1
|
Almyre C, Bounaix N, Godard F, Baris OR, Cayer AL, Sardin E, Bouhier M, Hoarau A, Dard L, Richard J, Bergeron V, Renaud A, Loaëc N, Gueguen N, Desquiret-Dumas V, Lelievre B, Inisan A, Panozzo C, Dujardin G, Blondel M, Rötig A, Paquis-Flucklinger V, Azoulay S, Bonnefoy N, Sellem CH, Delahodde A, Procaccio V, Tribouillard-Tanvier D. The copper ionophore disulfiram improves mitochondrial function in various yeast and human cellular models of mitochondrial diseases. Hum Mol Genet 2025:ddaf061. [PMID: 40298238 DOI: 10.1093/hmg/ddaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/05/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
The copper ionophore disulfiram (DSF) is commonly used to treat chronic alcoholism and has potential anti-cancer activity. Using a yeast-based screening assay of FDA-approved compounds, DSF was herein identified for its ability to improve oxidative phosphorylation-dependent growth of various yeast models of mitochondrial diseases caused by a wide range of defects in ATP synthase, complexes III and IV, cardiolipin remodeling, maintenance and translation of the mitochondrial genome. This compound also showed beneficial effects in cells derived from patients suffering from Barth or MELAS syndromes, two mitochondrial diseases associated respectively with a lack in cardiolipin remodeling and protein synthesis inside the organelle. We provide evidence that the rescuing activity of DSF results from its ability to transport copper ions across biological membranes. Indeed, other copper ionophores (pyrithione and elesclomol) and supplementation of the growth media with copper ions had also beneficial effects in yeast and human cells with dysfunctional mitochondria. Our data suggest that the copper-dependent rescuing activity in these cells results from a better capacity to assemble cytochrome c oxidase. Altogether, our findings hold promise for the development of new therapeutic strategies for mitochondrial disorders.
Collapse
Affiliation(s)
- Claire Almyre
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Nolwenn Bounaix
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - François Godard
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Olivier R Baris
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | | | - Elodie Sardin
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Marine Bouhier
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Anaïs Hoarau
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Laetitia Dard
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Jérémy Richard
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | | | - Aurélie Renaud
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - Nadege Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Naïg Gueguen
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - Valérie Desquiret-Dumas
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - Bénédicte Lelievre
- Department of Pharmacology and Toxicology, University Hospital, University of Angers, IRF (Infections Respiratoires Fongiques) Angers 49933, France
| | - Aurore Inisan
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - Cristina Panozzo
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Paris F-75005, France
| | - Genevève Dujardin
- Université Paris Saclay, CEA, CNRS, I2BC, Gif-sur-Yvette F-91190, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Agnes Rötig
- Université Paris Cité, Imagine Institute, Genetics of Mitochondrial Diseases, INSERM UMR 1163, Paris, France
| | | | - Stéphane Azoulay
- Université Côte d'Azur, CNRS UMR 7272, ICN, Nice F-06108, France
| | - Nathalie Bonnefoy
- Université Paris Saclay, CEA, CNRS, I2BC, Gif-sur-Yvette F-91190, France
| | - Carole H Sellem
- Université Paris Saclay, CEA, CNRS, I2BC, Gif-sur-Yvette F-91190, France
| | - Agnès Delahodde
- Université Paris Saclay, CEA, CNRS, I2BC, Gif-sur-Yvette F-91190, France
| | - Vincent Procaccio
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | | |
Collapse
|
2
|
Gombeau K, Hoffmann SA, Cai Y. A new set of mutations in the second transmembrane helix of the Cox2p-W56R substantially improves its allotopic expression in Saccharomyces cerevisiae. Genetics 2025; 229:iyaf037. [PMID: 40178993 PMCID: PMC12005268 DOI: 10.1093/genetics/iyaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
The dual genetic control of mitochondrial respiratory function, combined with the high mutation rate of the mitochondrial genome (mtDNA), makes mitochondrial diseases among the most frequent genetic diseases in humans (1 in 5,000 in adults). With no effective treatments available, gene therapy approaches have been proposed. Notably, several studies have demonstrated the potential for nuclear expression of a healthy copy of a dysfunctional mitochondrial gene, referred to as allotopic expression, to help recover respiratory function. However, allotopic expression conditions require significant optimization. We harnessed engineering biology tools to improve the allotopic expression of the COX2-W56R gene in the budding yeast Saccharomyces cerevisiae. Through conducting random mutagenesis and screening of the impact of vector copy number, promoter, and mitochondrial targeting sequence, we substantially increased the mitochondrial incorporation of the allotopic protein and significantly increased recovery of mitochondrial respiration. Moreover, CN-PAGE analyses revealed that our optimized allotopic protein does not impact cytochrome c oxidase assembly, or the biogenesis of respiratory chain supercomplexes. Importantly, the most beneficial amino acid substitutions found in the second transmembrane helix (L93S and I102K) are conserved residues in the corresponding positions of human MT-CO2 (L73 and L75), and we propose that mirroring these changes could potentially help improve allotopic Cox2p expression in human cells. To conclude, this study demonstrates the effectiveness of using engineering biology approaches to optimise allotopic expression of mitochondrial genes in the baker's yeast.
Collapse
Affiliation(s)
- Kewin Gombeau
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, Netherlands
| | - Yizhi Cai
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
3
|
Su X, Bai M, Shang Y, Du Y, Xu S, Lin X, Xiao Y, Zhang Y, Chen H, Zhang A. Slc25a21 in cisplatin-induced acute kidney injury: a new target for renal tubular epithelial protection by regulating mitochondrial metabolic homeostasis. Cell Death Dis 2024; 15:891. [PMID: 39695098 DOI: 10.1038/s41419-024-07231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Acute kidney injury (AKI) is a significant global health issue, which is often caused by cisplatin therapy and characterized by mitochondrial dysfunction. Restoring mitochondrial homeostasis in tubular cells could exert therapeutic effects. Here, we investigated Slc25a21, a mitochondrial carrier, as a potential target for AKI intervention. Renal Slc25a21 expression is negatively associated with kidney function in both AKI patients and cisplatin-induced murine models. Sustaining renal expression of Slc25a21 slowed down AKI progression by reducing cellular apoptosis, necroptosis, and the inflammatory response, likely through its regulation of 2-oxoadipate conversion. Slc25a21 is highly expressed in proximal tubular epithelial cells, and its down-regulation contributes to compromised mitochondrial biogenesis and integrity, as well as impaired oxidative phosphorylation. Mechanistically, reduced Slc25a21 in AKI disrupts mitochondrial 2-oxoadipate transport, affecting related metabolites influx and the tricarboxylic acid cycle. These findings demonstrate a previously unappreciated metabolic function of Slc25a21 in tubular cells, and suggest that targeting mitochondrial metabolic homeostasis by sustaining Slc25a21 expression could be a potential novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Xin Su
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yaqiong Shang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Xiuli Lin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yunzhi Xiao
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Huimei Chen
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Martins Pinto M, Ransac S, Mazat JP, Schwartz L, Rigoulet M, Arbault S, Paumard P, Devin A. Mitochondrial quinone redox states as a marker of mitochondrial metabolism. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149033. [PMID: 38368917 DOI: 10.1016/j.bbabio.2024.149033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Mitochondrial and thus cellular energetics are highly regulated both thermodynamically and kinetically. Cellular energetics is of prime importance in the regulation of cellular functions since it provides ATP for their accomplishment. However, cellular energetics is not only about ATP production but also about the ability to re-oxidize reduced coenzymes at a proper rate, such that the cellular redox potential remains at a level compatible with enzymatic reactions. However, this parameter is not only difficult to assess due to its dual compartmentation (mitochondrial and cytosolic) but also because it is well known that most NADH in the cells is bound to the enzymes. In this paper, we investigated the potential relevance of mitochondrial quinones redox state as a marker of mitochondrial metabolism and more particularly mitochondrial redox state. We were able to show that Q2 is an appropriate redox mediator to assess the mitochondrial quinone redox states. On isolated mitochondria, the mitochondrial quinone redox states depend on the mitochondrial substrate and the mitochondrial energetic state (phosphorylating or not phosphorylating). Last but not least, we show that the quinones redox state response allows to better understand the Krebs cycle functioning and respiratory substrates oxidation. Taken together, our results suggest that the quinones redox state is an excellent marker of mitochondrial metabolism.
Collapse
Affiliation(s)
- M Martins Pinto
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France; Université de Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - S Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - J P Mazat
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - L Schwartz
- Assistance Publique des Hôpitaux de Paris, France
| | - M Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - S Arbault
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - P Paumard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France.
| | - A Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
5
|
Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Molecular basis of diseases induced by the mitochondrial DNA mutation m.9032 T > C. Hum Mol Genet 2022; 32:1313-1323. [PMID: 36434790 PMCID: PMC10077503 DOI: 10.1093/hmg/ddac292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial DNA mutation m.9032 T > C was previously identified in patients presenting with NARP (Neuropathy Ataxia Retinitis Pigmentosa). Their clinical features had a maternal transmission and patient's cells showed a reduced oxidative phosphorylation capacity, elevated reactive oxygen species (ROS) production and hyperpolarization of the mitochondrial inner membrane, providing evidence that m.9032 T > C is truly pathogenic. This mutation leads to replacement of a highly conserved leucine residue with proline at position 169 of ATP synthase subunit a (L169P). This protein and a ring of identical c-subunits (c-ring) move protons through the mitochondrial inner membrane coupled to ATP synthesis. We herein investigated the consequences of m.9032 T > C on ATP synthase in a strain of Saccharomyces cerevisiae with an equivalent mutation (L186P). The mutant enzyme assembled correctly but was mostly inactive as evidenced by a > 95% drop in the rate of mitochondrial ATP synthesis and absence of significant ATP-driven proton pumping across the mitochondrial membrane. Intragenic suppressors selected from L186P yeast restoring ATP synthase function to varying degrees (30-70%) were identified at the original mutation site (L186S) or in another position of the subunit a (H114Q, I118T). In light of atomic structures of yeast ATP synthase recently described, we conclude from these results that m.9032 T > C disrupts proton conduction between the external side of the membrane and the c-ring, and that H114Q and I118T enable protons to access the c-ring through a modified pathway.
Collapse
Affiliation(s)
- Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Camille Charles
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Xiang QP, Tang JY, Yu JG, Smith DR, Zhu YM, Wang YR, Kang JS, Yang J, Zhang XC. The evolution of extremely diverged plastomes in Selaginellaceae (lycophyte) is driven by repeat patterns and the underlying DNA maintenance machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:768-784. [PMID: 35648423 DOI: 10.1111/tpj.15851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Two factors are proposed to account for the unusual features of organellar genomes: the disruptions of organelle-targeted DNA replication, repair, and recombination (DNA-RRR) systems in the nuclear genome and repetitive elements in organellar genomes. Little is known about how these factors affect organellar genome evolution. The deep-branching vascular plant family Selaginellaceae is known to have a deficient DNA-RRR system and convergently evolved organellar genomes. However, we found that the plastid genome (plastome) of Selaginella sinensis has extremely accelerated substitution rates, a low GC content, pervasive repeat elements, a dynamic network structure, and it lacks direct or inverted repeats. Unexpectedly, its organelle DNA-RRR system is short of a plastid-targeted Recombinase A1 (RecA1) and a mitochondrion-targeted RecA3, in line with other explored Selaginella species. The plastome contains a large collection of short- and medium-sized repeats. Given the absence of RecA1 surveillance, we propose that these repeats trigger illegitimate recombination, accelerated mutation rates, and structural instability. The correlations between repeat quantity and architectural complexity in the Selaginella plastomes support these conclusions. We, therefore, hypothesize that the interplay of the deficient DNA-RRR system and the high repeat content has led to the extraordinary divergence of the S. sinensis plastome. Our study not only sheds new light on the mechanism of plastome divergence by emphasizing the power of cytonuclear integration, but it also reconciles the longstanding contradiction on the effects of DNA-RRR system disruption on genome structure evolution.
Collapse
Affiliation(s)
- Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun-Yong Tang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Gao Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, N6A 5B7, Ontario, Canada
| | - Yan-Mei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Ya-Rong Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jong-Soo Kang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
7
|
Kabala AM, Binko K, Godard F, Charles C, Dautant A, Baranowska E, Skoczen N, Gombeau K, Bouhier M, Becker HD, Ackerman SH, Steinmetz LM, Tribouillard-Tanvier D, Kucharczyk R, di Rago JP. Assembly-dependent translation of subunits 6 (Atp6) and 9 (Atp9) of ATP synthase in yeast mitochondria. Genetics 2022; 220:iyac007. [PMID: 35100419 PMCID: PMC8893259 DOI: 10.1093/genetics/iyac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.
Collapse
Affiliation(s)
- Anna M Kabala
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Krystyna Binko
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - François Godard
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Camille Charles
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Natalia Skoczen
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Kewin Gombeau
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Hubert D Becker
- UPR ‘Architecture et Réactivité de l’ARN’, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg Cedex, France
| | - Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Jean-Paul di Rago
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| |
Collapse
|
8
|
Yang G, Zhao T, Lu S, Weng J, Zeng X. T1121G Point Mutation in the Mitochondrial Gene COX1 Suppresses a Null Mutation in ATP23 Required for the Assembly of Yeast Mitochondrial ATP Synthase. Int J Mol Sci 2022; 23:ijms23042327. [PMID: 35216443 PMCID: PMC8877559 DOI: 10.3390/ijms23042327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear-encoded Atp23 was previously shown to have dual functions, including processing the yeast Atp6 precursor and assisting the assembly of yeast mitochondrial ATP synthase. However, it remains unknown whether there are genes functionally complementary to ATP23 to rescue atp23 null mutant. In the present paper, we screen and characterize three revertants of atp23 null mutant and reveal a T1121G point mutation in the mitochondrial gene COX1 coding sequence, which leads to Val374Gly mutation in Cox1, the suppressor in the revertants. This was verified further by the partial restoration of mitochondrial ATP synthase assembly in atp23 null mutant transformed with exogenous hybrid COX1 T1121G mutant plasmid. The predicted tertiary structure of the Cox1 p.Val374Gly mutation showed no obvious difference from wild-type Cox1. By further chase labeling with isotope [35S]-methionine, we found that the stability of Atp6 of ATP synthase increased in the revertants compared with the atp23 null mutant. Taking all the data together, we revealed that the T1121G point mutation of mitochondrial gene COX1 could partially restore the unassembly of mitochondrial ATP synthase in atp23 null mutant by increasing the stability of Atp6. Therefore, this study uncovers a gene that is partially functionally complementary to ATP23 to rescue ATP23 deficiency, broadening our understanding of the relationship between yeast the cytochrome c oxidase complex and mitochondrial ATP synthase complex.
Collapse
|
9
|
A Theoretical Model of Mitochondrial ATP Synthase Deficiencies. The Role of Mitochondrial Carriers. Processes (Basel) 2021. [DOI: 10.3390/pr9081424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The m.8993T>G mutation of the mitochondrial MT-ATP6 gene is associated with NARP syndrome (neuropathy, ataxia and retinitis pigmentosa). The equivalent point mutation introduced in yeast Saccharomyces cerevisiae mitochondrial DNA considerably reduced the activity of ATP synthase and of cytochrome-c-oxidase, preventing yeast growth on oxidative substrates. The overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) was able to rescue the growth on the oxidative substrate by increasing the substrate-level phosphorylation of ADP coupled to the conversion of α-ketoglutarate (AKG) into succinate with an increase in Complex IV activity. Previous studies showed that equivalent point mutations in ATP synthase behave similarly and can be rescued by Odc1p overexpression and/or the uncoupling of OXPHOS from ATP synthesis. In order to better understand the mechanism of the ATP synthase mutation bypass, we developed a core model of mitochondrial metabolism based on AKG as a respiratory substrate. We describe the different possible metabolite outputs and the ATP/O ratio values as a function of ATP synthase inhibition.
Collapse
|
10
|
Su X, Dautant A, Rak M, Godard F, Ezkurdia N, Bouhier M, Bietenhader M, Mueller DM, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D. The pathogenic m.8993 T > G mutation in mitochondrial ATP6 gene prevents proton release from the subunit c-ring rotor of ATP synthase. Hum Mol Genet 2021; 30:381-392. [PMID: 33600551 DOI: 10.1093/hmg/ddab043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here, we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionary conservation.
Collapse
Affiliation(s)
- Xin Su
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Malgorzata Rak
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - François Godard
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Nahia Ezkurdia
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | - David M Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland
| | | | | |
Collapse
|
11
|
Ding Q, Kucharczyk R, Zhao W, Dautant A, Xu S, Niedzwiecka K, Su X, Giraud MF, Gombeau K, Zhang M, Xie H, Zeng C, Bouhier M, di Rago JP, Liu Z, Tribouillard-Tanvier D, Chen H. Case Report: Identification of a Novel Variant (m.8909T>C) of Human Mitochondrial ATP6 Gene and Its Functional Consequences on Yeast ATP Synthase. Life (Basel) 2020; 10:life10090215. [PMID: 32971864 PMCID: PMC7555451 DOI: 10.3390/life10090215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
With the advent of next generation sequencing, the list of mitochondrial DNA (mtDNA) mutations identified in patients rapidly and continuously expands. They are frequently found in a limited number of cases, sometimes a single individual (as with the case herein reported) and in heterogeneous genetic backgrounds (heteroplasmy), which makes it difficult to conclude about their pathogenicity and functional consequences. As an organism amenable to mitochondrial DNA manipulation, able to survive by fermentation to loss-of-function mtDNA mutations, and where heteroplasmy is unstable, Saccharomyces cerevisiae is an excellent model for investigating novel human mtDNA variants, in isolation and in a controlled genetic context. We herein report the identification of a novel variant in mitochondrial ATP6 gene, m.8909T>C. It was found in combination with the well-known pathogenic m.3243A>G mutation in mt-tRNALeu. We show that an equivalent of the m.8909T>C mutation compromises yeast adenosine tri-phosphate (ATP) synthase assembly/stability and reduces the rate of mitochondrial ATP synthesis by 20-30% compared to wild type yeast. Other previously reported ATP6 mutations with a well-established pathogenicity (like m.8993T>C and m.9176T>C) were shown to have similar effects on yeast ATP synthase. It can be inferred that alone the m.8909T>C variant has the potential to compromise human health.
Collapse
Affiliation(s)
- Qiuju Ding
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland; (R.K.); (K.N.)
| | - Weiwei Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Shutian Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland; (R.K.); (K.N.)
| | - Xin Su
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Marie-France Giraud
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Kewin Gombeau
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Honglang Xie
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
- Institut national de la santé et de la recherche médicale, 75000 Paris, France
- Correspondence: (D.T.-T.); (H.C.)
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
- Correspondence: (D.T.-T.); (H.C.)
| |
Collapse
|
12
|
Su X, Dautant A, Godard F, Bouhier M, Zoladek T, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D. Molecular Basis of the Pathogenic Mechanism Induced by the m.9191T>C Mutation in Mitochondrial ATP6 Gene. Int J Mol Sci 2020; 21:ijms21145083. [PMID: 32708436 PMCID: PMC7404254 DOI: 10.3390/ijms21145083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Probing the pathogenicity and functional consequences of mitochondrial DNA (mtDNA) mutations from patient’s cells and tissues is difficult due to genetic heteroplasmy (co-existence of wild type and mutated mtDNA in cells), occurrence of numerous mtDNA polymorphisms, and absence of methods for genetically transforming human mitochondria. Owing to its good fermenting capacity that enables survival to loss-of-function mtDNA mutations, its amenability to mitochondrial genome manipulation, and lack of heteroplasmy, Saccharomyces cerevisiae is an excellent model for studying and resolving the molecular bases of human diseases linked to mtDNA in a controlled genetic background. Using this model, we previously showed that a pathogenic mutation in mitochondrial ATP6 gene (m.9191T>C), that converts a highly conserved leucine residue into proline in human ATP synthase subunit a (aL222P), severely compromises the assembly of yeast ATP synthase and reduces by 90% the rate of mitochondrial ATP synthesis. Herein, we report the isolation of intragenic suppressors of this mutation. In light of recently described high resolution structures of ATP synthase, the results indicate that the m.9191T>C mutation disrupts a four α-helix bundle in subunit a and that the leucine residue it targets indirectly optimizes proton conduction through the membrane domain of ATP synthase.
Collapse
Affiliation(s)
- Xin Su
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (T.Z.); (R.K.)
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (T.Z.); (R.K.)
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
- Correspondence:
| |
Collapse
|
13
|
Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats. Aging (Albany NY) 2020; 12:10398-10414. [PMID: 32445551 PMCID: PMC7346067 DOI: 10.18632/aging.103265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023]
Abstract
Deficits in coordinated motor behavior and mitochondrial complex V activity have been observed in aged males. Testosterone supplementation can improve coordinated motor behavior in aged males. We investigated the effects of testosterone supplementation on mitochondrial complex V function in the substantia nigra (a brain region that regulates motor activity) in aged male rats. These rats exhibited diminished ATP levels, attenuated mitochondrial complex V activity, and reduced expression of 3 of the 17 mitochondrial complex V subunits (ATP6, ATP8 and ATP5C1) in the substantia nigra. Testosterone supplementation increased ATP levels, mitochondrial complex V activity, and ATP6, ATP8 and ATP5C1 expression in the substantia nigra of the rats. Conversely, orchiectomy reduced mitochondrial complex V activity, downregulated ATP6 and ATP8 expression, and upregulated ATP5C1, ATP5I and ATP5L expression in the substantia nigra. Testosterone replacement reversed those effects. Thus, testosterone enhanced mitochondrial complex V function in the substantia nigra of aged male rats by upregulating ATP6 and ATP8. As potential testosterone targets, these two subunits may to some degree maintain nigrostriatal dopaminergic function in aged males.
Collapse
|
14
|
Franco LVR, Su CH, Burnett J, Teixeira LS, Tzagoloff A. Atco, a yeast mitochondrial complex of Atp9 and Cox6, is an assembly intermediate of the ATP synthase. PLoS One 2020; 15:e0233177. [PMID: 32413073 PMCID: PMC7228087 DOI: 10.1371/journal.pone.0233177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial oxidative phosphorylation (oxphos) is the process by which the ATP synthase conserves the energy released during the oxidation of different nutrients as ATP. The yeast ATP synthase consists of three assembly modules, one of which is a ring consisting of 10 copies of the Atp9 subunit. We previously reported the existence in yeast mitochondria of high molecular weight complexes composed of mitochondrially encoded Atp9 and of Cox6, an imported structural subunit of cytochrome oxidase (COX). Pulse-chase experiments indicated a correlation between the loss of newly translated Atp9 complexed to Cox6 and an increase of newly formed Atp9 ring, but did not exclude the possibility of an alternate source of Atp9 for ring formation. Here we have extended studies on the functions and structure of this complex, referred to as Atco. We show that Atco is the exclusive source of Atp9 for the ATP synthase assembly. Pulse-chase experiments show that newly translated Atp9, present in Atco, is converted to a ring, which is incorporated into the ATP synthase with kinetics characteristic of a precursor-product relationship. Even though Atco does not contain the ring form of Atp9, cross-linking experiments indicate that it is oligomeric and that the inter-subunit interactions are similar to those of the bona fide ring. We propose that, by providing Atp9 for biogenesis of ATP synthase, Atco complexes free Cox6 for assembly of COX. This suggests that Atco complexes may play a role in coordinating assembly and maintaining proper stoichiometry of the two oxphos enzymes
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- Department of Microbiology, University of São Paulo, São Paulo, SP, Brazil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Julia Burnett
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Lorisa Simas Teixeira
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|