1
|
Kacimi L, Prevot V. GnRH and Cognition. Endocrinology 2025; 166:bqaf033. [PMID: 39996304 DOI: 10.1210/endocr/bqaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 02/26/2025]
Abstract
GnRH is traditionally recognized as the central regulator of reproduction through its pulsatile secretion, which governs the hypothalamic-pituitary-gonadal axis. However, recent evidence has highlighted its broader role in brain development and function, including in cognitive and higher intellectual processes. GnRH production follows distinct phases, from its early activation during minipuberty-the first postnatal activation of GnRH neurons during the infantile period-, its reactivation and stabilization starting at puberty, and its eventual decline with age and the loss of gonadal steroid feedback. This evolution depends on the establishment, maturation and activation of GnRH neurons, a complex process regulated by the cellular and molecular environment of these neurons, including multiple neuronal and glial types as well as a minipubertal "switch" in gene expression, the perturbation of which may have long-term or delayed consequences for both reproductive and cognitive function. The cognitive role of GnRH may be related to its recently revealed involvement in maintaining myelination and synaptic plasticity, whereas disruptions in its finely tuned rhythmic secretion, either age-related or pathological, are associated with cognitive decline and neurodegenerative disorders. Restoring physiological GnRH levels and pulsatility can reverse age-related cognitive decline and improve sensory functions even in adulthood, suggesting a mobilization of the "cognitive reserve" in both animal models and human patients. This review highlights recent advances in our understanding of the GnRH system and the therapeutic potential of pulsatile GnRH therapy to mitigate age-related cognitive decline and neurodegenerative processes.
Collapse
Affiliation(s)
- Loïc Kacimi
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| |
Collapse
|
2
|
Lettieri A, Oleari R, van den Munkhof MH, van Battum EY, Verhagen MG, Tacconi C, Spreafico M, Paganoni AJJ, Azzarelli R, Andre' V, Amoruso F, Palazzolo L, Eberini I, Dunkel L, Howard SR, Fantin A, Pasterkamp RJ, Cariboni A. SEMA6A drives GnRH neuron-dependent puberty onset by tuning median eminence vascular permeability. Nat Commun 2023; 14:8097. [PMID: 38062045 PMCID: PMC10703890 DOI: 10.1038/s41467-023-43820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.
Collapse
Affiliation(s)
- Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
- Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Marleen Hester van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Eljo Yvette van Battum
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Marieke Geerte Verhagen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
| | - Carlotta Tacconi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spreafico
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | | | - Roberta Azzarelli
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Valentina Andre'
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Leo Dunkel
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sasha Rose Howard
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Barts Health NHS Trust, London, E1 1FR, UK
| | - Alessandro Fantin
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
3
|
Sourisse JM, Bonzi LC, Semmelhack J, Schunter C. Warming affects routine swimming activity and novel odour response in larval zebrafish. Sci Rep 2023; 13:21075. [PMID: 38030737 PMCID: PMC10687225 DOI: 10.1038/s41598-023-48287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Temperature is a primary factor affecting the physiology of ectothermic animals and global warming of water bodies may therefore impact aquatic life. Understanding the effects of near-future predicted temperature changes on the behaviour and underlying molecular mechanisms of aquatic animals is of particular importance, since behaviour mediates survival. In this study, we investigate the effects of developmental temperature on locomotory behaviour and olfactory learning in the zebrafish, Danio rerio. We exposed zebrafish from embryonic stage to either control (28 °C) or elevated temperature (30 °C) for seven days. Overall, warming reduced routine swimming activity and caused upregulation of metabolism and neuron development genes. When exposed to olfactory cues, namely catfish cue, a non-alarming but novel odour, and conspecifics alarming cue, warming differently affected the larvae response to the two cues. An increase in locomotory activity and a large transcriptional reprogramming was observed at elevated temperature in response to novel odour, with upregulation of cell signalling, neuron development and neuron functioning genes. As this response was coupled with the downregulation of genes involved in protein translation and ATP metabolism, novel odour recognition in future-predicted thermal conditions would require energetic trade-offs between expensive baseline processes and responsive functions. To evaluate their learning abilities at both temperatures, larvae were conditioned with a mixture of conspecifics alarm cue and catfish cue. Regardless of temperature, no behavioural nor gene expression changes were detected, reinforcing our findings that warming mainly affects zebrafish molecular response to novel odours. Overall, our results show that future thermal conditions will likely impact developing stages, causing trade-offs following novel olfactory detection in the environment.
Collapse
Affiliation(s)
- Jade M Sourisse
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Lucrezia C Bonzi
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Julie Semmelhack
- The Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China
| | - Celia Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Prévot V, Tena-Sempere M, Pitteloud N. New Horizons: Gonadotropin-Releasing Hormone and Cognition. J Clin Endocrinol Metab 2023; 108:2747-2758. [PMID: 37261390 DOI: 10.1210/clinem/dgad319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
Pulsatile secretion of gonadotropin-releasing hormone (GnRH) is essential for activating and maintaining the function of the hypothalamic-pituitary-gonadal axis, which controls the onset of puberty and fertility. Two recent studies suggest that, in addition to controlling reproduction, the neurons in the brain that produce GnRH are also involved in the control of postnatal brain maturation, odor discrimination, and adult cognition. This review will summarize the development and establishment of the GnRH system, with particular attention to the importance of its first postnatal activation, a phenomenon known as minipuberty, for later reproductive and nonreproductive functions. In addition, we will discuss the beneficial effects of restoring physiological (ie, pulsatile) GnRH levels on olfactory and cognitive alterations in preclinical Down syndrome and Alzheimer disease models, as well as the potential risks associated with long-term continuous (ie, nonphysiological) GnRH administration in certain disorders. Finally, this review addresses the intriguing possibility that pulsatile GnRH therapy may hold therapeutic potential for the management of some neurodevelopmental cognitive disorders and pathological aging in elderly people.
Collapse
Affiliation(s)
- Vincent Prévot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR S1172, Lille F-59000, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
- Faculty of Biology and Medicine, Université of Lausanne, Lausanne 1005, Switzerland
| |
Collapse
|
5
|
Sauve F, Nampoothiri S, Clarke SA, Fernandois D, Ferreira Coêlho CF, Dewisme J, Mills EG, Ternier G, Cotellessa L, Iglesias-Garcia C, Mueller-Fielitz H, Lebouvier T, Perbet R, Florent V, Baroncini M, Sharif A, Ereño-Orbea J, Mercado-Gómez M, Palazon A, Mattot V, Pasquier F, Catteau-Jonard S, Martinez-Chantar M, Hrabovszky E, Jourdain M, Deplanque D, Morelli A, Guarnieri G, Storme L, Robil C, Trottein F, Nogueiras R, Schwaninger M, Pigny P, Poissy J, Chachlaki K, Maurage CA, Giacobini P, Dhillo W, Rasika S, Prevot V. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine 2023; 96:104784. [PMID: 37713808 PMCID: PMC10507138 DOI: 10.1016/j.ebiom.2023.104784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND We have recently demonstrated a causal link between loss of gonadotropin-releasing hormone (GnRH), the master molecule regulating reproduction, and cognitive deficits during pathological aging, including Down syndrome and Alzheimer's disease. Olfactory and cognitive alterations, which persist in some COVID-19 patients, and long-term hypotestosteronaemia in SARS-CoV-2-infected men are also reminiscent of the consequences of deficient GnRH, suggesting that GnRH system neuroinvasion could underlie certain post-COVID symptoms and thus lead to accelerated or exacerbated cognitive decline. METHODS We explored the hormonal profile of COVID-19 patients and targets of SARS-CoV-2 infection in post-mortem patient brains and human fetal tissue. FINDINGS We found that persistent hypotestosteronaemia in some men could indeed be of hypothalamic origin, favouring post-COVID cognitive or neurological symptoms, and that changes in testosterone levels and body weight over time were inversely correlated. Infection of olfactory sensory neurons and multifunctional hypothalamic glia called tanycytes highlighted at least two viable neuroinvasion routes. Furthermore, GnRH neurons themselves were dying in all patient brains studied, dramatically reducing GnRH expression. Human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, and fetal GnRH neurons also appeared susceptible to infection. INTERPRETATION Putative GnRH neuron and tanycyte dysfunction following SARS-CoV-2 neuroinvasion could be responsible for serious reproductive, metabolic, and mental health consequences in long-COVID and lead to an increased risk of neurodevelopmental and neurodegenerative pathologies over time in all age groups. FUNDING European Research Council (ERC) grant agreements No 810331, No 725149, No 804236, the European Union Horizon 2020 research and innovation program No 847941, the Fondation pour la Recherche Médicale (FRM) and the Agence Nationale de la Recherche en Santé (ANRS) No ECTZ200878 Long Covid 2021 ANRS0167 SIGNAL, Agence Nationale de la recherche (ANR) grant agreements No ANR-19-CE16-0021-02, No ANR-11-LABEX-0009, No. ANR-10-LABEX-0046, No. ANR-16-IDEX-0004, Inserm Cross-Cutting Scientific Program HuDeCA, the CHU Lille Bonus H, the UK Medical Research Council (MRC) and National Institute of Health and care Research (NIHR).
Collapse
Affiliation(s)
- Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sophie A Clarke
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Julie Dewisme
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Helge Mueller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Romain Perbet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Vincent Florent
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Marc Baroncini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - June Ereño-Orbea
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Maria Mercado-Gómez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Asis Palazon
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Virginie Mattot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Gynecology and Obstetrics, Jeanne de Flandres Hospital, F-59000, Lille, France
| | - Maria Martinez-Chantar
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mercé Jourdain
- Univ. Lille, Inserm, CHU Lille, Service de Médecine Intensive Réanimation, U1190, EGID, F-59000 Lille, France
| | - Dominique Deplanque
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; University Lille, Inserm, CHU Lille, Centre d'investigation Clinique (CIC) 1403, F-59000, Lille, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Laurent Storme
- CHU Lille, Department of Neonatology, Hôpital Jeanne de Flandre, FHU 1000 Days for Health, F-59000, France
| | - Cyril Robil
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Trottein
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Pascal Pigny
- CHU Lille, Service de Biochimie et Hormonologie, Centre de Biologie Pathologie, Lille, France
| | - Julien Poissy
- LICORNE Study Group, CHU Lille, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Pôle de Réanimation, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Waljit Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| |
Collapse
|
6
|
Prévot V, Duittoz A. A role for GnRH in olfaction and cognition: Implications for veterinary medicine. Reprod Domest Anim 2023; 58 Suppl 2:109-124. [PMID: 37329313 DOI: 10.1111/rda.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Pulsatile secretion of gonadotropin-releasing hormone (GnRH) is essential for the activation and maintenance of the function of the hypothalamic-pituitary-gonadal (HPG) axis, which controls the onset of puberty and fertility. Two provocative recent studies suggest that, in addition to control reproduction, the neurons in the brain that produce GnRH are also involved in the control postnatal brain maturation, odour discrimination and adult cognition. Long-acting GnRH antagonists and agonists are commonly used to control fertility and behaviour in veterinary medicine, primarily in males. This review puts into perspective the potential risks of these androgen deprivation therapies and immunization on olfactory and cognitive performances and well-aging in domestic animals, including pets. We will also discuss the results reporting beneficial effects of pharmacological interventions restoring physiological GnRH levels on olfactory and cognitive alterations in preclinical models of Alzheimer's disease, which shares many pathophysiological and behavioural hallmarks with canine cognitive dysfunction. These novel findings raise the intriguing possibility that pulsatile GnRH therapy holds therapeutic potential for the management of this behavioural syndrome affecting older dogs.
Collapse
Affiliation(s)
- Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
| | - Anne Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAE Val de Loire, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
7
|
Zhao M, Li J, Gao Z, Guo D, Yang Y, Wang F, Wang L, Yang Y, He X, Li H, Chang S. miR-145a-5p/Plexin-A2 promotes the migration of OECs and transplantation of miR-145a-5p engineered OECs promotes the functional recovery in rats with SCI. Neurobiol Dis 2023; 182:106129. [PMID: 37068642 DOI: 10.1016/j.nbd.2023.106129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Olfactory ensheathing cells (OECs) serve as a bridge by migrating at the site of spinal cord injury (SCI) to facilitate the repair of the neural structure and neural function. However, OEC migration at the injury site not only faces the complex and disordered internal environment but also is closely associated with the migration ability of OECs. METHODS We extracted OECs from the olfactory bulb of SD rats aged <7 days old. We verified the micro ribonucleic acid (miR)-145a-5p expression level in the gene chip after SCI and OEC transplantation using quantitative reverse transcription (qRT)-polymerase chain reaction (PCR). The possible target gene Plexin-A2 of miR-145a-5p was screened using bioinformatics and was verified using dual-luciferase reporter assay, Western blot, and qRT-PCR. The effect of miR-145a-5p/plexin-A2 on OEC migration ability was verified by wound healing assay, Transwell cell migration assay, and immunohistochemistry. Nerve regeneration was observed at the injured site of the spinal cord after OEC transplantation using tissue immunofluorescence and magnetic resonance imaging, diffusion tensor imaging, and the Basso-Beattie-Bresnahan locomotor rating scale were further used for imaging and functional evaluation. RESULTS miR-145a-5p expression in the injured spinal cord tissue after SCI considerably decreased, while Plexin-A2 expression significantly increased. OEC transplantation can reverse miR-145a-5p and Plexin-A2 expression after SCI. miR-145a-5p overexpression enhanced the intrinsic migration ability of OECs. As a target gene of miR-145a-5p, Plexin-A2 hinders OEC migration. OEC transplantation overexpressing miR-145a-5p after SCI can increase miR-145a-5p levels in the spinal cord, reduce Plexin-A2 expression in the OECs and the spinal cord tissue, and promote OEC migration and distribution at the injured site. OEC transplantation overexpressing miR-145a-5p can promote the regeneration and repair of neural morphology and neural function. CONCLUSIONS Our study demonstrated that miR-145a-5p could promote OEC migration to the injured spinal cord after cell transplantation by down-regulating the target gene Plexin-A2, thereby repairing the neural structure and function after SCI in rats.
Collapse
Affiliation(s)
- MinChao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Jiaxi Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Zhengchao Gao
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an 710068, Shaanxi, China
| | - Dong Guo
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Yubing Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Fang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Lumin Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710100, China
| | - Yang Yang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xijing He
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China; Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Su'e Chang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| |
Collapse
|
8
|
Lippincott MF, Xu W, Smith AA, Miao X, Lafont A, Shennib O, Farley GJ, Sabbagh R, Delaney A, Stamou M, Plummer L, Salnikov K, Georgopoulos NA, Mericq V, Quinton R, Mau-Them FT, Nambot S, Hamad A, Brittain H, Tooze RS, Calpena E, Wilkie AOM, Willems M, Crowley WF, Balasubramanian R, Lamarche-Vane N, Davis EE, Seminara SB. The p190 RhoGAPs, ARHGAP35, and ARHGAP5 are implicated in GnRH neuronal development: Evidence from patients with idiopathic hypogonadotropic hypogonadism, zebrafish, and in vitro GAP activity assay. Genet Med 2022; 24:2501-2515. [PMID: 36178483 PMCID: PMC9730938 DOI: 10.1016/j.gim.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.
Collapse
Affiliation(s)
| | - Wanxue Xu
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Abigail A Smith
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Xinyu Miao
- Cancer Research Program, Research Institute of the McGill University Health Centre, Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Agathe Lafont
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC
| | - Omar Shennib
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Gordon J Farley
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Riwa Sabbagh
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Angela Delaney
- Intramural Research Program, National Institutes of Health, Bethesda, MD
| | - Maria Stamou
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Lacey Plummer
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Kathryn Salnikov
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Neoklis A Georgopoulos
- Division of Endocrinology-Department of Internal Medicine, University of Patras School of Health Sciences, Rio-Patras, Greece
| | - Veronica Mericq
- Instituto de Investigaciones Materno Infantil (IDIMI), University of Chile, Santiago, Chile
| | - Richard Quinton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frederic Tran Mau-Them
- Functional Unit 6254 Innovation in Genomic Diagnosis of Rare Diseases, CHU Dijon Bourgogne, Dijon, France
| | - Sophie Nambot
- Centre de Référence Maladies Rares « Anomalies du Développement Et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Asma Hamad
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Helen Brittain
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Rebecca S Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, INM, Montpellier University, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | | | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Erica E Davis
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | |
Collapse
|
9
|
Saengkaew T, Howard SR. Genetics of pubertal delay. Clin Endocrinol (Oxf) 2022; 97:473-482. [PMID: 34617615 PMCID: PMC9543006 DOI: 10.1111/cen.14606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
The timing of pubertal development is strongly influenced by the genetic background, and clinical presentations of delayed puberty are often found within families with clear patterns of inheritance. The discovery of the underlying genetic regulators of such conditions, in recent years through next generation sequencing, has advanced the understanding of the pathogenesis of disorders of pubertal timing and the potential for genetic testing to assist diagnosis for patients with these conditions. This review covers the significant advances in the understanding of the biological mechanisms of delayed puberty that have occurred in the last two decades.
Collapse
Affiliation(s)
- Tansit Saengkaew
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Endocrinology Unit, Department of Paediatrics, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
10
|
Welch BA, Cho HJ, Ucakturk SA, Farmer SM, Cetinkaya S, Abaci A, Akkus G, Simsek E, Kotan LD, Turan I, Gurbuz F, Yuksel B, Wray S, Kemal Topaloglu A. PLXNB1 mutations in the etiology of idiopathic hypogonadotropic hypogonadism. J Neuroendocrinol 2022; 34:e13103. [PMID: 35170806 PMCID: PMC11370887 DOI: 10.1111/jne.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 01/28/2022] [Indexed: 11/27/2022]
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) comprises a group of rare genetic disorders characterized by pubertal failure caused by gonadotropin-releasing hormone (GnRH) deficiency. Genetic factors involved in semaphorin/plexin signaling have been identified in patients with IHH. PlexinB1, a member of the plexin family receptors, serves as the receptor for semaphorin 4D (Sema4D). In mice, perturbations in Sema4D/PlexinB1 signaling leads to improper GnRH development, highlighting the importance of investigating PlexinB1 mutations in IHH families. In total, 336 IHH patients (normosmic IHH, n = 293 and Kallmann syndrome, n = 43) from 290 independent families were included in the present study. Six PLXNB1 rare sequence variants (p.N361S, p.V608A, p.R636C, p.V672A, p.R1031H, and p.C1318R) are described in eight normosmic IHH patients from seven independent families. These variants were examined using bioinformatic modeling and compared to mutants reported in PLXNA1. Based on these analyses, the variant p.R1031H was assayed for alterations in cell morphology, PlexinB1 expression, and migration using a GnRH cell line and Boyden chambers. Experiments showed reduced membrane expression and impaired migration in cells expressing this variant compared to the wild-type. Our results provide clinical, genetic, molecular/cellular, and modeling evidence to implicate variants in PLXNB1 in the etiology of IHH.
Collapse
Affiliation(s)
- Bradley A. Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hyun-ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, USA
| | - Seyit Ahmet Ucakturk
- Division of Pediatric Endocrinology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Stephen Matthew Farmer
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, USA
| | - Semra Cetinkaya
- Division of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ayhan Abaci
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Gamze Akkus
- Division of Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Enver Simsek
- Division of Pediatric Endocrinology, Faculty of Medicine, Eskisehir Osman Gazi University, Eskisehir, Turkey
| | - Leman Damla Kotan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ihsan Turan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Gurbuz
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Bilgin Yuksel
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, USA
| | - A. Kemal Topaloglu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
11
|
Abstract
The diagnostic suspicion of congenital central hypogonadism is based on clinical signs. Biochemical confirmation is challenging, especially after the postnatal activation stage of the hypothalamic-pituitary-testicular axis. Sertoli cell markers, like AMH and inhibin B, have become useful tools for the diagnosis of male central hypogonadism during childhood. Different mechanisms can participate in the aetiopathogenesis of central hypogonadism, leading to a deficiency in the production of gonadotrophins. Advances in genetic studies, mainly next generation sequencing techniques, have allowed the discovery of a large number of genes related to central hypogonadism. However, a causal variant is found in approximately half of the patients. Central hypogonadism has been classically described as a pathology with variable expressivity and incomplete penetrance. Currently, these characteristics are known to be partially explained by the presence of oligogenicity, that is the participation of variants in more than one gene in the aetiology of central hypogonadism in the same patient.
Collapse
Affiliation(s)
- Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de, Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a group of rare developmental disorders characterized by low gonadotropin levels in the face of low sex steroid hormone concentrations. IHH is practically divided into two major groups according to the olfactory function: normal sense of smell (normosmia) nIHH, and reduced sense of smell (hyposmia/anosmia) Kallmann syndrome (KS). Although mutations in more than 50 genes have been associated with IHH so far, only half of those cases were explained by gene mutations. Various combinations of deleterious variants in different genes as causes of IHH have been increasingly recognized (Oligogenic etiology). In addition to the complexity of inheritance patterns, the spontaneous or sex steroid-induced clinical recovery from IHH, which is seen in approximately 10–20% of cases, blurs further the phenotype/genotype relationship in IHH, and poses challenging steps in new IHH gene discovery. Beyond helping for clinical diagnostics, identification of the genetic mutations in the pathophysiology of IHH is hoped to shed light on the central governance of the hypothalamo-pituitary-gonadal axis through life stages. This review aims to summarize the genetic etiology of IHH and discuss the clinical and physiological ramifications of the gene mutations.
Collapse
|
13
|
Men M, Chen DN, Li JD, Wang X, Zeng W, Jiang F, Zheng R, Dai W. Analysis of PLXNA1, NRP1, and NRP2 variants in a cohort of patients with isolated hypogonadotropic hypogonadism. Mol Genet Genomic Med 2021; 9:e1816. [PMID: 34636164 PMCID: PMC8606218 DOI: 10.1002/mgg3.1816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Isolated hypogonadotropic hypogonadism (IHH) is a clinical syndrome described by failure of gonadal function secondary to defects on the synthesis, secretion, or action of the gonadotropin‐releasing hormone (GnRH). The secreted glycoprotein SEMA3A binds its receptors NRP1 or NRP2 and PLXNA to participate in axonal projection, dendritic branching, synaptic formation, and neuronal migration. Deficiency in SEMA3A, NRP1, NRP2, and PLXNA1 have been related to abnormal GnRH neuron development in mice and IHH in humans. Methods The aim of this study was to examine the genotypic and phenotypic spectra of the NRP1, NRP2, and PLXNA1 genes in a large cohort of IHH probands from China. We screened NRP1, NRP2, and PLXNA1 variants in Chinese IHH patients by whole exome sequencing and pedigree analysis. Results We identified 10 heterozygous missense variants in PLXNA1, five heterozygous missense variants in NRP1, and two heterozygous missense variants in NRP2. NRP1 variants were found only in IHH patients with defective olfaction (i.e., Kallmann syndrome, KS). In addition, 85% (17/20) of patients harbored variants in other IHH‐associated genes. Conclusion Our study greatly enriched the genotypic and phenotypic spectra of PLXNA1, NRP1, and NRP2 in IHH. It may be conducive to the genetic counseling, diagnosis, and treatment of IHH with mutations in the PLXNA1, NRP1, and NRP2 genes. Furthermore, our results indicated that NRP1 were strongly linked to hearing loss.
Collapse
Affiliation(s)
- Meichao Men
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China.,Health Management Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan-Na Chen
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
| | - Jia-Da Li
- School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Xinying Wang
- School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Wang Zeng
- School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Fang Jiang
- School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Ruizhi Zheng
- Department of Endocrinology, The People's Hospital of Henan Province, Zhengzhou, Henan, China
| | - Wenting Dai
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
14
|
Dworschak GC, Punetha J, Kalanithy JC, Mingardo E, Erdem HB, Akdemir ZC, Karaca E, Mitani T, Marafi D, Fatih JM, Jhangiani SN, Hunter JV, Dakal TC, Dhabhai B, Dabbagh O, Alsaif HS, Alkuraya FS, Maroofian R, Houlden H, Efthymiou S, Dominik N, Salpietro V, Sultan T, Haider S, Bibi F, Thiele H, Hoefele J, Riedhammer KM, Wagner M, Guella I, Demos M, Keren B, Buratti J, Charles P, Nava C, Héron D, Heide S, Valkanas E, Waddell LB, Jones KJ, Oates EC, Cooper ST, MacArthur D, Syrbe S, Ziegler A, Platzer K, Okur V, Chung WK, O'Shea SA, Alcalay R, Fahn S, Mark PR, Guerrini R, Vetro A, Hudson B, Schnur RE, Hoganson GE, Burton JE, McEntagart M, Lindenberg T, Yilmaz Ö, Odermatt B, Pehlivan D, Posey JE, Lupski JR, Reutter H. Biallelic and monoallelic variants in PLXNA1 are implicated in a novel neurodevelopmental disorder with variable cerebral and eye anomalies. Genet Med 2021; 23:1715-1725. [PMID: 34054129 PMCID: PMC8460429 DOI: 10.1038/s41436-021-01196-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
Collapse
Affiliation(s)
- Gabriel C Dworschak
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany.
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany.
- Department of Pediatrics, University Hospital Bonn, Bonn, Germany.
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeshurun C Kalanithy
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Enrico Mingardo
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Haktan B Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ender Karaca
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Omar Dabbagh
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Natalia Dominik
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, The Children's Hospital Lahore, Lahore, Pakistan
| | - Shahzad Haider
- Department of Paediatric Medicine, Wah Medical College, Rawalpindi, Pakistan
| | - Farah Bibi
- University Institute of Biochemistry & Biotechnology, PMAS - Arid Agriculture University, Rawalpindi, Pakistan
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ilaria Guella
- Department of Medical Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Boris Keren
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Julien Buratti
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Perrine Charles
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Caroline Nava
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
- Institut du Cerveau et de la Moelle épinière, Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Delphine Héron
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Solveig Heide
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Elise Valkanas
- Center for Mendelian Genomics, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Leigh B Waddell
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Kristi J Jones
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Emily C Oates
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Sandra T Cooper
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Daniel MacArthur
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Ziegler
- Division of Pediatric Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Volkan Okur
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Sarah A O'Shea
- Department of Neurology, Columbia University, New York, NY, USA
| | - Roy Alcalay
- Department of Neurology, Columbia University, New York, NY, USA
| | - Stanley Fahn
- Department of Neurology, Columbia University, New York, NY, USA
| | - Paul R Mark
- Division of Medical Genetics, Helen DeVos Children's Hospital Grand Rapids, New York, MI, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Annalisa Vetro
- Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | | | | | - George E Hoganson
- Department of Pediatrics, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Jennifer E Burton
- Department of Pediatrics, University of Illinois, College of Medicine, Peoria, IL, USA
| | - Meriel McEntagart
- South West Thames Regional Genetics Centre, St. George's Healthcare NHS Trust, St. George's, University of London, London, United Kingdom
| | - Tobias Lindenberg
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
| | - Öznur Yilmaz
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Odermatt
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Heiko Reutter
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
16
|
Vanacker C, Bouret SG, Giacobini P, Prévot V. [Precocious puberty and neuropilin-1 signaling in GnRH neurons]. Med Sci (Paris) 2021; 37:366-371. [PMID: 33908854 DOI: 10.1051/medsci/2021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The survival of the species depends on two closely interlinked processes: the correct functioning of the reproductive system, and the balance between the energy needs of an individual and the supply of energy sources through feeding. These two processes are regulated in the hypothalamus, which produces neurohormones that control various physiological functions. Among these neurohormones, GnRH controls not only the maturation and function of the reproductive organs, including the ovaries and the testes, during puberty and in adulthood, but also sexual attraction. Recent evidence suggest that neuropilin-1-mediated signaling in GnRH-synthesizing neurons could be a linchpin that holds together various neuroanatomical, physiological and behavioral adaptations involved in triggering puberty and achieving reproductive function.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Sébastien G Bouret
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| |
Collapse
|
17
|
Lettieri A, Oleari R, Paganoni AJJ, Gervasini C, Massa V, Fantin A, Cariboni A. Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Front Cell Dev Biol 2021; 9:638674. [PMID: 33869187 PMCID: PMC8047133 DOI: 10.3389/fcell.2021.638674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
CHD7 is a chromatin remodeler protein that controls gene expression via the formation of multi-protein complexes with specific transcription factors. During development, CHD7 controls several differentiation programs, mainly by acting on neural progenitors and neural crest (NC) cells. Thus, its roles range from the central nervous system to the peripheral nervous system and the organs colonized by NC cells, including the heart. Accordingly, mutated CHD7 is linked to CHARGE syndrome, which is characterized by several neuronal dysfunctions and by malformations of NC-derived/populated organs. Altered CHD7 has also been associated with different neoplastic transformations. Interestingly, recent evidence revealed that semaphorins, a class of molecules involved in developmental and pathological processes similar to those controlled by CHD7, are regulated by CHD7 in a context-specific manner. In this article, we will review the recent insights that support the existence of genetic interactions between these pathways, both during developmental processes and cancer progression.
Collapse
Affiliation(s)
- Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alyssa J J Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Fantin
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Luo G, Hou M, Wang B, Liu Z, Liu W, Han T, Zhang D, Zhou X, Jia W, Tan Y, Wu Y, Wang J, Zhang X. Tsga10 is essential for arrangement of mitochondrial sheath and male fertility in mice. Andrology 2021; 9:368-375. [PMID: 32790169 DOI: 10.1111/andr.12889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Male infertility is a major issue in human reproduction health, yet known genetic factors are only responsible for a small fraction of cases. TSGA10 is a testis-specific protein that is highly conserved among different species. A previous study has reported a homozygous mutation in TSGA10 in a male infertile patient; however, function analysis of Tsga10 genes in knockout mice has not yet been undertaken. OBJECTIVES The aim of the present work was to analyse the function of TSGA10 protein in the spermatogenesis of Tsga10+/- mice. MATERIALS AND METHODS Tsga10+/- mice were generated by CRISPR/Cas9 technology, in vitro fertilization (IVF), western blot, co-immunoprecipitation and other methods were used to the function analysis. RESULTS Heterozygous Tsga10 male mice created by CRISPR/Cas9 were infertile and presented significantly reduced sperm motility because of disordered mitochondrial sheath formation. Furthermore, TSGA10 can interact with GRP78 and NSUN2, which are associated with peri-implantation lethality and the gonadotropin-releasing hormone (GnRH) network. DISCUSSION AND CONCLUSION We demonstrate that deficiency of Tsga10 gene can lead to male infertility in mice. TSGA10 is involved in the correct arrangement of mitochondrial sheath in spermatozoa. Future studies on TSGA10 include an in-depth exploration of the underlying mechanisms of TSGA10 in spermatogenesis, early embryonic development and GnRH network.
Collapse
Affiliation(s)
- Geng Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jiarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Naulé L, Maione L, Kaiser UB. Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology 2021; 162:bqaa209. [PMID: 33175140 PMCID: PMC7733306 DOI: 10.1210/endocr/bqaa209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Puberty is a developmental period characterized by a broad range of physiologic changes necessary for the acquisition of adult sexual and reproductive maturity. These changes mirror complex modifications within the central nervous system, including within the hypothalamus. These modifications result in the maturation of a fully active hypothalamic-pituitary-gonadal (HPG) axis, the neuroendocrine cascade ensuring gonadal activation, sex steroid secretion, and gametogenesis. A complex and finely regulated neural network overseeing the HPG axis, particularly the pubertal reactivation of gonadotropin-releasing hormone (GnRH) secretion, has been progressively unveiled in the last 3 decades. This network includes kisspeptin, neurokinin B, GABAergic, and glutamatergic neurons as well as glial cells. In addition to substantial modifications in the expression of key targets, several changes in neuronal morphology, neural connections, and synapse organization occur to establish mature and coordinated neurohormonal secretion, leading to puberty initiation. The aim of this review is to outline the current knowledge of the major changes that neurons secreting GnRH and their neuronal and glial partners undergo before and after puberty. Emerging mediators upstream of GnRH, uncovered in recent years, are also addressed herein. In addition, the effects of sex steroids, particularly estradiol, on changes in hypothalamic neurodevelopment and plasticity are discussed.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Paris Saclay University, Assistance Publique-Hôpitaux de Paris, Department Endocrinology and Reproductive Diseases, Bicêtre Hospital, Paris, France
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Cariboni A, Balasubramanian R. Kallmann syndrome and idiopathic hypogonadotropic hypogonadism: The role of semaphorin signaling on GnRH neurons. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:307-315. [PMID: 34266601 DOI: 10.1016/b978-0-12-819973-2.00022-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Idiopathic hypogonadotropic hypogonadism and Kallmann syndrome are rare genetic disorders characterized by isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) and delayed or absent puberty. Defective GnRH neuron migration during development or secretion of mature GnRH neurons secondary to molecular defects in several key developmental and neuroendocrine pathways are thought to be the primary causes of these disorders. Recent studies have highlighted the importance of semaphorins and their receptors in this system, by showing that these molecules play distinct roles during the development and plasticity of these neurons. Accordingly, mutations in the semaphoring-signaling pathway genes have been found in patients affected by IGD, underlying the importance of semaphorin-mediated signaling pathways in the neuroendocrine axis that control reproduction.
Collapse
Affiliation(s)
- Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Oleari R, André V, Lettieri A, Tahir S, Roth L, Paganoni A, Eberini I, Parravicini C, Scagliotti V, Cotellessa L, Bedogni F, De Martini LB, Corridori MV, Gulli S, Augustin HG, Gaston-Massuet C, Hussain K, Cariboni A. A Novel SEMA3G Mutation in Two Siblings Affected by Syndromic GnRH Deficiency. Neuroendocrinology 2021; 111:421-441. [PMID: 32365351 DOI: 10.1159/000508375] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/01/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Gonadotropin-releasing hormone (GnRH) deficiency causes hypogonadotropic hypogonadism (HH), a rare genetic disorder that impairs sexual reproduction. HH can be due to defective GnRH-secreting neuron development or function and may be associated with other clinical signs in overlapping genetic syndromes. With most of the cases being idiopathic, genetics underlying HH is still largely unknown. OBJECTIVE To assess the contribution of mutated Semaphorin 3G (SEMA3G) in the onset of a syndromic form of HH, characterized by intellectual disability and facial dysmorphic features. METHOD By combining homozygosity mapping with exome sequencing, we identified a novel variant in the SEMA3G gene. We then applied mouse as a model organism to examine SEMA3Gexpression and its functional requirement in vivo. Further, we applied homology modelling in silico and cell culture assays in vitro to validate the pathogenicity of the identified gene variant. RESULTS We found that (i) SEMA3G is expressed along the migratory route of GnRH neurons and in the developing pituitary, (ii) SEMA3G affects GnRH neuron development, but is redundant in the adult hypothalamic-pituitary-gonadal axis, and (iii) mutated SEMA3G alters binding properties in silico and in vitro to its PlexinA receptors and attenuates its effect on the migration of immortalized GnRH neurons. CONCLUSION In silico, in vitro, and in vivo models revealed that SEMA3G regulates GnRH neuron migration and that its mutation affecting receptor selectivity may be responsible for the HH-related defects.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Valentina André
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sophia Tahir
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lise Roth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Chiara Parravicini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ludovica Cotellessa
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- IRCCS Istituto Auxologico Italiano, Laboratory of Endocrine and Metabolic Research, Milan, Italy
| | - Francesco Bedogni
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Neuroscience and Mental Health Research Institute (NMHRI), Division of Neuroscience, School of Biosciences, Cardiff, United Kingdom
| | | | | | - Simona Gulli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Khalid Hussain
- Sidra Medical & Research Center, Division of Endocrinology OPC, Department of Pediatric Medicine, Doha, Qatar
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy,
| |
Collapse
|
22
|
Zakharova L, Sharova V, Izvolskaia M. Mechanisms of Reciprocal Regulation of Gonadotropin-Releasing Hormone (GnRH)-Producing and Immune Systems: The Role of GnRH, Cytokines and Their Receptors in Early Ontogenesis in Normal and Pathological Conditions. Int J Mol Sci 2020; 22:ijms22010114. [PMID: 33374337 PMCID: PMC7795970 DOI: 10.3390/ijms22010114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Different aspects of the reciprocal regulatory influence on the development of gonadotropin-releasing hormone (GnRH)-producing- and immune systems in the perinatal ontogenesis and their functioning in adults in normal and pathological conditions are discussed. The influence of GnRH on the development of the immune system, on the one hand, and the influence of proinflammatory cytokines on the development of the hypothalamic-pituitary-gonadal system, on the other hand, and their functioning in adult offspring are analyzed. We have focused on the effects of GnRH on the formation and functional activity of the thymus, as the central organ of the immune system, in the perinatal period. The main mechanisms of reciprocal regulation of these systems are discussed. The reproductive health of an individual is programmed by the establishment and development of physiological systems during critical periods. Regulatory epigenetic mechanisms of development are not strictly genetically controlled. These processes are characterized by a high sensitivity to various regulatory factors, which provides possible corrections for disorders.
Collapse
|
23
|
Vanacker C, Trova S, Shruti S, Casoni F, Messina A, Croizier S, Malone S, Ternier G, Hanchate NK, Rasika S, Bouret SG, Ciofi P, Giacobini P, Prevot V. Neuropilin-1 expression in GnRH neurons regulates prepubertal weight gain and sexual attraction. EMBO J 2020; 39:e104633. [PMID: 32761635 PMCID: PMC7527814 DOI: 10.15252/embj.2020104633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH), the "master molecule" regulating reproduction and fertility, migrate from their birthplace in the nose to their destination using a system of guidance cues, which include the semaphorins and their receptors, the neuropilins and plexins, among others. Here, we show that selectively deleting neuropilin-1 in new GnRH neurons enhances their survival and migration, resulting in excess neurons in the hypothalamus and in their unusual accumulation in the accessory olfactory bulb, as well as an acceleration of mature patterns of activity. In female mice, these alterations result in early prepubertal weight gain, premature attraction to male odors, and precocious puberty. Our findings suggest that rather than being influenced by peripheral energy state, GnRH neurons themselves, through neuropilin-semaphorin signaling, might engineer the timing of puberty by regulating peripheral adiposity and behavioral switches, thus acting as a bridge between the reproductive and metabolic axes.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sara Trova
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sonal Shruti
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Filippo Casoni
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Andrea Messina
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sophie Croizier
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Samuel Malone
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Naresh Kumar Hanchate
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - S Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sebastien G Bouret
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Philippe Ciofi
- Inserm U1215Neurocentre MagendieBordeauxFrance
- Université de BordeauxBordeauxFrance
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| |
Collapse
|
24
|
Ma W, Mao J, Wang X, Duan L, Song Y, Lian X, Zheng J, Liu Z, Nie M, Wu X. Novel Microdeletion in the X Chromosome Leads to Kallmann Syndrome, Ichthyosis, Obesity, and Strabismus. Front Genet 2020; 11:596. [PMID: 32670353 PMCID: PMC7327112 DOI: 10.3389/fgene.2020.00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022] Open
Abstract
Background A large deletion in Xp22.3 can result in contiguous gene syndromes, including X-linked ichthyosis (XLI) and Kallmann syndrome (KS), presenting with short stature, chondrodysplasia punctata, intellectual disability, and strabismus. XLI and KS are caused by the deletion of STS and ANOS1, respectively. Method Two KS patients with XLI were screened to identify possible pathogenic mutations using whole exome sequencing. The clinical characteristics, molecular genetics, treatment outcomes, and genotype–phenotype association for each patient were analyzed. Results We identified a novel 3,923 kb deletion within the Xp22.31 region (chrX: 5810838–9733877) containing STS, ANOS1, GPR143, NLGN4X, VCX-A, PUDP, and PNPLA4 in patient 1, who presented with KS, XLI, obesity, hyperlipidemia, and strabismus. We identified a novel 5,807 kb deletion within the Xp22.31-p22.33 regions (chrX: 2700083–8507807) containing STS, ANOS1, and other 24 genes in patient 2, who presented with KS, XLI, obesity, and strabismus. No developmental delay, abnormal speech development, or autistic behavior were noticed in either patient. Conclusion We identified two novel microdeletions in the X chromosome leading to KS and XLI. These findings contribute to the understanding of the molecular mechanisms that drive contiguous gene syndromes. Our research confirmed that the Kallmann-Ichthyosis phenotype is caused by microdeletions at the chromosome level.
Collapse
Affiliation(s)
- Wanlu Ma
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lian Duan
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuwen Song
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaolan Lian
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Junjie Zheng
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaoxiang Liu
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Min Nie
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueyan Wu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 2020; 140:77-111. [PMID: 32200437 DOI: 10.1007/s00439-020-02147-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the "pilot light" of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype-phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome-KS), other genes can be associated with both nCHH and KS-sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.
Collapse
Affiliation(s)
- Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy.,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Richard Quinton
- Endocrine Unit, Royal Victoria Infirmary, Department of Endocrinology, Diabetes and Metabolism, Newcastle-Upon-Tyne Hospitals, Newcastle-Upon-Tyne, NE1 4LP, UK. .,Translational and Clinical Research Institute, University of Newcastle-Upon-Tyne, Newcastle-Upon-Tyne, UK.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy. .,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| |
Collapse
|
26
|
Lund C, Yellapragada V, Vuoristo S, Balboa D, Trova S, Allet C, Eskici N, Pulli K, Giacobini P, Tuuri T, Raivio T. Characterization of the human GnRH neuron developmental transcriptome using a GNRH1-TdTomato reporter line in human pluripotent stem cells. Dis Model Mech 2020; 13:dmm040105. [PMID: 31996360 PMCID: PMC7075073 DOI: 10.1242/dmm.040105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons provide a fundamental signal for the onset of puberty and subsequent reproductive functions by secretion of gonadotropin-releasing hormone. Their disrupted development or function leads to congenital hypogonadotropic hypogonadism (CHH). To model the development of human GnRH neurons, we generated a stable GNRH1-TdTomato reporter cell line in human pluripotent stem cells (hPSCs) using CRISPR-Cas9 genome editing. RNA-sequencing of the reporter clone, differentiated into GnRH neurons by dual SMAD inhibition and FGF8 treatment, revealed 6461 differentially expressed genes between progenitors and GnRH neurons. Expression of the transcription factor ISL1, one of the top 50 most upregulated genes in the TdTomato-expressing GnRH neurons, was confirmed in 10.5 gestational week-old human fetal GnRH neurons. Among the differentially expressed genes, we detected 15 genes that are implicated in CHH and several genes that are implicated in human puberty timing. Finally, FGF8 treatment in the neuronal progenitor pool led to upregulation of 37 genes expressed both in progenitors and in TdTomato-expressing GnRH neurons, which suggests upstream regulation of these genes by FGF8 signaling during GnRH neuron differentiation. These results illustrate how hPSC-derived human GnRH neuron transcriptomic analysis can be utilized to dissect signaling pathways and gene regulatory networks involved in human GnRH neuron development.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Carina Lund
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Venkatram Yellapragada
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Diego Balboa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sara Trova
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172 Lille, France
| | - Cecile Allet
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172 Lille, France
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172 Lille, France
- University of Lille, FHU 1000 Days for Health, School of Medicine, 59000 Lille, France
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, 00029 Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Barredo CG, Gil-Marti B, Deveci D, Romero NM, Martin FA. Timing the Juvenile-Adult Neurohormonal Transition: Functions and Evolution. Front Endocrinol (Lausanne) 2020; 11:602285. [PMID: 33643219 PMCID: PMC7909313 DOI: 10.3389/fendo.2020.602285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Puberty and metamorphosis are two major developmental transitions linked to the reproductive maturation. In mammals and vertebrates, the central brain acts as a gatekeeper, timing the developmental transition through the activation of a neuroendocrine circuitry. In addition to reproduction, these neuroendocrine axes and the sustaining genetic network play additional roles in metabolism, sleep and behavior. Although neurohormonal axes regulating juvenile-adult transition have been classically considered the result of convergent evolution (i.e., analogous) between mammals and insects, recent findings challenge this idea, suggesting that at least some neuroendocrine circuits might be present in the common bilaterian ancestor Urbilateria. The initial signaling pathways that trigger the transition in different species appear to be of a single evolutionary origin and, consequently, many of the resulting functions are conserved with a few other molecular players being co-opted during evolution.
Collapse
Affiliation(s)
- Celia G. Barredo
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Beatriz Gil-Marti
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Derya Deveci
- Sartorius Netherlands BV, Amersfoor, Netherlands
| | - Nuria M. Romero
- Developmental Timing, Environment and Behaviors Laboratory, Institut Sophia Agrobiotech, Université Côte d’Azur-INRAE-CNRS-INSERM, Sophia Antipolis, France
- *Correspondence: Nuria M. Romero, ; Francisco A. Martin,
| | - Francisco A. Martin
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Nuria M. Romero, ; Francisco A. Martin,
| |
Collapse
|
28
|
Oleari R, Caramello A, Campinoti S, Lettieri A, Ioannou E, Paganoni A, Fantin A, Cariboni A, Ruhrberg C. PLXNA1 and PLXNA3 cooperate to pattern the nasal axons that guide gonadotropin-releasing hormone neurons. Development 2019; 146:146/21/dev176461. [PMID: 31690636 DOI: 10.1242/dev.176461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/27/2019] [Indexed: 01/16/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons regulate puberty onset and sexual reproduction by secreting GnRH to activate and maintain the hypothalamic-pituitary-gonadal axis. During embryonic development, GnRH neurons migrate along olfactory and vomeronasal axons through the nose into the brain, where they project to the median eminence to release GnRH. The secreted glycoprotein SEMA3A binds its receptors neuropilin (NRP) 1 or NRP2 to position these axons for correct GnRH neuron migration, with an additional role for the NRP co-receptor PLXNA1. Accordingly, mutations in SEMA3A, NRP1, NRP2 and PLXNA1 have been linked to defective GnRH neuron development in mice and inherited GnRH deficiency in humans. Here, we show that only the combined loss of PLXNA1 and PLXNA3 phenocopied the full spectrum of nasal axon and GnRH neuron defects of SEMA3A knockout mice. Together with Plxna1, the human orthologue of Plxna3 should therefore be investigated as a candidate gene for inherited GnRH deficiency.
Collapse
Affiliation(s)
- Roberto Oleari
- University of Milan, Department of Pharmacological and Biomolecular Sciences, Via G. Balzaretti 9, 20133 Milan, Italy
| | - Alessia Caramello
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Sara Campinoti
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Antonella Lettieri
- University of Milan, Department of Pharmacological and Biomolecular Sciences, Via G. Balzaretti 9, 20133 Milan, Italy
| | - Elena Ioannou
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Alyssa Paganoni
- University of Milan, Department of Pharmacological and Biomolecular Sciences, Via G. Balzaretti 9, 20133 Milan, Italy
| | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Anna Cariboni
- University of Milan, Department of Pharmacological and Biomolecular Sciences, Via G. Balzaretti 9, 20133 Milan, Italy .,UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
29
|
Kotan LD, Isik E, Turan I, Mengen E, Akkus G, Tastan M, Gurbuz F, Yuksel B, Topaloglu AK. Prevalence and associated phenotypes of PLXNA1 variants in normosmic and anosmic idiopathic hypogonadotropic hypogonadism. Clin Genet 2019; 95:320-324. [PMID: 30467832 DOI: 10.1111/cge.13482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023]
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) can be divided into two major forms, normosmic IHH and Kallmann syndrome (KS). Genetic mutations are responsible for the majority of IHH. PLXNA1 has recently been implicated in the GnRH neuron migration and the etiology of KS. We aimed to investigate the prevalence and associated phenotypes of PLXNA1 variants in a large cohort of IHH patients. We screened the whole exome data of 215 IHH patients in a single center for causative PLXNA1 variants. Our studies showed eight novel (p.Arg836His, p.Lys1451Arg, p.Val287Met, p.Val536Ile, p.Ser1850Arg, p.Ile1701Val, p.Arg319Trp, and p.Pro485Leu) and two previously described (p.Arg528Trp and p.Gly720Glu) heterozygous PLXNA1 variants in nine affected individuals from seven unrelated families. Only three of nine patients were anosmic (KS) while the remaining patients showed normal olfactory function (nIHH). Seven of nine patients (77.7%) harbored additional one or two variants in other nIHH/KS-associated genes, including PROKR2, IGSF10, HS6ST1, SEMA3E, CCDC141, FGFR1, NRP1, POLR3A, and SRA1. Our findings indicate that PLXNA1 variants cause not only anosmic but also normosmic IHH with a relatively high prevalence (3.9%). Heterozygous missense PLXNA1 variants appear to be involved together with other IHH gene variants in bringing about the IHH disease phenotype.
Collapse
Affiliation(s)
- Leman D Kotan
- Division of Pediatric Endocrinology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Emregul Isik
- Gaziantep Children's Hospital, Department of Pediatrics, Clinics of Pediatric Endocrinology, Gaziantep, Turkey
| | - Ihsan Turan
- Division of Pediatric Endocrinology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Eda Mengen
- Department of Pediatrics, Division of Pediatric Endocrinology, Ankara Children's Hematology and Oncology Training Hospital, Ankara, Turkey
| | - Gamze Akkus
- Division of Endocrinology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Mehmet Tastan
- Division of Pediatric Endocrinology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Fatih Gurbuz
- Division of Pediatric Endocrinology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Bilgin Yuksel
- Division of Pediatric Endocrinology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - A Kemal Topaloglu
- Division of Pediatric Endocrinology, Cukurova University, Faculty of Medicine, Adana, Turkey
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
30
|
Bouilly J, Messina A, Papadakis G, Cassatella D, Xu C, Acierno JS, Tata B, Sykiotis G, Santini S, Sidis Y, Elowe-Gruau E, Phan-Hug F, Hauschild M, Bouloux PM, Quinton R, Lang-Muritano M, Favre L, Marino L, Giacobini P, Dwyer AA, Niederländer NJ, Pitteloud N. DCC/NTN1 complex mutations in patients with congenital hypogonadotropic hypogonadism impair GnRH neuron development. Hum Mol Genet 2019; 27:359-372. [PMID: 29202173 DOI: 10.1093/hmg/ddx408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease characterized by absent puberty and infertility due to GnRH deficiency, and is often associated with anosmia [Kallmann syndrome (KS)]. The genetic etiology of CHH is heterogeneous, and more than 30 genes have been implicated in approximately 50% of patients with CHH. We hypothesized that genes encoding axon-guidance proteins containing fibronectin type-III (FN3) domains (similar to ANOS1, the first gene associated with KS), are mutated in CHH. We performed whole-exome sequencing in a cohort of 133 CHH probands to test this hypothesis, and identified rare sequence variants (RSVs) in genes encoding for the FN3-domain encoding protein deleted in colorectal cancer (DCC) and its ligand Netrin-1 (NTN1). In vitro studies of these RSVs revealed altered intracellular signaling associated with defects in cell morphology, and confirmed five heterozygous DCC mutations in 6 probands-5 of which presented as KS. Two KS probands carry heterozygous mutations in both DCC and NTN1 consistent with oligogenic inheritance. Further, we show that Netrin-1 promotes migration in immortalized GnRH neurons (GN11 cells). This study implicates DCC and NTN1 mutations in the pathophysiology of CHH consistent with the role of these two genes in the ontogeny of GnRH neurons in mice.
Collapse
Affiliation(s)
- Justine Bouilly
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Andrea Messina
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Georgios Papadakis
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Daniele Cassatella
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cheng Xu
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - James S Acierno
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Brooke Tata
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, University of Lille, 59000 Lille, France.,Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, UMR-S 1172, 59000 Lille, France
| | - Gerasimos Sykiotis
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Sara Santini
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Yisrael Sidis
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Eglantine Elowe-Gruau
- Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| | - Franziska Phan-Hug
- Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| | - Michael Hauschild
- Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| | - Pierre-Marc Bouloux
- Center for Neuroendocrinology, Royal Free Campus, University College Medical School, London WC1E6BT, UK
| | - Richard Quinton
- Institute of Genetic Medicine and the Royal Victoria Infirmary, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE13BZ, UK
| | - Mariarosaria Lang-Muritano
- Department of Endocrinology/Diabetology and Children's Research Centre, University Children's Hospital Zurich, 8091 Zurich, Switzerland
| | - Lucie Favre
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Laura Marino
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Paolo Giacobini
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, University of Lille, 59000 Lille, France.,Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, UMR-S 1172, 59000 Lille, France
| | - Andrew A Dwyer
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland.,Institute of Higher Education and Research in Healthcare, University of Lausanne, 1005 Lausanne, Switzerland
| | - Nicolas J Niederländer
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Nelly Pitteloud
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland.,Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
31
|
Oleari R, Lettieri A, Paganoni A, Zanieri L, Cariboni A. Semaphorin Signaling in GnRH Neurons: From Development to Disease. Neuroendocrinology 2019; 109:193-199. [PMID: 30504719 DOI: 10.1159/000495916] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/02/2018] [Indexed: 11/19/2022]
Abstract
In mammals, fertility critically depends on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) by scattered hypothalamic neurons (GnRH neurons). During development, GnRH neurons originate in the nasal placode and migrate first into the nasal compartment and then through the nasal/forebrain junction, before they reach their final position in the hypothalamus. This neurodevelopmental process, which has been extensively studied in mouse models, is regulated by a plethora of factors that might control GnRH neuron migration or survival as well as the fasciculation/targeting of the olfactory/vomeronasal axons along which the GnRH neurons migrate. Defects in GnRH neuron development or release can lead to isolated GnRH deficiency, with the underlying genetic causes still being partially unknown. Recently, semaphorins and their receptors neuropilins and plexins, a large family of molecules implicated in neuronal development and plasticity, are emerging as key regulators of GnRH neuron biology and deficiency. Specifically, semaphorins have been shown to play different roles in GnRH neuron biology by regulating migration and survival during embryonic development as well as secretion in adulthood.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Luca Zanieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy,
| |
Collapse
|
32
|
Yellapragada V, Liu X, Lund C, Känsäkoski J, Pulli K, Vuoristo S, Lundin K, Tuuri T, Varjosalo M, Raivio T. MKRN3 Interacts With Several Proteins Implicated in Puberty Timing but Does Not Influence GNRH1 Expression. Front Endocrinol (Lausanne) 2019; 10:48. [PMID: 30800097 PMCID: PMC6375840 DOI: 10.3389/fendo.2019.00048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Paternally-inherited loss-of-function mutations in makorin ring finger protein 3 gene (MKRN3) underlie central precocious puberty. To investigate the puberty-related mechanism(s) of MKRN3 in humans, we generated two distinct bi-allelic MKRN3 knock-out human pluripotent stem cell lines, Del 1 and Del 2, and differentiated them into GNRH1-expressing neurons. Both Del 1 and Del 2 clones could be differentiated into neuronal progenitors and GNRH1-expressing neurons, however, the relative expression of GNRH1 did not differ from wild type cells (P = NS). Subsequently, we investigated stable and dynamic protein-protein interaction (PPI) partners of MKRN3 by stably expressing it in HEK cells followed by mass spectrometry analyses. We found 81 high-confidence novel protein interaction partners, which are implicated in cellular processes such as insulin signaling, RNA metabolism and cell-cell adhesion. Of the identified interactors, 20 have been previously implicated in puberty timing. In conclusion, our stem cell model for generation of GNRH1-expressing neurons did not offer mechanistic insight for the role of MKRN3 in puberty initiation. The PPI data, however, indicate that MKRN3 may regulate puberty by interacting with other puberty-related proteins. Further studies are required to elucidate the possible mechanisms and outcomes of these interactions.
Collapse
Affiliation(s)
- Venkatram Yellapragada
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Carina Lund
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Känsäkoski
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynecology, Helsinki University Hospital, HUH, Helsinki, Finland
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, Helsinki University Hospital, HUH, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, HUH, Helsinki, Finland
| | - Markku Varjosalo
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, HUH, Helsinki, Finland
- *Correspondence: Taneli Raivio
| |
Collapse
|
33
|
Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocr Rev 2018; 39:333-368. [PMID: 29351662 DOI: 10.1210/er.2017-00235] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Bénédicte Dehouck
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Ariane Sharif
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Philippe Ciofi
- Inserm, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| |
Collapse
|
34
|
Maione L, Dwyer AA, Francou B, Guiochon-Mantel A, Binart N, Bouligand J, Young J. GENETICS IN ENDOCRINOLOGY: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol 2018; 178:R55-R80. [PMID: 29330225 DOI: 10.1530/eje-17-0749] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are rare, related diseases that prevent normal pubertal development and cause infertility in affected men and women. However, the infertility carries a good prognosis as increasing numbers of patients with CHH/KS are now able to have children through medically assisted procreation. These are genetic diseases that can be transmitted to patients' offspring. Importantly, patients and their families should be informed of this risk and given genetic counseling. CHH and KS are phenotypically and genetically heterogeneous diseases in which the risk of transmission largely depends on the gene(s) responsible(s). Inheritance may be classically Mendelian yet more complex; oligogenic modes of transmission have also been described. The prevalence of oligogenicity has risen dramatically since the advent of massively parallel next-generation sequencing (NGS) in which tens, hundreds or thousands of genes are sequenced at the same time. NGS is medically and economically more efficient and more rapid than traditional Sanger sequencing and is increasingly being used in medical practice. Thus, it seems plausible that oligogenic forms of CHH/KS will be increasingly identified making genetic counseling even more complex. In this context, the main challenge will be to differentiate true oligogenism from situations when several rare variants that do not have a clear phenotypic effect are identified by chance. This review aims to summarize the genetics of CHH/KS and to discuss the challenges of oligogenic transmission and also its role in incomplete penetrance and variable expressivity in a perspective of genetic counseling.
Collapse
Affiliation(s)
- Luigi Maione
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Andrew A Dwyer
- Boston College, William F. Connell School of Nursing, Chestnut Hill, Massachusetts, USA
| | - Bruno Francou
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Jérôme Bouligand
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Jacques Young
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| |
Collapse
|