1
|
Jiao X, Zhang Q, Ye G, Xing F, Xie D, Wang L. Protective effects of apricot kernel oil and metformin against BPA-induced ovarian toxicity in rat models of polycystic ovary syndrome: insights into PI3K/AKT and mitochondrial apoptosis pathways. Toxicol Res (Camb) 2025; 14:tfaf071. [PMID: 40421425 PMCID: PMC12103898 DOI: 10.1093/toxres/tfaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
In this study, the therapeutic synergistic effects of metformin (MET) and Apricot Kernel Oil (AKO) were investigated in an animal model of bisphenol A (BPA)-induced polycystic ovary syndrome (PCOS). BPA disrupts endocrine functions and induces oxidative stress in ovarian tissues, leading to PCOS. AKO and MET target underlying mechanisms associated with PCOS, particularly those related to insulin resistance and oxidative stress, which are critical in the pathology of this condition. Antioxidant activities, total phenolic, and flavonoid contents of AKO were performed. The AKO underwent liquid chromatographic-electrospray ionization tandem mass-spectrometric (LC-ESI-MS/MS) analysis after acetonitrile treatment. PCOS was induced in adult Wistar rats by administering BPA. After 60 days, the 70 rats were divided into seven groups (n = 10/group): Normal, PCOS, MET, AKO, and co-treatment with MET and AKO. On the 22ndday of the study, serum catalase, glutathione peroxidase, superoxide dismutase activity, LH, FSH, progesterone, estrogen, and testosterone hormones alongside inflammatory cytokines (TNF-a, IL-6, CRP, and IL-1β) and nitric oxide levels were measured. Ovarian tissues were isolated for measurements of ferric reducing ability of plasma and thiobarbituric acid reactive substances levels. The expression of genes and proteins related to mitochondrial and PI3K/AKT pathways was analyzed. The results demonstrated that AKO, in synergy with MET, modulated hormone levels, reduced pro-inflammatory cytokines, and enhanced antioxidant properties. AKO, in combination with MET modulated apoptosis via mitochondrial and PI3K/AKT pathways. These findings suggest that AKO holds promise as a potential therapeutic option for women with ovulation disorders, particularly those affected by bisphenol A-induced PCOS.
Collapse
Affiliation(s)
- Xuejuan Jiao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Qianqian Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Guoliu Ye
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Fang Xing
- Department of Pharmacy, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Dongmei Xie
- Department of Pharmacy, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Liqun Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| |
Collapse
|
2
|
Yano Maher JC, Zelinski MB, Oktay KH, Duncan FE, Segars JH, Lujan ME, Lou H, Yun BH, Hanfling SN, Schwartz LE, Laronda MM, Halvorson LM, O'Neill KE, Gomez-Lobo V. Classification system of human ovarian follicle morphology: recommendations of the National Institute of Child Health and Human Development - sponsored ovarian nomenclature workshop. Fertil Steril 2025; 123:761-778. [PMID: 39549739 PMCID: PMC12045743 DOI: 10.1016/j.fertnstert.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVE To develop a consensus on histologic human ovarian follicle staging nomenclature, provide guidelines for follicle density calculation, and assess changes due to fixation to enhance communication among clinicians and ovarian biology researchers to gain a deeper understanding of human fertility. SETTING Beginning in March 2021, the Ovarian Nomenclature Workshop's Follicle Classification Working Subgroup was organized by the Pediatric and Adolescent Gynecology program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. METHODS After the initial workshop held in May 2021, a Follicle Working Subgroup comprised of experts in reproductive endocrinology and ovarian biology held multiple meetings to develop the human follicle classification system and reported to the collective group during two follow up workshops. RESULTS The Follicle Working Subgroup recommends consolidation and expansion of the current classification systems to include six stages of normal preantral follicles, five stages of normal antral follicles, as well as categories of corpus lutea, abnormal preantral follicles, abnormal antral follicles, and other distinct follicle types. The new preantral staging added intermediate stages (primordial, transitional primordial, primary, transitional primary, secondary, and multilayer ovarian follicles). The antral follicle staging includes early, preselection, selection, dominance, and preovulatory follicles. Abnormal preantral follicles include those with an abnormal oocyte, granulosa cells, or both. We suggest a uniform way of calculating the mean follicle density in the number of follicles/mm2. CONCLUSION To establish a consensus in human ovarian follicle terminology, the Ovarian Follicle Working Subgroup of the National Institute of Child Health and Human Development Ovarian Nomenclature Workshop standardized follicle staging nomenclature and follicle density calculating systems so consistent common language can be used among ovarian biology researchers and clinicians.
Collapse
Affiliation(s)
- Jacqueline C Yano Maher
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| | - Mary B Zelinski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Kutluk H Oktay
- Laboratory of Molecular Reproduction and Fertility Preservation, Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, Connecticut
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - James H Segars
- Division of Reproductive Science and Women's Health Research, Johns Hopkins University, Baltimore, Maryland
| | - Marla E Lujan
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York
| | - Hong Lou
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Bo Hyon Yun
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sarina N Hanfling
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Lauren E Schwartz
- Division of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monica M Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Endocrinology, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lisa M Halvorson
- Gynecologic Health and Disease Branch, Division of Extramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Kathleen E O'Neill
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Veronica Gomez-Lobo
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
McDowell H, Vieco-Martí I, VanZanten M, Pant S, Kubo H, Saunders DC, Laronda MM, Granados-Aparici S. Digital analysis of ovarian tissue: generating a standardized method of follicle analysis†. Biol Reprod 2025; 112:416-419. [PMID: 39903671 PMCID: PMC11911554 DOI: 10.1093/biolre/ioaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Affiliation(s)
- Hannah McDowell
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isaac Vieco-Martí
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Maya VanZanten
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shravya Pant
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hana Kubo
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Diane C Saunders
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Monica M Laronda
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sofía Granados-Aparici
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
K N, P J, Nalla SV, Dubey I, Kushwaha S. Arsenic-Induced Thyroid Hormonal Alterations and Their Putative Influence on Ovarian Follicles in Balb/c Mice. Biol Trace Elem Res 2024; 202:4087-4100. [PMID: 38093019 DOI: 10.1007/s12011-023-03988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 07/18/2024]
Abstract
Thyroid issues are common among women in their reproductive years, and women with thyroid dysfunction often encounter challenges with fertility. Arsenic is known for its toxic effects on the thyroid and ovaries, investigated independently. However, there is no known study directly or indirectly addressing the association between arsenic, thyroid function, and ovarian reserve. This study aims to investigate the effect of arsenic on thyroid function and its possible implications on ovarian follicular reserve. Female Balb/c mice were given sodium arsenite (0.2 ppm, 2 ppm, and 20 ppm) via drinking water for 30 days. Findings showed that arsenic decreased thyroid hormone levels (fT3 and fT4) while increasing TSH levels, which might have led to elevated levels of FSH and LH. Furthermore, arsenic treatment not only decreased thyroid follicle sizes but also altered the ovarian follicular count. The finding demonstrates that arsenic significantly reduced the expression of LAMP1, a lysosomal marker protein. This reduction leads to increased lysosomal permeability in the thyroid, resulting in a significant release of cathepsin B. These changes led to hypothyroidism, which might indirectly affect the ovaries. Also, the elevated levels of growth differentiation factor-8 in arsenic-treated ovaries indicate impaired folliculogenesis and ovulation. Furthermore, arsenic significantly increased the expressions of pAkt and pFoxo3a, implying that arsenic accelerated the activation of the primordial follicular pools. In conclusion, arsenic disrupts lysosomal stabilization, potentially leading to a decline in circulating fT3 and fT4 levels. This disturbance could, in turn, affect the estrous cycle and may alter the pattern of follicular development.
Collapse
Affiliation(s)
- Nandheeswari K
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Jayapradha P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Sree Vaishnavi Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
5
|
Alkali IM, Colombo M, De Iorio T, Piotrowska A, Rodak O, Kulus MJ, Niżański W, Dziegiel P, Luvoni GC. Vitrification of feline ovarian tissue: Comparison of protocols based on equilibration time and temperature. Theriogenology 2024; 224:163-173. [PMID: 38776704 DOI: 10.1016/j.theriogenology.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Global contraction of biodiversity pushed most members of Felidae into threatened or endangered list except the domestic cat (Felis catus) thence preferred as the best model for conservation studies. One of the emerging conservation strategies is vitrification of ovarian tissue which is field-friendly but not yet standardized. Thus, our main goal was to establish a suitable vitrification protocol for feline ovarian tissue in field condition. Feline ovarian tissue fragments were punched with biopsy punch (1.5 mm diameter) and divided into 4 groups. Group 1 was fresh control (Fr), while the other three were exposed to 3 vitrification protocols (VIT_CT, VIT_RT1 and VIT_RT2). VIT_CT involved two step equilibrations in solutions containing dimethyl sulfoxide (DMSO) and ethylene glycol (EG) for 10 min each at 4 °C. VIT_RT1 involved three step equilibration in solutions containing DMSO, EG, polyvinylpyrrolidone and sucrose for 14 min in total at room temperature, while in VIT_RT2 all conditions remained the same as in VIT_RT1 except equilibration timing which was reduced by half. After vitrification and warming, fragments were morphologically evaluated and then cultured for six days. Subsequently, follicular morphology, cellular proliferation (expression of Ki-67, MCM-7) and apoptosis (expression of caspase-3) were evaluated, and data obtained were analysed using generalised linear mixed model and chi square tests. Proportions of intact follicles were higher in Fr (P = 0.0001) and VIT_RT2 (P = 0.0383) in comparison to the other protocols both post warming and after the six-day culture. Generally, most follicles remained at primordial state which was confirmed by the low expression of Ki-67, MCM-7 markers. In conclusion, VIT_RT2 protocol, which has lower equilibration time at room temperature has proven superior thus recommended for vitrification of feline ovarian tissue.
Collapse
Affiliation(s)
- Isa Mohammed Alkali
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Department of Theriogenology, University of Maiduguri, Maiduguri, Nigeria.
| | - Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| | - Teresina De Iorio
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Research Center "Zootechny and Aquaculture", Via Salaria, 31, 00015, Monterotondo, RM, Italy.
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Wrocław Medical University, ul. Chalubinskiego 6a, 50-368, Wrocław, Poland.
| | - Olga Rodak
- Department of Histology and Embryology, Wrocław Medical University, ul. Chalubinskiego 6a, 50-368, Wrocław, Poland.
| | - Michał Jerzy Kulus
- Division of Ultrastructural Research, Wroclaw Medical University, 50-368, Wrocław, Poland.
| | - Wojciech Niżański
- Department of Reproduction and Clinic for Farm Animals, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 49, 50-366, Wrocław, Poland.
| | - Piotr Dziegiel
- Department of Histology and Embryology, Wrocław Medical University, ul. Chalubinskiego 6a, 50-368, Wrocław, Poland.
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| |
Collapse
|
6
|
Alkali IM, Colombo M, Luvoni GC. Melatonin reduces oxidative stress and improves follicular morphology in feline (Felis catus) vitrified ovarian tissue. Theriogenology 2024; 224:58-67. [PMID: 38749260 DOI: 10.1016/j.theriogenology.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Ovarian tissue vitrification is associated with multiple events that promote accumulation of ROS (reactive oxygen species) which culminate in follicular apoptosis. Thus, this study was aimed at evaluating the role of melatonin in vitrification and culture of feline (Felis catus) ovarian tissue. In phase 1, domestic cat ovaries were fragmented into equal circular pieces of 1.5 mm diameter by 1 mm thickness and divided into four groups (fresh control and 3 treatments). The treatments were exposed to vitrification solutions supplemented with melatonin at 0 M, 10-9 M, and 10-7 M, then vitrified-warmed, histologically evaluated and assayed for ROS. Consequently, phase 2 experiment was designed wherein ovarian fragments were divided into two groups. One group was exposed to vitrification solution without melatonin and the other with 10-7 M melatonin supplementation, then vitrified-warmed and cultured for ten days with fresh ovarian fragments as control prior to assessment for histology, immunohistochemistry (Ki-67, MCM-7 and caspase-3) and ROS. Concentration of ROS was lower (p = 0.0009) in 10-7 M supplemented group in addition to higher proportion of grade 1 follicles. After culture, proportions of intact and activated follicles were higher (p < 0.05) in melatonin supplemented group evidenced by higher expression of Ki-67 and MCM-7. Follicular apoptosis was lower in melatonin supplemented group. In conclusion, melatonin at 10-7 M concentration preserved follicular morphological integrity while reducing ROS concentration in vitrified-warmed feline ovarian tissue. It has also promoted the follicular viability and activation with reduced apoptosis during in vitro culture of vitrified-warmed feline ovarian tissue.
Collapse
Affiliation(s)
- Isa Mohammed Alkali
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Department of Theriogenology, University of Maiduguri, Maiduguri, Nigeria.
| | - Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| |
Collapse
|
7
|
Tian P, Yang Z, Qu C, Qi X, Zhu L, Hao G, Zhang Y. Exploration of tissue fixation methods suitable for digital pathological studies of the testis. Eur J Med Res 2024; 29:319. [PMID: 38858777 PMCID: PMC11163764 DOI: 10.1186/s40001-024-01921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND The way of testicular tissue fixation directly affects the correlation and structural integrity between connective tissue and seminiferous tubules, which is essential for the study of male reproductive development. This study aimed to find the optimal fixative and fixation time to produce high-quality testicular histopathological sections, and provided a suitable foundation for in-depth study of male reproductive development with digital pathology technology. METHODS Testes were removed from both sides of 25 male C57BL/6 mice. Samples were fixed in three different fixatives, 10% neutral buffered formalin (10% NBF), modified Davidson's fluid (mDF), and Bouin's Fluid (BF), for 8, 12, and 24 h, respectively. Hematoxylin and eosin (H&E) staining, periodic acid Schiff-hematoxylin (PAS-h) staining, and immunohistochemistry (IHC) were used to evaluate the testicle morphology, staging of mouse seminiferous tubules, and protein preservation. Aperio ScanScope CS2 panoramic scanning was used to perform quantitative analyses. RESULTS H&E staining showed 10% NBF resulted in an approximately 15-17% reduction in the thickness of seminiferous epithelium. BF and mDF provided excellent results when staining acrosomes with PAS-h. IHC staining of synaptonemal complexes 3 (Sycp3) was superior in mDF compared to BF-fixed samples. Fixation in mDF and BF improved testis tissue morphology compared to 10% NBF. CONCLUSIONS Quantitative analysis showed that BF exhibited a very low IHC staining efficiency and revealed that mouse testes fixed for 12 h with mDF, exhibited morphological details, excellent efficiency of PAS-h staining for seminiferous tubule staging, and IHC results. In addition, the morphological damage of testis was prolonged with the duration of fixation time.
Collapse
Affiliation(s)
- Pengxiang Tian
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Changbao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Xin Qi
- Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017, China
| | - Linlin Zhu
- Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
| | - Yong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, 065001, Hebei, China.
| |
Collapse
|
8
|
Kandelouei T, Zhang W, Houghton M, Knudsen B, Edgar BA. Improved Preservation of Mouse Intestinal Tissue Using a Formalin/Acetic Acid Fixative and Quantitative Histological Analysis Using QuPath. Curr Protoc 2024; 4:e1062. [PMID: 38775005 PMCID: PMC11151780 DOI: 10.1002/cpz1.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The architecture and morphology of the intestinal tissue from mice or other small animals are difficult to preserve for histological and molecular analysis due to the fragile nature of this tissue. The intestinal mucosa consists of villi and crypts lined with epithelial cells. In between the epithelial folds extends the lamina propria, a loose connective tissue that contains blood and lymph vessels, fibroblasts, and immune cells. Underneath the mucosa are two layers of contractile smooth muscle and nerves. The tissue experiences significant changes during fixation, which can impair the reliability of histologic analysis. Poor-quality histologic sections are not suitable for quantitative image-based tissue analysis. This article offers a new fixative composed of neutral buffered formalin (NBF) and acetic acid, called FA. This fixative significantly improved the histology of mouse intestinal tissue compared to traditional NBF and enabled precise, reproducible histologic molecular analyses using QuPath software. Algorithmic training of QuPath allows for automated segmentation of intestinal compartments, which can be further interrogated for cellular composition and disease-related changes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Improved preservation of mouse intestinal tissue using a formalin/acetic acid fixative Support Protocol: Quantitative tissue analysis using QuPath.
Collapse
Affiliation(s)
- Tahmineh Kandelouei
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Wei Zhang
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Madeline Houghton
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Beatrice Knudsen
- Department of Pathology, Huntsman Cancer Institute, Institute of Scientific Computing and Imaging, University of Utah, Salt Lake City, UT, U.S.A
| | - Bruce A. Edgar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| |
Collapse
|
9
|
Borges MA, Curcio BR, Gastal GDA, Gheno L, Junior ASV, Corcini CD, Nogueira CEW, Aguiar FLN, Gastal EL. Ethanol, Carnoy, and paraformaldehyde as fixative solutions for histological evaluation of preantral follicles in equine ovarian tissue. Reprod Biol 2023; 23:100814. [PMID: 37890396 DOI: 10.1016/j.repbio.2023.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
The most adequate fixative solution for equine ovarian tissue is still to be determined as a tool to evaluate the improvement of methodological studies in assisted reproductive techniques and fertility preservation. This study aimed to evaluate a short-time ethanol 70% (ST-EtOH, 45 min) exposure as an alternative fixative compared with two classically fixatives [Carnoy's (CAR) solution and paraformaldehyde 4% (PFA)] at different fixation times (6 h, 12 h). The end points evaluated were morphology and classes of preantral follicles, follicular and stromal cell densities, and follicular and oocyte nuclear diameters in equine ovarian tissue. Ovaries (n = 6) from ovariectomized young mares were fragmented (3 × 3 × 1 mm; 20 fragments/ovary) and fixed in the tested treatments. Overall, a total of 11,661 preantral follicles were evaluated in 1444 histological slides. The ST-EtOH similarly preserved the preantral follicle morphometry and stromal cell density compared to the PFA fixative, regardless of the exposure time. Nonetheless, the CAR fixative solution had the greatest percentage of normal preantral follicles and the highest stromal cell density among all treatments. In conclusion, Carnoy's solution must be preferred compared with ST-EtOH and PFA fixatives for studies concerning the cellular morphology of equine ovarian tissue. Moreover, ST-EtOH fixative is a good alternative for equine ovarian tissue when a quick histological evaluation is required instead of more time-consuming and expensive techniques. Additional studies concerning the impact of different fixatives on the ultrastructure of cellular populations and their compatibility with IHC and molecular techniques in equine ovarian tissue are warranted.
Collapse
Affiliation(s)
- Morgana A Borges
- Department of Veterinary Clinics, College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Bruna R Curcio
- Department of Veterinary Clinics, College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Gustavo D A Gastal
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| | - Luiza Gheno
- Department of Veterinary Clinics, College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Antonio S Varela Junior
- Department of Comparative Animal Reproduction, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Carine D Corcini
- Department of Veterinary Clinics, College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Carlos E W Nogueira
- Department of Veterinary Clinics, College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Francisco L N Aguiar
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraiba, Sousa, PB, Brazil
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
10
|
Appeltant R, Hermes R, Holtze S, Modina SC, Galli C, Bjarkadottir BD, Adeniran BV, Wei X, Swegen A, Hildebrandt TB, Williams SA. The neonatal southern white rhinoceros ovary contains oogonia in germ cell nests. Commun Biol 2023; 6:1049. [PMID: 37848538 PMCID: PMC10582104 DOI: 10.1038/s42003-023-05256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/18/2023] [Indexed: 10/19/2023] Open
Abstract
The northern white rhinoceros is functionally extinct with only two females left. Establishing methods to culture ovarian tissues, follicles, and oocytes to generate eggs will support conservation efforts using in vitro embryo production. To the best of our knowledge, this is the first description of the structure and molecular signature of any rhinoceros, more specifically, we describe the neonatal and adult southern white rhinoceros (Ceratotherium simum simum) ovary; the closest relation of the northern white rhinoceros. Interestingly, all ovaries contain follicles despite advanced age. Analysis of the neonate reveals a population of cells molecularly characterised as mitotically active, pluripotent with germ cell properties. These results indicate that unusually, the neonatal ovary still contains oogonia in germ cell nests at birth, providing an opportunity for fertility preservation. Therefore, utilising ovaries from stillborn and adult rhinoceros can provide cells for advanced assisted reproductive technologies and investigating the neonatal ovaries of other endangered species is crucial for conservation.
Collapse
Affiliation(s)
- Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Robert Hermes
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 17, D-10315, Berlin, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 17, D-10315, Berlin, Germany
| | - Silvia Clotilde Modina
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Cesare Galli
- Avantea srl, Laboratory of Reproductive Technologies, Via Porcellasco 7/F, 26100, Cremona, Italy
- Fondazione Avantea, 26100, Cremona, Italy
| | - Briet D Bjarkadottir
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Babatomisin V Adeniran
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Xi Wei
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Thomas Bernd Hildebrandt
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
- Freie Universität Berlin, D-14195, Berlin, Germany
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
11
|
Hassan J, Knuus K, Lahtinen A, Rooda I, Otala M, Tuuri T, Gidlöf S, Edlund E, Menezes J, Malmros J, Byström P, Sundin M, Langenskiöld C, Vogt H, Frisk P, Petersen C, Damdimopoulou P, Jahnukainen K. Reference standards for follicular density in ovarian cortex from birth to sexual maturity. Reprod Biomed Online 2023; 47:103287. [PMID: 37603956 DOI: 10.1016/j.rbmo.2023.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023]
Abstract
RESEARCH QUESTION Are age-normalized reference values for human ovarian cortical follicular density adequate for tissue quality control in fertility preservation? DESIGN Published quantitative data on the number of follicles in samples without known ovarian pathology were converted into cortical densities to create reference values. Next, a sample cohort of 126 girls (age 1-24 years, mean ± SD 11 ± 6) with cancer, severe haematological disease or Turner syndrome were used to calculate Z-scores for cortical follicular density based on the reference values. RESULTS No difference was observed between Z-scores in samples from untreated patients (0.3 ± 3.5, n = 30) and patients treated with (0.5 ± 2.9, n = 48) and without (0.1 ± 1.3, n = 6) alkylating chemotherapy. Z-scores were not correlated with increasing cumulative exposure to cytostatics. Nevertheless, Z-scores in young treated patients (0-2 years -2.1 ± 3.1, n = 10, P = 0.04) were significantly lower than Z-scores in older treated patients (11-19 years, 2 ± 1.9, n = 15). Samples from patients with Turner syndrome differed significantly from samples from untreated patients (-5.2 ± 5.1, n = 24, P = 0.003), and a Z-score of -1.7 was identified as a cut-off showing good diagnostic value for identification of patients with Turner syndrome with reduced ovarian reserve. When this cut-off was applied to other patients, analysis showed that those with indications for reduced ovarian reserve (n = 15) were significantly younger (5.9 ± 4.2 versus 10.7 ± 5.9 years, P = 0.004) and, when untreated, more often had non-malignant haematologic diseases compared with those with normal ovarian reserve (n = 24, 100% versus 19%, P = 0.009). CONCLUSION Z-scores allow the estimation of genetic- and treatment-related effects on follicular density in cortical tissue from young patients stored for fertility preservation. Understanding the quality of cryopreserved tissue facilitates its use during patient counselling. More research is needed regarding the cytostatic effects found in this study.
Collapse
Affiliation(s)
- Jasmin Hassan
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Katri Knuus
- Department of Obstetrics and Gynaecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Atte Lahtinen
- Applied Tumour Genomics Research Programme, Faculty of Medicine, University of Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilmatar Rooda
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marjut Otala
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynaecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sebastian Gidlöf
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Erik Edlund
- Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Judith Menezes
- Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Malmros
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Petra Byström
- Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Karolinska Institutet, Stockholm, Sweden; Section of Paediatric Haematology, Immunology and HCT, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Sundin
- Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Karolinska Institutet, Stockholm, Sweden; Section of Paediatric Haematology, Immunology and HCT, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Langenskiöld
- Department of Paediatric Oncology, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hartmut Vogt
- Crown Princess Victoria's Child and Youth Hospital, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health, Linköping University, Linköping, Sweden
| | - Per Frisk
- Department of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Cecilia Petersen
- NORDFERTIL Research Lab Stockholm, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Kirsi Jahnukainen
- NORDFERTIL Research Lab Stockholm, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Children's Hospital, Paediatric Research Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Leukemia inhibitory factor's effect on the growth and survival of sheep's follicles of ovarian tissue during vitrification. Cell Tissue Bank 2023; 24:109-123. [PMID: 35780438 DOI: 10.1007/s10561-022-10018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
One of the experimental programs for fertility protection in women includes protective cryopreservation. Vitroficasion of ovarian tissue is one of the protective cryopreservation methods that use high concentrations of antifreeze and faster cooling. To reduce its complications, LIF (Leukemia inhibitory factor) was used as a pretreatment in this study. In this study, the ovaries were randomly divided into 8 groups. In NCN (without pretreatment and LIF in culture media), NCP (without pretreatment and with LIF in culture media), PCP (with pretreatment and LIF in culture media), and PCN (with pretreatment and without LIF in culture media) groups, vitrification and reversal were not performed. In the groups NVN (without pretreatment and LIF in culture media), NVP (without pretreatment and with LIF in culture media) PV, PVP (with pretreatment and LIF in culture media), and PVN (with pretreatment and without LIF in culture medium) groups, vitrification and tissue reversal were performed. All groups were cultured and histological, cellular, and molecular evaluations were performed. The results of the present study showed that LIF in the culture medium reduced the number of abnormal, primordial, primary, and secondary follicles, and DNA breakage compared to the group without LIF (P < 0.05) and increases the growth of follicles and expression of GDF9, BMP, AMH, KITLG genes (P < 0.05). The use of LIF pretreatment before vitrification and melting of sheep ovary tissue in its culture medium reduces the damage caused by it and increases the growth and development of ovarian follicles while maintaining their function.
Collapse
|
13
|
Bjarkadottir BD, Walker CA, Fatum M, Lane S, Williams SA. Analysing culture methods of frozen human ovarian tissue to improve follicle survival. REPRODUCTION AND FERTILITY 2022; 2:59-68. [PMID: 35128433 PMCID: PMC8812444 DOI: 10.1530/raf-20-0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
In vitro follicle growth is a potential fertility preservation method for patients for whom current methods are contraindicated. Currently, this method has only been successful using fresh ovarian tissue. Since many patients who may benefit from this treatment currently have cryopreserved ovarian tissue in storage, optimising in vitro follicle growth (IVG) for cryopreserved-thawed tissue is critical. This study sought to improve the first step of IVG by comparing different short-term culture systems for cryopreserved-thawed human ovarian tissue, in order to yield a higher number of healthy multilayer follicles. We compared two commonly used culture media (αMEM and McCoy’s 5A), and three plate conditions (300 µL, 1 mL on a polycarbonate membrane and 1 mL in a gas-permeable plate) on the health and development of follicles after 6 days of culture. A total of 5797 follicles from three post-pubertal patients (aged 21.3 ± 2.3 years) were analysed across six different culture conditions and non-cultured control. All culture systems supported follicle development and there was no difference in developmental progression between the different conditions tested. Differences in follicle morphology were evident with follicles cultured in low volume conditions having significantly greater odds of being graded as morphologically normal compared to other conditions. Furthermore, culture in a low volume of αMEM resulted in the highest proportion of morphologically normal primary and multilayer follicles (23.8% compared to 6.3-19.9% depending on condition). We, therefore, recommend culturing cryopreserved human ovarian tissue in a low volume of αMEM to support follicle health and development.
Collapse
Affiliation(s)
- Briet D Bjarkadottir
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Charlotte A Walker
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Muhammad Fatum
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK.,Department of Paediatric Oncology and Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sheila Lane
- Oxford Fertility, Institute of Reproductive Sciences, Oxford, UK
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
El Khoury R, Nagiah N, Mudloff JA, Thakur V, Chattopadhyay M, Joddar B. 3D Bioprinted Spheroidal Droplets for Engineering the Heterocellular Coupling between Cardiomyocytes and Cardiac Fibroblasts. CYBORG AND BIONIC SYSTEMS 2021; 2021:9864212. [PMID: 35795473 PMCID: PMC9254634 DOI: 10.34133/2021/9864212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Since conventional human cardiac two-dimensional (2D) cell culture and multilayered three-dimensional (3D) models fail in recapitulating cellular complexity and possess inferior translational capacity, we designed and developed a high-throughput scalable 3D bioprinted cardiac spheroidal droplet-organoid model with cardiomyocytes and cardiac fibroblasts that can be used for drug screening or regenerative engineering applications. This study helped establish the parameters for bioprinting and cross-linking a gelatin-alginate-based bioink into 3D spheroidal droplets. A flattened disk-like structure developed in prior studies from our laboratory was used as a control. The microstructural and mechanical stability of the 3D spheroidal droplets was assessed and was found to be ideal for a cardiac scaffold. Adult human cardiac fibroblasts and AC16 cardiomyocytes were mixed in the bioink and bioprinted. Live-dead assay and flow cytometry analysis revealed robust biocompatibility of the 3D spheroidal droplets that supported the growth and proliferation of the cardiac cells in the long-term cultures. Moreover, the heterocellular gap junctional coupling between the cardiomyocytes and cardiac fibroblasts further validated the 3D cardiac spheroidal droplet model.
Collapse
Affiliation(s)
- Raven El Khoury
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - Naveen Nagiah
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - Joel A. Mudloff
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| |
Collapse
|