Coughlin
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Ruma Banerjee
- Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Tobias B. Haack
- INRAE, UMR1280, PhAN, Nantes UniversitéNantesFrance
- Centre for Rare DiseasesUniversity of TübingenTübingenGermany
| | - Johan L. K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColorado
| |
Collapse
|
30
|
Herrmann JM, Riemer J. Apoptosis inducing factor and mitochondrial NADH dehydrogenases: redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death. Biol Chem 2020; 402:289-297. [PMID: 32769219 DOI: 10.1515/hsz-2020-0254] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
The mitochondrial complex I serves as entry point for NADH into the electron transport chain. In animals, fungi and plants, additional NADH dehydrogenases carry out the same electron transfer reaction, however they do not pump protons. The apoptosis inducing factor (AIF, AIFM1 in humans) is a famous member of this group as it was the first pro-apoptotic protein identified that can induce caspase-independent cell death. Recent studies on AIFM1 and the NADH dehydrogenase Nde1 of baker's yeast revealed two independent and experimentally separable activities of this class of enzymes: On the one hand, these proteins promote the functionality of mitochondrial respiration in different ways: They channel electrons into the respiratory chain and, at least in animals, promote the import of Mia40 (named MIA40 or CHCHD4 in humans) and the assembly of complex I. On the other hand, they can give rise to pro-apoptotic fragments that are released from the mitochondria to trigger cell death. Here we propose that AIFM1 and Nde1 serve as conserved redox switches which measure metabolic conditions on the mitochondrial surface and translate it into a binary life/death decision. This function is conserved among eukaryotic cells and apparently used to purge metabolically compromised cells from populations.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Department of Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663Kaiserslautern, Germany
| | - Jan Riemer
- Department of Biochemistry, University of Cologne, Zülpicher Str. 47A, D-50674Cologne, Germany
| |
Collapse
|
31
|
Finger Y, Habich M, Gerlich S, Urbanczyk S, van de Logt E, Koch J, Schu L, Lapacz KJ, Ali M, Petrungaro C, Salscheider SL, Pichlo C, Baumann U, Mielenz D, Dengjel J, Brachvogel B, Hofmann K, Riemer J. Proteasomal degradation induced by DPP9-mediated processing competes with mitochondrial protein import. EMBO J 2020; 39:e103889. [PMID: 32815200 PMCID: PMC7527813 DOI: 10.15252/embj.2019103889] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.
Collapse
Affiliation(s)
- Yannik Finger
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Erik van de Logt
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Julian Koch
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Laura Schu
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Kim Jasmin Lapacz
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Muna Ali
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Carmelina Petrungaro
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | | | - Christian Pichlo
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
32
|
Murschall LM, Gerhards A, MacVicar T, Peker E, Hasberg L, Wawra S, Langer T, Riemer J. The C-terminal region of the oxidoreductase MIA40 stabilizes its cytosolic precursor during mitochondrial import. BMC Biol 2020; 18:96. [PMID: 32762682 PMCID: PMC7412830 DOI: 10.1186/s12915-020-00824-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The mitochondrial intermembrane space (IMS) is home to proteins fulfilling numerous essential cellular processes, particularly in metabolism and mitochondrial function. All IMS proteins are nuclear encoded and synthesized in the cytosol and must therefore be correctly targeted and transported to the IMS, either through mitochondrial targeting sequences or conserved cysteines and the mitochondrial disulfide relay system. The mitochondrial oxidoreductase MIA40, which catalyzes disulfide formation in the IMS, is imported by the combined action of the protein AIFM1 and MIA40 itself. Here, we characterized the function of the conserved highly negatively charged C-terminal region of human MIA40. RESULTS We demonstrate that the C-terminal region is critical during posttranslational mitochondrial import of MIA40, but is dispensable for MIA40 redox function in vitro and in intact cells. The C-terminal negatively charged region of MIA40 slowed import into mitochondria, which occurred with a half-time as slow as 90 min. During this time, the MIA40 precursor persisted in the cytosol in an unfolded state, and the C-terminal negatively charged region served in protecting MIA40 from proteasomal degradation. This stabilizing property of the MIA40 C-terminal region could also be conferred to a different mitochondrial precursor protein, COX19. CONCLUSIONS Our data suggest that the MIA40 precursor contains the stabilizing information to allow for postranslational import of sufficient amounts of MIA40 for full functionality of the essential disulfide relay. We thereby provide for the first time mechanistic insights into the determinants controlling cytosolic surveillance of IMS precursor proteins.
Collapse
Affiliation(s)
- Lena Maria Murschall
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Anne Gerhards
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Thomas MacVicar
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Esra Peker
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Lidwina Hasberg
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Stephan Wawra
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Thomas Langer
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
33
|
Habich M, Riemer J. Stop wasting protein-Proteasome inhibition to target diseases linked to mitochondrial import. EMBO Mol Med 2020; 11:emmm.201910441. [PMID: 30944106 PMCID: PMC6505575 DOI: 10.15252/emmm.201910441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Mitochondrial dysfunction is linked to various human diseases. Symptoms can occur early in life or manifest progressively during life and include poor muscle coordination or weakness, neurological or developmental problems, or immunodeficiency (Lightowlers et al, 2015). Most mitochondrial diseases are caused by mutations in genes encoding mitochondrial proteins. Mutations can affect protein functions in many ways; they can not only impair enzymatic activities, but also lower protein stability, hamper assembly into multimeric protein complexes, or abrogate protein transport into mitochondria. Understanding the impact of mutations on protein function is crucial to understand pathophysiological mechanisms of mitochondrial diseases and to develop therapeutic approaches.
Collapse
Affiliation(s)
- Markus Habich
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Friederich MW, Perez FA, Knight KM, Van Hove RA, Yang SP, Saneto RP, Van Hove JLK. Pathogenic variants in NUBPL result in failure to assemble the matrix arm of complex I and cause a complex leukoencephalopathy with thalamic involvement. Mol Genet Metab 2020; 129:236-242. [PMID: 31917109 PMCID: PMC8096346 DOI: 10.1016/j.ymgme.2019.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023]
Abstract
Disorders of the white matter are genetically very heterogeneous including several genes involved in mitochondrial bioenergetics. Diagnosis of the underlying cause is aided by pattern recognition on neuroimaging and by next-generation sequencing. Recently, genetic changes in the complex I assembly factor NUBPL have been characterized by a consistent recognizable pattern of leukoencephalopathy affecting deep white matter including the corpus callosum and cerebellum. Here, we report twin boys with biallelic variants in NUBPL, an unreported c.351 G > A; p.(Met117Ile) and a previously reported pathological variant c. 693 + 1 G > A. Brain magnetic resonance imaging showed abnormal T2 hyperintense signal involving the periventricular white matter, external capsule, corpus callosum, and, prominently, the bilateral thalami. The neuroimaging pattern evolved over 18 months with marked diffuse white matter signal abnormality, volume loss, and new areas of signal abnormality in the cerebellar folia and vermis. Magnetic resonance spectroscopy showed elevated lactate. Functional studies in cultured fibroblasts confirmed pathogenicity of the genetic variants. Complex I activity of the respiratory chain was deficient spectrophotometrically and on blue native gel with in-gel activity staining. There was absent assembly and loss of proteins of the matrix arm of complex I when traced with an antibody to NDUFS2, and incomplete assembly of the membrane arm when traced with an NDUFB6 antibody. There was decreased NUBPL protein on Western blot in patient fibroblasts compared to controls. Compromised NUBPL activity impairs assembly of the matrix arm of complex I and produces a severe, rapidly-progressive leukoencephalopathy with thalamic involvement on MRI, further expanding the neuroimaging phenotype.
Collapse
Affiliation(s)
- Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, RC1-N P18-4404K, 12800 East 19th Avenue, Aurora, CO 80045, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, 13121 East 16th Avenue, Aurora, CO 80045, USA
| | - Francisco A Perez
- Department of Radiology, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Kaz M Knight
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, RC1-N P18-4404K, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Roxanne A Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, RC1-N P18-4404K, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Samuel P Yang
- Clinical Genomics and Preventative Medicine, Providence Medical Group, 105 West 8th Street 454-E, Spokane, WA 99204, USA
| | - Russell P Saneto
- Mitochondrial Medicine and Metabolism, Department of Neurology, Division of Pediatric Neurology, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA; Center for Integrative Brain Research, Neuroscience Institute, 1900 Ninth Ave, Mailstop C9S-10, Seattle, WA 98101, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, RC1-N P18-4404K, 12800 East 19th Avenue, Aurora, CO 80045, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, 13121 East 16th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
35
|
Subrahmanian N, Castonguay AD, Fatnes TA, Hamel PP. Chlamydomonas reinhardtii as a plant model system to study mitochondrial complex I dysfunction. PLANT DIRECT 2020; 4:e00200. [PMID: 32025618 PMCID: PMC6996877 DOI: 10.1002/pld3.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Mitochondrial complex I, a proton-pumping NADH: ubiquinone oxidoreductase, is required for oxidative phosphorylation. However, the contribution of several human mutations to complex I deficiency is poorly understood. The unicellular alga Chlamydomonas reinhardtii was utilized to study complex I as, unlike in mammals, mutants with complete loss of the holoenzyme are viable. From a forward genetic screen for complex I-deficient insertional mutants, six mutants exhibiting complex I deficiency with assembly defects were isolated. Chlamydomonas mutants isolated from our screens, lacking the subunits NDUFV2 and NDUFB10, were used to reconstruct and analyze the effect of two human mutations in these subunit-encoding genes. The K209R substitution in NDUFV2, reported in Parkinson's disease patients, did not significantly affect the enzyme activity or assembly. The C107S substitution in the NDUFB10 subunit, reported in a case of fatal infantile cardiomyopathy, is part of a conserved C-(X)11-C motif. The cysteine substitutions, at either one or both positions, still allowed low levels of holoenzyme formation, indicating that this motif is crucial for complex I function but not strictly essential for assembly. We show that the algal mutants provide a simple and useful platform to delineate the consequences of patient mutations on complex I function.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Plant Cellular and Molecular Biology Graduate ProgramThe Ohio State UniversityColumbusOHUSA
| | - Andrew David Castonguay
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Molecular Genetics Graduate ProgramThe Ohio State UniversityColumbusOHUSA
| | - Thea Aspelund Fatnes
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Present address:
Fürst Medical LaboratoryOsloNorway
| | - Patrice Paul Hamel
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Department of Biological Chemistry and PharmacologyThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
36
|
Subversion of Host Cell Mitochondria by RSV to Favor Virus Production is Dependent on Inhibition of Mitochondrial Complex I and ROS Generation. Cells 2019; 8:cells8111417. [PMID: 31717900 PMCID: PMC6912631 DOI: 10.3390/cells8111417] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a key cause of severe respiratory infection in infants, immunosuppressed adults, and the elderly worldwide, but there is no licensed vaccine or effective, widely-available antiviral therapeutic. We recently reported staged redistribution of host cell mitochondria in RSV infected cells, which results in compromised respiratory activities and increased reactive oxygen species (ROS) generation. Here, bioenergetic measurements, mitochondrial redox-sensitive dye, and high-resolution quantitative imaging were performed, revealing for the first time that mitochondrial complex I is key to this effect on the host cell, whereby mitochondrial complex I subunit knock-out (KO) cells, with markedly decreased mitochondrial respiration, show elevated levels of RSV infectious virus production compared to wild-type cells or KO cells with re-expressed complex I subunits. This effect correlates strongly with elevated ROS generation in the KO cells compared to wild-type cells or retrovirus-rescued KO cells re-expressing complex I subunits. Strikingly, blocking mitochondrial ROS levels using the mitochondrial ROS scavenger, mitoquinone mesylate (MitoQ), inhibits RSV virus production, even in the KO cells. The results highlight RSV's unique ability to usurp host cell mitochondrial ROS to facilitate viral infection and reinforce the idea of MitoQ as a potential therapeutic for RSV.
Collapse
|
37
|
Gardner OK, Wang L, Van Booven D, Whitehead PL, Hamilton-Nelson KL, Adams LD, Starks TD, Hofmann NK, Vance JM, Cuccaro ML, Martin ER, Byrd GS, Haines JL, Bush WS, Beecham GW, Pericak-Vance MA, Griswold AJ. RNA editing alterations in a multi-ethnic Alzheimer disease cohort converge on immune and endocytic molecular pathways. Hum Mol Genet 2019; 28:3053-3061. [PMID: 31162550 PMCID: PMC6737295 DOI: 10.1093/hmg/ddz110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/28/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
Little is known about the post-transcriptional mechanisms that modulate the genetic effects in the molecular pathways underlying Alzheimer disease (AD), and even less is known about how these changes might differ across diverse populations. RNA editing, the process that alters individual bases of RNA, may contribute to AD pathogenesis due to its roles in neuronal development and immune regulation. Here, we pursued one of the first transcriptome-wide RNA editing studies in AD by examining RNA sequencing data from individuals of both African-American (AA) and non-Hispanic White (NHW) ethnicities. Whole transcriptome RNA sequencing and RNA editing analysis were performed on peripheral blood specimens from 216 AD cases (105 AA, 111 NHW) and 212 gender matched controls (105 AA, 107 NHW). 449 positions in 254 genes and 723 positions in 371 genes were differentially edited in AA and NHW, respectively. While most differentially edited sites localized to different genes in AA and NHW populations, these events converged on the same pathways across both ethnicities, especially endocytic and inflammatory response pathways. Furthermore, these differentially edited sites were preferentially predicted to disrupt miRNA binding and induce nonsynonymous coding changes in genes previously associated with AD in molecular studies, including PAFAH1B2 and HNRNPA1. These findings suggest RNA editing is an important post-transcriptional regulatory program in AD pathogenesis.
Collapse
Affiliation(s)
- Olivia K Gardner
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lily Wang
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Larry D Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Takiyah D Starks
- Maya Angelou Center for Health Equity, Wake Forest University, Winston-Salem, NC, USA
| | - Natalia K Hofmann
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Goldie S Byrd
- Maya Angelou Center for Health Equity, Wake Forest University, Winston-Salem, NC, USA
| | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - William S Bush
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
38
|
Nicolas E, Tricarico R, Savage M, Golemis EA, Hall MJ. Disease-Associated Genetic Variation in Human Mitochondrial Protein Import. Am J Hum Genet 2019; 104:784-801. [PMID: 31051112 PMCID: PMC6506819 DOI: 10.1016/j.ajhg.2019.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction has consequences not only for cellular energy output but also for cellular signaling pathways. Mitochondrial dysfunction, often based on inherited gene variants, plays a role in devastating human conditions such as mitochondrial neuropathies, myopathies, cardiovascular disorders, and Parkinson and Alzheimer diseases. Of the proteins essential for mitochondrial function, more than 98% are encoded in the cell nucleus, translated in the cytoplasm, sorted based on the presence of encoded mitochondrial targeting sequences (MTSs), and imported to specific mitochondrial sub-compartments based on the integrated activity of a series of mitochondrial translocases, proteinases, and chaperones. This import process is typically dynamic; as cellular homeostasis is coordinated through communication between the mitochondria and the nucleus, many of the adaptive responses to stress depend on modulation of mitochondrial import. We here describe an emerging class of disease-linked gene variants that are found to impact the mitochondrial import machinery itself or to affect the proteins during their import into mitochondria. As a whole, this class of rare defects highlights the importance of correct trafficking of mitochondrial proteins in the cell and the potential implications of failed targeting on metabolism and energy production. The existence of this variant class could have importance beyond rare neuromuscular disorders, given an increasing body of evidence suggesting that aberrant mitochondrial function may impact cancer risk and therapeutic response.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rossella Tricarico
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michelle Savage
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael J Hall
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
39
|
Mohanraj K, Wasilewski M, Benincá C, Cysewski D, Poznanski J, Sakowska P, Bugajska Z, Deckers M, Dennerlein S, Fernandez-Vizarra E, Rehling P, Dadlez M, Zeviani M, Chacinska A. Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Mol Med 2019; 11:e9561. [PMID: 30885959 PMCID: PMC6505684 DOI: 10.15252/emmm.201809561] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS We also found that pathogenic mutant versions of COA7 are imported slower than the wild-type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient-derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins.
Collapse
Affiliation(s)
- Karthik Mohanraj
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michal Wasilewski
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Cristiane Benincá
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dominik Cysewski
- Mass Spectrometry Lab, Department of Biophysics, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Jaroslaw Poznanski
- Department of Biophysics, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Paulina Sakowska
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Zaneta Bugajska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Markus Deckers
- Department of Cellular Biochemistry, University of Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University of Göttingen, Göttingen, Germany
| | | | - Peter Rehling
- Department of Cellular Biochemistry, University of Göttingen, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michal Dadlez
- Mass Spectrometry Lab, Department of Biophysics, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
40
|
Newell C, Khan A, Sinasac D, Shoffner J, Friederich MW, Van Hove JLK, Hume S, Shearer J, Sosova I. Hybrid gel electrophoresis using skin fibroblasts to aid in diagnosing mitochondrial disease. NEUROLOGY-GENETICS 2019; 5:e336. [PMID: 31192304 PMCID: PMC6515941 DOI: 10.1212/nxg.0000000000000336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
Objective We developed a novel, hybrid method combining both blue-native (BN-PAGE) and clear-native (CN-PAGE) polyacrylamide gel electrophoresis, termed BCN-PAGE, to perform in-gel activity stains on the mitochondrial electron transport chain (ETC) complexes in skin fibroblasts. Methods Four patients aged 46–65 years were seen in the Metabolic Clinic at Alberta Children's Hospital and investigated for mitochondrial disease and had BN-PAGE or CN-PAGE on skeletal muscle that showed incomplete assembly of complex V (CV) in each patient. Long-range PCR performed on muscle-extracted DNA identified 4 unique mitochondrial DNA (mtDNA) deletions spanning the ATP6 gene of CV. We developed a BCN-PAGE method in skin fibroblasts taken from the patients at the same time and compared the findings with those in skeletal muscle. Results In all 4 cases, BCN-PAGE in skin fibroblasts confirmed the abnormal CV activity found from muscle biopsy, suggesting that the mtDNA deletions involving ATP6 were most likely germline mutations that are associated with a clinical phenotype of mitochondrial disease. Conclusions The BCN-PAGE method in skin fibroblasts has a potential to be a less-invasive tool compared with muscle biopsy to screen patients for abnormalities in CV and other mitochondrial ETC complexes.
Collapse
Affiliation(s)
- Christopher Newell
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Aneal Khan
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - David Sinasac
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - John Shoffner
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Marisa W Friederich
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Johan L K Van Hove
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Stacey Hume
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Jane Shearer
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Iveta Sosova
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| |
Collapse
|
41
|
Chatfield KC, Sparagna GC, Chau S, Phillips EK, Ambardekar AV, Aftab M, Mitchell MB, Sucharov CC, Miyamoto SD, Stauffer BL. Elamipretide Improves Mitochondrial Function in the Failing Human Heart. JACC Basic Transl Sci 2019; 4:147-157. [PMID: 31061916 PMCID: PMC6488757 DOI: 10.1016/j.jacbts.2018.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/28/2023]
Abstract
Mitochondrial function is impaired in explanted failing pediatric and adult human hearts. Elamipretide is a novel mitochondria-targeted drug that is targeted to cardiolipin on the inner mitochondrial membrane and improves coupling of the electron transport chain. Treatment of explanted human hearts with elamipretide improves human cardiac mitochondrial function. The study provides novel methods to evaluate the influence of compounds on mitochondria in the human heart and provides proof of principle for the use of elamipretide to improve mitochondrial energetics in failing myocardium due to multiple etiologies and irrespective of age.
Negative alterations of mitochondria are known to occur in heart failure (HF). This study investigated the novel mitochondrial-targeted therapeutic agent elamipretide on mitochondrial and supercomplex function in failing human hearts ex vivo. Freshly explanted failing and nonfailing ventricular tissue from children and adults was treated with elamipretide. Mitochondrial oxygen flux, complex (C) I and CIV activities, and in-gel activity of supercomplex assembly were measured. Mitochondrial function was impaired in the failing human heart, and mitochondrial oxygen flux, CI and CIV activities, and supercomplex-associated CIV activity significantly improved in response to elamipretide treatment. Elamipretide significantly improved failing human mitochondrial function.
Collapse
Affiliation(s)
- Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Genevieve C Sparagna
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Sarah Chau
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabeth K Phillips
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Amrut V Ambardekar
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Muhammad Aftab
- Department of Surgery/Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado.,Department of Surgery, Veterans Administration Hospital, Denver, Colorado
| | - Max B Mitchell
- Department of Surgery/Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Carmen C Sucharov
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Brian L Stauffer
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine/Division of Cardiology, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
42
|
Thomas LW, Stephen JM, Esposito C, Hoer S, Antrobus R, Ahmed A, Al-Habib H, Ashcroft M. CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain. Cancer Metab 2019; 7:2. [PMID: 30886710 PMCID: PMC6404347 DOI: 10.1186/s40170-019-0194-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Background Tumour cells rely on glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to survive. Thus, mitochondrial OXPHOS has become an increasingly attractive area for therapeutic exploitation in cancer. However, mitochondria are required for intracellular oxygenation and normal physiological processes, and it remains unclear which mitochondrial molecular mechanisms might provide therapeutic benefit. Previously, we discovered that coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4) is critical for regulating intracellular oxygenation and required for the cellular response to hypoxia (low oxygenation) in tumour cells through molecular mechanisms that we do not yet fully understand. Overexpression of CHCHD4 in human cancers correlates with increased tumour progression and poor patient survival. Results Here, we show that elevated CHCHD4 expression provides a proliferative and metabolic advantage to tumour cells in normoxia and hypoxia. Using stable isotope labelling with amino acids in cell culture (SILAC) and analysis of the whole mitochondrial proteome, we show that CHCHD4 dynamically affects the expression of a broad range of mitochondrial respiratory chain subunits from complex I-V, including multiple subunits of complex I (CI) required for complex assembly that are essential for cell survival. We found that loss of CHCHD4 protects tumour cells from respiratory chain inhibition at CI, while elevated CHCHD4 expression in tumour cells leads to significantly increased sensitivity to CI inhibition, in part through the production of mitochondrial reactive oxygen species (ROS). Conclusions Our study highlights an important role for CHCHD4 in regulating tumour cell metabolism and reveals that CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain and CI biology.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Jenna M. Stephen
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present address: Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simon Hoer
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Afshan Ahmed
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present address: AstraZeneca Ltd., Cambridge, UK
| | - Hasan Al-Habib
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| |
Collapse
|
43
|
Briston T, Stephen JM, Thomas LW, Esposito C, Chung YL, Syafruddin SE, Turmaine M, Maddalena LA, Greef B, Szabadkai G, Maxwell PH, Vanharanta S, Ashcroft M. VHL-Mediated Regulation of CHCHD4 and Mitochondrial Function. Front Oncol 2018; 8:388. [PMID: 30338240 PMCID: PMC6180203 DOI: 10.3389/fonc.2018.00388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022] Open
Abstract
Dysregulated mitochondrial function is associated with the pathology of a wide range of diseases including renal disease and cancer. Thus, investigating regulators of mitochondrial function is of particular interest. Previous work has shown that the von Hippel-Lindau tumor suppressor protein (pVHL) regulates mitochondrial biogenesis and respiratory chain function. pVHL is best known as an E3-ubiquitin ligase for the α-subunit of the hypoxia inducible factor (HIF) family of dimeric transcription factors. In normoxia, pVHL recognizes and binds hydroxylated HIF-α (HIF-1α and HIF-2α), targeting it for ubiquitination and proteasomal degradation. In this way, HIF transcriptional activity is tightly controlled at the level of HIF-α protein stability. At least 80% of clear cell renal carcinomas exhibit inactivation of the VHL gene, which leads to HIF-α protein stabilization and constitutive HIF activation. Constitutive HIF activation in renal carcinoma drives tumor progression and metastasis. Reconstitution of wild-type VHL protein (pVHL) in pVHL-defective renal carcinoma cells not only suppresses HIF activation and tumor growth, but also enhances mitochondrial respiratory chain function via mechanisms that are not fully elucidated. Here, we show that pVHL regulates mitochondrial function when re-expressed in pVHL-defective 786O and RCC10 renal carcinoma cells distinct from its regulation of HIF-α. Expression of CHCHD4, a key component of the disulphide relay system (DRS) involved in mitochondrial protein import within the intermembrane space (IMS) was elevated by pVHL re-expression alongside enhanced expression of respiratory chain subunits of complex I (NDUFB10) and complex IV (mtCO-2 and COX IV). These changes correlated with increased oxygen consumption rate (OCR) and dynamic changes in glucose and glutamine metabolism. Knockdown of HIF-2α also led to increased OCR, and elevated expression of CHCHD4, NDUFB10, and COXIV in 786O cells. Expression of pVHL mutant proteins (R200W, N78S, D126N, and S183L) that constitutively stabilize HIF-α but differentially promote glycolytic metabolism, were also found to differentially promote the pVHL-mediated mitochondrial phenotype. Parallel changes in mitochondrial morphology and the mitochondrial network were observed. Our study reveals a new role for pVHL in regulating CHCHD4 and mitochondrial function in renal carcinoma cells.
Collapse
Affiliation(s)
- Thomas Briston
- Division of Medicine, Centre for Cell Signalling and Molecular Genetics, University College London, London, United Kingdom
| | - Jenna M. Stephen
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research London, London, United Kingdom
| | - Saiful E. Syafruddin
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mark Turmaine
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Lucas A. Maddalena
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Basma Greef
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gyorgy Szabadkai
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Patrick H. Maxwell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sakari Vanharanta
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Friederich MW, Timal S, Powell CA, Dallabona C, Kurolap A, Palacios-Zambrano S, Bratkovic D, Derks TGJ, Bick D, Bouman K, Chatfield KC, Damouny-Naoum N, Dishop MK, Falik-Zaccai TC, Fares F, Fedida A, Ferrero I, Gallagher RC, Garesse R, Gilberti M, González C, Gowan K, Habib C, Halligan RK, Kalfon L, Knight K, Lefeber D, Mamblona L, Mandel H, Mory A, Ottoson J, Paperna T, Pruijn GJM, Rebelo-Guiomar PF, Saada A, Sainz B, Salvemini H, Schoots MH, Smeitink JA, Szukszto MJ, Ter Horst HJ, van den Brandt F, van Spronsen FJ, Veltman JA, Wartchow E, Wintjes LT, Zohar Y, Fernández-Moreno MA, Baris HN, Donnini C, Minczuk M, Rodenburg RJ, Van Hove JLK. Pathogenic variants in glutamyl-tRNA Gln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nat Commun 2018; 9:4065. [PMID: 30283131 PMCID: PMC6170436 DOI: 10.1038/s41467-018-06250-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial protein synthesis requires charging a mitochondrial tRNA with its amino acid. Here, the authors describe pathogenic variants in the GatCAB protein complex genes required for the generation of glutaminyl-mt-tRNAGln, that impairs mitochondrial translation and presents with cardiomyopathy. Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients’ fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.
Collapse
Affiliation(s)
- Marisa W Friederich
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA
| | - Sharita Timal
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Christopher A Powell
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 OXY, United Kingdom
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3109601, Israel
| | - Sara Palacios-Zambrano
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Drago Bratkovic
- SA Pathology, Women and Children's Hospital Adelaide, Adelaide, 5006, Australia
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Katelijne Bouman
- Department of Genetics, University Medical Center of Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Kathryn C Chatfield
- Department of Pediatrics, Section of Pediatric Cardiology, Children's Hospital Colorado, University of Colorado, Aurora, CO, 80045, USA
| | - Nadine Damouny-Naoum
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel.,Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Megan K Dishop
- Department of Pathology, Children's Hospital Colorado, University of Colorado, Aurora, 80045, CO, USA
| | - Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, 22100, Israel.,The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, 1311502, Israel
| | - Fuad Fares
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Ayalla Fedida
- Institute of Human Genetics, Galilee Medical Center, Nahariya, 22100, Israel.,The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, 1311502, Israel
| | - Ileana Ferrero
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Renata C Gallagher
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA
| | - Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Micol Gilberti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Cristina González
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 80045, USA
| | - Clair Habib
- Department of Pediatrics, Bnai Zion Medical Center, Haifa, 3339419, Israel
| | - Rebecca K Halligan
- SA Pathology, Women and Children's Hospital Adelaide, Adelaide, 5006, Australia
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, 22100, Israel
| | - Kaz Knight
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA
| | - Dirk Lefeber
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Laura Mamblona
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Hanna Mandel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3109601, Israel.,Institute of Human Genetics, Galilee Medical Center, Nahariya, 22100, Israel.,Metabolic Unit, Rambam Health Care Campus, Haifa, 3109601, Israel
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel
| | - John Ottoson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, 6500 HB, The Netherlands
| | - Pedro F Rebelo-Guiomar
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 OXY, United Kingdom.,Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, 4200-135, Portugal
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research and the Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Bruno Sainz
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, 28034, Spain
| | - Hayley Salvemini
- SA Pathology, Women and Children's Hospital Adelaide, Adelaide, 5006, Australia
| | - Mirthe H Schoots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Jan A Smeitink
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Maciej J Szukszto
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 OXY, United Kingdom
| | - Hendrik J Ter Horst
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Frans van den Brandt
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.,Institute of Genetic Medicine, Newcastle University, Newcastle, NE1 3BZ, United Kingdom
| | - Eric Wartchow
- Department of Pathology, Children's Hospital Colorado, University of Colorado, Aurora, 80045, CO, USA
| | - Liesbeth T Wintjes
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Yaniv Zohar
- Institute of Pathology, Rambam Health Care Campus, 3109601, Haifa, Israel
| | - Miguel A Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Hagit N Baris
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3109601, Israel
| | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Michal Minczuk
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 OXY, United Kingdom
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA.
| |
Collapse
|
45
|
Habich M, Salscheider SL, Riemer J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol 2018; 176:514-531. [PMID: 30129023 DOI: 10.1111/bph.14480] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The intermembrane space (IMS) is a very small mitochondrial sub-compartment with critical relevance for many cellular processes. IMS proteins fulfil important functions in transport of proteins, lipids, metabolites and metal ions, in signalling, in metabolism and in defining the mitochondrial ultrastructure. Our understanding of the IMS proteome has become increasingly refined although we still lack information on the identity and function of many of its proteins. One characteristic of many IMS proteins are conserved cysteines. Different post-translational modifications of these cysteine residues can have critical roles in protein function, localization and/or stability. The close localization to different ROS-producing enzyme systems, a dedicated machinery for oxidative protein folding, and a unique equipment with antioxidative systems, render the careful balancing of the redox and modification states of the cysteine residues, a major challenge in the IMS. In this review, we discuss different functions of human IMS proteins, the involvement of cysteine residues in these functions, the consequences of cysteine modifications and the consequences of cysteine mutations or defects in the machinery for disulfide bond formation in terms of human health. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Markus Habich
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Silja Lucia Salscheider
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
Erdogan AJ, Ali M, Habich M, Salscheider SL, Schu L, Petrungaro C, Thomas LW, Ashcroft M, Leichert LI, Roma LP, Riemer J. The mitochondrial oxidoreductase CHCHD4 is present in a semi-oxidized state in vivo. Redox Biol 2018; 17:200-206. [PMID: 29704824 PMCID: PMC6007816 DOI: 10.1016/j.redox.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/30/2022] Open
Abstract
Disulfide formation in the mitochondrial intermembrane space is an essential process catalyzed by a disulfide relay machinery. In mammalian cells, the key enzyme in this machinery is the oxidoreductase CHCHD4/Mia40. Here, we determined the in vivo CHCHD4 redox state, which is the major determinant of its cellular activity. We found that under basal conditions, endogenous CHCHD4 redox state in cultured cells and mouse tissues was predominantly oxidized, however, degrees of oxidation in different tissues varied from 70% to 90% oxidized. To test whether differences in the ratio between CHCHD4 and ALR might explain tissue-specific differences in the CHCHD4 redox state, we determined the molar ratio of both proteins in different mouse tissues. Surprisingly, ALR is superstoichiometric over CHCHD4 in most tissues. However, the levels of CHCHD4 and the ratio of ALR over CHCHD4 appear to correlate only weakly with the redox state, and although ALR is present in superstoichiometric amounts, it does not lead to fully oxidized CHCHD4.
Collapse
Affiliation(s)
- Alican J Erdogan
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Muna Ali
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany; Department of Biology, Cellular Biochemistry, University of Kaiserslautern, Erwin-Schroedinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Markus Habich
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Silja L Salscheider
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Laura Schu
- Department of Biology, Cellular Biochemistry, University of Kaiserslautern, Erwin-Schroedinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Carmelina Petrungaro
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Luke W Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, 44797 Bochum, Germany
| | - Leticia Prates Roma
- Biophysics Department, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Saar, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany.
| |
Collapse
|
47
|
Vögtle FN, Brändl B, Larson A, Pendziwiat M, Friederich MW, White SM, Basinger A, Kücükköse C, Muhle H, Jähn JA, Keminer O, Helbig KL, Delto CF, Myketin L, Mossmann D, Burger N, Miyake N, Burnett A, van Baalen A, Lovell MA, Matsumoto N, Walsh M, Yu HC, Shinde DN, Stephani U, Van Hove JLK, Müller FJ, Helbig I. Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood. Am J Hum Genet 2018; 102:557-573. [PMID: 29576218 PMCID: PMC5985287 DOI: 10.1016/j.ajhg.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.
Collapse
Affiliation(s)
- F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.
| | - Björn Brändl
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Austin Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Manuela Pendziwiat
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Alice Basinger
- Cook Children's Physician Network, Department of Genetics, Fort Worth, TX 76102, USA
| | - Cansu Kücükköse
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany; Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Hiltrud Muhle
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Johanna A Jähn
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Oliver Keminer
- Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie IME, ScreeningPort, Hamburg 22525, Germany
| | - Katherine L Helbig
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carolyn F Delto
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Dirk Mossmann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Nils Burger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Audrey Burnett
- Cook Children's Physician Network, Department of Genetics, Fort Worth, TX 76102, USA
| | - Andreas van Baalen
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Mark A Lovell
- Department of Pathology, University of Colorado, Aurora, CO 80045, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Maie Walsh
- Adult Genetic Medicine, Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
| | - Hung-Chun Yu
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Deepali N Shinde
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Ulrich Stephani
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Franz-Josef Müller
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel 24105, Germany; Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Ingo Helbig
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany; Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Frazier AE, Thorburn DR, Compton AG. Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J Biol Chem 2017; 294:5386-5395. [PMID: 29233888 DOI: 10.1074/jbc.r117.809194] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inherited disorders of oxidative phosphorylation cause the clinically and genetically heterogeneous diseases known as mitochondrial energy generation disorders, or mitochondrial diseases. Over the last three decades, mutations causing these disorders have been identified in almost 290 genes, but many patients still remain without a molecular diagnosis. Moreover, while our knowledge of the genetic causes is continually expanding, our understanding into how these defects lead to cellular dysfunction and organ pathology is still incomplete. Here, we review recent developments in disease gene discovery, functional characterization, and shared pathogenic parameters influencing disease pathology that offer promising avenues toward the development of effective therapies.
Collapse
Affiliation(s)
- Ann E Frazier
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and
| | - David R Thorburn
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and.,Victorian Clinical Genetic Services, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Alison G Compton
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and
| |
Collapse
|
49
|
Vantroys E, Larson A, Friederich M, Knight K, Swanson MA, Powell CA, Smet J, Vergult S, De Paepe B, Seneca S, Roeyers H, Menten B, Minczuk M, Vanlander A, Van Hove J, Van Coster R. New insights into the phenotype of FARS2 deficiency. Mol Genet Metab 2017; 122:172-181. [PMID: 29126765 PMCID: PMC5734183 DOI: 10.1016/j.ymgme.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
Abstract
Mutations in FARS2 are known to cause dysfunction of mitochondrial translation due to deficient aminoacylation of the mitochondrial phenylalanine tRNA. Here, we report three novel mutations in FARS2 found in two patients in a compound heterozygous state. The missense mutation c.1082C>T (p.Pro361Leu) was detected in both patients. The mutations c.461C>T (p.Ala154Val) and c.521_523delTGG (p.Val174del) were each detected in one patient. We report abnormal in vitro aminoacylation assays as a functional validation of the molecular genetic findings. Based on the phenotypic data of previously reported subjects and the two subjects reported here, we conclude that FARS2 deficiency can be associated with two phenotypes: (i) an epileptic phenotype, and (ii) a spastic paraplegia phenotype.
Collapse
Affiliation(s)
- Elise Vantroys
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Austin Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marisa Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaz Knight
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael A Swanson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher A Powell
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Boel De Paepe
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Sara Seneca
- Center for Medical Genetics, UZ Brussel and Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Herbert Roeyers
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Arnaud Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Johan Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|