1
|
Aguayo LG, Armijo-Weingart L, San Martin L, Guzmán Castillo A, Konar-Nie M, Gallegos S. Changes in the Properties of Ethanol-Sensitive Molecular Targets During Maturation and Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:299-316. [PMID: 40128484 DOI: 10.1007/978-3-031-81908-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
At present, there is a good understanding of the negative neurobiological impacts that ethanol has on adolescent and adult brains; the effects of this drug on the aging brain, both normal and pathological, are only now starting to emerge. Biomedical research involving the effects of alcohol on aging is limited; however, studies in human subjects show that older adults perform worse in tests assessing working memory, attention, and cognition as compared to younger adults. The neurobiological basis for these effects in the elderly is largely unknown. In the last 30 years, important molecular targets for ethanol actions in the adolescent and adult brain have been identified. Yet, we know very little about whether these targets are still affected by ethanol in the older brain. The brain structure changes during aging, and the targets and their functional characteristics may also change. Thus, one can expect that ethanol will have distinct effects on the brain of an aged organism.This chapter discusses the available data showing how aging influences critical proteins that affect neuronal excitability, nerve conduction, and synaptic transmission and how aging modifies the sensitivity of these proteins to ethanol. The data show limited information on ethanol's effects in the aged brains of mice and rats.
Collapse
Affiliation(s)
- Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile
- Programa en Neurociencia, Psiquatria y Salud Mental, Universidad de Concepcion, Concepcion, Chile
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile
- Programa en Neurociencia, Psiquatria y Salud Mental, Universidad de Concepcion, Concepcion, Chile
| | - Loreto San Martin
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile
- Programa en Neurociencia, Psiquatria y Salud Mental, Universidad de Concepcion, Concepcion, Chile
| | - Alejandra Guzmán Castillo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile
- Programa en Neurociencia, Psiquatria y Salud Mental, Universidad de Concepcion, Concepcion, Chile
| | - Macarena Konar-Nie
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile
- Programa en Neurociencia, Psiquatria y Salud Mental, Universidad de Concepcion, Concepcion, Chile
| | - Scarlet Gallegos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile
- Programa en Neurociencia, Psiquatria y Salud Mental, Universidad de Concepcion, Concepcion, Chile
| |
Collapse
|
2
|
Akinfiresoye LR, Newton J, Suman S, Datta K, N'Gouemo P. Targeted Inhibition of Upregulated Sodium-Calcium Exchanger in Rat Inferior Colliculus Suppresses Alcohol Withdrawal Seizures. Mol Neurobiol 2023; 60:292-302. [PMID: 36264435 PMCID: PMC10577795 DOI: 10.1007/s12035-022-03072-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
The inferior colliculus (IC) is critical in initiating acoustically evoked alcohol withdrawal-induced seizures (AWSs). Recently, we reported that systemic inhibition of Ca2+ entry via the reverse mode activity of the Na+/Ca2+ exchanger (NCXrev) suppressed AWSs, suggesting remodeling of NCX expression and function, at least in the IC, the site of AWS initiation. Here, we probe putative changes in protein expression in the IC of NCX isoforms, including NCX type 1 (NCX1), 2 (NCX2), and 3 (NCX3). We also evaluated the efficacy of targeted inhibition of NCX1rev and NCX3rev activity in the IC on the occurrence and severity of AWSs using SN-6 and KB-R943, respectively. We used our well-characterized alcohol intoxication/withdrawal model associated with enhanced AWS susceptibility. IC tissues from the alcohol-treated group were collected 3 h (before the onset of AWS susceptibility), 24 h (when AWS susceptibility is maximal), and 48 h (when AWS susceptibility is resolved) following alcohol withdrawal; in comparison, IC tissues from the control-treated group were collected at 24 h after the last gavage. Analysis shows that NCX1 protein levels were markedly higher 3 and 24 h following alcohol withdrawal. However, NCX3 protein levels were only higher 3 h following alcohol withdrawal. The analysis also reveals that bilateral microinjections of SN-6 (but not KB-R7943) within the IC markedly suppressed the occurrence and severity of AWSs. Together, these findings indicate that NCX1 is a novel molecular target that may play an essential role in the pathogenesis and pathophysiology of AWSs.
Collapse
Affiliation(s)
- Luli R Akinfiresoye
- Department of Physiology and Biophysics, Howard University College of Medicine, Suite 2420, 520 W Street, NW, Washington, DC, 20059, USA
- Diversion Control Division, Drug Enforcement Administration, United States Department of Justice, Springfield, VA, USA
| | - Jamila Newton
- Department of Physiology and Biophysics, Howard University College of Medicine, Suite 2420, 520 W Street, NW, Washington, DC, 20059, USA
- California State University, Stanislaus, Turlock, CA, USA
| | - Shubhankar Suman
- Oncology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown Lombardi Comprehensive Cancer Center (LCCC), Washington, DC, USA
| | - Kamal Datta
- Oncology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown Lombardi Comprehensive Cancer Center (LCCC), Washington, DC, USA
| | - Prosper N'Gouemo
- Department of Physiology and Biophysics, Howard University College of Medicine, Suite 2420, 520 W Street, NW, Washington, DC, 20059, USA.
| |
Collapse
|
3
|
Guo Y, Du P, Guo L, Lin X, He B, Yu L. Alcohol use among patients with epilepsy in western China. A hospital-based study. Epilepsy Behav 2021; 124:108302. [PMID: 34509040 DOI: 10.1016/j.yebeh.2021.108302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/25/2022]
Abstract
AMIS: Alcohol consumption has multiple negative consequences for people with epilepsy, including precipitation of seizure or status epilepticus, worsening of seizure control, increased adverse effects of anti-seizure medications, increased sudden unexpected death in epilepsy, and premature mortality. The aim of this study was to investigate alcohol use and explore the sociodemographic and clinical factors associated with alcohol use among patients with epilepsy in western China. METHODS A face-to-face questionnaire on alcohol use was conducted at Sichuan Provincial People's Hospital from December 2020 to June 2021. All adult patients who came to our epilepsy center (inpatient and outpatient) were invited to participate in this study. Logistic regression was used to evaluate the possible risk factors associated with alcohol use within the last 12 months. RESULTS A total of 425 patients completed this study, 24.2% of patients with epilepsy had used alcohol within the last 12 months, being male and having a history of alcohol use were independently associated factors. Among patients who had used alcohol within the last 12 months, 52.4% complained of worsening of seizure control, heavy alcohol use, and frequent alcohol use were independently associated with worsening of seizure control after alcohol use in patients with epilepsy. CONCLUSION This study revealed that the rate of alcohol use among patients with epilepsy was high. Male patients with a history of alcohol use were more prone to alcohol use after a diagnosis of epilepsy. Heavy alcohol use and frequent alcohol use were independently associated with worsening of seizure control after alcohol use in patients with epilepsy. Patient education on the destructive effects of alcohol use is needed for patients with epilepsy.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China
| | - Peishan Du
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China
| | - Lixia Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China
| | - Xu Lin
- Department of Neurology, Chengdu 363 Hospital, Daosangshu Street, Chengdu, Sichuan 610072, People's Republic of China
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China.
| | - Liang Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China.
| |
Collapse
|
4
|
Newton J, Akinfiresoye LR, N’Gouemo P. Inhibition of the Sodium Calcium Exchanger Suppresses Alcohol Withdrawal-Induced Seizure Susceptibility. Brain Sci 2021; 11:brainsci11020279. [PMID: 33672412 PMCID: PMC7926990 DOI: 10.3390/brainsci11020279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium influx plays important roles in the pathophysiology of seizures, including acoustically evoked alcohol withdrawal-induced seizures (AWSs). One Ca2+ influx route of interest is the Na+/Ca2+ exchanger (NCX) that, when operating in its reverse mode (NCXrev) activity, can facilitate Ca2+ entry into neurons, possibly increasing neuronal excitability that leads to enhanced seizure susceptibility. Here, we probed the involvement of NCXrev activity on AWS susceptibility by quantifying the effects of SN-6 and KB-R7943, potent blockers of isoform type 1 (NCX1rev) and 3 (NCX3rev), respectively. Male, adult Sprague-Dawley rats were used. Acoustically evoked AWSs consisted of wild running seizures (WRSs) that evolved into generalized tonic-clonic seizures (GTCSs). Quantification shows that acute SN-6 treatment at a relatively low dose suppressed the occurrence of the GTCSs (but not WRSs) component of AWSs and markedly reduced the seizure severity. However, administration of KB-R7943 at a relatively high dose only reduced the incidence of GTCSs. These findings demonstrate that inhibition of NCX1rev activity is a putative mechanism for the suppression of alcohol withdrawal-induced GTCSs.
Collapse
|
5
|
Zhao Q, Pohl KM, Sullivan EV, Pfefferbaum A, Zahr NM. Jacobian Mapping Reveals Converging Brain Substrates of Disruption and Repair in Response to Ethanol Exposure and Abstinence in 2 Strains of Rats. Alcohol Clin Exp Res 2021; 45:92-104. [PMID: 33119896 PMCID: PMC8138868 DOI: 10.1111/acer.14496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND In a previous study using Jacobian mapping to evaluate the morphological effects on the brain of binge (4-day) intragastric ethanol (EtOH) on wild-type Wistar rats, we reported reversible thalamic shrinkage and lateral ventricular enlargement, but persistent superior and inferior colliculi shrinkage in response to binge EtOH treatment. METHODS Herein, we used similar voxel-based comparisons of Magnetic Resonance Images collected in EtOH-exposed relative to control animals to test the hypothesis that regardless of the intoxication protocol or the rat strain, the hippocampi, thalami, and colliculi would be affected. RESULTS Two experiments [binge (4-day) intragastric EtOH in Fisher 344 rats and chronic (1-month) vaporized EtOH in Wistar rats] showed similarly affected brain regions including retrosplenial and cingulate cortices, dorsal hippocampi, central and ventroposterior thalami, superior and inferior colliculi, periaqueductal gray, and corpus callosum. While most of these regions showed significant recovery, volumes of the colliculi and periaqueductal gray continued to show response to each proximal EtOH exposure but at diminished levels with repeated cycles. CONCLUSIONS Given the high metabolic rate of these enduringly affected regions, the current findings suggest that EtOH per se may affect cellular respiration leading to brain volume deficits. Further, responsivity greatly diminished likely reflecting neuroadaptation to repeated alcohol exposure. In summary, this unbiased, in vivo-based approach demonstrating convergent brain systems responsive to 2 EtOH exposure protocols in 2 rat strains highlights regions that warrant further investigation in both animal models of alcoholism and in humans with alcohol use disorder.
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025
| |
Collapse
|
6
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
N'Gouemo P. Voltage-Sensitive Calcium Channels in the Brain: Relevance to Alcohol Intoxication and Withdrawal. Handb Exp Pharmacol 2018; 248:263-280. [PMID: 29500720 DOI: 10.1007/164_2018_93] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Voltage-sensitive Ca2+ (CaV) channels are the primary route of depolarization-induced Ca2+ entry in neurons and other excitable cells, leading to an increase in intracellular Ca2+ concentration ([Ca2+]i). The resulting increase in [Ca2+]i activates a wide range of Ca2+-dependent processes in neurons, including neurotransmitter release, gene transcription, activation of Ca2+-dependent enzymes, and activation of certain K+ channels and chloride channels. In addition to their key roles under physiological conditions, CaV channels are also an important target of alcohol, and alcohol-induced changes in Ca2+ signaling can disturb neuronal homeostasis, Ca2+-mediated gene transcription, and the function of neuronal circuits, leading to various neurological and/or neuropsychiatric symptoms and disorders, including alcohol withdrawal induced-seizures and alcoholism.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
8
|
Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence. Neuropsychopharmacology 2017; 42:1058-1069. [PMID: 27905406 PMCID: PMC5506795 DOI: 10.1038/npp.2016.266] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 12/14/2022]
Abstract
It has previously been shown that the inhibition of L-type calcium channels (LTCCs) decreases alcohol consumption, although the contribution of the central LTCC subtypes Cav1.2 and Cav1.3 remains unknown. Here, we determined changes in Cav1.2 (Cacna1c) and Cav1.3 (Cacna1d) mRNA and protein expression in alcohol-dependent rats during protracted abstinence and naive controls using in situ hybridization and western blot analysis. Functional validation was obtained by electrophysiological recordings of calcium currents in dissociated hippocampal pyramidal neurons. We then measured alcohol self-administration and cue-induced reinstatement of alcohol seeking in dependent and nondependent rats after intracerebroventricular (i.c.v.) injection of the LTCC antagonist verapamil, as well as in mice with an inducible knockout (KO) of Cav1.2 in Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-expressing neurons. Our results show that Cacna1c mRNA concentration was increased in the amygdala and hippocampus of alcohol-dependent rats after 21 days of abstinence, with no changes in Cacna1d mRNA. This was associated with increased Cav1.2 protein concentration and L-type calcium current amplitudes. Further analysis of Cacna1c mRNA in the CA1, basolateral amygdala (BLA), and central amygdala (CeA) revealed a dynamic regulation over time during the development of alcohol dependence. The inhibition of central LTCCs via i.c.v. administration of verapamil prevented cue-induced reinstatement of alcohol seeking in alcohol-dependent rats. Further studies in conditional Cav1.2-KO mice showed a lack of dependence-induced increase of alcohol-seeking behavior. Together, our data indicate that central Cav1.2 channels, rather than Cav1.3, mediate alcohol-seeking behavior. This finding may be of interest for the development of new antirelapse medications.
Collapse
|
9
|
Soyka M, Kranzler HR, Hesselbrock V, Kasper S, Mutschler J, Möller HJ. Guidelines for biological treatment of substance use and related disorders, part 1: Alcoholism, first revision. World J Biol Psychiatry 2017; 18:86-119. [PMID: 28006997 DOI: 10.1080/15622975.2016.1246752] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
These practice guidelines for the biological treatment of alcohol use disorders are an update of the first edition, published in 2008, which was developed by an international Task Force of the World Federation of Societies of Biological Psychiatry (WFSBP). For this 2016 revision, we performed a systematic review (MEDLINE/PUBMED database, Cochrane Library) of all available publications pertaining to the biological treatment of alcoholism and extracted data from national guidelines. The Task Force evaluated the identified literature with respect to the strength of evidence for the efficacy of each medication and subsequently categorised it into six levels of evidence (A-F) and five levels of recommendation (1-5). Thus, the current guidelines provide a clinically and scientifically relevant, evidence-based update of our earlier recommendations. These guidelines are intended for use by clinicians and practitioners who evaluate and treat people with alcohol use disorders and are primarily concerned with the biological treatment of adults with such disorders.
Collapse
Affiliation(s)
- Michael Soyka
- a Psychiatric Hospital Meiringen , Meiringen , Switzerland.,b Department of Psychiatry , Ludwig-Maximilians-University , Munich , Germany.,c Medicalpark Chiemseeblick , Bernau , Germany
| | - Henry R Kranzler
- d Crescenz VAMC , University of Pennsylvania and VISN 4 MIRECC , Philadelphia , PA , USA
| | | | - Siegfried Kasper
- f Department of Psychiatric Medicine , University of Vienna, Vienna , Austria
| | - Jochen Mutschler
- a Psychiatric Hospital Meiringen , Meiringen , Switzerland.,g Psychiatric Hospital University of Zürich, Zürich , Switzerland
| | - Hans-Jürgen Möller
- b Department of Psychiatry , Ludwig-Maximilians-University , Munich , Germany
| | | |
Collapse
|
10
|
Suman S, Kumar S, N'Gouemo P, Datta K. Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure. Alcohol 2016; 54:45-50. [PMID: 27565756 DOI: 10.1016/j.alcohol.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
Binge drinking is known to cause damage in critical areas of the brain, including the hippocampus, which is important for relational memory and is reported to be sensitive to alcohol toxicity. However, the roles of DNA double-strand break (DSB) and its repair pathways, homologous recombination (HR), and non-homologous end joining (NHEJ) in alcohol-induced hippocampal injury remain to be elucidated. The purpose of this first study was to assess alcohol-induced DNA DSB and the mechanism by which alcohol affects DSB repair pathways in rat hippocampus. Male Sprague-Dawley rats (8-10 weeks old) were put on a 4-day binge ethanol treatment regimen. Control animals were maintained under similar conditions but were given the vehicle without ethanol. All animals were humanely euthanized 24 h after the last dose of ethanol administration and the hippocampi were dissected for immunoblot and immunohistochemistry analysis. Ethanol exposure caused increased 4-hydroxynonenal (4-HNE) staining as well as elevated γH2AX and 53BP1 foci in hippocampal cells. Immunoblot analysis showed decreased Mre11, Rad51, Rad50, and Ku86 as well as increased Bax and p21 in samples from ethanol-treated rats. Additionally, we also observed increased activated caspase3 staining in hippocampal cells 24 h after ethanol withdrawal. Taken together, our data demonstrated that ethanol concurrently induced DNA DSB, downregulated DSB repair pathway proteins, and increased apoptotic factors in hippocampal cells. We believe these findings will provide the impetus for further research on DNA DSB and its repair pathways in relation to alcohol toxicity in brain.
Collapse
|
11
|
Solís-Chagoyán H, Flores-Soto E, Reyes-García J, Valdés-Tovar M, Calixto E, Montaño LM, Benítez-King G. Voltage-Activated Calcium Channels as Functional Markers of Mature Neurons in Human Olfactory Neuroepithelial Cells: Implications for the Study of Neurodevelopment in Neuropsychiatric Disorders. Int J Mol Sci 2016; 17:ijms17060941. [PMID: 27314332 PMCID: PMC4926474 DOI: 10.3390/ijms17060941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
In adulthood, differentiation of precursor cells into neurons continues in several brain structures as well as in the olfactory neuroepithelium. Isolated precursors allow the study of the neurodevelopmental process in vitro. The aim of this work was to determine whether the expression of functional Voltage-Activated Ca2+ Channels (VACC) is dependent on the neurodevelopmental stage in neuronal cells obtained from the human olfactory epithelium of a single healthy donor. The presence of channel-forming proteins in Olfactory Sensory Neurons (OSN) was demonstrated by immunofluorescent labeling, and VACC functioning was assessed by microfluorometry and the patch-clamp technique. VACC were immunodetected only in OSN. Mature neurons responded to forskolin with a five-fold increase in Ca2+. By contrast, in precursor cells, a subtle response was observed. The involvement of VACC in the precursors’ response was discarded for the absence of transmembrane inward Ca2+ movement evoked by step depolarizations. Data suggest differential expression of VACC in neuronal cells depending on their developmental stage and also that the expression of these channels is acquired by OSN during maturation, to enable specialized functions such as ion movement triggered by membrane depolarization. The results support that VACC in OSN could be considered as a functional marker to study neurodevelopment.
Collapse
Affiliation(s)
- Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| | - Eduardo Calixto
- Departamento de Neurobiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| |
Collapse
|
12
|
Eom HS, Park HR, Jo SK, Kim YS, Moon C, Kim SH, Jung U. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells. PLoS One 2016; 11:e0147538. [PMID: 26828720 PMCID: PMC4734671 DOI: 10.1371/journal.pone.0147538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/04/2016] [Indexed: 01/02/2023] Open
Abstract
Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, mGluR-1, STAT3 or PI3K. The inhibition of PI3K blocked both p53 signaling and STAT3-mGluR1 signaling but inhibition of p53 did not affect STAT3-mGluR1 signaling in irradiated C17.2 cells. Finally, these results of the IR-induced altered differentiation in C17.2 cells were verified in ex vivo experiments using mouse primary neural stem cells. In conclusion, the results of this study demonstrated that IR is able to trigger the altered neuronal differentiation in undifferentiated neural stem-like cells through PI3K-STAT3-mGluR1 and PI3K-p53 signaling. It is suggested that the IR-induced altered neuronal differentiation may play a role in the brain dysfunction caused by IR.
Collapse
Affiliation(s)
- Hyeon Soo Eom
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Hae Ran Park
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sung Kee Jo
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
13
|
Reynolds AR, Williams LA, Saunders MA, Prendergast MA. Group 1 mGlu-family proteins promote neuroadaptation to ethanol and withdrawal-associated hippocampal damage. Drug Alcohol Depend 2015; 156:213-220. [PMID: 26442908 PMCID: PMC4633372 DOI: 10.1016/j.drugalcdep.2015.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Group 1 mGlu-family proteins (i.e., mGlu) consist of mGlu1 and mGlu5 and their activity may influence voluntary ethanol intake. The present studies sought to examine the influence of these receptors on the development of ethanol dependence using in vitro and in vivo models of chronic, intermittent ethanol (CIE). METHODS Rat hippocampal explants were exposed to CIE with or without the addition of mGlu1 antagonist (7-hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt; 0.5, 1, and 3μM) or mGlu5 antagonist (E)-2-methyl-6-styryl-pyridine (SIB-1893; 20, 100, and 200μM) to assess sparing of withdrawal-induced cytotoxicity. In a separate study, adult male rats were administered CIE with or without the addition of oral administration of group 1 mGlu antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP; 3mg/kg). Blood ethanol levels (BELs) were determined at 0930h on Day 2 of Weeks 1, 2, and 3. Withdrawal behavior was monitored during Day 6 of the third consecutive withdrawal. RESULTS CIE produced significant hippocampal cytotoxicity. These effects were attenuated by co-exposure to CPCCOEt (3μM) with ethanol in the CA3. By contrast, these effects were blocked by SIB-1893 (20μM) in each primary cell layer. Oral administration of MPEP with ethanol significantly attenuated behavioral effects of subsequent withdrawal and reduced BELs. CONCLUSIONS These data demonstrate that ethanol activates group 1 mGlu-family proteins to promote withdrawal-associated cytotoxicity in vitro and physical dependence in vivo. These findings suggest that group 1 mGlu-family proteins may be therapeutic targets for treatment of alcohol use disorders.
Collapse
Affiliation(s)
| | - Luke A. Williams
- University of Kentucky, Department of Psychology,University of Kentucky, Spinal Cord and Brain Injury Research Center
| | - Meredith A. Saunders
- University of Kentucky, Department of Psychology,University of Kentucky, Spinal Cord and Brain Injury Research Center
| | - Mark A. Prendergast
- University of Kentucky, Department of Psychology,University of Kentucky, Spinal Cord and Brain Injury Research Center
| |
Collapse
|
14
|
N'Gouemo P. Altered voltage-gated calcium channels in rat inferior colliculus neurons contribute to alcohol withdrawal seizures. Eur Neuropsychopharmacol 2015; 25:1342-52. [PMID: 25914156 PMCID: PMC4526435 DOI: 10.1016/j.euroneuro.2015.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/01/2015] [Indexed: 11/16/2022]
Abstract
We have previously reported that enhanced susceptibility to alcohol withdrawal seizures (AWS) parallels the enhancement of the current density of high-threshold voltage-gated Ca(2+) (CaV) channels in rat inferior colliculus (IC) neurons. However, whether this increased current density is a cause or consequence of AWS is unclear. Here, I report changes in the current density of CaV channels in IC neurons during the course of alcohol withdrawal and the potential anticonvulsant effect of intra-IC infusions of L- and P-type CaV channel antagonists. Whole-cell currents were activated by depolarizing pulses using barium as the charge carrier. Currents and seizure susceptibility were evaluated in control animals 3h after alcohol intoxication, as well as 3h (before AWS), 24h (when AWS susceptibility is maximal), and 48h (when AWS susceptibility is no longer present) after alcohol withdrawal. Nifedipine, nimodipine (L-type antagonists) or ω-agatoxin TK (P-type antagonist) were infused intra-IC to probe the role of CaV channels in the pathogenesis of AWS. CaV current density and conductance in IC neurons were significantly increased 3 and 24h after alcohol withdrawal compared with the control group or the group tested 3h following ethanol intoxication. Blockade of L-type CaV channels within the IC completely suppressed AWS, and inhibition of P-type channels reduced AWS severity. These findings suggest that the enhancement of CaV currents in IC neurons occurs prior to AWS onset and that alterations in L- and P-type CaV channels in these neurons may underlie the pathogenesis of AWS.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Department of Pediatrics, Georgetown, University Medical Center, Washington, DC, USA.
| |
Collapse
|