1
|
Duncan E, Papatheodoulou M, Metcalfe NB, McLennan D. Does pre-spawning catch and release angling affect offspring telomere dynamics in Atlantic salmon? CONSERVATION PHYSIOLOGY 2023; 11:coad018. [PMID: 37113976 PMCID: PMC10129346 DOI: 10.1093/conphys/coad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The practice of 'catch and release' (C&R) angling confers a balance between animal welfare, conservation efforts and preserving the socio-economic interests of recreational angling. However, C&R angling can still cause exhaustion and physical injury, and often exposes the captured fish to the stress of air exposure. Therefore, the true conservation success of C&R angling depends on whether the angled individuals then survive to reproduction and whether there are any persisting effects on subsequent generations. Here we tested the hypothesis that the stress of C&R angling is then passed on to offspring. We experimentally manipulated the C&R experience of wild adult salmon prior to the spawning season. These parental fish either underwent a C&R simulation (which involved exercise with/without air exposure) or were left as control individuals. We then measured the telomere length of the arising offspring (at the larval stage of development) since previous studies have linked a shorter telomere length with reduced fitness/longevity and the rate of telomere loss is thought to be influenced by stress. Family-level telomere length was positively related to rate of growth. However, the telomere lengths of the salmon offspring were unrelated to the C&R experience of their parents. This may be due to there being no intergenerational effect of parental stress exposure on offspring telomeres, or to any potential effects being buffered by the significant telomere elongation mechanisms that are thought to occur during the embryonic and larval stages of development. While this may suggest that C&R angling has a minimal intergenerational effect on offspring fitness, there have been numerous other reports of negative C&R effects, therefore we should still be aiming to mitigate and refine such practices, in order to minimize their impacts on fish populations.
Collapse
Affiliation(s)
- Eleanor Duncan
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| | - Magdalene Papatheodoulou
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| | - Darryl McLennan
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| |
Collapse
|
2
|
Teffer AK, Hinch SG, Miller KM, Patterson DA, Bass AL, Cooke SJ, Farrell AP, Beacham TD, Chapman JM, Juanes F. Host-pathogen-environment interactions predict survival outcomes of adult sockeye salmon (Oncorhynchus nerka) released from fisheries. Mol Ecol 2021; 31:134-160. [PMID: 34614262 DOI: 10.1111/mec.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5-7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1-2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.
Collapse
Affiliation(s)
- Amy K Teffer
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada.,Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Arthur L Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Anthony P Farrell
- Department of Zoology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Jacqueline M Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
3
|
Cooke SJ, Venturelli P, Twardek WM, Lennox RJ, Brownscombe JW, Skov C, Hyder K, Suski CD, Diggles BK, Arlinghaus R, Danylchuk AJ. Technological innovations in the recreational fishing sector: implications for fisheries management and policy. REVIEWS IN FISH BIOLOGY AND FISHERIES 2021. [PMID: 33642705 DOI: 10.1007/s1160-021-09643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Technology that is developed for or adopted by the recreational fisheries sector (e.g., anglers and the recreational fishing industry) has led to rapid and dramatic changes in how recreational anglers interact with fisheries resources. From improvements in finding and catching fish to emulating their natural prey and accessing previously inaccessible waters, to anglers sharing their exploits with others, technology is completely changing all aspects of recreational fishing. These innovations would superficially be viewed as positive from the perspective of the angler (aside from the financial cost of purchasing some technologies), yet for the fisheries manager and policy maker, technology may create unintended challenges that lead to reactionary or even ill-defined approaches as they attempt to keep up with these changes. The goal of this paper is to consider how innovations in recreational fishing are changing the way that anglers interact with fish, and thus how recreational fisheries management is undertaken. We use a combination of structured reviews and expert analyses combined with descriptive case studies to highlight the many ways that technology is influencing recreational fishing practice, and, relatedly, what it means for changing how fisheries and/or these technologies need to be managed-from changes in fish capture, to fish handling, to how anglers share information with each other and with managers. Given that technology is continually evolving, we hope that the examples provided here lead to more and better monitoring of technological innovations and engagement by the management and policy authorities with the recreational fishing sector. Doing so will ensure that management actions related to emerging and evolving recreational fishing technology are more proactive than reactive.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| | - Paul Venturelli
- Department of Biology, Ball State University, Cooper Life Science Building, CL 121, Muncie, IN 47306 USA
| | - William M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| | - Robert J Lennox
- LFI, Freshwater Biology, NORCE Norwegian Research Centre, Nygårdsporten 112, 5006 Bergen, Norway
| | - Jacob W Brownscombe
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd, Burlington, ON L7S 1A1 Canada
| | - Christian Skov
- Technical University of Denmark, National Institute of Aquatic Resources (DTU Aqua), Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Kieran Hyder
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft, Suffolk, NR33 0HT UK
| | - Cory D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL 61801 USA
| | | | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Division of Integrative Fisheries Management, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| |
Collapse
|
4
|
Cooke SJ, Venturelli P, Twardek WM, Lennox RJ, Brownscombe JW, Skov C, Hyder K, Suski CD, Diggles BK, Arlinghaus R, Danylchuk AJ. Technological innovations in the recreational fishing sector: implications for fisheries management and policy. REVIEWS IN FISH BIOLOGY AND FISHERIES 2021; 31:253-288. [PMID: 33642705 PMCID: PMC7900803 DOI: 10.1007/s11160-021-09643-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/02/2021] [Indexed: 05/13/2023]
Abstract
Technology that is developed for or adopted by the recreational fisheries sector (e.g., anglers and the recreational fishing industry) has led to rapid and dramatic changes in how recreational anglers interact with fisheries resources. From improvements in finding and catching fish to emulating their natural prey and accessing previously inaccessible waters, to anglers sharing their exploits with others, technology is completely changing all aspects of recreational fishing. These innovations would superficially be viewed as positive from the perspective of the angler (aside from the financial cost of purchasing some technologies), yet for the fisheries manager and policy maker, technology may create unintended challenges that lead to reactionary or even ill-defined approaches as they attempt to keep up with these changes. The goal of this paper is to consider how innovations in recreational fishing are changing the way that anglers interact with fish, and thus how recreational fisheries management is undertaken. We use a combination of structured reviews and expert analyses combined with descriptive case studies to highlight the many ways that technology is influencing recreational fishing practice, and, relatedly, what it means for changing how fisheries and/or these technologies need to be managed-from changes in fish capture, to fish handling, to how anglers share information with each other and with managers. Given that technology is continually evolving, we hope that the examples provided here lead to more and better monitoring of technological innovations and engagement by the management and policy authorities with the recreational fishing sector. Doing so will ensure that management actions related to emerging and evolving recreational fishing technology are more proactive than reactive.
Collapse
Affiliation(s)
- Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| | - Paul Venturelli
- Department of Biology, Ball State University, Cooper Life Science Building, CL 121, Muncie, IN 47306 USA
| | - William M. Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| | - Robert J. Lennox
- LFI, Freshwater Biology, NORCE Norwegian Research Centre, Nygårdsporten 112, 5006 Bergen, Norway
| | - Jacob W. Brownscombe
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd, Burlington, ON L7S 1A1 Canada
| | - Christian Skov
- Technical University of Denmark, National Institute of Aquatic Resources (DTU Aqua), Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Kieran Hyder
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft, Suffolk, NR33 0HT UK
| | - Cory D. Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL 61801 USA
| | | | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Division of Integrative Fisheries Management, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| |
Collapse
|
5
|
Villegas‐Ríos D, Freitas C, Moland E, Thorbjørnsen SH, Olsen EM. Inferring individual fate from aquatic acoustic telemetry data. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- David Villegas‐Ríos
- Department of Ecology and Marine Resources Instituto Mediterráneo de Estudios Avanzados (CSIC‐UiB) Esporles Spain
- Department of Ecology and Marine Resources Instituto de Investigaciones Marinas (CSIC) Vigo Spain
| | - Carla Freitas
- Institute of Marine Research His Norway
- Marine and Environmental Sciences Center MARE Funchal Portugal
| | - Even Moland
- Institute of Marine Research His Norway
- Department of Natural Sciences Centre for Coastal Research (CCR) University of Agder Kristiansand Norway
| | - Susanna Huneide Thorbjørnsen
- Institute of Marine Research His Norway
- Department of Natural Sciences Centre for Coastal Research (CCR) University of Agder Kristiansand Norway
| | - Esben M. Olsen
- Institute of Marine Research His Norway
- Department of Natural Sciences Centre for Coastal Research (CCR) University of Agder Kristiansand Norway
| |
Collapse
|
6
|
Chapman JM, Teffer AK, Bass AL, Hinch SG, Patterson DA, Miller KM, Cooke SJ. Handling, infectious agents and physiological condition influence survival and post-release behaviour in migratory adult coho salmon after experimental displacement. CONSERVATION PHYSIOLOGY 2020; 8:coaa033. [PMID: 32440351 PMCID: PMC7233283 DOI: 10.1093/conphys/coaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/24/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
For Pacific salmon captured and released by fisheries, post-release behaviour and survival may be influenced by their health and condition at time of capture. We sought to characterize the interactions between infectious agent burden, fish immune and stress physiology and fisheries stressors to investigate the potential for capture-mediated pathogen-induced mortality in adult coho salmon Oncorhynchus kisutch. We used radio-telemetry paired with high-throughput qPCR of non-lethal gill biopsies for infectious agents and host biomarkers from 200 tagged fish experimentally displaced and exposed to various experimental fisheries treatments (gill net entanglement, recreational angling and recreational angling with air exposure vs. non-sampled control). We characterized relationships among post-release behaviour and survival, infectious agent presence and loads, physiological parameters and transcription profiles of stress and immune genes. All infectious agents detected were endemic and in loads consistent with previous adult Pacific salmon monitoring. Individuals exposed to fisheries treatments were less likely to reach spawning habitat compared to controls, and handling duration independent of fisheries gear had a negative effect on survival. High infectious agent burden was associated with accelerated migration initiation post-release, revealing behavioural plasticity in response to deteriorating condition in this semelparous species. Prevalence and load of infectious agents increased post-migration as well as transcription signatures reflected changes in immune and stress profiles consistent with senescence. Results from this study further our understanding of factors associated with fisheries that increase risk of post-release mortality and characterize some physiological mechanisms that underpin migratory behaviour.
Collapse
Affiliation(s)
- J M Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6 Canada
| | - A K Teffer
- Pacific Salmon Ecology Laboratory, Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada. Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A L Bass
- Pacific Salmon Ecology Laboratory, Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada. Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - S G Hinch
- Pacific Salmon Ecology Laboratory, Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada. Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - D A Patterson
- Pacific Salmon Ecology Laboratory, Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada. Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Cooperative Resource Management Institute, School of Resource and Environmental Management, Fisheries and Oceans Canada, Burnaby, BC, Canada. Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - K M Miller
- Fisheries and Oceans Canada, Molecular Genetics Section, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6 Canada
| |
Collapse
|
7
|
Teffer AK, Hinch S, Miller K, Jeffries K, Patterson D, Cooke S, Farrell A, Kaukinen KH, Li S, Juanes F. Cumulative Effects of Thermal and Fisheries Stressors Reveal Sex-Specific Effects on Infection Development and Early Mortality of Adult Coho Salmon ( Oncorhynchus kisutch). Physiol Biochem Zool 2020; 92:505-529. [PMID: 31397628 DOI: 10.1086/705125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multiple stressors are commonly encountered by wild animals, but their cumulative effects are poorly understood, especially regarding infection development. We conducted a holding study with repeated gill and blood sampling to characterize the effects of cumulative stressors on infection development in adult coho salmon. Treatments included chronic thermal stress (15°C vs. 10°C) and acute gill net entanglement with an air exposure (simulating fisheries bycatch release). The potential loadings of 35 infectious agents and the expression of 17 host immune genes were quantified using high-throughput quantitative polymerase chain reaction, while host physiology was characterized with chemical analysis of blood. Temporal increases in infectious agent richness and loads were concurrent with decreased expression of immune genes in fish sampled in the river. In the laboratory, mortality was minimal in cool water regardless of fishery treatment (<15%). Elevated water temperature under laboratory conditions increased mortality of males and females (8% and 28% mortality, respectively, delayed by >1 wk) and enhanced mortality associated with handling and biopsy (∼40% both sexes). Experimental gillnetting at high temperature further enhanced female mortality (73%). Fish held at high temperature demonstrated heavier infectious agent loads, osmoregulatory impairment, suppressed female maturation, and upregulation of inflammatory and extracellular immune genes. At high temperature, heavy Parvicapsula minibicornis loads were associated with premature mortality. Females exhibited physiological impairment from both stressors after 1 wk, and infection burdens correlated poorly with immune gene regulation compared with males. Cumulative effects of multiple stressors on female mortality are likely a function of physiological impairment and enhanced infections at high temperature.
Collapse
|
8
|
Beausoleil NJ, Mellor DJ, Baker L, Baker SE, Bellio M, Clarke AS, Dale A, Garlick S, Jones B, Harvey A, Pitcher BJ, Sherwen S, Stockin KA, Zito S. "Feelings and Fitness" Not "Feelings or Fitness"-The Raison d'être of Conservation Welfare, Which Aligns Conservation and Animal Welfare Objectives. Front Vet Sci 2018; 5:296. [PMID: 30538995 PMCID: PMC6277474 DOI: 10.3389/fvets.2018.00296] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/05/2018] [Indexed: 12/03/2022] Open
Abstract
Increasingly, human activities, including those aimed at conserving species and ecosystems (conservation activities) influence not only the survival and fitness but also the welfare of wild animals. Animal welfare relates to how an animal is experiencing its life and encompasses both its physical and mental states. While conservation biology and animal welfare science are both multi-disciplinary fields that use scientific methods to address concerns about animals, their focus and objectives sometimes appear to conflict. However, activities impacting detrimentally on the welfare of individual animals also hamper achievement of some conservation goals, and societal acceptance is imperative to the continuation of conservation activities. Thus, the best outcomes for both disciplines will be achieved through collaboration and knowledge-sharing. Despite this recognition, cross-disciplinary information-sharing and collaborative research and practice in conservation are still rare, with the exception of the zoo context. This paper summarizes key points developed by a group of conservation and animal welfare scientists discussing scientific assessment of wild animal welfare and barriers to progress. The dominant theme emerging was the need for a common language to facilitate cross-disciplinary progress in understanding and safeguarding the welfare of animals of wild species. Current conceptions of welfare implicit in conservation science, based mainly on "fitness" (physical states), need to be aligned with contemporary animal welfare science concepts which emphasize the dynamic integration of "fitness" and "feelings" (mental experiences) to holistically understand animals' welfare states. The way in which animal welfare is characterized influences the way it is evaluated and the emphasis put on different features of welfare, as well as, the importance placed on the outcomes of such evaluations and how that information is used, for example in policy development and decision-making. Salient examples from the New Zealand and Australian context are presented to illustrate. To genuinely progress our understanding and evaluation of wild animal welfare and optimize the aims of both scientific disciplines, conservation and animal welfare scientists should work together to evolve and apply a common understanding of welfare. To facilitate this, we propose the formal development of a new discipline, Conservation Welfare, integrating the expertise of scientists from both fields.
Collapse
Affiliation(s)
- Ngaio J. Beausoleil
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David J. Mellor
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Liv Baker
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Sandra E. Baker
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of Oxford, Oxfordshire, United Kingdom
| | - Mariagrazia Bellio
- Institute of Land Water and Society, Charles Sturt University, Albury, NSW, Australia
| | - Alison S. Clarke
- Veterinary Emergency Centre and Hospital, JCU Vet, James Cook University, Townsville, QLD, Australia
| | - Arnja Dale
- Royal New Zealand Society for the Prevention of Cruelty to Animals, Auckland, New Zealand
| | - Steve Garlick
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- Possumwood Wildlife Recovery and Research, Bungendore, NSW, Australia
| | - Bidda Jones
- Royal Society for the Prevention of Cruelty to Animals Australia, Canberra, ACT, Australia
| | - Andrea Harvey
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | | | | | - Karen A. Stockin
- Coastal Marine Research Group, Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Sarah Zito
- Royal New Zealand Society for the Prevention of Cruelty to Animals, Auckland, New Zealand
| |
Collapse
|
9
|
Abstract
Our objectives were to establish if the determinant of health model used in the fields of human population and public health could be adapted to wildlife health; if it was applicable to more than one species; and if it reflected how fish and wildlife managers conceptualized health in practice. A conceptual model was developed using a scoping review on fish and wildlife health and resilience coupled with a participatory process with experts on barren ground caribou ( Rangifer tarandus groenlandicus) and sockeye salmon ( Oncorhynchus nerka) health. Both the literature and experts supported the concept of wildlife health as a cumulative effect involving multiple factors that extend beyond the disease and pathogen focus of many wildlife health studies and legislation. Six themes were associated with fish and wildlife health: 1) the biologic endowment of the individual and population; 2) the animal's social environment; 3) the quality and abundance of the animal's needs for daily living; 4) the abiotic environment in which the animal lives; 5) sources of direct mortality; and 6) changing human expectations. These themes were shared between salmon and caribou and conformed to expert perceptions of health. Determinants of health used in human public health are used for planning, development of policy, and guiding of research. The model we produced may also have use as a wildlife health planning tool to help managers identify health protection priorities and to promote actions across the determinants of health.
Collapse
|
10
|
Crossin GT, Heupel MR, Holbrook CM, Hussey NE, Lowerre-Barbieri SK, Nguyen VM, Raby GD, Cooke SJ. Acoustic telemetry and fisheries management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:1031-1049. [PMID: 28295789 DOI: 10.1002/eap.1533] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/24/2016] [Accepted: 02/06/2017] [Indexed: 05/26/2023]
Abstract
This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled Acoustic Telemetry and Fisheries Management. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e., in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.
Collapse
Affiliation(s)
- Glenn T Crossin
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B4H 4R2, Canada
| | - Michelle R Heupel
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland, 4810, Australia
| | - Christopher M Holbrook
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, Michigan, 49759, USA
| | - Nigel E Hussey
- Department of Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Susan K Lowerre-Barbieri
- Florida Fish & Wildlife Research Institute, 100 8th Avenue SE, St. Petersburg, Florida, 33701, USA
- Fisheries and Aquatic Science Program, School of Forest Resources and Conservation, University of Florida, 7922 North West 71st Street, Gainesville, Florida, 32653, USA
| | - Vivian M Nguyen
- Fish Ecology & Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Graham D Raby
- Department of Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Steven J Cooke
- Fish Ecology & Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
11
|
Teffer AK, Hinch SG, Miller KM, Patterson DA, Farrell AP, Cooke SJ, Bass AL, Szekeres P, Juanes F. Capture severity, infectious disease processes and sex influence post-release mortality of sockeye salmon bycatch. CONSERVATION PHYSIOLOGY 2017; 5:cox017. [PMID: 28852514 PMCID: PMC5569998 DOI: 10.1093/conphys/cox017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 05/21/2023]
Abstract
Bycatch is a common occurrence in heavily fished areas such as the Fraser River, British Columbia, where fisheries target returning adult Pacific salmon (Oncorhynchus spp.) en route to spawning grounds. The extent to which these encounters reduce fish survival through injury and physiological impairment depends on multiple factors including capture severity, river temperature and infectious agents. In an effort to characterize the mechanisms of post-release mortality and address fishery and managerial concerns regarding specific regulations, wild-caught Early Stuart sockeye salmon (Oncorhynchus nerka) were exposed to either mild (20 s) or severe (20 min) gillnet entanglement and then held at ecologically relevant temperatures throughout their period of river migration (mid-late July) and spawning (early August). Individuals were biopsy sampled immediately after entanglement and at death to measure indicators of stress and immunity, and the infection intensity of 44 potential pathogens. Biopsy alone increased mortality (males: 33%, females: 60%) when compared with non-biopsied controls (males: 7%, females: 15%), indicating high sensitivity to any handling during river migration, especially among females. Mortality did not occur until 5-10 days after entanglement, with severe entanglement resulting in the greatest mortality (males: 62%, females: 90%), followed by mild entanglement (males: 44%, females: 70%). Infection intensities of Flavobacterium psychrophilum and Ceratonova shasta measured at death were greater in fish that died sooner. Physiological indicators of host stress and immunity also differed depending on longevity, and indicated anaerobic metabolism, osmoregulatory failure and altered immune gene regulation in premature mortalities. Together, these results implicate latent effects of entanglement, especially among females, resulting in mortality days or weeks after release. Although any entanglement is potentially detrimental, reducing entanglement durations can improve post-release survival.
Collapse
Affiliation(s)
- Amy K. Teffer
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Scott G. Hinch
- Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kristi M. Miller
- Fisheries and Oceans Canada, Molecular Genetics Section, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Anthony P. Farrell
- Department of Zoology, Department of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Arthur L. Bass
- Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Petra Szekeres
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
12
|
Prystay TS, Eliason EJ, Lawrence MJ, Dick M, Brownscombe JW, Patterson DA, Crossin GT, Hinch SG, Cooke SJ. The influence of water temperature on sockeye salmon heart rate recovery following simulated fisheries interactions. CONSERVATION PHYSIOLOGY 2017; 5:cox050. [PMID: 28928974 PMCID: PMC5597901 DOI: 10.1093/conphys/cox050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 05/20/2023]
Abstract
Selective harvest policies have been implemented in North America to enhance the conservation of Pacific salmon (Oncorhynchus spp.) stocks, which has led to an increase in the capture and release of fish by all fishing sectors. Despite the immediate survival benefits, catch-and-release results in capture stress, particularly at high water temperatures, and this can result in delayed post-release mortality minutes to days later. The objective of this study was to evaluate how different water temperatures influenced heart rate disturbance and recovery of wild sockeye salmon (Oncorhynchus nerka) following fisheries interactions (i.e. exhaustive exercise). Heart rate loggers were implanted into Fraser River sockeye salmon prior to simulated catch-and-release events conducted at three water temperatures (16°C, 19°C and 21°C). The fisheries simulation involved chasing logger-implanted fish in tanks for 3 min, followed by a 1 min air exposure. Neither resting nor routine heart rate differed among temperature treatments. In response to the fisheries simulation, peak heart rate increased with temperature (16°C = 91.3 ± 1.3 beats min-1; 19°C = 104.9 ± 2.0 beats min-1 and 21°C = 117 ± 1.3 beats min-1). Factorial heart rate and scope for heart rate were highest at 21°C and lowest at 16°C, but did not differ between 19°C and 21°C. Temperature affected the initial rate of cardiac recovery but not the overall duration (~10 h) such that the rate of energy expenditure during recovery increased with temperature. These findings support the notion that in the face of climate change, efforts to reduce stress at warmer temperatures will be necessary if catch-and-release practices are to be an effective conservation strategy.
Collapse
Affiliation(s)
- Tanya S. Prystay
- Department of Biology, Dalhousie University, Halifax B3H 4R2, Canada
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa K1S 5B6, Canada
- Corresponding author: Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Erika J. Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, CA 93106, USA
| | - Michael J. Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa K1S 5B6, Canada
| | - Melissa Dick
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa K1S 5B6, Canada
| | - Jacob W. Brownscombe
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa K1S 5B6, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Burnaby V2R 5B6, Canada
| | - Glenn T. Crossin
- Department of Biology, Dalhousie University, Halifax B3H 4R2, Canada
| | - Scott G. Hinch
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa K1S 5B6, Canada
| |
Collapse
|
13
|
|
14
|
Chapman J, Algera D, Dick M, Hawkins E, Lawrence M, Lennox R, Rous A, Souliere C, Stemberger H, Struthers D, Vu M, Ward T, Zolderdo A, Cooke S. Being relevant: Practical guidance for early career researchers interested in solving conservation problems. Glob Ecol Conserv 2015. [DOI: 10.1016/j.gecco.2015.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|