1
|
Hajek AE, Everest TA, Jaronski ST. Application of Beauveria bassiana conidia to spotted lanternfly forewings causes fewer infections than abdominal applications. J Invertebr Pathol 2025; 211:108335. [PMID: 40216014 DOI: 10.1016/j.jip.2025.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Adult spotted lanternflies (Lycorma delicatula) were differentially susceptible to Beauveria bassiana when inoculated with conidia on the distal ventral abdomen versus distal forewings. More adults inoculated on the abdomens died of B. bassiana infections than those inoculated on the wings. Abdominal inoculants also died more quickly than wing inoculants. Due to the large dorsal forewings of these planthoppers, typically covering abdomen and thorax, we suggest that the wings can at least partially protect from dorsal sprays of an infectious Hypocreales; we hypothesize that spraying surfaces on which SLF stand could be more efficacious than spraying these insects with their bodies shielded by their wings.
Collapse
Affiliation(s)
- Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601, USA.
| | - Thomas A Everest
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601, USA
| | | |
Collapse
|
2
|
Eshghi S, Rajabi H, Matushkina N, Claußen L, Poser J, Büscher TH, Gorb SN. WingAnalogy: a computer vision-based tool for automated insect wing asymmetry and morphometry analysis. Sci Rep 2024; 14:22155. [PMID: 39333336 PMCID: PMC11437043 DOI: 10.1038/s41598-024-73411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
WingAnalogy is a computer tool for automated insect wing morphology and asymmetry analysis. It facilitates project management, enabling users to import pairs of wing images obtained from individual insects, such as left and right, fore- and hindwings. WingAnalogy employs image processing and computer vision to segment wing structures and extract cell boundaries, and junctions. It quantifies essential metrics encompassing cell and wing characteristics, including area, length, width, circularity, and centroid positions. It enables users to scale and superimpose wing images utilizing Particle Swarm Optimization (PSO). WingAnalogy computes regression, Normalized Root Mean Square Error (NRMSE), various cell-based parameters, and distances between cell centroids and junctions. The software generates informative visualizations, aiding researchers in comprehending and interpreting asymmetry patterns. WingAnalogy allows for dividing wings into up to five distinct wing cell sets, facilitating localized comparisons. The software excels in report generation, providing detailed asymmetry measurements in PDF, CSV, and TXT formats.
Collapse
Affiliation(s)
- Shahab Eshghi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany.
| | - Hamed Rajabi
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
- Mechanical Intelligence Research Group, School of Engineering, London South Bank University, London, UK
| | - Natalia Matushkina
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Lisa Claußen
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Johannes Poser
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| |
Collapse
|
3
|
Shahshahani M, Abbasi R. Wing vein abnormality analysis in honeybee (Apis mellifera L. 1758) populations from Iran. Sci Rep 2024; 14:19343. [PMID: 39164401 PMCID: PMC11335744 DOI: 10.1038/s41598-024-70147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
The insect wing is one of the most important characteristics that allowed insects to occupy most of the habitats on the planet. Honeybee wings has been the subject of studies on the venation abnormalities. A total of 424 honeybees from 14 locations were collected and all four wings were removed and examined for 19 abnormalities on the forewings and 6 abnormalities on the hindwings. In general, supernumerary veins were the most common abnormalities seen and abnormalities no. 23, 2, 6, 1, 5, 21, 10, 13 had the highest and abnormalities no. 11, 17, 18, 19, 20, and 25 had the lowest frequencies. All of the abnormalities had similar frequencies in the right and left wings in the population. In terms of correlation between 25 abnormalities, abnormality pairs AB3-AB13, AB6-AB7, AB7-AB8, AB10-AB12, AB16-AB17 on the forewing and AB2-AB23, AB12-AB20, AB12-AB24, AB13-AB21, AB16-AB25, and AB17-AB25 between the forewing and hindwing show significant positive correlations and abnormality pairs AB4-AB5, AB7-AB15 and AB8-AB9 on the forewing show significant negative correlations with each other. In terms of the differential occurrence of abnormalities , a few locations differed significantly from other locations. This study provides some insights into the nature of these abnormalities on the honeybee wings.
Collapse
Affiliation(s)
- Mahdi Shahshahani
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Roohollah Abbasi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
4
|
Sugiyama K, Kubota Y, Mochizuki O. Network Topology of Wing Veins in Hawaiian Flies Mitigates Allometric Dilemma. Biomimetics (Basel) 2024; 9:451. [PMID: 39194429 DOI: 10.3390/biomimetics9080451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Specific Hawaiian fruit flies have an extra crossvein (ECV) in the wing vein network which connects contiguously with another crossvein and forms a unique cruciform topology. These flies are distinguished by their large wings and their allometrically small vein diameters compared to those of typical fruit flies. Small vein diameters may increase frictional energy loss during internal blood transport, although they lead to an improvement in the wing's moment of inertia. Our hypothesis was that the ECV's presence would reduce the hydraulic resistance of the entire vein network. To investigate the hemodynamic effects of its presence, the flow rate of blood and frictional pressure loss within the vein networks was simulated by modeling them as hydraulic circuits. The results showed a 3.1% reduction in pressure loss owing to the network topology created by the presence of the ECV. This vein and its contiguous crossvein diverted part of the blood from the wing veins topologically parallel to them, reducing the pressure loss in these bypassed veins. The contiguity of the ECV to the other crossvein provided the shortest blood transfer route and lowest pressure drop between these crossveins. The results suggest that the presence of the ECV may counterbalance the heightened resistance caused by constricted veins.
Collapse
Affiliation(s)
- Kazuki Sugiyama
- Graduate School of Science and Engineering, Toyo University, Kujirai 2100, Kawagoe 350-8585, Japan
| | - Yoshihiro Kubota
- Faculty of Science and Engineering, Toyo University, Kujirai 2100, Kawagoe 350-8585, Japan
| | - Osamu Mochizuki
- Faculty of Science and Engineering, Toyo University, Kujirai 2100, Kawagoe 350-8585, Japan
| |
Collapse
|
5
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Sato H, Inoué S, Yoshida J, Kawamura I, Koshoubu J, Yamagishi A. Microscopic vibrational circular dichroism on the forewings of a European hornet: heterogenous sequences of protein domains with different secondary structures. Phys Chem Chem Phys 2024; 26:17918-17922. [PMID: 38888259 DOI: 10.1039/d4cp01827c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We developed a microscopic scanning for vibrational circular dichroism (VCD) spectroscopy in which a quantum cascade laser is equipped with a highly focused infrared light source to attain a spatial resolution of 100 μm. This system was applied to the forewing of a European hornet to reveal how the protein domains are organised. Two-dimensional patterns were obtained from the VCD signals with steps of 100 μm. We scanned the 1500-1740 cm-1 wavenumber range, which covers amide I and II absorptions. Zone sequenced α-helical and β-sheet domains within an area of 200 μm2 in membranes close to where two veins cross. The sign of the VCD signal at 1650 cm-1 changed from positive to negative when probed along the zone axis, intermediated by the absence of VCD activity. The significance of this zone is discussed from the viewpoint of the mechanical properties required for flying motion. These features are unattainable using conventional FTIR (Fourier transform infrared) or FT-VCD methods with a spatial resolution of ∼10 mm2.
Collapse
Affiliation(s)
- Hisako Sato
- Faculty of Science, Ehime University, 1 2-5, Bunkyo-cho, Matsuyama, 790-8577, Japan.
| | - Sayako Inoué
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - Jun Yoshida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University Yokohama, 240-8501, Japan
| | - Jun Koshoubu
- JASCO Corporation, Ishikawa 2967-5, Hachioji Tokyo, 192-8537, Japan
| | - Akihiko Yamagishi
- Faculty of Medicine, Toho University, 2 5-21-16 Oomori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
7
|
Zhou Y, Bai L, Wan C. The mechanical properties of different cross-veins in the hind wing of locust Locusta migratoria under uniaxial tensile and stress relaxation tests. Interface Focus 2024; 14:20230068. [PMID: 38618239 PMCID: PMC11008960 DOI: 10.1098/rsfs.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 04/16/2024] Open
Abstract
Locust Locusta migratoria exhibits remarkable aerial performances, relying predominantly on its hind wings that generate most of lift and thrust for flight. The mechanical properties of the cross-veins determine the deformation of the hind wing, which greatly affect the aerodynamic performance of flapping flight. However, whether the mechanical behaviours of the locust cross-veins change with loading rate is still unknown. In this study, cross-veins in four physiological regions (anterior-medial, anterior-lateral, posterior-medial and posterior-lateral) of the hind wing from adult locusts were investigated using uniaxial tensile test, stress relaxation test and fluorescence microscopy. It was found that the cross-veins were a type of viscoelastic material (including rate-independent elastic modulus and obvious stress relaxation). The cross-veins in the two anterior regions of the hind wing had significantly higher elastic moduli and higher ultimate tensile stress than those of its two posterior regions. This difference might be attributed to different resilin distribution patterns in the cross-veins. These findings furnish new insights into the mechanical characteristics of the locust cross-veins, which might deepen our understanding of the aerodynamic mechanisms of locust flapping flight.
Collapse
Affiliation(s)
- Yizun Zhou
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Linxin Bai
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Chao Wan
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
8
|
Sugiyama K, Kubota Y, Mochizuki O. Circuit analogy unveiled the haemodynamic effects of the posterior cross vein in the wing vein networks. PLoS One 2024; 19:e0301030. [PMID: 38564498 PMCID: PMC10986936 DOI: 10.1371/journal.pone.0301030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
We investigated the wing vein network topology in fruit flies and observed that the posterior cross vein (PCV) disrupts the symmetry of the entire network. The fluidic engineering function of this vein's disposition remains unexplored although the wing vein network is known to transport blood. We examined the fluid mechanical effects of the PCV's disposition on this blood-transporting network through numerical simulations involving the removal and rearrangement of the vein, avoiding impractical physical manipulation. We characterised the geometry of each wing membrane cell, a portion of the wing membrane surrounded by a group of veins, by determining the ratio of its surface area to the contact area with the veins. We considered this ratio in association with the flow velocities of seeping water from the blood within the veins to the membrane and evaporating water from the membrane, based on the mass conservation law. We observed that the division of a membrane cell by the PCV maximises the ratio of the areas in the divided cell on the wing-tip side by virtually shifting this vein's connections in our geometric membrane model. We derived blood flow rate and pressure loss within the venous network from their geometry, using an analogy of the venous network with a circuit consisting of hydraulic resistors based on Kirchhoff and Ohm's laws. The overall pressure loss in the network decreased by 20% with the presence of the PCV functioning as a paralleled hydraulic resistor. By contrast, any other cross-vein computationally arranged on another membrane cell as the PCV's substitution did not exhibit a larger reduction in the pressure loss. Overall, our numerical analyses, leveraging geometry and a circuit analogy, highlighted the effects of the PCV's presence and position on the blood-transporting vein network.
Collapse
Affiliation(s)
- Kazuki Sugiyama
- Graduate School of Science and Engineering, Toyo University, Saitama, Japan
| | - Yoshihiro Kubota
- Department of Mechanical Engineering, Toyo University, Saitama, Japan
| | - Osamu Mochizuki
- Graduate School of Science and Engineering, Toyo University, Saitama, Japan
| |
Collapse
|
9
|
Stanchak KE, Deora T, Weber AI, Hickner MK, Moalin A, Abdalla L, Daniel TL, Brunton BW. Intraspecific Variation in the Placement of Campaniform Sensilla on the Wings of the Hawkmoth Manduca Sexta. Integr Org Biol 2024; 6:obae007. [PMID: 38715720 PMCID: PMC11074993 DOI: 10.1093/iob/obae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 05/15/2024] Open
Abstract
Flight control requires active sensory feedback, and insects have many sensors that help them estimate their current locomotor state, including campaniform sensilla (CS), which are mechanoreceptors that sense strain resulting from deformation of the cuticle. CS on the wing detect bending and torsional forces encountered during flight, providing input to the flight feedback control system. During flight, wings experience complex spatio-temporal strain patterns. Because CS detect only local strain, their placement on the wing is presumably critical for determining the overall representation of wing deformation; however, how these sensilla are distributed across wings is largely unknown. Here, we test the hypothesis that CS are found in stereotyped locations across individuals of Manduca sexta, a hawkmoth. We found that although CS are consistently found on the same veins or in the same regions of the wings, their total number and distribution can vary extensively. This suggests that there is some robustness to variation in sensory feedback in the insect flight control system. The regions where CS are consistently found provide clues to their functional roles, although some patterns might be reflective of developmental processes. Collectively, our results on intraspecific variation in CS placement on insect wings will help reshape our thinking on the utility of mechanosensory feedback for insect flight control and guide further experimental and comparative studies.
Collapse
Affiliation(s)
- K E Stanchak
- University of Washington, Department of Biology, Seattle 98195, WA
| | - T Deora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - A I Weber
- University of Washington, Department of Biology, Seattle 98195, WA
| | - M K Hickner
- University of Washington, Department of Mechanical Engineering, Seattle 98195, WA
| | - A Moalin
- University of Washington, Department of Biology, Seattle 98195, WA
| | - L Abdalla
- University of Washington, Department of Biology, Seattle 98195, WA
| | - T L Daniel
- University of Washington, Department of Biology, Seattle 98195, WA
| | - B W Brunton
- University of Washington, Department of Biology, Seattle 98195, WA
| |
Collapse
|
10
|
Salcedo MK, Jung S, Combes SA. Autonomous Expansion of Grasshopper Wings Reveals External Forces Contribute to Final Adult Wing Shape. Integr Comp Biol 2023; 63:1111-1126. [PMID: 37715350 DOI: 10.1093/icb/icad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Ecdysis, transformation from juvenile to adult form in insects, is time-consuming and leaves insects vulnerable to predation. For winged insects, the process of wing expansion during ecdysis, unfurling and expanding the wings, is a critical bottleneck in achieving sexual maturity. Internal and external forces play a role in wing expansion. Vigorous abdominal pumping during wing expansion allows insects to pressurize and inflate their wings, filling them with hemolymph. In addition, many insects adopt expansion-specific postures and, if inhibited, do not expand their wings normally, suggesting that external forces such as gravity may play a role. However, two previous studies over 40 years ago, reported that the forewings of swarming locusts can expand autonomously when removed from the emerging insect and laid flat on a saline solution. Termed "autoexpansion," we replicated previous experiments of autoexpansion on flat liquid media, documenting changes in both wing length and area over time while also focusing on the role of gravity in autoexpansion. Using the North American bird grasshopper Schistocerca americana, we tested four autoexpansion treatments of varying surface tension and hydrophobicity (gravity, deionized water, buffer, and mineral oil) while simultaneously observing and measuring intact, normal wing expansion. Finally, we constructed a simple model of a viscoelastic expanding wing subjected to gravity, to determine whether it could capture aspects of wing expansion. Our data confirmed that wing autoexpansion does occur in S. americana, but autoexpanding wings, especially hindwings, failed to increase to the same final length and area as intact wings. We found that gravity plays an important role in wing expansion, early in the expansion process. Combined with the significant mass increase we documented in intact wings, it suggests that hydraulic pumping of hemolymph into the wings plays an important role in increasing the area of expanding wings, especially in driving expansion of the large, pleated hindwings. Autoexpansion in a non-swarming orthopteran suggests that local cues driving wing autoexpansion may serve a broader purpose, reducing total expansion time and costs by shifting some processes from central to local control. Documenting wing autoexpansion in a widely studied model organism and demonstrating a mathematical model provides a tractable new system for exploring higher level questions about the mechanisms of wing expansion and the implications of autoexpansion, as well as potential bioinspiration for future technologies applicable to micro-air vehicles, space exploration, or medical and prosthetic devices.
Collapse
Affiliation(s)
- Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Jeon J, Kim HC, Klein TA, Choi KS. Analysis of geometric morphometrics and molecular phylogeny for Anopheles species in the Republic of Korea. Sci Rep 2023; 13:22009. [PMID: 38086890 PMCID: PMC10716165 DOI: 10.1038/s41598-023-49536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
Human malaria, transmitted by Anopheles mosquitoes, is the most predominant mosquito-borne disease that is responsible for hundreds of thousands of deaths worldwide each year. In the Republic of Korea (ROK), there are currently several hundred malaria cases annually, mostly near the demilitarized zone (DMZ). Eight species of Anopheles mosquitoes are currently known to be present in the ROK. Similar to other major malaria vectors in Africa and India, it is very challenging to morphologically differentiate Anopheles mosquitoes in the ROK due to their extremely similar morphology. In this study, wing geometric morphometrics (WGM) were used to differentiate the eight Anopheles species collected at six locations near the DMZ, Seoul and Pyeongtaek from April-October 2021. Phylogenetic analysis was also performed using cytochrome c oxidase subunit 1 (COI), internal transcribed spacer 2 (ITS2), and tyrosine hydroxylase (TH) genes for comparison with WGM analysis and to infer evolutionary relationships. The results of cross-validation (overall accuracy = 74.8%) demonstrated that species identification using WGM alone was not possible with a high accuracy for all eight species. While phylogenetic analyses based on the COI region could not clearly distinguish some species, the analysis based on ITS2 and TH was more useful for resolving the phylogenetic correlation of the eight species. Our results may improve Anopheles species identification strategies for effective identification and control of malaria vectors in the ROK.
Collapse
Affiliation(s)
- Jiseung Jeon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Heung Chul Kim
- U Inc., Daesakwan-ro 34-gil, Yongsan-gu, Seoul, 04409, Republic of Korea
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, Pyeongtaek, APO AP 96281-5281, USA
- PSC 450, Box 75R, Pyeongtaek, APO AP 96206, USA
| | - Kwang Shik Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
Anderson A, Keime N, Fong C, Kraemer A, Fassbinder-Orth C. Resilin Distribution and Abundance in Apis mellifera across Biological Age Classes and Castes. INSECTS 2023; 14:764. [PMID: 37754732 PMCID: PMC10532044 DOI: 10.3390/insects14090764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
The presence of resilin, an elastomeric protein, in insect vein joints provides the flexible, passive deformations that are crucial to flapping flight. This study investigated the resilin gene expression and autofluorescence dynamics among Apis mellifera (honey bee) worker age classes and drone honey bees. Resilin gene expression was determined via ddPCR on whole honey bees and resilin autofluorescence was measured in the 1m-cu, 2m-cu, Cu-V, and Cu2-V joints on the forewing and the Cu-V joint of the hindwing. Resilin gene expression varied significantly with age, with resilin activity being highest in the pupae. Autofluorescence of the 1m-cu and the Cu-V joints on the ventral forewing and the Cu-V joint on the ventral hindwing varied significantly between age classes on the left and right sides of the wing, with the newly emerged honey bees having the highest level of resilin autofluorescence compared to all other groups. The results of this study suggest that resilin gene expression and deposition on the wing is age-dependent and may inform us more about the physiology of aging in honey bees.
Collapse
Affiliation(s)
- Audrey Anderson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 1400 R Street, Lincoln, NE 68588, USA;
| | - Noah Keime
- Biology Department, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Chandler Fong
- Biology Department, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Carol Fassbinder-Orth
- Biology Department, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
13
|
Eraghi SH, Toofani A, Guilani RJA, Ramezanpour S, Bijma NN, Sedaghat A, Yasamandaryaei A, Gorb S, Rajabi H. Basal complex: a smart wing component for automatic shape morphing. Commun Biol 2023; 6:853. [PMID: 37591993 PMCID: PMC10435446 DOI: 10.1038/s42003-023-05206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Insect wings are adaptive structures that automatically respond to flight forces, surpassing even cutting-edge engineering shape-morphing systems. A widely accepted but not yet explicitly tested hypothesis is that a 3D component in the wing's proximal region, known as basal complex, determines the quality of wing shape changes in flight. Through our study, we validate this hypothesis, demonstrating that the basal complex plays a crucial role in both the quality and quantity of wing deformations. Systematic variations of geometric parameters of the basal complex in a set of numerical models suggest that the wings have undergone adaptations to reach maximum camber under loading. Inspired by the design of the basal complex, we develop a shape-morphing mechanism that can facilitate the shape change of morphing blades for wind turbines. This research enhances our understanding of insect wing biomechanics and provides insights for the development of simplified engineering shape-morphing systems.
Collapse
Affiliation(s)
- Sepehr H Eraghi
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
| | - Arman Toofani
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
| | - Ramin J A Guilani
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
- Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - Shayan Ramezanpour
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
| | - Nienke N Bijma
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Alireza Sedaghat
- Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Armin Yasamandaryaei
- Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Stanislav Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Hamed Rajabi
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK.
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK.
| |
Collapse
|
14
|
Stanchak KE, Deora T, Weber AI, Hickner MK, Moalin A, Abdalla L, Daniel TL, Brunton BW. Intraspecific variation in the placement of campaniform sensilla on the wings of the hawkmoth Manduca sexta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546554. [PMID: 37425819 PMCID: PMC10326992 DOI: 10.1101/2023.06.26.546554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flight control requires active sensory feedback, and insects have many sensors that help them estimate their current locomotor state, including campaniform sensilla, which are mechanoreceptors that sense strain resulting from deformation of the cuticle. Campaniform sensilla on the wing detect bending and torsional forces encountered during flight, providing input to the flight feedback control system. During flight, wings experience complex spatio-temporal strain patterns. Because campaniform sensilla detect only local strain, their placement on the wing is presumably critical for determining the overall representation of wing deformation; however, how these sensilla are distributed across wings is largely unknown. Here, we test the hypothesis that campaniform sensilla are found in stereotyped locations across individuals of Manduca sexta, a hawkmoth. We found that although campaniform sensilla are consistently found on the same veins or in the same regions of the wings, their total number and distribution can vary extensively. This suggests that there is some robustness to variation in sensory feedback in the insect flight control system. The regions where campaniform sensilla are consistently found provide clues to their functional roles, although some patterns might be reflective of developmental processes. Collectively, our results on intraspecific variation in campaniform sensilla placement on insect wings will help reshape our thinking on the utility of mechanosensory feedback for insect flight control and guide further experimental and comparative studies.
Collapse
Affiliation(s)
| | - Tanvi Deora
- University of Washington, Department of Biology, Seattle, WA
| | - Alison I Weber
- University of Washington, Department of Biology, Seattle, WA
| | - Michelle K Hickner
- University of Washington, Department of Mechanical Engineering, Seattle, WA
| | - Abna Moalin
- University of Washington, Department of Biology, Seattle, WA
| | - Laila Abdalla
- University of Washington, Department of Biology, Seattle, WA
| | - Thomas L Daniel
- University of Washington, Department of Biology, Seattle, WA
| | | |
Collapse
|
15
|
Salcedo MK, Ellis TE, Sáenz ÁS, Lu J, Worrell T, Madigan ML, Socha JJ. Transient use of hemolymph for hydraulic wing expansion in cicadas. Sci Rep 2023; 13:6298. [PMID: 37072416 PMCID: PMC10113369 DOI: 10.1038/s41598-023-32533-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
Insect wings must be flexible, light, and strong to allow dynamic behaviors such as flying, mating, and feeding. When winged insects eclose into adults, their wings unfold, actuated hydraulically by hemolymph. Flowing hemolymph in the wing is necessary for functioning and healthy wings, both as the wing forms and as an adult. Because this process recruits the circulatory system, we asked, how much hemolymph is pumped into wings, and what happens to the hemolymph afterwards? Using Brood X cicadas (Magicicada septendecim), we collected 200 cicada nymphs, observing wing transformation over 2 h. Using dissection, weighing, and imaging of wings at set time intervals, we found that within 40 min after emergence, wing pads morphed into adult wings and total wing mass increased to ~ 16% of body mass. Thus, a significant amount of hemolymph is diverted from body to wings to effectuate expansion. After full expansion, in the ~ 80 min after, the mass of the wings decreased precipitously. In fact, the final adult wing is lighter than the initial folded wing pad, a surprising result. These results demonstrate that cicadas not only pump hemolymph into the wings, they then pump it out, producing a strong yet lightweight wing.
Collapse
Affiliation(s)
- Mary K Salcedo
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Tyler E Ellis
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Ángela S Sáenz
- Entomology, University of Maryland, College Park, MD, USA
| | - Joyce Lu
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Terrell Worrell
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Michael L Madigan
- Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - John J Socha
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
16
|
Salcedo MK, Jun BH, Socha JJ, Pierce NE, Vlachos PP, Combes SA. Complex hemolymph circulation patterns in grasshopper wings. Commun Biol 2023; 6:313. [PMID: 36959465 PMCID: PMC10036482 DOI: 10.1038/s42003-023-04651-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/02/2023] [Indexed: 03/25/2023] Open
Abstract
An insect's living systems-circulation, respiration, and a branching nervous system-extend from the body into the wing. Wing hemolymph circulation is critical for hydrating tissues and supplying nutrients to living systems such as sensory organs across the wing. Despite the critical role of hemolymph circulation in maintaining healthy wing function, wings are often considered "lifeless" cuticle, and flows remain largely unquantified. High-speed fluorescent microscopy and particle tracking of hemolymph in the wings and body of the grasshopper Schistocerca americana revealed dynamic flow in every vein of the fore- and hindwings. The global system forms a circuit, but local flow behavior is complex, exhibiting three distinct types: pulsatile, aperiodic, and "leaky" flow. Thoracic wing hearts pull hemolymph from the wing at slower frequencies than the dorsal vessel; however, the velocity of returning hemolymph (in the hindwing) is faster than in that of the dorsal vessel. To characterize the wing's internal flow mechanics, we mapped dimensionless flow parameters across the wings, revealing viscous flow regimes. Wings sustain ecologically important insect behaviors such as pollination and migration. Analysis of the wing circulatory system provides a template for future studies investigating the critical hemodynamics necessary to sustaining wing health and insect flight.
Collapse
Affiliation(s)
- Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Brian H Jun
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Pavlos P Vlachos
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA, USA
| |
Collapse
|
17
|
Weber AI, Babaei M, Mamo A, Brunton BW, Daniel TL, Bergbreiter S. Nonuniform structural properties of wings confer sensing advantages. J R Soc Interface 2023; 20:20220765. [PMID: 36946090 PMCID: PMC10031407 DOI: 10.1098/rsif.2022.0765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 03/23/2023] Open
Abstract
Sensory feedback is essential to both animals and robotic systems for achieving coordinated, precise movements. Mechanosensory feedback, which provides information about body deformation, depends not only on the properties of sensors but also on the structure in which they are embedded. In insects, wing structure plays a particularly important role in flapping flight: in addition to generating aerodynamic forces, wings provide mechanosensory feedback necessary for guiding flight while undergoing dramatic deformations during each wingbeat. However, the role that wing structure plays in determining mechanosensory information is relatively unexplored. Insect wings exhibit characteristic stiffness gradients and are subject to both aerodynamic and structural damping. Here we examine how both of these properties impact sensory performance, using finite element analysis combined with sensor placement optimization approaches. We show that wings with nonuniform stiffness exhibit several advantages over uniform stiffness wings, resulting in higher accuracy of rotation detection and lower sensitivity to the placement of sensors on the wing. Moreover, we show that higher damping generally improves the accuracy with which body rotations can be detected. These results contribute to our understanding of the evolution of the nonuniform stiffness patterns in insect wings, as well as suggest design principles for robotic systems.
Collapse
Affiliation(s)
- Alison I. Weber
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Mahnoush Babaei
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA
| | - Amanuel Mamo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | | | - Thomas L. Daniel
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Jonsson T. Micro-CT and deep learning: Modern techniques and applications in insect morphology and neuroscience. FRONTIERS IN INSECT SCIENCE 2023; 3:1016277. [PMID: 38469492 PMCID: PMC10926430 DOI: 10.3389/finsc.2023.1016277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 03/13/2024]
Abstract
Advances in modern imaging and computer technologies have led to a steady rise in the use of micro-computed tomography (µCT) in many biological areas. In zoological research, this fast and non-destructive method for producing high-resolution, two- and three-dimensional images is increasingly being used for the functional analysis of the external and internal anatomy of animals. µCT is hereby no longer limited to the analysis of specific biological tissues in a medical or preclinical context but can be combined with a variety of contrast agents to study form and function of all kinds of tissues and species, from mammals and reptiles to fish and microscopic invertebrates. Concurrently, advances in the field of artificial intelligence, especially in deep learning, have revolutionised computer vision and facilitated the automatic, fast and ever more accurate analysis of two- and three-dimensional image datasets. Here, I want to give a brief overview of both micro-computed tomography and deep learning and present their recent applications, especially within the field of insect science. Furthermore, the combination of both approaches to investigate neural tissues and the resulting potential for the analysis of insect sensory systems, from receptor structures via neuronal pathways to the brain, are discussed.
Collapse
Affiliation(s)
- Thorin Jonsson
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| |
Collapse
|
19
|
Niu Y, Zhao Y, Shi F, Li M, Zhang S, Yang J, Zong S, Tao J. An Efficient and Simple Method for Collecting Haemolymph of Cerambycidae (Insecta: Coleoptera) Adults. INSECTS 2022; 14:29. [PMID: 36661957 PMCID: PMC9863847 DOI: 10.3390/insects14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Cerambycid beetles (Cerambycidae) are major forest pests, posing a serious threat to the security of forest resources worldwide. Extensive research has focused on the control of cerambycid beetles from physiological and biochemical perspectives. Despite the important roles of insect haemolymph in physiological processes, efficient collection methods for Cerambycidae are lacking. For the efficient and easy collection of large amounts of pure haemolymph from adult cerambycid beetles, a new method, named net centrifugation, was developed. Three species of cerambycid beetles with large differences in size, Anoplophora chinensis, Monochamus saltuarius and Saperda populnea, were selected for the study. Haemolymph was collected by the newly developed net centrifugation method-in which an inner nylon net is used during centrifugation under optimised conditions, and a relatively small wound is generated on the insect-as well as the traditional tearing method and double centrifugation method. Among the three methods evaluated, the net centrifugation method caused the least damage to cerambycid beetles during the whole operation. This method resulted in the most haemolymph from a single beetle, with the lowest turbidity, mostly pure haemocytes in the precipitate, the clearest haemolymph smears by microscopy and the highest quality of RNA extracted from haemocytes. The net centrifugation method has a high collection efficiency, providing important technical support for haemolymph extraction and entomological research.
Collapse
Affiliation(s)
- Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Meng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jinglin Yang
- Mentougou Forestry Station, Beijing 102308, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Rodrigues-Filho SJM, Prado E Castro C, Lopes LF, da Fonseca IP, Rebelo MT. Size does matter: intraspecific geometric morphometric analysis of wings of the blowfly Chrysomya albiceps (Diptera: Calliphoridae). Acta Trop 2022; 235:106662. [PMID: 35998679 DOI: 10.1016/j.actatropica.2022.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Blowflies have forensic, sanitary and veterinary importance, as well as being pollinators, parasitoids and ecological bioindicators. There is still little work with real data and from experiments assessing the relationship between blowflies' morphologic features and environmental and demographic factors. The present work tests whether the variation, in the shape and size, of Chrysomya albiceps (Wiedemann, 1819) wings is influenced by the following factors: 1) time; 2) temperature; 3) sex and; 4) different types of carcasses (pig, dog/cat and whale). Male and female wings from four different sites collected in six different years were used to obtain wing size and shape of C. albiceps. Analyses between wing shape and the variables tested had low explanatory power, even though they had statistical support. However, it was possible to identify differences in wing shape between males and females, with good returns in sex identification. The comparison between wing size and the variables tested showed that wing size has a negative relationship with temperature, significant differences between sexes, slight variation over time and no influence by carcass types. Furthermore, wing size influenced wing shape. Understanding population-specific characteristics of C. albiceps provide important insights about how the species reacts under specific conditions.
Collapse
Affiliation(s)
- Sérgio J M Rodrigues-Filho
- Departamento de Biologia Animal, Centro de Estudos do Ambiente e do Mar/Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Universidade do Estado do Amapá, Departamento de Engenharia Ambiental, Avenida Presidente Vargas, 650 - Central, Macapá AP, 68900-070, Brasil.
| | - Catarina Prado E Castro
- Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Filipe Lopes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS)
| | - Maria Teresa Rebelo
- Departamento de Biologia Animal, Centro de Estudos do Ambiente e do Mar/Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
21
|
Yu K, Reddy GVP, Schrader J, Guo X, Li Y, Jiao Y, Shi P. A nondestructive method of calculating the wing area of insects. Ecol Evol 2022; 12:e8792. [PMID: 35386866 PMCID: PMC8975793 DOI: 10.1002/ece3.8792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022] Open
Abstract
Most insects engage in winged flight. Wing loading, that is, the ratio of body mass to total wing area, has been demonstrated to reflect flight maneuverability. High maneuverability is an important survival trait, allowing insects to escape natural enemies and to compete for mates. In some ecological field experiments, there is a need to calculate the wing area of insects without killing them. However, fast, nondestructive estimation of wing area for insects is not available based on past work. The Montgomery equation (ME), which assumes a proportional relationship between leaf area and the product of leaf length and width, is frequently used to calculate leaf area of plants, in crops with entire linear, lanceolate leaves. Recently, the ME was proved to apply to leaves with more complex shapes from plants that do not have any needle leaves. Given that the wings of insects are similar in shape to broad leaves, we tested the validity of the ME approach in calculating the wing area of insects using three species of cicadas common in eastern China. We compared the actual area of the cicadas' wings with the estimates provided by six potential models used for wing area calculation, and we found that the ME performed best, based on the trade-off between model structure and goodness of fit. At the species level, the estimates for the proportionality coefficients of ME for three cicada species were 0.686, 0.693, and 0.715, respectively. There was a significant difference in the proportionality coefficients between any two species. Our method provides a simple and powerful approach for the nondestructive estimation of insect wing area, which is also valuable in quantifying wing morphological features of insects. The present study provides a nondestructive approach to estimating the wing area of insects, allowing them to be used in mark and recapture experiments.
Collapse
Affiliation(s)
- Kexin Yu
- College of Biology and the EnvironmentBamboo Research InstituteNanjing Forestry UniversityNanjingChina
| | - Gadi V. P. Reddy
- USDA‐ARS‐Southern Insect Management Research UnitStonevilleMississippiUSA
| | - Julian Schrader
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Biodiversity, Macroecology and BiogeographyUniversity of GöttingenGöttingenGermany
| | - Xuchen Guo
- College of Biology and the EnvironmentBamboo Research InstituteNanjing Forestry UniversityNanjingChina
| | - Yirong Li
- College of Biology and the EnvironmentBamboo Research InstituteNanjing Forestry UniversityNanjingChina
| | - Yabing Jiao
- College of Biology and the EnvironmentBamboo Research InstituteNanjing Forestry UniversityNanjingChina
| | - Peijian Shi
- College of Biology and the EnvironmentBamboo Research InstituteNanjing Forestry UniversityNanjingChina
- Tropical Silviculture and Forest EcologyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
22
|
Wehmann HN, Engels T, Lehmann FO. Flight activity and age cause wing damage in house flies. J Exp Biol 2021; 225:273949. [PMID: 34904650 DOI: 10.1242/jeb.242872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
Wing damage attenuates aerial performance in many flying animals such as birds, bats and insects. Especially insect wings are fragile and light in order to reduce inertial power requirements for flight at elevated wing flapping frequencies. There is a continuing debate on the factors causing wing damage in insects including collisions with objects, mechanical stress during flight activity, and aging. This experimental study is engaged with the reasons and significance of wing damage for flight in the house fly Musca domestica. We determined natural wing area loss under two housing conditions and recorded flight activity and flight ability throughout the animals' lifetime. Our data show that wing damage occurs on average after 6 h of flight, is sex-specific, and depends on housing conditions. Statistical tests show that both physiological age and flight activity have similar significance as predictors for wing damage. Tests on freely flying flies showed that minimum wing area for active flight is approximately 10-34% below the initial area and requires a left-right wing area asymmetry of less than approximately 25%. Our findings broadly confirm predictions from simple aerodynamic theory based on mean wing velocity and area, and are also consistent with previous wing damage measurements in other insect species.
Collapse
Affiliation(s)
| | - Thomas Engels
- Department of Animal Physiology, University of Rostock, Germany
| | | |
Collapse
|
23
|
Aiello BR, Stanchak KE, Weber AI, Deora T, Sponberg S, Brunton BW. Spatial distribution of campaniform sensilla mechanosensors on wings: form, function, and phylogeny. CURRENT OPINION IN INSECT SCIENCE 2021; 48:8-17. [PMID: 34175464 DOI: 10.1016/j.cois.2021.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Insect wings serve two crucial functions in flight: propulsion and sensing. During flapping flight, complex spatiotemporal patterns of strain on the wing reflect mechanics, kinematics, and external perturbations; sensing wing deformation provides feedback necessary for flight control. Campaniform sensilla distributed across the wing transduce local strain fluctuations into neural signals, so their placement on the wing determines sensory information available to the insect. Thus, understanding the significance of these sensor locations will also reveal how sensing and wing movement are coupled. Here, we identify trends in wing campaniform sensilla placement across flying insects from the literature. We then discuss how these patterns can influence sensory encoding by wing mechanosensors. Finally, we propose combining a comparative approach on model insect clades with computational modeling, leveraging the spectacular natural diversity in wings to uncover biological principles of mechanosensory feedback in flight control.
Collapse
Affiliation(s)
- Brett R Aiello
- School of Physics, Georgia Institute of Technology, Atlanta 30332, GA, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | | | - Alison I Weber
- Department of Biology, University of Washington, Seattle 98195, WA, USA
| | - Tanvi Deora
- Department of Biology, University of Washington, Seattle 98195, WA, USA
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta 30332, GA, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA.
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle 98195, WA, USA
| |
Collapse
|
24
|
Bálint Z, Parker A, Ingram A, Kertész K, Piszter G, Horváth ZE, Illés L, Biró LP. Scale granules and colours: Sexual dimorphism in Trichonis (Lepidoptera: Lycaenidae, Theclinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101113. [PMID: 34666210 DOI: 10.1016/j.asd.2021.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
A large fraction of dorsal wing surface ground scales show an unusual granulated nature, composed of material apparently extruded from the scale lumen in male individuals of both Trichonis Hewitson, 1865 species in the tribe Eumaeini, a rare Guyanian-Amazonian genus. Only a few not-granulated male specimens are known, females are not granulated. The granulated scales are investigated by various microscopic (optical, scanning and transmission electron microscopy, focused ion beam lamella cutting) and spectroscopic (optical reflectance, energy-dispersive X-ray (EDS), Raman) techniques. The characteristic blue colour unique in the South American representatives of the tribe is documented and analysed. EDS spectra show that the granules contain additional calcium and oxygen as compared with the un-granulated regions of the same scale. Electron diffraction (inside the TEM) did not reveal any crystalline component in the granules. The granulated wing surfaces of the males exhibit a UV absorption band at 280 nm, characteristic for biogenic CaCO3; therefore, the material of the granules is tentatively identified as CaCO3. It is shown that the granules influence the optical properties of the dorsal wing surface resulting in a characteristic spectrum.
Collapse
Affiliation(s)
- Zsolt Bálint
- Hungarian Natural History Museum, Baross utca 13, Budapest, H-1088, Hungary.
| | - Andrew Parker
- Green Templeton College, University of Oxford, 43 Woodstock Road, Oxford, OX2 6HG, United Kingdom
| | - Abigail Ingram
- Department of Science, West Kent College, Brook Street, Tonbridge, Kent, TN9 2PW, United Kingdom
| | - Krisztián Kertész
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, H-1525, Hungary
| | - Gábor Piszter
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, H-1525, Hungary
| | - Zsolt E Horváth
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, H-1525, Hungary
| | - Levente Illés
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, H-1525, Hungary
| | - László Péter Biró
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, H-1525, Hungary
| |
Collapse
|
25
|
Lin YJ, Chang SK, Lai YH, Yang JT. Beneficial wake-capture effect for forward propulsion with a restrained wing-pitch motion of a butterfly. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202172. [PMID: 34457326 PMCID: PMC8385355 DOI: 10.1098/rsos.202172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Unlike other insects, a butterfly uses a small amplitude of the wing-pitch motion for flight. From an analysis of the dynamics of real flying butterflies, we show that the restrained amplitude of the wing-pitch motion enhances the wake-capture effect so as to enhance forward propulsion. A numerical simulation refined with experimental data shows that, for a small amplitude of the wing-pitch motion, the shed vortex generated in the downstroke induces air in the wake region to flow towards the wings. This condition enables a butterfly to capture an induced flow and to acquire an additional forward propulsion, which accounts for more than 47% of the thrust generation. When the amplitude of the wing-pitch motion exceeds 45°, the flow induced by the shed vortex drifts away from the wings; it attenuates the wake-capture effect and causes the butterfly to lose a part of its forward propulsion. Our results provide one essential aerodynamic feature for a butterfly to adopt a small amplitude of the wing-pitch motion to enhance the wake-capture effect and forward propulsion. This work clarifies the variation of the flow field correlated with the wing-pitch motion, which is useful in the design of wing kinematics of a micro-aerial vehicle.
Collapse
Affiliation(s)
- You-Jun Lin
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Kai Chang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsiang Lai
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jing-Tang Yang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
26
|
The damping and structural properties of dragonfly and damselfly wings during dynamic movement. Commun Biol 2021; 4:737. [PMID: 34131288 PMCID: PMC8206215 DOI: 10.1038/s42003-021-02263-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023] Open
Abstract
For flying insects, stability is essential to maintain the orientation and direction of motion in flight. Flight instability is caused by a variety of factors, such as intended abrupt flight manoeuvres and unwanted environmental disturbances. Although wings play a key role in insect flight stability, little is known about their oscillatory behaviour. Here we present the first systematic study of insect wing damping. We show that different wing regions have almost identical damping properties. The mean damping ratio of fresh wings is noticeably higher than that previously thought. Flight muscles and hemolymph have almost no 'direct' influence on the wing damping. In contrast, the involvement of the wing hinge can significantly increase damping. We also show that although desiccation reduces the wing damping ratio, rehydration leads to full recovery of damping properties after desiccation. Hence, we expect hemolymph to influence the wing damping indirectly, by continuously hydrating the wing system.
Collapse
|
27
|
Isakhani H, Xiong C, Chen W, Yue S. Towards locust-inspired gliding wing prototypes for micro aerial vehicle applications. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202253. [PMID: 34234953 PMCID: PMC8242835 DOI: 10.1098/rsos.202253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
In aviation, gliding is the most economical mode of flight explicitly appreciated by natural fliers. They achieve it by high-performance wing structures evolved over millions of years in nature. Among other prehistoric beings, locust is a perfect example of such natural glider capable of endured transatlantic flights that could inspire a practical solution to achieve similar capabilities on micro aerial vehicles. An investigation in this study demonstrates the effects of haemolymph on the flexibility of several flying insect wings proving that many species exist with further simplistic yet well-designed wing structures. However, biomimicry of such aerodynamic and structural properties is hindered by the limitations of modern as well as conventional fabrication technologies in terms of availability and precision, respectively. Therefore, here we adopt finite-element analysis to investigate the manufacturing-worthiness of a three-dimensional digitally reconstructed locust wing, and propose novel combinations of economical and readily available manufacturing methods to develop the model into prototypes that are structurally similar to their counterparts in nature while maintaining the optimum gliding ratio previously obtained in the aerodynamic simulations. The former is assessed here via an experimental analysis of the flexural stiffness and maximum deformation rate as EI s = 1.34 × 10-4 Nm2, EI c = 5.67 × 10-6 Nm2 and greater than 148.2%, respectively. Ultimately, a comparative study of the mechanical properties reveals the feasibility of each prototype for gliding micro aerial vehicle applications.
Collapse
Affiliation(s)
- Hamid Isakhani
- The Computational Intelligence Lab (CIL), School of Computer Science, University of Lincoln, LN6 7TS Lincoln, UK
| | - Caihua Xiong
- The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Wenbin Chen
- The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Shigang Yue
- The Computational Intelligence Lab (CIL), School of Computer Science, University of Lincoln, LN6 7TS Lincoln, UK
- Machine Life and Intelligence Research Centre, Guangzhou University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
28
|
Waldrop LD, Rader JA. Melding Modeling and Morphology: A Call for Collaboration to Address Difficult Questions about the Evolution of Form and Function. Integr Comp Biol 2020; 60:1188-1192. [PMID: 33220060 DOI: 10.1093/icb/icaa132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nascent field of evolutionary biomechanics seeks to understand how form begets function, and researchers have taken two tacks toward this goal: inferring form based on function (comparative biomechanics) or inferring function based on form (functional morphology). Each tack has strengths and weaknesses, which the other could improve. The symposium, "Melding modeling and morphology-integrating approaches to understand the evolution of form and function" sought to highlight research stitching together the two tacks. In this introduction to the symposium's issue, we highlight these works, discuss the challenges of interdisciplinary collaborations, and suggest possible avenues available to create new collaborations to create a unifying framework for evolutionary biomechanics.
Collapse
Affiliation(s)
- Lindsay D Waldrop
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Jonathan A Rader
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|