1
|
Ayoub M, Chmouni YA, Damaa N, Eter A, Medawar H, Ghadieh HE, Bazzi S, Khattar ZA, Azar S, Harb F. Genetic and immunological regulation of gut Microbiota: The Roles of TLRs, CLRs, and key proteins in microbial homeostasis and disease. Gene 2025; 955:149469. [PMID: 40189163 DOI: 10.1016/j.gene.2025.149469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The gut microbiota plays a crucial role in human health, influencing metabolism, immune regulation, and neurological function. This review examines the genetic and immunological mechanisms governing microbiota composition, with a focus on key pattern recognition receptors, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and signaling proteins such as CARD9 and NOD2. We discuss how genetic polymorphisms in these receptors contribute to gut dysbiosis and disease susceptibility, particularly in inflammatory bowel disease (IBD) and neurodegenerative disorders like Parkinson's disease. Additionally, we explore emerging microbiota-targeted therapeutic strategies, including probiotics and precision medicine approaches. By synthesizing recent advancements, this review examines how genetic and immunological mechanisms regulate gut microbiota and influence disease susceptibility, emphasizing key therapeutic implications.
Collapse
Affiliation(s)
- Marylyn Ayoub
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Yara Abi Chmouni
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Norman Damaa
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Alaa Eter
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Hilmi Medawar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Ziad Abi Khattar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon.
| |
Collapse
|
2
|
Sharma B, Agriantonis G, Twelker K, Ebelle D, Kiernan S, Siddiqui M, Soni A, Cheerasarn S, Simon W, Jiang W, Cardona A, Chapelet J, Agathis AZ, Gamboa A, Dave J, Mestre J, Bhatia ND, Shaefee Z, Whittington J. Gut Microbiota Serves as a Crucial Independent Biomarker in Inflammatory Bowel Disease (IBD). Int J Mol Sci 2025; 26:2503. [PMID: 40141145 PMCID: PMC11942158 DOI: 10.3390/ijms26062503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD), ulcerative colitis (UC), and IBD unclassified (IBD-U), is a complex intestinal disorder influenced by genetic, environmental, and microbial factors. Recent evidence highlights the gut microbiota as a pivotal biomarker and modulator in IBD pathogenesis. Dysbiosis, characterized by reduced microbial diversity and altered composition, is a hallmark of IBD. A consistent decrease in anti-inflammatory bacteria, such as Faecalibacterium prausnitzii, and an increase in pro-inflammatory species, including Escherichia coli, have been observed. Metabolomic studies reveal decreased short-chain fatty acids (SCFAs) and secondary bile acids, critical for gut homeostasis, alongside elevated pro-inflammatory metabolites. The gut microbiota interacts with host immune pathways, influencing morphogens, glycosylation, and podoplanin (PDPN) expression. The disruption of glycosylation impairs mucosal barriers, while aberrant PDPN activity exacerbates inflammation. Additionally, microbial alterations contribute to oxidative stress, further destabilizing intestinal barriers. These molecular and cellular disruptions underscore the role of the microbiome in IBD pathophysiology. Emerging therapeutic strategies, including probiotics, prebiotics, and dietary interventions, aim to restore microbial balance and mitigate inflammation. Advanced studies on microbiota-targeted therapies reveal their potential to reduce disease severity and improve patient outcomes. Nevertheless, further research is needed to elucidate the bidirectional interactions between the gut microbiome and host immune responses and to translate these insights into clinical applications. This review consolidates current findings on the gut microbiota's role in IBD, emphasizing its diagnostic and therapeutic implications, and advocates for the continued exploration of microbiome-based interventions to combat this debilitating disease.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Danielle Ebelle
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Samantha Kiernan
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Maham Siddiqui
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Aditi Soni
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Sittha Cheerasarn
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Whenzdjyny Simon
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Winston Jiang
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Angie Cardona
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Jessica Chapelet
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Alexandra Z. Agathis
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Alejandro Gamboa
- Department of Medicine, Medical University of the Americas, Devens, MA 01434, USA;
| | - Jasmine Dave
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Zahra Shaefee
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| |
Collapse
|
3
|
Marik A, Biswas S, Banerjee ER. Exploring the relationship between gut microbial ecology and inflammatory disease: An insight into health and immune function. World J Immunol 2024; 14:96209. [DOI: 10.5411/wji.v14.i1.96209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
The immune system, host brain development, and general metabolism are all influenced by the gut bacteria. Bacteria make up the majority of the gut microbiota in mammals. The mouse has been the most often used animal model in preclinical biological research. In mice, Firmicutes and Clostridiales are prominent. On the other hand, Bacteroidaceae, Prevotellaceae, and Firmicutes are commonly found in humans. In this review, we performed a detailed study by focusing on a comparison between human and murine gut microbiomes, role of the microbiome and their secreted metabolites in regulating gut immunity to maintain homeostasis, and changes in the microbial composition in the dysbiotic state.
Collapse
Affiliation(s)
- Akashlina Marik
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Saheli Biswas
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Ena Ray Banerjee
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
4
|
Wen C, Chen D, Zhong R, Peng X. Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf) 2024; 12:goae021. [PMID: 38634007 PMCID: PMC11021814 DOI: 10.1093/gastro/goae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) research often relies on animal models to study the etiology, pathophysiology, and management of IBD. Among these models, rats and mice are frequently employed due to their practicality and genetic manipulability. However, for studies aiming to closely mimic human pathology, non-human primates such as monkeys and dogs offer valuable physiological parallels. Guinea pigs, while less commonly used, present unique advantages for investigating the intricate interplay between neurological and immunological factors in IBD. Additionally, New Zealand rabbits excel in endoscopic biopsy techniques, providing insights into mucosal inflammation and healing processes. Pigs, with their physiological similarities to humans, serve as ideal models for exploring the complex relationships between nutrition, metabolism, and immunity in IBD. Beyond mammals, non-mammalian organisms including zebrafish, Drosophila melanogaster, and nematodes offer specialized insights into specific aspects of IBD pathology, highlighting the diverse array of model systems available for advancing our understanding of this multifaceted disease. In this review, we conduct a thorough analysis of various animal models employed in IBD research, detailing their applications and essential experimental parameters. These include clinical observation, Disease Activity Index score, pathological assessment, intestinal barrier integrity, fibrosis, inflammatory markers, intestinal microbiome, and other critical parameters that are crucial for evaluating modeling success and drug efficacy in experimental mammalian studies. Overall, this review will serve as a valuable resource for researchers in the field of IBD, offering insights into the diverse array of animal models available and their respective applications in studying IBD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Dan Chen
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
5
|
Jia K, Shen J. Transcriptome-wide association studies associated with Crohn's disease: challenges and perspectives. Cell Biosci 2024; 14:29. [PMID: 38403629 PMCID: PMC10895848 DOI: 10.1186/s13578-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
Crohn's disease (CD) is regarded as a lifelong progressive disease affecting all segments of the intestinal tract and multiple organs. Based on genome-wide association studies (GWAS) and gene expression data, transcriptome-wide association studies (TWAS) can help identify susceptibility genes associated with pathogenesis and disease behavior. In this review, we overview seven reported TWASs of CD, summarize their study designs, and discuss the key methods and steps used in TWAS, which affect the prioritization of susceptibility genes. This article summarized the screening of tissue-specific susceptibility genes for CD, and discussed the reported potential pathological mechanisms of overlapping susceptibility genes related to CD in a certain tissue type. We observed that ileal lipid-related metabolism and colonic extracellular vesicles may be involved in the pathogenesis of CD by performing GO pathway enrichment analysis for susceptibility genes. We further pointed the low reproducibility of TWAS associated with CD and discussed the reasons for these issues, strategies for solving them. In the future, more TWAS are needed to be designed into large-scale, unified cohorts, unified analysis pipelines, and fully classified databases of expression trait loci.
Collapse
Affiliation(s)
- Keyu Jia
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China
| | - Jun Shen
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China.
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Research Center, Ren Ji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China.
- NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Vestergaard MV, Allin KH, Eriksen C, Zakerska-Banaszak O, Arasaradnam RP, Alam MT, Kristiansen K, Brix S, Jess T. Gut microbiota signatures in inflammatory bowel disease. United European Gastroenterol J 2024; 12:22-33. [PMID: 38041519 PMCID: PMC10859715 DOI: 10.1002/ueg2.12485] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), affect millions of people worldwide with increasing incidence. OBJECTIVES Several studies have shown a link between gut microbiota composition and IBD, but results are often limited by small sample sizes. We aimed to re-analyze publicly available fecal microbiota data from IBD patients. METHODS We extracted original fecal 16S rRNA amplicon sequencing data from 45 cohorts of IBD patients and healthy individuals using the BioProject database at the National Center for Biotechnology Information. Unlike previous meta-analyses, we merged all study cohorts into a single dataset, including sex, age, geography, and disease information, based on which microbiota signatures were analyzed, while accounting for varying technical platforms. RESULTS Among 2518 individuals in the combined dataset, we discovered a hitherto unseen number of genera associated with IBD. A total of 77 genera associated with CD, of which 38 were novel associations, and a total of 64 genera associated with UC, of which 28 represented novel associations. Signatures were robust across different technical platforms and geographic locations. Reduced alpha diversity in IBD compared to healthy individuals, in CD compared to UC, and altered microbiota composition (beta diversity) in UC and especially in CD as compared to healthy individuals were found. CONCLUSIONS Combining original microbiota data from 45 cohorts, we identified a hitherto unseen large number of genera associated with IBD. Identification of microbiota features robustly associated with CD and UC may pave the way for the identification of new treatment targets.
Collapse
Affiliation(s)
- Marie Vibeke Vestergaard
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Carsten Eriksen
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Ramesh P Arasaradnam
- Warwick Medical School & Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mohammad T Alam
- Warwick Medical School & Cancer Research Centre, University of Leicester, Leicester, UK
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Karsten Kristiansen
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Brix
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
7
|
Ignatyeva O, Tolyneva D, Kovalyov A, Matkava L, Terekhov M, Kashtanova D, Zagainova A, Ivanov M, Yudin V, Makarov V, Keskinov A, Kraevoy S, Yudin S. Christensenella minuta, a new candidate next-generation probiotic: current evidence and future trajectories. Front Microbiol 2024; 14:1241259. [PMID: 38274765 PMCID: PMC10808311 DOI: 10.3389/fmicb.2023.1241259] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background As the field of probiotic research continues to expand, new beneficial strains are being discovered. The Christensenellaceae family and its newly described member, Christensenella minuta, have been shown to offer great health benefits. We aimed to extensively review the existing literature on these microorganisms to highlight the advantages of their use as probiotics and address some of the most challenging aspects of their commercial production and potential solutions. Methods We applied a simple search algorithm using the key words "Christensenellaceae" and "Christensenella minuta" to find all articles reporting the biotherapeutic effects of these microorganisms. Only articles reporting evidence-based results were reviewed. Results The review showed that Christensenella minuta has demonstrated numerous beneficial properties and a wider range of uses than previously thought. Moreover, it has been shown to be oxygen-tolerant, which is an immense advantage in the manufacturing and production of Christensenella minuta-based biotherapeutics. The results suggest that Christensenellaceae and Christensenella munita specifically can play a crucial role in maintaining a healthy gut microbiome. Furthermore, Christensenellaceae have been associated with weight management. Preliminary studies suggest that this probiotic strain could have a positive impact on metabolic disorders like diabetes and obesity, as well as inflammatory bowel disease. Conclusion Christensenellaceae and Christensenella munita specifically offer immense health benefits and could be used in the management and therapy of a wide range of health conditions. In addition to the impressive biotherapeutic effect, Christensenella munita is oxygen-tolerant, which facilitates commercial production and storage.
Collapse
Affiliation(s)
- Olga Ignatyeva
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Biomedical Agency, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kato M, Yamaguchi M, Ooka A, Takahashi R, Suzuki T, Onoda K, Yoshikawa Y, Tsunematsu Y, Sato M, Yoshioka Y, Igarashi M, Hayakawa S, Shoji K, Shoji Y, Ishikawa T, Watanabe K, Miyoshi N. Non-target GC-MS analyses of fecal VOCs in NASH-hepatocellular carcinoma model STAM mice. Sci Rep 2023; 13:8924. [PMID: 37264108 DOI: 10.1038/s41598-023-36091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/29/2023] [Indexed: 06/03/2023] Open
Abstract
The increased incidence of obesity in the global population has increased the risk of several chronic inflammation-related diseases, including non-alcoholic steatohepatitis (NASH)-hepatocellular carcinoma (HCC). The progression from NASH to HCC involves a virus-independent liver carcinogenic mechanism; however, we currently lack effective treatment and prevention strategies. Several reports have suggested that fecal volatile organic compounds (VOCs) are strongly associated with NASH-HCC; therefore, we explored the biomarkers involved in its pathogenesis and progression. Fecal samples collected from control and NASH-HCC model STAM mice were subjected to headspace autosampler gas chromatography-electron ionization-mass spectrometry. Non-target profiling analysis identified diacetyl (2,3-butandione) as a fecal VOC that characterizes STAM mice. Although fecal diacetyl levels were correlated with the HCC in STAM mice, diacetyl is known as a cytotoxic/tissue-damaging compound rather than genotoxic or mutagenic; therefore, we examined the effect of bioactivity associated with NASH progression. We observed that diacetyl induced several pro-inflammatory molecules, including tumor necrosis factor-α, cyclooxygenase-2, monocyte chemoattractant protein-1, and transforming growth factor-β, in mouse macrophage RAW264.7 and Kupffer KPU5 cells. Additionally, we observed that diacetyl induced α-smooth muscle actin, one of the hallmarks of fibrosis, in an ex vivo cultured hepatic section, but not in in vitro hepatic stellate TWNT-1 cells. These results suggest that diacetyl would be a potential biomarker of fecal VOC in STAM mice, and its ability to trigger the macrophage-derived inflammation and fibrosis may partly contribute to NASH-HCC carcinogenesis.
Collapse
Affiliation(s)
- Mai Kato
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Momoka Yamaguchi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Akira Ooka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Ryota Takahashi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Keita Onoda
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Yuko Yoshikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
- School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuta Tsunematsu
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Michio Sato
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Yasukiyo Yoshioka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Miki Igarashi
- Advanced Clinical Research Center, Institute of Neurological Disorders, Kawasaki, Kanagawa, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kumiko Shoji
- Basic Nutrition, Kagawa Nutrition University, Saitama, Japan
| | - Yutaka Shoji
- Department of Food Science and Nutrition, Shizuoka Eiwa Gakuin University Junior College, Shizuoka, Japan
| | - Tomohisa Ishikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Kenji Watanabe
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan.
| |
Collapse
|
9
|
Mu C, Zhao Q, Zhao Q, Yang L, Pang X, Liu T, Li X, Wang B, Fung SY, Cao H. Multi-omics in Crohn's disease: New insights from inside. Comput Struct Biotechnol J 2023; 21:3054-3072. [PMID: 37273853 PMCID: PMC10238466 DOI: 10.1016/j.csbj.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.
Collapse
Affiliation(s)
- Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaomeng Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shan-Yu Fung
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
10
|
Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes (Basel) 2022; 13:genes13122388. [PMID: 36553655 PMCID: PMC9778199 DOI: 10.3390/genes13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood. Many studies point to the presence of genetic, immunological, environmental, and microbiological factors and the interactions between them in the occurrence of IBD. The review looks at genetic factors in the context of both IBD predisposition and pharmacogenetics.
Collapse
|
11
|
Dietary Supplementation with Black Raspberries Altered the Gut Microbiome Composition in a Mouse Model of Colitis-Associated Colorectal Cancer, although with Differing Effects for a Healthy versus a Western Basal Diet. Nutrients 2022; 14:nu14245270. [PMID: 36558431 PMCID: PMC9786988 DOI: 10.3390/nu14245270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Black raspberries (BRB) are rich in anthocyanins with purported anti-inflammatory properties. However, it is not known whether dietary supplementation would ameliorate Western-diet enhanced gut inflammation and colon tumorigenesis. We employed a mouse model of colitis-associated colorectal cancer (CAC) to determine the effects of dietary supplementation with 5 to 10% (w/w) whole, freeze-dried BRB in male C57BL/6J mice fed either a standard healthy diet (AIN93G) or the total Western diet (TWD). In a pilot study, BRB suppressed colitis and colon tumorigenesis while also shifting the composition of the fecal microbiome in favor of taxa with purported health benefits, including Bifidobacterium pseudolongum. In a follow-up experiment using a 2 × 2 factorial design with AIN and TWD basal diets with and without 10% (w/w) BRB, supplementation with BRB reduced tumor multiplicity and increased colon length, irrespective of the basal diet, but it did not apparently affect colitis symptoms, colon inflammation or mucosal injury based on histopathological findings. However, BRB intake increased alpha diversity, altered beta diversity and changed the relative abundance of Erysipelotrichaceae, Bifidobacteriaceae, Streptococcaceae, Rikenellaceae, Ruminococcaceae and Akkermansiaceae, among others, of the fecal microbiome. Notably, changes in microbiome profiles were inconsistent with respect to the basal diet consumed. Overall, these studies provide equivocal evidence for in vivo anti-inflammatory effects of BRB on colitis and colon tumorigenesis; yet, BRB supplementation led to dynamic changes in the fecal microbiome composition over the course of disease development.
Collapse
|
12
|
Bucheli JEV, Todorov SD, Holzapfel WH. Role of gastrointestinal microbial populations, a terra incognita of the human body in the management of intestinal bowel disease and metabolic disorders. Benef Microbes 2022; 13:295-318. [PMID: 35866598 DOI: 10.3920/bm2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal bowel disease (IBD) is a chronic immune-mediated clinical condition that affects the gastrointestinal tract and is mediated by an inflammatory response. Although it has been extensively studied, the multifactorial aetiology of this disorder makes it difficult to fully understand all the involved mechanisms in its development and therefore its treatment. In recent years, the fundamental role played by the human microbiota in the pathogenesis of IBD has been emphasised. Microbial imbalances in the gut bacterial communities and a lower species diversity in patients suffering from inflammatory gastrointestinal disorders compared to healthy individuals have been reported as principal factors in the development of IBD. These served to support scientific arguments for the use of probiotic microorganisms in alternative approaches for the prevention and treatment of IBD. In a homeostatic environment, the presence of bacteria (including probiotics) on the intestinal epithelial surface activates a cascade of processes by which immune responses inhibited and thereby commensal organisms maintained. At the same time these processes may support activities against specific pathogenic bacteria. In dysbiosis, these underlying mechanisms will serve to provoke a proinflammatory response, that, in combination with the use of antibiotics and the genetic predisposition of the host, will culminate in the development of IBD. In this review, we summarised the main causes of IBD, the physiological mechanisms involved and the related bacterial groups most frequently associated with these processes. The intention was to enable a better understanding of the interaction between the intestinal microbiota and the host, and to suggest possibilities by which this knowledge can be useful for the development of new therapeutic treatments.
Collapse
Affiliation(s)
- J E Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - W H Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| |
Collapse
|
13
|
Čipčić Paljetak H, Barešić A, Panek M, Perić M, Matijašić M, Lojkić I, Barišić A, Vranešić Bender D, Ljubas Kelečić D, Brinar M, Kalauz M, Miličević M, Grgić D, Turk N, Karas I, Čuković-Čavka S, Krznarić Ž, Verbanac D. Gut microbiota in mucosa and feces of newly diagnosed, treatment-naïve adult inflammatory bowel disease and irritable bowel syndrome patients. Gut Microbes 2022; 14:2083419. [PMID: 35695669 PMCID: PMC9196785 DOI: 10.1080/19490976.2022.2083419] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The knowledge on how gut microbes contribute to the inflammatory bowel disease (IBD) at the onset of disease is still scarce. We compared gut microbiota in newly diagnosed, treatment-naïve adult IBD (Crohn's disease (CD) and ulcerative colitis (UC)) to irritable bowel syndrome (IBS) patients and healthy group. Mucosal and fecal microbiota of 49 patients (13 UC, 10 CD, and 26 IBS) before treatment initiation, and fecal microbiota of 12 healthy subjects was characterized by 16S rRNA gene sequencing. Mucosa was sampled at six positions, from terminal ileum to rectum. We demonstrate that mucosal microbiota is spatially homogeneous, cannot be differentiated based on the local inflammation status and yet provides bacterial footprints superior to fecal in discriminating disease phenotypes. IBD groups showed decreased bacterial diversity in mucosa at all taxonomic levels compared to IBS. In CD and UC, Dialister was significantly increased, and expansion of Haemophilus and Propionibacterium characterized UC. Compared to healthy individuals, fecal microbiota of IBD and IBS patients had increased abundance of Proteobacteria, Enterobacteriaceae, in particular. Shift toward reduction of Adlercreutzia and butyrate-producing taxa was found in feces of IBD patients. Microbiota alterations detected in newly diagnosed treatment-naïve adult patients indicate that the microbiota changes are set and detectable at the disease onset and likely have a discerning role in IBD pathophysiology. Our results justify further investigation of the taxa discriminating between disease groups, such as H. parainfluenzae, R. gnavus, Turicibacteriaceae, Dialister, and Adlercreutzia as potential biomarkers of the disease.
Collapse
Affiliation(s)
- Hana Čipčić Paljetak
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia,CONTACT Hana Čipčić Paljetak Center for Translational and Clinical Research, University of Zagreb School of Medicine, Šalata 2, Zagreb10000, Croatia
| | - Anja Barešić
- Division of Electronics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marina Panek
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Mihaela Perić
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Mario Matijašić
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivana Lojkić
- Department for Virology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Ana Barišić
- Department of Internal Medicine, Unit of Clinical Nutrition, University Hospital Centre Zagreb, Zagreb, Croatia,University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darija Vranešić Bender
- Department of Internal Medicine, Unit of Clinical Nutrition, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Dina Ljubas Kelečić
- Department of Internal Medicine, Unit of Clinical Nutrition, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marko Brinar
- University of Zagreb School of Medicine, Zagreb, Croatia,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mirjana Kalauz
- University of Zagreb School of Medicine, Zagreb, Croatia,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Miličević
- University of Zagreb School of Medicine, Zagreb, Croatia,Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb, Croatia
| | - Dora Grgić
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nikša Turk
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Irena Karas
- Department of Internal Medicine, Unit of Clinical Nutrition, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Silvija Čuković-Čavka
- University of Zagreb School of Medicine, Zagreb, Croatia,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Željko Krznarić
- Department of Internal Medicine, Unit of Clinical Nutrition, University Hospital Centre Zagreb, Zagreb, Croatia,University of Zagreb School of Medicine, Zagreb, Croatia,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Donatella Verbanac
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
14
|
Fox BE, Vilander A, Abdo Z, Dean GA. NOD2 signaling in CD11c + cells is critical for humoral immune responses during oral vaccination and maintaining the gut microbiome. Sci Rep 2022; 12:8491. [PMID: 35589853 PMCID: PMC9119386 DOI: 10.1038/s41598-022-12469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nucleotide-binding oligomerization domain containing 2 (NOD2) is a critical regulator of immune responses within the gastrointestinal tract. This innate immune receptor is expressed by several cell types, including both hematopoietic and nonhematopoietic cells within the gastrointestinal tract. Vaccination targeting the gastrointestinal mucosal immune system is especially difficult due to both physical and mechanistic barriers to reaching inductive sites. The use of lactic acid bacteria is appealing due to their ability to persist within harsh conditions, expression of selected adjuvants, and manufacturing advantages. Recombinant Lactobacillus acidophilus (rLA) has shown great promise in activating the mucosal immune response with minimal impacts on the resident microbiome. To better classify the kinetics of mucosal vaccination with rLA, we utilized mice harboring knockouts of NOD2 expression specifically within CD11c + cells. The results presented here show that NOD2 signaling in CD11c + cells is necessary for mounting a humoral immune response against exogenous antigens expressed by rLA. Additionally, disruption of NOD2 signaling in these cells results in an altered bacterial microbiome profile in both control mice and mice receiving L. acidophilus strain NCK1895 and vaccine strain LaOVA.
Collapse
Affiliation(s)
- B E Fox
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - A Vilander
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Z Abdo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - G A Dean
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
15
|
Selection of a novel strain of Christensenella minuta as a future biotherapy for Crohn’s disease. Sci Rep 2022; 12:6017. [PMID: 35411016 PMCID: PMC9001714 DOI: 10.1038/s41598-022-10015-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Microbiome-based therapies for inflammatory bowel diseases offer a novel and promising therapeutic approach. The human commensal bacteria of the species Christensenella minuta (C. minuta) have been reported consistently missing in patients affected by Crohn’s disease (CD) and have been documented to induce anti-inflammatory effects in human epithelial cells, supporting their potential as a novel biotherapy. This work aimed at selecting the most promising strain of C. minuta for future development as a clinical candidate for CD therapy. Here, we describe a complete screening process combining in vitro and in vivo assays to conduct a rational selection of a live strain of C. minuta with strong immunomodulatory properties. Starting from a collection of 32 strains, a panel of in vitro screening assays was used to narrow it down to five preclinical candidates that were further screened in vivo in an acute TNBS-induced rat colitis model. The most promising candidate was validated in vivo in two mouse models of colitis. The validated clinical candidate strain, C. minuta DSM 33715, was then fully characterized. Hence, applying a rationally designed screening algorithm, a novel strain of C. minuta was successfully identified as the most promising clinical candidate for CD.
Collapse
|
16
|
Wang L, Wang Y, Zhang P, Song C, Pan F, Li G, Peng L, Yang Y, Wei Z, Huang F. Gut microbiota changes in patients with spondyloarthritis: A systematic review. Semin Arthritis Rheum 2021; 52:151925. [PMID: 34844732 DOI: 10.1016/j.semarthrit.2021.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Gut microbiota has been proposed as a pivotal role in the progression of Spondyloarthritis (SpA), however diverse results remain to be synthesized. We performed a systematic review to collect evidence on the characteristic of the gut microbiota in patients with SpA, as compared to controls. METHODS We systematically searched MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials databases, through June 1, 2021 for studies that compared gut microbiota of cases with SpA versus healthy controls. RESULTS Of 3756 records identified, 28 studies from 23 articles were included in the analysis. Results of β-diversity showed SpA patients hold a significantly different microbial composition compared with controls. Several taxa-level differences of gut microbiota between SpA (and its subtypes) cases and controls were identified. Fourteen studies including only patients with ankylosing spondylitis (AS) reported increased amounts of Actinobacteria, Dialister, Streptococcus, and Clostridium bolteae, and decreased amounts of Bacteroidales and Parasutterella in AS cases versus controls in ≥ 3 studies. Dialister invisus was increased in axial-SpA cases versus controls in 3 studies. Bacteroides fragilis was increased in enthesitis-related arthritis (ERA) cases versus controls in 2 studies. For all SpA studies, Proteobacteria, Enterobacteriaceae, and Bacteroidaceae were increased, whereas Bacteroidetes, Bacteroidales, and Akkermansia were decreased in cases versus controls in ≥ 3 studies. Over 40% of the studies showed comparable data of both sex and age between cases and controls. CONCLUSION The microbial characteristics of SpA summarized in the systematic review laid the groundwork for evidence-based microbial treatment. The microbial variance among subtypes of SpA remains to be explored. Further studies are needed to elucidate how the altered microbiota participate in the pathogenesis of SpA.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Pei Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Chuan Song
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Fei Pan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Gang Li
- Health Service Department of the Guard Bureau of the Joint Staff Department, Beijing, China
| | - Lihua Peng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhimin Wei
- Health Service Department of the Guard Bureau of the Joint Staff Department, Beijing, China.
| | - Feng Huang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
17
|
Wahida A, Müller M, Hiergeist A, Popper B, Steiger K, Branca C, Tschurtschenthaler M, Engleitner T, Donakonda S, De Coninck J, Öllinger R, Pfautsch MK, Müller N, Silva M, Usluer S, Thiele Orberg E, Böttcher JP, Pfarr N, Anton M, Slotta-Huspenina JB, Nerlich AG, Madl T, Basic M, Bleich A, Berx G, Ruland J, Knolle PA, Rad R, Adolph TE, Vandenabeele P, Kanegane H, Gessner A, Jost PJ, Yabal M. XIAP restrains TNF-driven intestinal inflammation and dysbiosis by promoting innate immune responses of Paneth and dendritic cells. Sci Immunol 2021; 6:eabf7235. [PMID: 34739338 DOI: 10.1126/sciimmunol.abf7235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deficiency in X-linked inhibitor of apoptosis protein (XIAP) is the cause for X-linked lymphoproliferative syndrome 2 (XLP2). About one-third of these patients suffer from severe and therapy-refractory inflammatory bowel disease (IBD), but the exact cause of this pathogenesis remains undefined. Here, we used XIAP-deficient mice to characterize the mechanisms underlying intestinal inflammation. In Xiap−/− mice, we observed spontaneous terminal ileitis and microbial dysbiosis characterized by a reduction of Clostridia species. We showed that in inflamed mice, both TNF receptor 1 and 2 (TNFR1/2) cooperated in promoting ileitis by targeting TLR5-expressing Paneth cells (PCs) or dendritic cells (DCs). Using intestinal organoids and in vivo modeling, we demonstrated that TLR5 signaling triggered TNF production, which induced PC dysfunction mediated by TNFR1. TNFR2 acted upon lamina propria immune cells. scRNA-seq identified a DC population expressing TLR5, in which Tnfr2 expression was also elevated. Thus, the combined activity of TLR5 and TNFR2 signaling may be responsible for DC loss in lamina propria of Xiap−/− mice. Consequently, both Tnfr1−/−Xiap−/− and Tnfr2−/−Xiap−/− mice were rescued from dysbiosis and intestinal inflammation. Furthermore, RNA-seq of ileal crypts revealed that in inflamed Xiap−/− mice, TLR5 signaling was abrogated, linking aberrant TNF responses with the development of a dysbiosis. Evidence for TNFR2 signaling driving intestinal inflammation was detected in XLP2 patient samples. Together, these data point toward a key role of XIAP in mediating resilience of TLR5-expressing PCs and intestinal DCs, allowing them to maintain tissue integrity and microbiota homeostasis.
Collapse
MESH Headings
- Animals
- Dendritic Cells/immunology
- Dysbiosis/immunology
- Humans
- Immunity, Innate/immunology
- Inflammation/immunology
- Intestines/immunology
- Mice
- Mice, Knockout
- Paneth Cells/immunology
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Toll-Like Receptor 5/immunology
- X-Linked Inhibitor of Apoptosis Protein/deficiency
- X-Linked Inhibitor of Apoptosis Protein/immunology
Collapse
Affiliation(s)
- Adam Wahida
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
| | - Madeleine Müller
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Katja Steiger
- Institute of Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology and Digital Pathology, Institute for Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany
| | - Caterina Branca
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
| | - Markus Tschurtschenthaler
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Jordy De Coninck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Rupert Öllinger
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Marie K Pfautsch
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Nicole Müller
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Miguel Silva
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Erik Thiele Orberg
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany
| | - Martina Anton
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia B Slotta-Huspenina
- Institute of Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany
| | - Andreas G Nerlich
- Institute of Pathology, Academic Clinic Munich-Bogenhausen, Munich, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Jürgen Ruland
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Roland Rad
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Timon E Adolph
- Department of Internal Medicine I for Gastroenterology, Hepatology, and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-Center for Inflammation Research (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Philipp J Jost
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Monica Yabal
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Takada R, Watanabe T, Hara A, Sekai I, Kurimoto M, Otsuka Y, Masuta Y, Yoshikawa T, Kamata K, Minaga K, Kudo M. NOD2 deficiency protects mice from the development of adoptive transfer colitis through the induction of regulatory T cells expressing forkhead box P3. Biochem Biophys Res Commun 2021; 568:55-61. [PMID: 34186435 DOI: 10.1016/j.bbrc.2021.06.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular receptor for muramyl dipeptide derived from the intestinal microbiota. Loss-of-function mutations in Nod2 are associated with the development of Crohn's disease, suggesting that NOD2 signaling plays critical roles in the maintenance of intestinal immune homeostasis. Although NOD2 activation prevents the development of short-term experimental colitis, it remains unknown whether the sensitivity to long-term experimental colitis is influenced by NOD2. In this study, we explored the roles played by NOD2 in the development of long-term adoptive transfer colitis. Unexpectedly, we found that Rag1-/-Nod2-/- mice were more resistant to adoptive transfer colitis than Rag1-/- mice and had reduced proinflammatory cytokine responses and enhanced accumulation of regulatory T cells (Tregs) expressing forkhead box P3 in the colonic mucosa. Prevention of colitis in Rag1-/-Nod2-/- mice was mediated by TGF-β1 because neutralization of TGF-β1 resulted in the development of more severe colitis due to reduced accumulation of Tregs. Such paradoxical Treg responses in the absence of NOD2 could explain why Nod2 mutations in humans are not sufficient to cause Crohn's disease.
Collapse
Affiliation(s)
- Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan.
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
19
|
Gene Polymorphisms of NOD2, IL23R, PTPN2 and ATG16L1 in Patients with Crohn's Disease: On the Way to Personalized Medicine? Genes (Basel) 2021; 12:genes12060866. [PMID: 34198814 PMCID: PMC8227795 DOI: 10.3390/genes12060866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 01/14/2023] Open
Abstract
Genetic and environmental factors are involved in the pathogenesis of inflammatory bowel diseases (IBD). The study aimed at investigating the potential influence of single nucleotide polymorphisms (SNPs) NOD2 rs2066844, NOD2 rs2066845, NOD2 rs2066847, IL23R rs11209026, PTPN2 rs2542151, PTPN2 rs7234029, and ATG16L1 rs2241880 on the response to immunomodulatory therapies and disease course in Crohn’s disease (CD). This is an uncontrolled retrospective monocentric study including patients from the IBD outpatient clinic of Heidelberg University Hospital. Therapy responses and disease courses were related to genetic findings. 379 patients with CD were included. The presence of at least one PTPN2 rs7234029 risk allele was associated with nonresponse to anti-interleukin-12/23 treatment (89.9% vs. 67.6%, p = 0.005). The NOD2 rs2066844 risk allele was associated with a first-degree family history of colon cancer (12.7% vs. 4.7%, p = 0.02), the ATG16L1 rs2241880 risk allele with ileal CD manifestation (p = 0.027), and the IL23R rs11209026 risk allele with a higher rate of CD-related surgeries per disease year (0.08 vs. 0.02, p = 0.025). The results of this study underline the relevance of genetic influences in CD. The association of the PTPN2 rs7234029 risk allele with nonresponse to anti-interleukin-12/23 treatment in CD patients is a novel finding and requires further investigation.
Collapse
|
20
|
Mahmoudi E, Mozhgani SH, Sharifinejad N. The role of mycobiota-genotype association in inflammatory bowel diseases: a narrative review. Gut Pathog 2021; 13:31. [PMID: 33964975 PMCID: PMC8106830 DOI: 10.1186/s13099-021-00426-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease affecting various parts of the gastrointestinal tract. A majority of the current evidence points out the involvement of intestinal dysbiosis in the IBD pathogenesis. Recently, the association of intestinal fungal composition With IBD susceptibility and severity has been reported. These studies suggested gene polymorphisms in the front line of host defense against intestinal microorganisms are considered to play a role in IBD pathogenesis. The studies have also detected increased susceptibility to fungal infections in patients carrying IBD-related mutations. Therefore, a literature search was conducted in related databases to review articles addressing the mycobiota-genotype association in IBD.
Collapse
Affiliation(s)
- Elaheh Mahmoudi
- Division of Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran. .,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
21
|
Nelson A, Stewart CJ, Kennedy NA, Lodge JK, Tremelling M, UK IBD Genetics Consortium, Probert CS, Parkes M, Mansfield JC, Smith DL, Hold GL, Lees CW, Bridge SH, Lamb CA. The Impact of NOD2 Genetic Variants on the Gut Mycobiota in Crohn's Disease Patients in Remission and in Individuals Without Gastrointestinal Inflammation. J Crohns Colitis 2021; 15:800-812. [PMID: 33119074 PMCID: PMC8095387 DOI: 10.1093/ecco-jcc/jjaa220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Historical and emerging data implicate fungi in Crohn's disease [CD] pathogenesis. However, a causal link between mycobiota, dysregulated immunity, and any impact of NOD2 variants remains elusive. This study aims to evaluate associations between NOD2 variants and faecal mycobiota in CD patients and non-CD subjects. METHODS Faecal samples were obtained from 34 CD patients [18 NOD2 mutant, 16 NOD2 wild-type] identified from the UK IBD Genetics Consortium. To avoid confounding influence of mucosal inflammation, CD patients were in clinical remission and had a faecal calprotectin <250 μg/g; 47 non-CD subjects were included as comparator groups, including 22 matched household [four NOD2 mutant] and 25 non-household subjects with known NOD2 genotype [14 NOD2 mutant] identified by the NIHR BioResource Cambridge. Faecal mycobiota composition was determined using internal transcribed spacer 1 [ITS1] sequencing and was compared with 16S rRNA gene sequences and volatile organic compounds. RESULTS CD was associated with higher numbers of fungal observed taxonomic units [OTUs] [p = 0.033]. Principal coordinates analysis using Jaccard index [p = 0.018] and weighted Bray-Curtis dissimilarities [p = 0.01] showed Candida spp. clustered closer to CD patients whereas Cryptococcus spp. clustered closer to non-CD. In CD, we found higher relative abundance of Ascomycota [p = 0.001] and lower relative abundance Basidiomycota [p = 0.019] phyla. An inverse relationship was found between bacterial and fungal Shannon diversity in NOD2 wild-type which was independent of CD [r = -0.349; p = 0.029]. CONCLUSIONS This study confirms compositional changes in the gut mycobiota in CD and provides evidence that fungi may play a role in CD pathogenesis. No NOD2 genotype-specific differences were observed in the faecal mycobiota.
Collapse
Affiliation(s)
- Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nicholas A Kennedy
- IBD Pharmacogenetics Group, University of Exeter, Exeter, UK
- Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - John K Lodge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Mark Tremelling
- Department of Gastroenterology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | | | - Chris S Probert
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Gastroenterology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Miles Parkes
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John C Mansfield
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Darren L Smith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Georgina L Hold
- Gastrointestinal Research Group, University of Aberdeen, Aberdeen, UK
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Charlie W Lees
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, UK
| | - Simon H Bridge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Aldars-García L, Chaparro M, Gisbert JP. Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease. Microorganisms 2021; 9:microorganisms9050977. [PMID: 33946482 PMCID: PMC8147118 DOI: 10.3390/microorganisms9050977] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting systemic disease of the gastrointestinal tract. It is well established that the gut microbiome has a profound impact on IBD pathogenesis. Our aim was to systematically review the literature on the IBD gut microbiome and its usefulness to provide microbiome-based biomarkers. A systematic search of the online bibliographic database PubMed from inception to August 2020 with screening in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted. One-hundred and forty-four papers were eligible for inclusion. There was a wide heterogeneity in microbiome analysis methods or experimental design. The IBD intestinal microbiome was generally characterized by reduced species richness and diversity, and lower temporal stability, while changes in the gut microbiome seemed to play a pivotal role in determining the onset of IBD. Multiple studies have identified certain microbial taxa that are enriched or depleted in IBD, including bacteria, fungi, viruses, and archaea. The two main features in this sense are the decrease in beneficial bacteria and the increase in pathogenic bacteria. Significant differences were also present between remission and relapse IBD status. Shifts in gut microbial community composition and abundance have proven to be valuable as diagnostic biomarkers. The gut microbiome plays a major role in IBD, yet studies need to go from casualty to causality. Longitudinal designs including newly diagnosed treatment-naïve patients are needed to provide insights into the role of microbes in the onset of intestinal inflammation. A better understanding of the human gut microbiome could provide innovative targets for diagnosis, prognosis, treatment and even cure of this relevant disease.
Collapse
Affiliation(s)
- Laila Aldars-García
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-913-093-911; Fax: +34-915-204-013
| |
Collapse
|
23
|
Aldars-García L, Marin AC, Chaparro M, Gisbert JP. The Interplay between Immune System and Microbiota in Inflammatory Bowel Disease: A Narrative Review. Int J Mol Sci 2021; 22:ijms22063076. [PMID: 33802883 PMCID: PMC8002696 DOI: 10.3390/ijms22063076] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
The importance of the gut microbiota in human health is currently well established. It contributes to many vital functions such as development of the host immune system, digestion and metabolism, barrier against pathogens or brain–gut communication. Microbial colonization occurs during infancy in parallel with maturation of the host immune system; therefore, an adequate cross-talk between these processes is essential to generating tolerance to gut microbiota early in life, which is crucial to prevent allergic and immune-mediated diseases. Inflammatory bowel disease (IBD) is characterized by an exacerbated immune reaction against intestinal microbiota. Changes in abundance in the gut of certain microorganisms such as bacteria, fungi, viruses, and archaea have been associated with IBD. Microbes that are commonly found in high abundance in healthy gut microbiomes, such as F. prausnitzii or R. hominis, are reduced in IBD patients. E. coli, which is usually present in a healthy gut in very low concentrations, is increased in the gut of IBD patients. Microbial taxa influence the immune system, hence affecting the inflammatory status of the host. This review examines the IBD microbiome profile and presents IBD as a model of dysbiosis.
Collapse
Affiliation(s)
- Laila Aldars-García
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence:
| | - Alicia C. Marin
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| |
Collapse
|
24
|
Zheng L, Wen XL. Gut microbiota and inflammatory bowel disease: The current status and perspectives. World J Clin Cases 2021; 9:321-333. [PMID: 33521100 PMCID: PMC7812881 DOI: 10.12998/wjcc.v9.i2.321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease that affects the gastrointestinal tract. It is argued that environment, microbiome, and immune-mediated factors interact in a genetically susceptible host to trigger IBD. Recently, there has been increased interest in the development, progression, and treatment of IBD because of our understanding of the microbiome. Researchers have proved that some factors can alter the microbiome and the pathogenesis of IBD. As a result, there has been increasing interest in the application of probiotics, prebiotics, antibiotics, fecal microbiota transplantation, and gene manipulation in treating IBD because of the possible curative effect of microbiome-modulating interventions. In this review, we summarize the findings from human and animal studies and discuss the effect of the gut microbiome in treating patients with IBD.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| |
Collapse
|
25
|
Rochereau N, Roblin X, Michaud E, Gayet R, Chanut B, Jospin F, Corthésy B, Paul S. NOD2 deficiency increases retrograde transport of secretory IgA complexes in Crohn's disease. Nat Commun 2021; 12:261. [PMID: 33431850 PMCID: PMC7801705 DOI: 10.1038/s41467-020-20348-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal microfold cells are the primary pathway for translocation of secretory IgA (SIgA)-pathogen complexes to gut-associated lymphoid tissue. Uptake of SIgA/commensals complexes is important for priming adaptive immunity in the mucosa. This study aims to explore the effect of SIgA retrograde transport of immune complexes in Crohn's disease (CD). Here we report a significant increase of SIgA transport in CD patients with NOD2-mutation compared to CD patients without NOD2 mutation and/or healthy individuals. NOD2 has an effect in the IgA transport through human and mouse M cells by downregulating Dectin-1 and Siglec-5 expression, two receptors involved in retrograde transport. These findings define a mechanism of NOD2-mediated regulation of mucosal responses to intestinal microbiota, which is involved in CD intestinal inflammation and dysbiosis.
Collapse
Affiliation(s)
- Nicolas Rochereau
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France.
| | - Xavier Roblin
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Eva Michaud
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Rémi Gayet
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Blandine Chanut
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Fabienne Jospin
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, CHUV, Centre des Laboratoires d'Epalinges, 1066, Epalinges, Switzerland
| | - Stéphane Paul
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| |
Collapse
|
26
|
Intestinal microbiota changes in Graves' disease: a prospective clinical study. Biosci Rep 2020; 40:226158. [PMID: 32820337 PMCID: PMC7475298 DOI: 10.1042/bsr20191242] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/20/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Graves’ disease (GD) occurs due to an autoimmune dysfunction of thyroid gland cells, leading to manifestations consistent with hyperthyroidism. Various studies have confirmed the link between autoimmune conditions and changes in the composition of intestinal microbial organisms. However, few studies have assessed the relationship between the GD and the changes in intestinal microbiota. Therefore, the present study aimed to investigate changes in intestinal flora that may occur in the setting of GD. Thirty-nine patients with GD and 17 healthy controls were enrolled for fecal sample collection. 16S rRNA sequencing was used to analyze the diversity and composition of the intestinal microbiota. High-throughput sequencing of 16S rRNA genes of intestinal flora was performed on Illumina Hiseq2500 platform. Comparing to healthy individuals, the number of Bacilli, Lactobacillales, Prevotella, Megamonas and Veillonella strains were increased, whereas the number of Ruminococcus, Rikenellaceae and Alistipes strains were decreased among patients with GD. Furthermore, patients with GD showed a decrease in intestinal microbial diversity. Therefore, it indicates that the diversity of microbial strains is significantly reduced in GD patients, and patients with GD will undergo significant changes in intestinal microbiota, by comparing the intestinal flora of GD and healthy controls. These conclusions are expected to provide a preliminary reference for further researches on the interaction mechanism between intestinal flora and GD.
Collapse
|
27
|
Turpin W, Bedrani L, Espin-Garcia O, Xu W, Silverberg MS, Smith MI, Garay JAR, Lee SH, Guttman DS, Griffiths A, Moayyedi P, Panaccione R, Huynh H, Steinhart HA, Aumais G, Dieleman LA, Turner D, Paterson AD, Croitoru K. Associations of NOD2 polymorphisms with Erysipelotrichaceae in stool of in healthy first degree relatives of Crohn's disease subjects. BMC MEDICAL GENETICS 2020; 21:204. [PMID: 33059653 PMCID: PMC7566148 DOI: 10.1186/s12881-020-01115-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genetic analyses have identified many variants associated with the risk of inflammatory bowel disease (IBD) development. Among these variants, the ones located within the NOD2 gene have the highest odds ratio of all IBD genetic risk variants. Also, patients with Crohn's disease (CD) have been shown to have an altered gut microbiome, which might be a reflection of inflammation itself or an effect of other parameters that contribute to the risk of the disease. Since NOD2 is an intracellular pattern recognition receptor that senses bacterial peptidoglycan in the cytosol and stimulates the host immune response (Al Nabhani et al., PLoS Pathog 13:e1006177, 2017), it is hypothesized that NOD2 variants represent perfect candidates for influencing host-microbiome interactions. We hypothesized that NOD2 risk variants affect the microbiome composition of healthy first degree relative (FDR) of CD patients and thus potentially contribute to an altered microbiome state before disease onset. METHODS Based on this, we studied a large cohort of 1546 healthy FDR of CD patients and performed a focused analysis of the association of three major CD SNPs in the coding region of the NOD2 gene, which are known to confer a 15-40-fold increased risk of developing CD in homozygous or compound heterozygous individuals. RESULTS Our results show that carriers of the C allele at rs2066845 was significantly associated with an increase in relative abundance in the fecal bacterial family Erysipelotrichaceae. CONCLUSIONS This result suggests that NOD2 polymorphisms contribute to fecal microbiome composition in asymptomatic individuals. Whether this modulation of the microbiome influences the future development of CD remains to be assessed.
Collapse
Affiliation(s)
- Williams Turpin
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, 600 University Avenue Room 437, Toronto, Ontario, M5G 1X5, Canada
| | - Larbi Bedrani
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Osvaldo Espin-Garcia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, 600 University Avenue Room 437, Toronto, Ontario, M5G 1X5, Canada
| | - Michelle I Smith
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Juan Antonio Raygoza Garay
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, 600 University Avenue Room 437, Toronto, Ontario, M5G 1X5, Canada
| | - Sun-Ho Lee
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, 600 University Avenue Room 437, Toronto, Ontario, M5G 1X5, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Anne Griffiths
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul Moayyedi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Remo Panaccione
- Inflammatory Bowel Disease Clinic, Division of Gastroenterology and Hepatology of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
| | - Hien Huynh
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Hillary A Steinhart
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, 600 University Avenue Room 437, Toronto, Ontario, M5G 1X5, Canada
| | - Guy Aumais
- Hôpital Maisonneuve-Rosemont, Department of Medicine, Montreal University, Montreal, Quebec, Canada
| | - Levinus A Dieleman
- Division of Gastroenterology and CEGIIR, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dan Turner
- Department of pediatric GI, Shaare Zedek Medical Center, 91031, Jerusalem, Israel
| | | | - Andrew D Paterson
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology, The Hospital for Sick Children Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, 600 University Avenue Room 437, Toronto, Ontario, M5G 1X5, Canada.
| |
Collapse
|
28
|
Solà-Tapias N, Vergnolle N, Denadai-Souza A, Barreau F. The Interplay Between Genetic Risk Factors and Proteolytic Dysregulation in the Pathophysiology of Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:1149-1161. [PMID: 32090263 DOI: 10.1093/ecco-jcc/jjaa033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Crohn's disease [CD] and ulcerative colitis [UC] are the two main forms of inflammatory bowel disease [IBD]. Previous studies reported increased levels of proteolytic activity in stool and tissue samples from IBD patients, whereas the re-establishment of the proteolytic balance abrogates the development of experimental colitis. Furthermore, recent data suggest that IBD occurs in genetically predisposed individuals who develop an abnormal immune response to intestinal microbes once exposed to environmental triggers. In this review, we highlight the role of proteases in IBD pathophysiology, and we showcase how the main cellular pathways associated with IBD influence proteolytic unbalance and how functional proteomics are allowing the unambiguous identification of dysregulated proteases in IBD, paving the way to the development of new protease inhibitors as a new potential treatment.
Collapse
Affiliation(s)
- Núria Solà-Tapias
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Alexandre Denadai-Souza
- Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium
| | - Frédérick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
29
|
Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies. Nat Commun 2020; 11:3861. [PMID: 32737316 PMCID: PMC7395774 DOI: 10.1038/s41467-020-17668-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Integrating results from genome-wide association studies (GWASs) and gene expression studies through transcriptome-wide association study (TWAS) has the potential to shed light on the causal molecular mechanisms underlying disease etiology. Here, we present a probabilistic Mendelian randomization (MR) method, PMR-Egger, for TWAS applications. PMR-Egger relies on a MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and is scalable to hundreds of thousands of individuals. In simulations, PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust under various types of model misspecifications, is more powerful than existing TWAS/MR approaches, and can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank. Transcriptome-wide association studies integrate GWAS and transcriptome data to examine the molecular mechanisms underlying disease etiology. Here the authors present PMR-Egger, a powerful TWAS method based on probabilistic Mendelian Randomization.
Collapse
|
30
|
Elevated levels of proinflammatory volatile metabolites in feces of high fat diet fed KK-A y mice. Sci Rep 2020; 10:5681. [PMID: 32231228 PMCID: PMC7105489 DOI: 10.1038/s41598-020-62541-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/13/2020] [Indexed: 11/08/2022] Open
Abstract
When the microfloral composition deteriorates, it triggers low-level chronic inflammation associated with several lifestyle-related diseases including obesity and diabetic mellitus. Fecal volatile organic compounds (VOCs) have been found to differ in gastrointestinal diseases as well as intestinal infection. In this study, to evaluate a potential association between the pathogenesis of lifestyle-related diseases and VOCs in the intestinal tract, fecal VOCs from obese/diabetic KK-Ay mice (KK) or controls (C57BL/6J mice; BL) fed a normal or high fat diet (NFD or HFD) were investigated using headspace sampler-GC-EI-MS. Principal component analysis (PCA) of fecal VOC profiles clearly separated the experimental groups depending on the mouse lineage (KK vs BL) and the diet type (NFD vs HFD). 16 s rRNA sequencing revealed that the PCA distribution of VOCs was in parallel with the microfloral composition. We identified that some volatile metabolites including n-alkanals (nonanal and octanal), acetone and phenol were significantly increased in the HFD and/or KK groups. Additionally, these volatile metabolites induced proinflammatory activity in the RAW264 murine macrophage cell line indicating these bioactive metabolites might trigger low-level chronic inflammation. These results suggest that proinflammatory VOCs detected in HFD-fed and/or diabetic model mice might be novel noninvasive diagnosis biomarkers for diabetes.
Collapse
|
31
|
Pittayanon R, Lau JT, Leontiadis GI, Tse F, Yuan Y, Surette M, Moayyedi P. Differences in Gut Microbiota in Patients With vs Without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology 2020; 158:930-946.e1. [PMID: 31812509 DOI: 10.1053/j.gastro.2019.11.294] [Citation(s) in RCA: 390] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Altering the intestinal microbiota has been proposed as a treatment for inflammatory bowel diseases (IBDs), but there are no established associations between specific microbes and IBD. We performed a systematic review to identify frequent associations. METHODS We searched the MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials databases, through April 2, 2018 for studies that compared intestinal microbiota (from fecal or colonic or ileal tissue samples) among patients (adult or pediatric) with IBD vs healthy individuals (controls). The primary outcome was difference in specific taxa in fecal or intestinal tissue samples from patients with IBD vs controls. We used the Newcastle-Ottawa scale to assess the quality of studies included in the review. RESULTS We identified 2631 citations; 48 studies from 45 articles were included in the analysis. Most studies evaluated adults with Crohn's disease or ulcerative colitis. All 3 studies of Christensenellaceae and Coriobacteriaceae and 6 of 11 studies of Faecalibacterium prausnitzii reported a decreased amount of those organisms compared with controls, whereas 2 studies each of Actinomyces, Veillonella, and Escherichia coli revealed an increased amount in patients with Crohn's disease. For patients with ulcerative colitis, Eubacterium rectale and Akkermansia were decreased in all 3 studies, whereas E coli was increased in 4 of 9 studies. The microbiota diversity was either decreased or not different in patients with IBD vs controls. Fewer than 50% of the studies stated comparable sexes and ages of cases and controls. CONCLUSIONS In a systematic review, we found evidence for differences in abundances of some bacteria in patients with IBD vs controls, but we cannot make conclusions due to inconsistent results and methods among studies. Further large-scale studies, with better methods of assessing microbe populations, are needed.
Collapse
Affiliation(s)
- Rapat Pittayanon
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, The Thai Red Cross, Bangkok, Thailand
| | - Jennifer T Lau
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Grigorios I Leontiadis
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Frances Tse
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Yuhong Yuan
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michael Surette
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Paul Moayyedi
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
32
|
Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol 2019; 17:83. [PMID: 31660948 PMCID: PMC6819567 DOI: 10.1186/s12915-019-0699-4] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
The Christensenellaceae, a recently described family in the phylum Firmicutes, is emerging as an important player in human health. The relative abundance of Christensenellaceae in the human gut is inversely related to host body mass index (BMI) in different populations and multiple studies, making its relationship with BMI the most robust and reproducible link between the microbial ecology of the human gut and metabolic disease reported to date. The family is also related to a healthy status in a number of other different disease contexts, including obesity and inflammatory bowel disease. In addition, Christensenellaceae is highly heritable across multiple populations, although specific human genes underlying its heritability have so far been elusive. Further research into the microbial ecology and metabolism of these bacteria should reveal mechanistic underpinnings of their host-health associations and enable their development as therapeutics.
Collapse
Affiliation(s)
- Jillian L Waters
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tuebingen, Germany
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tuebingen, Germany.
| |
Collapse
|
33
|
Berkowitz L, Pardo-Roa C, Salazar GA, Salazar-Echegarai F, Miranda JP, Ramírez G, Chávez JL, Kalergis AM, Bueno SM, Álvarez-Lobos M. Mucosal Exposure to Cigarette Components Induces Intestinal Inflammation and Alters Antimicrobial Response in Mice. Front Immunol 2019; 10:2289. [PMID: 31608070 PMCID: PMC6773925 DOI: 10.3389/fimmu.2019.02289] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
The main environmental risk factor associated with the development of Crohn's disease (CD) is cigarette smoking. Although the mechanism is still unknown, some studies have shown that cigarette exposure affects the intestinal barrier of the small bowel. Among the factors that may be involved in this process are Paneth cells. These specialized epithelial cells are located into the small intestine, and they are able to secrete antimicrobial peptides, having an essential role in the control of the growth of microorganisms. Alterations in its function are associated with inflammatory processes, such as CD. To study how cigarette components impact ileum homeostasis and Paneth cells integrity, we used intragastric administration of cigarette smoke condensate (CSC) in mice. Our results showed that inflammation was triggered after mucosal exposure of CSC, which induced particular alterations in Paneth cells granules, antimicrobial peptide production, and a reduction of bactericidal capacity. In fact, exposure to CSC generated an imbalance in the fecal bacterial population and increased the susceptibility of mice to develop ileal damage in response to bacterial infection. Moreover, our results obtained in mice unable to produce interleukin 10 (IL-10−/− mice) suggest that CSC treatment can induce a symptomatic enterocolitis with a pathological inflammation in genetically susceptible individuals.
Collapse
Affiliation(s)
- Loni Berkowitz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Pardo-Roa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A Salazar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Salazar-Echegarai
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José P Miranda
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gigliola Ramírez
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José L Chávez
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Álvarez-Lobos
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Lee C, Hong SN, Paik NY, Kim TJ, Kim ER, Chang DK, Kim YH. CD1d Modulates Colonic Inflammation in NOD2-/- Mice by Altering the Intestinal Microbial Composition Comprising Acetatifactor muris. J Crohns Colitis 2019; 13:1081-1091. [PMID: 31094420 DOI: 10.1093/ecco-jcc/jjz025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS NOD2 and CD1d play a key role in innate immunity by recognizing conserved molecular patterns of pathogens. While NOD2-/- and CD1d-/- mice display structural and functional alterations in Paneth cells, animal studies have reported no impact of NOD2 or CD1d deficiency on experimental colitis. NOD2 mutations increase the susceptibility to inflammatory bowel diseases and the CD1d bound to α-galactosylceramide [α-GalCer] alleviates intestinal inflammation. We evaluated the effect of CD1d modulation on experimental colitis in NOD2-/- mice. METHODS The effect of CD1d augmentation and depletion in NOD2-/- mice was assessed in a dextran sodium sulphate [DSS]-induced colitis model via administration of α-GalCer and construction of NOD2-/-CD1d-/- mice. The structural and functional changes in Paneth cells were evaluated using transmission electron microscopy and pilocarpine administration. Colitogenic taxa were analysed in the faeces of NOD2-/-CD1d-/- mice using 16S rRNA gene sequencing. RESULTS In NOD2-/- mice, α-GalCer alleviated and CD1d depletion [NOD2-/-CD1d-/- mice] aggravated colitis activity and histology compared with co-housed littermates NOD2-/-, CD1d-/- and wild-type mice after administration of 3% DSS. In NOD2-/-CD1d-/- mice, the ultrastructure and degranulation ability of secretary granules in Paneth cells were altered and the intestinal microbial composition differed from that of their littermates. Faecal microbiota transplantation [FMT] with NOD2-/-CD1d-/- mice faeces into wild-type mice aggravated DSS-induced colitis, while FMT with wild-type mice faeces into NOD2-/-CD1d-/- mice alleviated DSS-induced colitis. Acetatifactor muris was identified only in NOD2-/-CD1d-/- mice faeces and the oral gavage of A. muris in wild-type mice aggravated DSS-induced colitis. CONCLUSION CD1d modulates colonic inflammation in NOD2-/- mice by altering the intestinal microbial composition comprising A. muris.
Collapse
Affiliation(s)
- Chansu Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nam Young Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Jun Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Ran Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Chang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Zakrzewski M, Simms LA, Brown A, Appleyard M, Irwin J, Waddell N, Radford-Smith GL. IL23R-Protective Coding Variant Promotes Beneficial Bacteria and Diversity in the Ileal Microbiome in Healthy Individuals Without Inflammatory Bowel Disease. J Crohns Colitis 2019; 13:451-461. [PMID: 30445599 DOI: 10.1093/ecco-jcc/jjy188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS This study aimed to characterize the mucosa-associated microbiota in ileal Crohn's disease [CD] patients and in healthy controls in terms of host genotype and inflammation status. METHODS The mucosa-associated microbiotas of intestinal pinch biopsies from 15 ileal CD patients with mild and moderate disease and from 58 healthy controls were analysed based on 16S ribosomal sequencing to determine microbial profile differences between [1] IL23R, NOD2 and ATG16L1 genotypes in healthy subjects, [2] ileal CD patients and control subjects, and [3] inflamed and non-inflamed mucosal tissue in CD patients. RESULTS The protective variant of the IL23R gene [rs11209026] significantly impacted the microbial composition in the ileum of healthy subjects and was associated with an increased abundance of phylotypes within the family Christensenellaceae as well as increases in diversity and richness. Comparative analysis of healthy and non-inflamed CD microbiome samples indicated a notable decrease in the abundance of Faecalibacterium prausnitzii as well as Shannon diversity and richness. Inflamed and non-inflamed ileal samples of CD subjects had high intra-individual stability and inter-individual variability, but no significant alterations in diversity, richness or taxa were identified. Calprotectin correlated positively with the abundance of Proteobacteria and negatively with diversity in the samples from healthy subjects. CONCLUSIONS The observation of low diversity and low abundance of beneficial bacteria in healthy control subjects carrying the IL23R [rs11209026] wild-type GG genotype indicates that the gut microbiome is influenced by host genetics and is altered prior to disease diagnosis. Faecal calprotectin may be a potential non-invasive screening tool for dysbiosis in subjects without disorders of intestinal inflammation.
Collapse
Affiliation(s)
- Martha Zakrzewski
- Medical Genomics, QIMR Berghofer Medical Research Institute, Herston, Brisbane 4006, Australia
| | - Lisa A Simms
- Gut Health, QIMR Berghofer Medical Research Institute, Herston, Brisbane 4006, Australia
| | - Allison Brown
- Gut Health, QIMR Berghofer Medical Research Institute, Herston, Brisbane 4006, Australia.,Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Herston, Brisbane 4029, Australia
| | - Mark Appleyard
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Herston, Brisbane 4029, Australia
| | - James Irwin
- Gut Health, QIMR Berghofer Medical Research Institute, Herston, Brisbane 4006, Australia.,Department of Gastroenterology, Palmerston North Hospital, Palmerston North, New Zealand
| | - Nicola Waddell
- Medical Genomics, QIMR Berghofer Medical Research Institute, Herston, Brisbane 4006, Australia
| | - Graham L Radford-Smith
- Gut Health, QIMR Berghofer Medical Research Institute, Herston, Brisbane 4006, Australia.,Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Herston, Brisbane 4029, Australia.,University of Queensland School of Medicine, Herston, Brisbane 4029, Australia
| |
Collapse
|
36
|
Frew JW. The Hygiene Hypothesis, Old Friends, and New Genes. Front Immunol 2019; 10:388. [PMID: 30894862 PMCID: PMC6414441 DOI: 10.3389/fimmu.2019.00388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
37
|
Li E, Zhang Y, Tian X, Wang X, Gathungu G, Wolber A, Shiekh SS, Sartor RB, Davidson NO, Ciorba MA, Zhu W, Nelson LM, Robertson CE, Frank DN. Influence of Crohn's disease related polymorphisms in innate immune function on ileal microbiome. PLoS One 2019; 14:e0213108. [PMID: 30818349 PMCID: PMC6395037 DOI: 10.1371/journal.pone.0213108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
We have previously identified NOD2 genotype and inflammatory bowel diseases (IBD) phenotype, as associated with shifts in the ileal microbiome ("dysbiosis") in a patient cohort. Here we report an integrative analysis of an expanded number of Crohn's disease (CD) related genetic defects in innate immune function (NOD2, ATG16L1, IRGM, CARD9, XBP1, ORMDL3) and composition of the ileal microbiome by combining the initial patient cohort (Batch 1, 2005-2010, n = 165) with a second consecutive patient cohort (Batch 2, 2010-2012, n = 118). These combined patient cohorts were composed of three non-overlapping phenotypes: 1.) 106 ileal CD subjects undergoing initial ileocolic resection for diseased ileum, 2.) 88 IBD colitis subjects without ileal disease (predominantly ulcerative colitis but also Crohn's colitis and indeterminate colitis, and 3.) 89 non-IBD subjects. Significant differences (FDR < 0.05) in microbiota were observed between macroscopically disease unaffected and affected regions of resected ileum in ileal CD patients. Accordingly, analysis of the effects of genetic and clinical factors were restricted to disease unaffected regions of the ileum. Beta-diversity differed across the three disease categories by PERMANOVA (p < 0.001), whereas no significant differences in alpha diversity were noted. Using negative binomial models, we confirmed significant effects of IBD phenotype, C. difficile infection, and NOD2 genotype on ileal dysbiosis in the expanded analysis. The relative abundance of the Proteobacteria phylum was positively associated with ileal CD and colitis phenotypes, but negatively associated with NOD2R genotype. Additional associations with ORMDL3 and XBP1 were detected at the phylum/subphylum level. IBD medications, such as immunomodulators and anti-TNFα agents, may have a beneficial effect on reversing dysbiosis associated with the IBD phenotype. Exploratory analysis comparing microbial composition of the disease unaffected region of the resected ileum between 27 ileal CD patients who subsequently developed endoscopic recurrence within 6-12 months versus 34 patients who did not, suggested that microbial biomarkers in the resected specimen helped stratify patients with respect to risk of post-surgical recurrence.
Collapse
Affiliation(s)
- Ellen Li
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Yuanhao Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Xinyu Tian
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States of America
| | - Grace Gathungu
- Department of Pediatrics, Stony Brook University, Stony Brook, NY, United States of America
| | - Ashley Wolber
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Shehzad S. Shiekh
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - R. Balfour Sartor
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Nicholas O. Davidson
- Department of Medicine, Washington University St. Louis, St. Louis, MO, United States of America
| | - Matthew A. Ciorba
- Department of Medicine, Washington University St. Louis, St. Louis, MO, United States of America
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Leah M. Nelson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
38
|
Ma Y, Wang W, Zhang H, Wang J, Zhang W, Gao J, Wu S, Qi G. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci Rep 2018; 8:15358. [PMID: 30337568 PMCID: PMC6194052 DOI: 10.1038/s41598-018-33762-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023] Open
Abstract
Knowledge about the modulation of gut microbiota improves our understanding of the underlying mechanism by which probiotic treatment benefits the chickens. This study examined the effects of Bacillus subtilis DSM 32315 on intestinal structure and microbial composition in broilers. Broiler chicks were fed basal diets without or with B. subtilis supplementation (1.0 × 109 spores/kg of diet). Supplemental B. subtilis increased average body weight and average daily gain, as well as elevated villus height and villus height to crypt depth ratio of ileum in broilers. Multi-dimension analysis showed a certain degree of separation between the cecal microbiota from treatment and control groups. Increased Firmicutes abundance and reduced Bacteroidetes abundance in cecum were observed responded to B. subtilis addition, which also increased the abundances of Christensenellaceae and Caulobacteraceae, and simultaneously decreased the abundances of potentially harmful bacteria such as Vampirovibrio, Escherichia/Shigella and Parabacteroides. Network analysis signified that B. subtilis addition improved the interaction pattern within cecal microbiota of broilers, however, it exerted little influence on the metabolic pathways of cecal microbiota by comparison of the functional prediction of metagenomes. In conclusion, supplemental B. subtilis DSM 32315 improved growth performance and intestinal structure of broilers, which could be at least partially responsible by the manipulation of cecal microbial composition.
Collapse
Affiliation(s)
- Youbiao Ma
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenming Zhang
- Evonik Degussa (China) Co. Ltd., Beijing, 100026, China
| | - Jun Gao
- Evonik Degussa (China) Co. Ltd., Beijing, 100026, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
39
|
Harris KG, Chang EB. The intestinal microbiota in the pathogenesis of inflammatory bowel diseases: new insights into complex disease. Clin Sci (Lond) 2018; 132:2013-2028. [PMID: 30232239 PMCID: PMC6907688 DOI: 10.1042/cs20171110] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic diseases of increasing worldwide prevalence characterized by gastrointestinal (GI) inflammation leading to debilitating symptoms and complications. The contribution of the intestinal microbiota to the pathogenesis and etiology of these diseases is an area of active research interest. Here, we discuss key mechanisms underlying the chronic inflammation seen in IBD as well as evidence implicating the intestinal microbiota in the development and potentiation of that inflammation. We also discuss recently published work in areas of interest within the field of microbial involvement in IBD pathogenesis - the importance of proper microecology within the GI tract, the evidence that the intestinal microbiota transduces environmental and genetic risk factors for IBD, and the mechanisms by which microbial products contribute to communication between microbe and host. There is an extensive body of published research on the evidence for microbial involvement in IBD; the goal of this review is to highlight the growing edges of the field where exciting and innovative research is pushing the boundaries of the conceptual framework of the role of the intestinal microbiota in IBD pathogenesis.
Collapse
Affiliation(s)
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, U.S.A.
| |
Collapse
|
40
|
Jaeger SU, Schaeffeler E, Winter S, Tremmel R, Schölmerich J, Malek N, Stange EF, Schwab M, Wehkamp J. Influence of NOD2 Variants on Trichuris suis ova Treatment Outcome in Crohn’s Disease. Front Pharmacol 2018; 9:764. [PMID: 30061834 PMCID: PMC6054957 DOI: 10.3389/fphar.2018.00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
A recent randomized study of whipworm Trichuris suis ova (TSO) in ileal Crohn’s disease failed to demonstrate a clinical benefit compared to placebo after 12 weeks. Nonetheless, it has recently been shown that the spontaneous small intestinal inflammatory changes in Nod2-/- (Nucleotide-binding oligomerization domain 2) mice could be substantially ameliorated when these mice were colonized by Trichuris muris. Those and complementary epidemiologic findings in humans lead to the hypothesis that helminths may be advantageous only in patients carrying defective NOD2 variants. Thus, 207 participants of the TSO trial were retrospectively genotyped for six functional NOD2 genetic variants to evaluate whether the treatment outcome differed in patients carrying NOD2 variants. We observed no significant association of the NOD2 variants or their haplotypes with clinical outcome after TSO treatment.
Collapse
Affiliation(s)
- Simon U. Jaeger
- Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- *Correspondence: Simon U. Jaeger, Jan Wehkamp,
| | - Elke Schaeffeler
- Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | | | - Nisar Malek
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Eduard F. Stange
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University of Tübingen, Tübingen, Germany
| | - Jan Wehkamp
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
- *Correspondence: Simon U. Jaeger, Jan Wehkamp,
| |
Collapse
|