1
|
Mercante F, Abbaspour A, Pucci M, Sabatucci A, Rania M, Konstantinidou F, Gatta V, Stuppia L, Cifani C, Bulik CM, Segura-Garcia C, D'Addario C. Epigenetic alterations and microbiota changes in the saliva of individuals with binge-eating spectrum disorders compared with normal weight healthy controls. Life Sci 2025; 374:123695. [PMID: 40348174 DOI: 10.1016/j.lfs.2025.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/11/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
AIMS Binge-eating spectrum disorders, including bulimia nervosa (BN) and binge-eating disorder (BED), have psychological, behavioral, and physical effects, which present significant challenges for accurate diagnosis and treatment. Identifying biomarkers is thus of relevance to improve diagnostic and treatment strategies. MAIN METHODS Saliva collected from female individuals with BED (n = 20), BN (n = 17), and normal weight healthy controls (NW-HC) (n = 20) was analyzed to assess salivary microbiome, exosomal miRNA expression, and DNA methylation of dopaminergic system gene components. KEY FINDINGS Microbial diversity was significantly reduced in BED and BN groups compared to NW-HC. Differential abundance analysis revealed that Bacilli (class-level) were enriched in BN and BED, while Lachnospirales (order-level) were significantly depleted in BN compared to NW-HC. In total, 79 miRNAs were differentially expressed in patients compared with controls. Alteration in four of these miRNAs (let-7b-5p, mir-15b-5p, mir-429, and mir-221-3p) identified via network analysis as potentially relevant to psychiatric disorders, were confirmed to be significantly upregulated in both BED and BN compared with controls. Significant hypomethylation at specific CpG sites of the DAT1 gene was also observed in BED and BN groups relative to controls. Correlation analysis highlighted significant associations between specific microbiota genera, miRNA expression, and DNA methylation of DAT1 in both the BED and BN groups. SIGNIFICANCE Our findings provide new evidence on the role of epigenetic modifications linked to alterations in salivary microbial composition and diversity in BED and BN, opening new avenues for future research and therapeutic interventions in eating disorders targeting miRNAs and microbiota.
Collapse
Affiliation(s)
- Francesca Mercante
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Afrouz Abbaspour
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalaura Sabatucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marianna Rania
- Outpatient Unit for Clinical Research and Treatment of Eating Disorders, University Hospital Renato Dulbecco, Catanzaro, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Cristina Segura-Garcia
- Outpatient Unit for Clinical Research and Treatment of Eating Disorders, University Hospital Renato Dulbecco, Catanzaro, Italy; Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| |
Collapse
|
2
|
Currim F, Brown-Leung J, Syeda T, Corson M, Schumann S, Qi W, Baloni P, Shannahan JH, Rochet JC, Singh R, Cannon JR. Rotenone induced acute miRNA alterations in extracellular vesicles produce mitochondrial dysfunction and cell death. NPJ Parkinsons Dis 2025; 11:59. [PMID: 40148337 PMCID: PMC11950519 DOI: 10.1038/s41531-025-00917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
How extracellular vesicles (EVs) may contribute to mechanisms of primary intracellular pathogenesis in Parkinson's disease (PD) remains unknown. To critically advance our understanding of how EVs influence early-stage PD pathogenesis, we tested the hypothesis that rats acutely exposed to the PD neurotoxin rotenone would produce differential miRNAs in CSF/serum-derived EVs and that such modulation would be responsible for PD-relevant functional alterations in recipient neuronal cells. We discovered that acute rotenone treatment produced significant and specific serum miRNA alterations. Primary midbrain neurons treated with serum EVs from rotenone-exposed rats produced oxidative stress, mitochondrial toxicity, and cell loss in neuronal culture. These mechanisms were dependent on miR-30a-5p and miR-484. Thus, this study has elucidated that differential expression of miRNAs in circulating EVs from serum/CSF of rats is a potential early diagnostic marker for PD, and that the modulation of cellular functions and viability due to extracellular vesicles determines the pathological fate.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Dept. of Biochemistry, The MS University of Baroda, Vadodara, 390002, Gujarat, India
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Josephine Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew Corson
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sofia Schumann
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Wenzhu Qi
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
- Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Priyanka Baloni
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
- Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajesh Singh
- Dept. of Biochemistry, The MS University of Baroda, Vadodara, 390002, Gujarat, India.
- Department of Molecular and Human Genetics, Banaras Hindu University (BHU), Varanasi, 221005, UP, India.
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Wu J, Lu J, Pan MZ, Gu XC, Dai L, Wang Y, Shen B, Zhang XB. Update on the roles and applications of extracellular vesicles in depression. World J Psychiatry 2025; 15:102643. [PMID: 40110012 PMCID: PMC11886331 DOI: 10.5498/wjp.v15.i3.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Depression is a prevalent mental disorder that affects numerous individuals, manifesting as persistent anhedonia, sadness, and hopelessness. Despite extensive research, the exact causes and optimal treatment approaches for depression remain unclear. Extracellular vesicles (EVs), which carry biological molecules such as proteins, lipids, nucleic acids, and metabolites, have emerged as crucial players in both pathological and physiological processes. EVs derived from various sources exert distinct effects on depression. Specifically, EVs released by neurons, astrocytes, microglia, oligodendrocytes, immune cells, stem cells, and even bacteria contribute to the pathogenesis of depression. Moreover, there is growing interest in potential of EVs as diagnostic and therapeutic tools for depression. This review provides a comprehensive overview of recent research on EVs from different sources, their roles in depression, and their potential clinical applications.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Jian Lu
- Laboratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Ming-Zhi Pan
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Chu Gu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Lu Dai
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Yun Wang
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Bin Shen
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Bin Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| |
Collapse
|
4
|
Gangachannaiah S, Shenoy S, Upadhya D, Stanly EAR, Gudi N, Lakshmi Chandrashekar P, Praharaj SK. Potential of extracellular vesicle cargo as molecular signals in Schizophrenia: a scoping review. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:17. [PMID: 39939309 PMCID: PMC11822128 DOI: 10.1038/s41537-025-00566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
The diagnosis of schizophrenia (SCZ) primarily relies on clinical history and mental status assessments by trained professionals. There has been a search for biomarkers to facilitate laboratory diagnosis. Since extracellular vesicles (EVs) communicate with brain cells and can easily cross blood-brain barrier, there is increased interest among experts to explore them as potential molecular signals for disease detection. A scoping review was conducted to provide a comprehensive summary of the existing literature to identify the differentially expressed molecular signals in EVs isolated from SCZ patients. The methodological framework outline provided by Arksey and O'Malley was employed to conduct this scoping review. A systematic search was conducted using a search string across four databases, ultimately leading to selection of 24 relevant studies. Over 1122 differentially expressed biomolecules were identified in EVs extracted from biological fluids and tissues that can be primarily categorized as RNAs, proteins, and metabolites. Among them, 83 biomolecules were identified as validated differentially expressed molecular signals, which included metabolites, circRNAs, lncRNAs, miRNAs, and proteins. These biomolecules were found to affect cellular receptors and intracellular pathways, neurotransmitters, mitochondrial functions, immune-related functions, and metabolic pathways, which could serve as potential biomarkers for SCZ diagnosis.
Collapse
Affiliation(s)
- Shivaprakash Gangachannaiah
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Elstin Anbu Raj Stanly
- Centre for Evidence-informed Decision-making, Prasanna School of Public Health, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Nachiket Gudi
- Centre for Evidence-informed Decision-making, Prasanna School of Public Health, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Pallavi Lakshmi Chandrashekar
- Department of Physiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Samir Kumar Praharaj
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Wang L, Zhang X, Yang Z, Wang B, Gong H, Zhang K, Lin Y, Sun M. Extracellular vesicles: biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl Neurodegener 2024; 13:60. [PMID: 39643909 PMCID: PMC11622582 DOI: 10.1186/s40035-024-00453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles originating from different cells within the brain. The pathophysiological role of EVs in neurodegenerative diseases is progressively acknowledged. This field has advanced from basic biological research to essential clinical significance. The capacity to selectively enrich specific subsets of EVs from biofluids via distinctive surface markers has opened new avenues for molecular understandings across various tissues and organs, notably in the brain. In recent years, brain-derived EVs have been extensively investigated as biomarkers, therapeutic targets, and drug-delivery vehicles for neurodegenerative diseases. This review provides a brief overview of the characteristics and physiological functions of the various classes of EVs, focusing on the biological mechanisms by which various types of brain-derived EVs mediate the occurrence and development of neurodegenerative diseases. Concurrently, novel therapeutic approaches and challenges for the use of EVs as delivery vehicles are delineated.
Collapse
Affiliation(s)
- Ling Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Lin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Elden Hassan HSS, Moselhy WA, Ibrahim MA, Zaki AH, Khalil F, Hassanen EI, Abdel-Gawad DRI. Exosomal therapy mitigates silver nanoparticles-induced neurotoxicity in rats. Biomarkers 2024; 29:442-458. [PMID: 39417532 DOI: 10.1080/1354750x.2024.2415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Our investigation aims to appraise the neuroprotective impact of Bone Marrow-Mesenchymal Stem Cells (BM-MSCs) derived exosomes against Ag NPs-inducing neurotoxicity in rats. MATERIALS AND METHODS Twenty-four albino rats were divided into 3 groups. Group I (control negative), Group II (intraperitoneally injected with Ag NPs for 28 days, whereas Group III (intraperitoneally injected with Ag NP and BM-MSCs derived exosomes. RESULTS There was a marked elevation of Malondialdehyde (MDA) along with a reduction of brain antioxidants, Gamma-aminobutyric acid (GABA) and Monoamine Oxidase (MAO) in the Ag NPs receiving group. Ag NPs upregulated c-Jun N-terminal Kinases (JNK) genes and c-Myc and downregulated the tissue inhibitors of metalloproteinases (TIMP-1) and Histone deacetylase 1 (HDAC1) genes. Otherwise, the co-treatment of BM-MSCs derived exosomes with Ag NPs could markedly increase the rat's body weight, activity and learning while, decreasing anxiety, restoring all the toxicological parameters and improving the microscopic appearance of different brain areas. CONCLUSION BM-MSCs-derived exosomes downregulated both apoptotic and inflammatory mediators and upregulated the antiapoptotic genes. BM-MSCs-derived exosomes exhibit a great therapeutic effect against the neurotoxic effects of Ag NPs.
Collapse
Affiliation(s)
- Hanan Safwat Salah Elden Hassan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Walaa A Moselhy
- Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman H Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Doaa R I Abdel-Gawad
- Lecturer of Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
7
|
Sánchez-Rubio M, Abarzúa-Catalán L, Del Valle A, Méndez-Ruette M, Salazar N, Sigala J, Sandoval S, Godoy MI, Luarte A, Monteiro LJ, Romero R, Choolani MA, Wyneken Ú, Illanes SE, Bátiz LF. Maternal stress during pregnancy alters circulating small extracellular vesicles and enhances their targeting to the placenta and fetus. Biol Res 2024; 57:70. [PMID: 39342314 PMCID: PMC11438166 DOI: 10.1186/s40659-024-00548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Maternal psychological distress during pregnancy can negatively impact fetal development, resulting in long-lasting consequences for the offspring. These effects show a sex bias. The mechanisms whereby prenatal stress induces functional and/or structural changes in the placental-fetal unit remain poorly understood. Maternal circulating small extracellular vesicles (sEVs) are good candidates to act as "stress signals" in mother-to-fetus communication. Using a repetitive restraint-based rat model of prenatal stress, we examined circulating maternal sEVs under stress conditions and tested whether they could target placental-fetal tissues. RESULTS Our mild chronic maternal stress during pregnancy paradigm induced anhedonic-like behavior in pregnant dams and led to intrauterine growth restriction (IUGR), particularly in male fetuses and placentas. The concentration and cargo of maternal circulating sEVs changed under stress conditions. Specifically, there was a significant reduction in neuron-enriched proteins and a significant increase in astrocyte-enriched proteins in blood-borne sEVs from stressed dams. To study the effect of repetitive restraint stress on the biodistribution of maternal circulating sEVs in the fetoplacental unit, sEVs from pregnant dams exposed to stress or control protocol were labeled with DiR fluorescent die and injected into pregnant females previously exposed to control or stress protocol. Remarkably, maternal circulating sEVs target placental/fetal tissues and, under stress conditions, fetal tissues are more receptive to sEVs. CONCLUSION Our results suggest that maternal circulating sEVs can act as novel mediators/modulators of mother-to-fetus stress communication. Further studies are needed to identify placental/fetal cellular targets of maternal sEVs and characterize their contribution to stress-induced sex-specific placental and fetal changes.
Collapse
Affiliation(s)
- Mario Sánchez-Rubio
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Lorena Abarzúa-Catalán
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Ana Del Valle
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Maxs Méndez-Ruette
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- PhD Program in Biomedicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Natalia Salazar
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Jacinta Sigala
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Soledad Sandoval
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Inés Godoy
- Department of Educational Assessment, Measurement, and Registry, Universidad de Chile, Santiago, Chile
| | - Alejandro Luarte
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Lara J Monteiro
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Research Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Detroit, and Maryland, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Mahesh A Choolani
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Úrsula Wyneken
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Sebastián E Illanes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Research Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile.
- Department of Obstetrics and Gynecology, School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Facultad de Medicina, Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
| | - Luis Federico Bátiz
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Facultad de Medicina, Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
| |
Collapse
|
8
|
Monteleone MC, Billi SC, Abarzúa-Catalán L, Henzi R, Fernández EM, Kaehne T, Wyneken U, Brocco MA. Bulk serum extracellular vesicles from stressed mice show a distinct proteome and induce behavioral and molecular changes in naive mice. PLoS One 2024; 19:e0308976. [PMID: 39146369 PMCID: PMC11326636 DOI: 10.1371/journal.pone.0308976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Chronic stress can trigger several pathologies including mood disorders for which no clear diagnostic molecular markers have been established yet. Attractive biomarker sources are extracellular vesicles (EVs). Evs are released by cells in health and disease and contain genetic material, proteins and lipids characteristic of the cell state. Here we show that Evs recovered from the blood of animals exposed to a repeated interrupted stress protocol (RIS) have a different protein profile compared to those obtained from control animals. Proteomic analysis indicated that proteins differentially present in bulk serum Evs from stressed animals were implicated in metabolic and inflammatory pathways and several of them were previously related to psychiatric disorders. Interestingly, these serum Evs carry brain-enriched proteins including the stress-responsive neuronal protein M6a. Then, we used an in-utero electroporation strategy to selectively overexpress M6a-GFP in brain neurons and found that M6a-GFP could also be detected in bulk serum Evs suggesting a neuronal origin. Finally, to determine if these Evs could have functional consequences, we administered Evs from control and RIS animals intranasally to naïve mice. Animals receiving stress EVs showed changes in behavior and brain M6a levels similar to those observed in physically stressed animals. Such changes could therefore be attributed, or at least in part, to EV protein transfer. Altogether these findings show that EVs may participate in stress signaling and propose proteins carried by EVs as a valuable source of biomarkers for stress-induced diseases.
Collapse
Affiliation(s)
- Melisa C Monteleone
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Silvia C Billi
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Lorena Abarzúa-Catalán
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica CiiB, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Roberto Henzi
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica CiiB, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana M Fernández
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ursula Wyneken
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica CiiB, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| |
Collapse
|
9
|
Zhang Q, Liu T, Li Y, Fan Y, Shang H, Zhao H, Sun H, Yu Z, Han M, Wan C. Gelatin methacryloyl microneedle loaded with 3D-MSC-Exosomes for the protection of ischemia-reperfusion. Int J Biol Macromol 2024; 275:133336. [PMID: 38936568 DOI: 10.1016/j.ijbiomac.2024.133336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Exosomes (Exo) generated from mesenchymal stem cells (MSCs) have great therapeutic potential in ischemia-reperfusion treatment. For best therapeutic effect, high quality Exo product and effective delivery system are indispensable. In this study, we developed a new strategy for ischemia-reperfusion recovery by combining MSCs 3D (3D-MSC) culturing technology to generate Exo (3D-MSC-Exo) and microneedle for topical delivery. Firstly, primary MSCs from neonatal mice were isolated and 3D cultured with gelatin methacryloyl (GelMA) hydrogel to prepare 3D-MSC-Exo. The 3D-MSC showed better viability and 3D-MSC-Exo exhibited more effective effects of reducing neuroinflammation, inhibiting glial scarring, and promoting angiogenesis. Subsequently, the biocompatible GelMA was used to construct microneedles for 3D-Exo delivery (GelMA-MN@3D-Exo). The results demonstrated GelMA microneedles had excellent 3D-Exo loading capacity and enabled continuous 3D-Exo release to maintain effective therapeutic concentrations. Furthermore, the rat middle cerebral artery occlusion (MCAO) model was established to evaluate the therapeutic effect of GelMA-MN@3D-Exo in ischemia-reperfusion in vivo. Animal experiments showed that the GelMA-MN@3D-Exo system could effectively reduce the local neuroinflammatory reaction, promote angiogenesis and minimize glial scar proliferation in ischemia-reperfusion. The underlying reasons for the stronger neuroprotective effect of 3D-Exo was further studied using mass spectrometry and transcriptome assays, verifying their effects on immune regulation and cell proliferation. Taken together, our findings demonstrated that GelMA-MN@3D-Exo microneedle can effectively attenuate ischemia-reperfusion cell damage in the MCAO model, which provides a promising therapeutic strategy for ischemia-reperfusion recovery.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, 154 Anshan Rd, District Heping, Tianjin 300052, P. R. China; Department of Geriatrics, The Fifth People's Hospital of Jinan, No. 24297 Jingshi Rd, District Huaiyin, Jinan 250000, Shandong, P. R. China
| | - Tiangui Liu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Yang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Hao Shang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Huayang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Zaiyang Yu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P. R. China.
| | - Chunxiao Wan
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, 154 Anshan Rd, District Heping, Tianjin 300052, P. R. China.
| |
Collapse
|
10
|
Aloi N, Drago G, Ruggieri S, Cibella F, Colombo P, Longo V. Extracellular Vesicles and Immunity: At the Crossroads of Cell Communication. Int J Mol Sci 2024; 25:1205. [PMID: 38256278 PMCID: PMC10816988 DOI: 10.3390/ijms25021205] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular vesicles (EVs), comprising exosomes and microvesicles, are small membranous structures secreted by nearly all cell types. They have emerged as crucial mediators in intercellular communication, playing pivotal roles in diverse physiological and pathological processes, notably within the realm of immunity. These roles go beyond mere cellular interactions, as extracellular vesicles stand as versatile and dynamic components of immune regulation, impacting both innate and adaptive immunity. Their multifaceted involvement includes immune cell activation, antigen presentation, and immunomodulation, emphasising their significance in maintaining immune homeostasis and contributing to the pathogenesis of immune-related disorders. Extracellular vesicles participate in immunomodulation by delivering a wide array of bioactive molecules, including proteins, lipids, and nucleic acids, thereby influencing gene expression in target cells. This manuscript presents a comprehensive review that encompasses in vitro and in vivo studies aimed at elucidating the mechanisms through which EVs modulate human immunity. Understanding the intricate interplay between extracellular vesicles and immunity is imperative for unveiling novel therapeutic targets and diagnostic tools applicable to various immunological disorders, including autoimmune diseases, infectious diseases, and cancer. Furthermore, recognising the potential of EVs as versatile drug delivery vehicles holds significant promise for the future of immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (N.A.); (G.D.); (S.R.); (F.C.); (V.L.)
| | | |
Collapse
|
11
|
Fernandez A, Corvalan K, Santis O, Mendez-Ruette M, Caviedes A, Pizarro M, Gomez MT, Batiz LF, Landgraf P, Kahne T, Rojas-Fernandez A, Wyneken U. Sumoylation in astrocytes induces changes in the proteome of the derived small extracellular vesicles which change protein synthesis and dendrite morphology in target neurons. Brain Res 2024; 1823:148679. [PMID: 37972846 DOI: 10.1016/j.brainres.2023.148679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Emerging evidence highlights the relevance of the protein post-translational modification by SUMO (Small Ubiquitin-like Modifier) in the central nervous system for modulating cognition and plasticity in health and disease. In these processes, astrocyte-to-neuron crosstalk mediated by extracellular vesicles (EVs) plays a yet poorly understood role. Small EVs (sEVs), including microvesicles and exosomes, contain a molecular cargo of lipids, proteins, and nucleic acids that define their biological effect on target cells. Here, we investigated whether SUMOylation globally impacts the sEV protein cargo. For this, sEVs were isolated from primary cultures of astrocytes by ultracentrifugation or using a commercial sEV isolation kit. SUMO levels were regulated: 1) via plasmids that over-express SUMO, or 2) via experimental conditions that increase SUMOylation, i.e., by using the stress hormone corticosterone, or 3) via the SUMOylation inhibitor 2-D08 (2',3',4'-trihydroxy-flavone, 2-(2,3,4-Trihydroxyphenyl)-4H-1-Benzopyran-4-one). Corticosterone and 2-D08 had opposing effects on the number of sEVs and on their protein cargo. Proteomic analysis showed that increased SUMOylation in corticosterone-treated or plasmid-transfected astrocytes increased the presence of proteins related to cell division, transcription, and protein translation in the derived sEVs. When sEVs derived from corticosterone-treated astrocytes were transferred to neurons to assess their impact on protein synthesis using the fluorescence non-canonical amino acid tagging assay (FUNCAT), we detected an increase in protein synthesis, while sEVs from 2-D08-treated astrocytes had no effect. Our results show that SUMO conjugation plays an important role in the modulation of the proteome of astrocyte-derived sEVs with a potential functional impact on neurons.
Collapse
Affiliation(s)
- Anllely Fernandez
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Katherine Corvalan
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Octavia Santis
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Maxs Mendez-Ruette
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Ariel Caviedes
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Matias Pizarro
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Maria-Teresa Gomez
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Luis Federico Batiz
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University, Germany, 39120 Magdeburg, Germany
| | - Thilo Kahne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Alejandro Rojas-Fernandez
- Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Ursula Wyneken
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile.
| |
Collapse
|
12
|
Li Q, Wang L, Tang C, Wang X, Yu Z, Ping X, Ding M, Zheng L. Adipose Tissue Exosome circ_sxc Mediates the Modulatory of Adiposomes on Brain Aging by Inhibiting Brain dme-miR-87-3p. Mol Neurobiol 2024; 61:224-238. [PMID: 37597108 DOI: 10.1007/s12035-023-03516-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023]
Abstract
Aging of the brain usually leads to the decline of neurological processes and is a major risk factor for various neurodegenerative diseases, including sleep disturbances and cognitive decline. Adipose tissue exosomes, as adipocyte-derived vesicles, may mediate the regulatory processes of adipose tissue on other organs, including the brain; however, the regulatory mechanisms remain unclear. We analyzed the sleep-wake behavior of young (10 days) and old (40 days) Drosophila and found that older Drosophila showed increased sleep fragmentation, which is similar to mammalian aging characteristics. To investigate the cross-tissue regulatory mechanisms of adiposity on brain aging, we extracted 10-day and 40-day Drosophila adipose tissue exosomes and identified circRNAs with age-dependent expression differences by RNA-seq and differential analysis. Furthermore, by combining data from 3 datasets of the GEO database (GSE130158, GSE24992, and GSE184559), circ_sxc that was significantly downregulated with age was finally screened out. Moreover, dme-miR-87-3p, a conserved target of circ_sxc, accumulates in the brain with age and exhibits inhibitory effects in predicted binding relationships with neuroreceptor ligand genes. In summary, the current study showed that the Drosophila brain could obtain circ_sxc by uptake of adipose tissue exosomes which crossed the blood-brain barrier. And circ_sxc suppressed brain miR-87-3p expression through sponge adsorption, which in turn regulated the expression of neurological receptor ligand proteins (5-HT1B, GABA-B-R1, Rdl, Rh7, qvr, NaCP60E) and ensured brain neuronal synaptic signaling normal function of synaptic signaling. However, with aging, this regulatory mechanism is dysregulated by the downregulation of the adipose exosome circ_sxc, which contributes to the brain exhibiting sleep disturbances and other "aging" features.
Collapse
Affiliation(s)
- Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Lingxiao Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Zhengwen Yu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xu Ping
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Xu SX, Xie XH, Yao L, Wang W, Zhang H, Chen MM, Sun S, Nie ZW, Nagy C, Liu Z. Human in vivo evidence of reduced astrocyte activation and neuroinflammation in patients with treatment-resistant depression following electroconvulsive therapy. Psychiatry Clin Neurosci 2023; 77:653-664. [PMID: 37675893 DOI: 10.1111/pcn.13596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
AIM The current study aimed to investigate the neuroinflammatory hypothesis of depression and the potential anti-inflammatory effect of electroconvulsive therapy (ECT) in vivo, utilizing astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma. METHODS A total of 40 patients with treatment-resistant depression (TRD) and 35 matched healthy controls were recruited at baseline, and 34 patients with TRD completed the post-ECT visits. Blood samples were collected at baseline and post-ECT. Plasma ADEVs were isolated and confirmed, and the concentrations of two astrocyte markers (glial fibrillary acidic protein [GFAP] and S100β), an extracellular vesicle marker cluster of differentiation 81 (CD81), and nine inflammatory markers in ADEVs were measured as main analyses. In addition, correlation analysis was conducted between clinical features and ADEV protein levels as exploratory analysis. RESULTS At baseline, the TRD group exhibited significantly higher levels of two astrocyte markers GFAP and S100β, as well as CD81 compared with the healthy controls. Inflammatory markers interferon γ (IFN-γ), interleukin (IL) 1β, IL-4, IL-6, tumor necrosis factor α, IL-10, and IL-17A were also significantly higher in the TRD group. After ECT, there was a significant reduction in the levels of GFAP, S100β, and CD81, along with a significant decrease in the levels of IFN-γ and IL-4. Furthermore, higher levels of GFAP, S100β, CD81, and inflammatory cytokines were associated with more severe depressive symptoms and poorer cognitive function. CONCLUSION This study provides direct insight supporting the astrocyte activation and neuroinflammatory hypothesis of depression using ADEVs. ECT may exert an anti-inflammatory effect through inhibition of such activation of astrocytes.
Collapse
Affiliation(s)
- Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhao-Wen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Osaid Z, Haider M, Hamoudi R, Harati R. Exosomes Interactions with the Blood-Brain Barrier: Implications for Cerebral Disorders and Therapeutics. Int J Mol Sci 2023; 24:15635. [PMID: 37958619 PMCID: PMC10648512 DOI: 10.3390/ijms242115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The Blood-Brain Barrier (BBB) is a selective structural and functional barrier between the circulatory system and the cerebral environment, playing an essential role in maintaining cerebral homeostasis by limiting the passage of harmful molecules. Exosomes, nanovesicles secreted by virtually all cell types into body fluids, have emerged as a major mediator of intercellular communication. Notably, these vesicles can cross the BBB and regulate its physiological functions. However, the precise molecular mechanisms by which exosomes regulate the BBB remain unclear. Recent research studies focused on the effect of exosomes on the BBB, particularly in the context of their involvement in the onset and progression of various cerebral disorders, including solid and metastatic brain tumors, stroke, neurodegenerative, and neuroinflammatory diseases. This review focuses on discussing and summarizing the current knowledge about the role of exosomes in the physiological and pathological modulation of the BBB. A better understanding of this regulation will improve our understanding of the pathogenesis of cerebral diseases and will enable the design of effective treatment strategies.
Collapse
Affiliation(s)
- Zaynab Osaid
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Mohamed Haider
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| |
Collapse
|
15
|
Mohammadipoor A, Hershfield MR, Linsenbardt HR, Smith J, Mack J, Natesan S, Averitt DL, Stark TR, Sosanya NM. Biological function of Extracellular Vesicles (EVs): a review of the field. Mol Biol Rep 2023; 50:8639-8651. [PMID: 37535245 DOI: 10.1007/s11033-023-08624-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
Extracellular vesicles (EVs) theranostic potential is under intense investigation. There is a wealth of information highlighting the role that EVs and the secretome play in disease and how these are being utilized for clinical trials and novel therapeutic possibilities. However, understanding of the physiological and pathological roles of EVs remain incomplete. The challenge lies in reaching a consensus concerning standardized quality-controlled isolation, storage, and sample preparation parameters. Interest in circulating EV cargo as diagnostic and prognostic biomarkers is steadily growing. Though promising, various limitations need to be addressed before there can be successful, full-scale therapeutic use of approved EVs. These limitations include obtaining or manufacturing from the appropriate medium (e.g., from bodily fluid or cell culture), loading and isolating EVs, stability, and storage, standardization of processing, and determining potency. This review highlights specific topics, including circulation of abnormal EVs contribute to human disease and the theranostic potential of EVs. Theranostics is defined as a combination of the word's therapeutics and diagnostics and describes how a specific medicine or technique can function as both. Key findings include, (1) EVs and the secretome are future theranostics which will be utilized as both biomarkers for diagnosis and as therapeutics, (2) basic and translational research supports clinical trials utilizing EVs/secretome, and (3) additional investigation is required to fully unmask the theranostic potential of EVs/secretome in specific diseases and injuries.
Collapse
Affiliation(s)
- Arezoo Mohammadipoor
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Megan R Hershfield
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | | | - James Smith
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - James Mack
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Shanmugasundaram Natesan
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | | | - Thomas R Stark
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Natasha M Sosanya
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA.
| |
Collapse
|
16
|
Ahmed W, Kuniyan MS, Jawed AM, Chen L. Engineered Extracellular Vesicles for Drug Delivery in Therapy of Stroke. Pharmaceutics 2023; 15:2173. [PMID: 37765144 PMCID: PMC10537154 DOI: 10.3390/pharmaceutics15092173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Extracellular vesicles (EVs) are promising therapeutic modalities for treating neurological conditions. EVs facilitate intercellular communication among brain cells under normal and abnormal physiological conditions. The potential capability of EVs to pass through the blood-brain barrier (BBB) makes them highly promising as nanocarrier contenders for managing stroke. EVs possess several potential advantages compared to existing drug-delivery vehicles. These advantages include their capacity to surpass natural barriers, target specific cells, and stability within the circulatory system. This review explores the trafficking and cellular uptake of EVs and evaluates recent findings in the field of EVs research. Additionally, an overview is provided of the techniques researchers utilize to bioengineer EVs for stroke therapy, new results on EV-BBB interactions, and the limitations and prospects of clinically using EVs for brain therapies. The primary objective of this study is to provide a comprehensive analysis of the advantages and challenges related to engineered EVs drug delivery, specifically focusing on their application in the treatment of stroke.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China;
- School of Medicine, Southeast University, Nanjing 210009, China; (M.S.K.); (A.M.J.)
| | | | - Aqil Mohammad Jawed
- School of Medicine, Southeast University, Nanjing 210009, China; (M.S.K.); (A.M.J.)
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China;
| |
Collapse
|
17
|
Patel S, Guo MK, Abdul Samad M, Howe KL. Extracellular vesicles as biomarkers and modulators of atherosclerosis pathogenesis. Front Cardiovasc Med 2023; 10:1202187. [PMID: 37304965 PMCID: PMC10250645 DOI: 10.3389/fcvm.2023.1202187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Extracellular vesicles (EVs) are small, lipid bilayer-enclosed structures released by various cell types that play a critical role in intercellular communication. In atherosclerosis, EVs have been implicated in multiple pathophysiological processes, including endothelial dysfunction, inflammation, and thrombosis. This review provides an up-to-date overview of our current understanding of the roles of EVs in atherosclerosis, emphasizing their potential as diagnostic biomarkers and their roles in disease pathogenesis. We discuss the different types of EVs involved in atherosclerosis, the diverse cargoes they carry, their mechanisms of action, and the various methods employed for their isolation and analysis. Moreover, we underscore the importance of using relevant animal models and human samples to elucidate the role of EVs in disease pathogenesis. Overall, this review consolidates our current knowledge of EVs in atherosclerosis and highlights their potential as promising targets for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Sarvatit Patel
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mandy Kunze Guo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Majed Abdul Samad
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
18
|
Rademacher DJ. Potential for Therapeutic-Loaded Exosomes to Ameliorate the Pathogenic Effects of α-Synuclein in Parkinson's Disease. Biomedicines 2023; 11:biomedicines11041187. [PMID: 37189807 DOI: 10.3390/biomedicines11041187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Pathogenic forms of α-synuclein (α-syn) are transferred to and from neurons, astrocytes, and microglia, which spread α-syn pathology in the olfactory bulb and the gut and then throughout the Parkinson's disease (PD) brain and exacerbate neurodegenerative processes. Here, we review attempts to minimize or ameliorate the pathogenic effects of α-syn or deliver therapeutic cargo into the brain. Exosomes (EXs) have several important advantages as carriers of therapeutic agents including an ability to readily cross the blood-brain barrier, the potential for targeted delivery of therapeutic agents, and immune resistance. Diverse cargo can be loaded via various methods, which are reviewed herein, into EXs and delivered into the brain. Genetic modification of EX-producing cells or EXs and chemical modification of EX have emerged as powerful approaches for the targeted delivery of therapeutic agents to treat PD. Thus, EXs hold great promise for the development of next-generation therapeutics for the treatment of PD.
Collapse
Affiliation(s)
- David J Rademacher
- Department of Microbiology and Immunology and Core Imaging Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
19
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Li Y, Gui Y, Zhao M, Chen X, Li H, Tian C, Zhao H, Jiang C, Xu P, Zhang S, Ye S, Huang M. The roles of extracellular vesicles in major depressive disorder. Front Psychiatry 2023; 14:1138110. [PMID: 36970289 PMCID: PMC10033661 DOI: 10.3389/fpsyt.2023.1138110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease characterized by depressed mood, loss of interest and suicidal ideation. Its rising prevalence has rendered MDD one of the largest contributors to the global disease burden. However, its pathophysiological mechanism is still unclear, and reliable biomarkers are lacking. Extracellular vesicles (EVs) are widely considered important mediators of intercellular communication, playing an important role in many physiological and pathological processes. Most preclinical studies focus on the related proteins and microRNAs in EVs, which can regulate energy metabolism, neurogenesis, neuro-inflammation and other pathophysiological processes in the development of MDD. The purpose of this review is to describe the current research progress of EVs in MDD and highlight their potential roles as biomarkers, therapeutic indicators and drug delivery carriers for the treatment of MDD.
Collapse
Affiliation(s)
- Ying Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Yan Gui
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, Hangzhou, China
| | - Miaomiao Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Xuanqiang Chen
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Chen Tian
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shiyi Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shaoyong Ye
- Henan University School of Medicine, Henan University, Kaifeng, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
- *Correspondence: Manli Huang,
| |
Collapse
|
21
|
Rackles E, Lopez PH, Falcon-Perez JM. Extracellular vesicles as source for the identification of minimally invasive molecular signatures in glioblastoma. Semin Cancer Biol 2022; 87:148-159. [PMID: 36375777 DOI: 10.1016/j.semcancer.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The analysis of extracellular vesicles (EVs) as a source of cancer biomarkers is an emerging field since low-invasive biomarkers are highly demanded. EVs constitute a heterogeneous population of small membrane-contained vesicles that are present in most of body fluids. They are released by all cell types, including cancer cells and their cargo consists of nucleic acids, proteins and metabolites and varies depending on the biological-pathological state of the secretory cell. Therefore, EVs are considered as a potential source of reliable biomarkers for cancer. EV biomarkers in liquid biopsy can be a valuable tool to complement current medical technologies for cancer diagnosis, as their sampling is minimally invasive and can be repeated over time to monitor disease progression. In this review, we highlight the advances in EV biomarker research for cancer diagnosis, prognosis, and therapy monitoring. We especially focus on EV derived biomarkers for glioblastoma. The diagnosis and monitoring of glioblastoma still relies on imaging techniques, which are not sufficient to reflect the highly heterogenous and invasive nature of glioblastoma. Therefore, we discuss how the use of EV biomarkers could overcome the challenges faced in diagnosis and monitoring of glioblastoma.
Collapse
Affiliation(s)
- Elisabeth Rackles
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Patricia Hernández Lopez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Juan M Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Metabolomics Platform, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
22
|
Baratta AM, Mangieri RA, Aziz HC, Lopez MF, Farris SP, Homanics GE. Effect of chronic intermittent ethanol vapor exposure on RNA content of brain-derived extracellular vesicles. Alcohol 2022; 105:9-24. [PMID: 36055466 PMCID: PMC10173183 DOI: 10.1016/j.alcohol.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
Extracellular vesicles (EVs) are important players in normal biological function and disease pathogenesis. Of the many biomolecules packaged into EVs, coding and noncoding RNA transcripts are of particular interest for their ability to significantly alter cellular and molecular processes. Here we investigate how chronic ethanol exposure impacts EV RNA cargo and the functional outcomes of these changes. Following chronic intermittent ethanol (CIE) vapor exposure, EVs were isolated from male and female C57BL/6J mouse brain. Total RNA from EVs was analyzed by lncRNA/mRNA microarray to survey changes in RNA cargo following vapor exposure. Differential expression analysis of microarray data revealed a number of lncRNA and mRNA types differentially expressed in CIE compared to control EVs. Weighted gene co-expression network analysis identified multiple male and female specific modules related to neuroinflammation, cell death, demyelination, and synapse organization. To functionally test these changes, whole-cell voltage-clamp recordings were used to assess synaptic transmission. Incubation of nucleus accumbens brain slices with EVs led to a reduction in spontaneous excitatory postsynaptic current amplitude, although no changes in synaptic transmission were observed between control and CIE EV administration. These results indicate that CIE vapor exposure significantly changes the RNA cargo of brain-derived EVs, which have the ability to impact neuronal function.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Regina A Mangieri
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Heather C Aziz
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Science, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sean P Farris
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.
| |
Collapse
|
23
|
Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23:ijms232213954. [PMID: 36430432 PMCID: PMC9697769 DOI: 10.3390/ijms232213954] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood-brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.
Collapse
|
24
|
Jin K, Zhang S, Jiang C, Liu R, Chen B, Zhao H, Zhang Q, Shen Z, Xu P, Hu X, Jiao J, Lu J, Huang M. The role of reelin in the pathological mechanism of depression from clinical to rodents. Psychiatry Res 2022; 317:114838. [PMID: 36103758 DOI: 10.1016/j.psychres.2022.114838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023]
Abstract
Major depressive disorder (MDD) is a devastating mental illness and the leading cause of disability worldwide. Previous studies have suggested that synaptic plasticity in the hippocampus plays an important role in depression pathogenesis. Reelin is expressed mainly in the frontal lobe and hippocampus, and is closely associated with neurodevelopment and synaptic plasticity. However, few studies have investigated its role in MDD combining clinical trials and animal experiments. We show that in a clinical trial, plasma reelin levels decreased in patients with first-episode drug-naïve MDD and increased after treatment; further, plasma reelin levels allowed to distinguish drug-naïve patients with first-episode MDD from healthy individuals. In rats, chronic mild and unpredictable stress led to a decrease in both reelin mRNA and protein levels in the hippocampus, which could be reversed by vortioxetine. Subsequent experiments confirmed that the reelin-ApoER2-NR2A /NR2B pathway regulates hippocampal synaptic plasticity and may be involved in depression or antidepressant responses. Our work contributes to a deeper understanding of MDD pathogenesis and provides new evidence that reelin should be considered a potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ripeng Liu
- College of First Clinical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Qin Zhang
- College of First Clinical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Zhe Shen
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xiaohan Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jianping Jiao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
25
|
Han M, Yang H, Lu X, Li Y, Liu Z, Li F, Shang Z, Wang X, Li X, Li J, Liu H, Xin T. Three-Dimensional-Cultured MSC-Derived Exosome-Hydrogel Hybrid Microneedle Array Patch for Spinal Cord Repair. NANO LETTERS 2022; 22:6391-6401. [PMID: 35876503 DOI: 10.1021/acs.nanolett.2c02259] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have been proven to exhibit great potentials in spinal cord injury (SCI) therapy. However, conventional two-dimensional (2D) culture will inevitably lead to the loss of stemness of MSCs, which substantially limits the therapeutic potency of MSCs exosomes (2D-Exo). Exosomes derived from three-dimensional culture (3D-Exo) possess higher therapeutic efficiency which have wide applications in spinal cord therapy. Typically, conventional exosome therapy that relies on local repeated injection results in secondary injury and low efficiency. It is urgent to develop a more reliable, convenient, and effective exosome delivery method to achieve constant in situ exosomes release. Herein, we proposed a controlled 3D-exohydrogel hybrid microneedle array patch to achieve SCI repair in situ. Our studies suggested that MSCs with 3D-culturing could maintain their stemness, and consequently, 3D-Exo effectively reduced SCI-induced inflammation and glial scarring. Thus, it is a promising therapeutic strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P.R. China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Xiangdong Lu
- Department of Neurosurgery, People's Hospital Affiliated to Shandong First Medical University, Jinan 250117, P.R. China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Feng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Zehan Shang
- Department of Neurosurgery, Shangdong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, P.R. China
| | - Xiaofeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Xuze Li
- Department of Neurosurgery, Shangdong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, P.R. China
| | - Junliang Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P.R. China
| |
Collapse
|
26
|
Yakovlev AA. Neuroprotective Effects of Astrocyte Extracellular Vesicles in Stroke. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Younas N, Fernandez Flores LC, Hopfner F, Höglinger GU, Zerr I. A new paradigm for diagnosis of neurodegenerative diseases: peripheral exosomes of brain origin. Transl Neurodegener 2022; 11:28. [PMID: 35527262 PMCID: PMC9082915 DOI: 10.1186/s40035-022-00301-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of maladies, characterized by progressive loss of neurons. These diseases involve an intricate pattern of cross-talk between different types of cells to maintain specific signaling pathways. A component of such intercellular cross-talk is the exchange of various types of extracellular vesicles (EVs). Exosomes are a subset of EVs, which are increasingly being known for the role they play in the pathogenesis and progression of neurodegenerative diseases, e.g., synucleinopathies and tauopathies. The ability of the central nervous system exosomes to cross the blood–brain barrier into blood has generated enthusiasm in their study as potential biomarkers. However, the lack of standardized, efficient, and ultra-sensitive methods for the isolation and detection of brain-derived exosomes has hampered the development of effective biomarkers. Exosomes mirror heterogeneous biological changes that occur during the progression of these incurable illnesses, potentially offering a more comprehensive outlook of neurodegenerative disease diagnosis, progression and treatment. In this review, we aim to discuss the challenges and opportunities of peripheral biofluid-based brain-exosomes in the diagnosis and biomarker discovery of Alzheimer’s and Parkinson’s diseases. In the later part, we discuss the traditional and emerging methods used for the isolation of exosomes and compare their advantages and disadvantages in clinical settings.
Collapse
|
28
|
Loch-Neckel G, Matos AT, Vaz AR, Brites D. Challenges in the Development of Drug Delivery Systems Based on Small Extracellular Vesicles for Therapy of Brain Diseases. Front Pharmacol 2022; 13:839790. [PMID: 35422699 PMCID: PMC9002061 DOI: 10.3389/fphar.2022.839790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Small extracellular vesicles (sEVs) have ∼30–200 nm diameter size and may act as carriers of different cargoes, depending on the cell of origin or on the physiological/pathological condition. As endogenous nanovesicles, sEVs are important in intercellular communication and have many of the desirable features of an ideal drug delivery system. sEVs are naturally biocompatible, with superior targeting capability, safety profile, nanometric size, and can be loaded with both lipophilic and hydrophilic agents. Because of their biochemical and physical properties, sEVs are considered a promising strategy over other delivery vehicles in the central nervous system (CNS) since they freely cross the blood-brain barrier and they can be directed to specific nerve cells, potentiating a more precise targeting of their cargo. In addition, sEVs remain stable in the peripheral circulation, making them attractive nanocarrier systems to promote neuroregeneration. This review focuses on the recent progress in methods for manufacturing, isolating, and engineering sEVs that can be used as a therapeutic strategy to overcome neurodegeneration associated with pathologies of the CNS, with particular emphasis on Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis diseases, as well as on brain tumors.
Collapse
Affiliation(s)
- Gecioni Loch-Neckel
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Teresa Matos
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
29
|
Wu Q, Duan WZ, Chen JB, Zhao XP, Li XJ, Liu YY, Ma QY, Xue Z, Chen JX. Extracellular Vesicles: Emerging Roles in Developing Therapeutic Approach and Delivery Tool of Chinese Herbal Medicine for the Treatment of Depressive Disorder. Front Pharmacol 2022; 13:843412. [PMID: 35401216 PMCID: PMC8988068 DOI: 10.3389/fphar.2022.843412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 01/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells, which play an essential role in intercellular communication by delivering cellular components including DNA, RNA, lipids, metabolites, cytoplasm, and cell surface proteins into recipient cells. EVs play a vital role in the pathogenesis of depression by transporting miRNA and effector molecules such as BDNF, IL34. Considering that some herbal therapies exhibit antidepressant effects, EVs might be a practical delivery approach for herbal medicine. Since EVs can cross the blood-brain barrier (BBB), one of the advantages of EV-mediated herbal drug delivery for treating depression with Chinese herbal medicine (CHM) is that EVs can transfer herbal medicine into the brain cells. This review focuses on discussing the roles of EVs in the pathophysiology of depression and outlines the emerging application of EVs in delivering CHM for the treatment of depression.
Collapse
Affiliation(s)
- Qian Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wen-Zhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Peng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Small but Mighty-Exosomes, Novel Intercellular Messengers in Neurodegeneration. BIOLOGY 2022; 11:biology11030413. [PMID: 35336787 PMCID: PMC8945199 DOI: 10.3390/biology11030413] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Exosomes are biological nanoparticles recently recognized as intercellular messengers. They contain a cargo of lipids, proteins, and RNA. They can transfer their content to not only cells in the vicinity but also to cells at a distance. This unique ability empowers them to modulate the physiology of recipient cells. In brain, exosomes play a role in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease and amyotrophic lateral sclerosis. Abstract Exosomes of endosomal origin are one class of extracellular vesicles that are important in intercellular communication. Exosomes are released by all cells in our body and their cargo consisting of lipids, proteins and nucleic acids has a footprint reflective of their parental origin. The exosomal cargo has the power to modulate the physiology of recipient cells in the vicinity of the releasing cells or cells at a distance. Harnessing the potential of exosomes relies upon the purity of exosome preparation. Hence, many methods for isolation have been developed and we provide a succinct summary of several methods. In spite of the seclusion imposed by the blood–brain barrier, cells in the CNS are not immune from exosomal intrusive influences. Both neurons and glia release exosomes, often in an activity-dependent manner. A brief description of exosomes released by different cells in the brain and their role in maintaining CNS homeostasis is provided. The hallmark of several neurodegenerative diseases is the accumulation of protein aggregates. Recent studies implicate exosomes’ intercellular communicator role in the spread of misfolded proteins aiding the propagation of pathology. In this review, we discuss the potential contributions made by exosomes in progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Understanding contributions made by exosomes in pathogenesis of neurodegeneration opens the field for employing exosomes as therapeutic agents for drug delivery to brain since exosomes do cross the blood–brain barrier.
Collapse
|
31
|
Duarte-Silva E, Oriá AC, Mendonça IP, de Melo MG, Paiva IHR, Maes M, Joca SRL, Peixoto CA. TINY IN SIZE, BIG IN IMPACT: EXTRACELLULAR VESICLES AS MODULATORS OF MOOD, ANXIETY AND NEURODEVELOPMENTAL DISORDERS. Neurosci Biobehav Rev 2022; 135:104582. [PMID: 35182538 DOI: 10.1016/j.neubiorev.2022.104582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
Extracellular Vesicles (EVs) are tiny vesicles used by cells as means of cellular communication, through which the function and state of a given cell can be changed. A body of evidence has suggested that EVs could be culprits in the development and progression of various types of diseases, including neurodegenerative diseases such as Multiple Sclerosis (MS) and Alzheimer's Disease (AD). Unsurprisingly, EVs have also been implicate in mood, anxiety and neurodevelopmental disorders, such as Major Depressive Disorder (MDD), anxiety disorder and Autism-Spectrum Disorder (ASD), respectively. Here, we review the state-of-art regarding the roles of EVs in the aforementioned diseases and focus on the mechanisms by which they can cause and worsen disease. Harnessing the knowledge of EVs is not only important to deliver different cargos to cells in a specific manner to treat these diseases, but also to establish reliable disease biomarkers, which will aid in the early disease diagnosis and treatment, increasing the chance of successful treatment.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, PE, Brazil; Department of Neurology, Medical Faculty, University Hospital Düsseldorf, 40255 Düsseldorf, Germany.
| | | | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Michel Gomes de Melo
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique R Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Sâmia R L Joca
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM, CNPq), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Morales-Prieto DM, Murrieta-Coxca JM, Stojiljkovic M, Diezel C, Streicher PE, Henao-Restrepo JA, Röstel F, Lindner J, Witte OW, Weis S, Schmeer C, Marz M. Small Extracellular Vesicles from Peripheral Blood of Aged Mice Pass the Blood-Brain Barrier and Induce Glial Cell Activation. Cells 2022; 11:cells11040625. [PMID: 35203276 PMCID: PMC8870085 DOI: 10.3390/cells11040625] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 01/15/2023] Open
Abstract
Extracellular vesicles (EVs), including small EVs (sEVs), are involved in neuroinflammation and neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Yet, increased neuroinflammation can also be detected in the aging brain, and it is associated with increased glial activation. Changes in EV concentration are reported in aging tissues and senescence cells, suggesting a role of EVs in the process of aging. Here, we investigated the effect of peripheral sEVs from aged animals on neuroinflammation, specifically on glial activation. sEVs were isolated from the peripheral blood of young (3 months) and aged (24 months) C57BL/6J wildtype mice and injected into the peripheral blood from young animals via vein tail injections. The localization of EVs and the expression of selected genes involved in glial cell activation, including Gfap, Tgf-β, Cd68, and Iba1, were assessed in brain tissue 30 min, 4 h, and 24 h after injection. We found that sEVs from peripheral blood of aged mice but not from young mice altered gene expression in the brains of young animals. In particular, the expression of the specific astrocyte marker, Gfap, was significantly increased, indicating a strong response of this glial cell type. Our study shows that sEVs from aged mice can pass the blood-brain barrier (BBB) and induce glial cell activation.
Collapse
Affiliation(s)
- Diana M. Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Correspondence: (D.M.M.-P.); (M.M.); Tel.: +49-364-1939-0859 (D.M.M.-P.)
| | - José M. Murrieta-Coxca
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Milan Stojiljkovic
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Celia Diezel
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| | - Priska E. Streicher
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
| | - Julian A. Henao-Restrepo
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
| | - Franziska Röstel
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
| | - Julia Lindner
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Sebastian Weis
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany;
- Institute for Infectious Disease and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
- Correspondence: (D.M.M.-P.); (M.M.); Tel.: +49-364-1939-0859 (D.M.M.-P.)
| |
Collapse
|
33
|
Gao P, Li X, Du X, Liu S, Xu Y. Diagnostic and Therapeutic Potential of Exosomes in Neurodegenerative Diseases. Front Aging Neurosci 2022; 13:790863. [PMID: 34975460 PMCID: PMC8717921 DOI: 10.3389/fnagi.2021.790863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are closely related to brain function and the progression of the diseases are irreversible. Due to brain tissue being not easy to acquire, the study of the pathophysiology of neurodegenerative disorders has many limitations—lack of reliable early biomarkers and personalized treatment. At the same time, the blood-brain barrier (BBB) limits most of the drug molecules into the damaged areas of the brain, which makes a big drop in the effect of drug treatment. Exosomes, a kind of endogenous nanoscale vesicles, play a key role in cell signaling through the transmission of genetic information and proteins between cells. Because of the ability to cross the BBB, exosomes are expected to link peripheral changes to central nervous system (CNS) events as potential biomarkers, and can even be used as a therapeutic carrier to deliver molecules specifically to CNS. Here we summarize the role of exosomes in pathophysiology, diagnosis, prognosis, and treatment of some neurodegenerative diseases (Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis).
Collapse
Affiliation(s)
- Panyue Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
34
|
Wu G, Du X, Li Z, Du Y, Lv J, Li X, Xu Y, Liu S. The emerging role of long non-coding RNAs in schizophrenia. Front Psychiatry 2022; 13:995956. [PMID: 36226104 PMCID: PMC9548578 DOI: 10.3389/fpsyt.2022.995956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder which is contributed by both genetic and environmental factors. However, at present, its specific pathogenesis is still not very clear, and there is a lack of objective and reliable biomarkers. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) are involved in the pathophysiology of several psychiatric disorders, including SZ, and hold promise as potential biomarkers and therapeutic targets for psychiatric disorders. In this review, we summarize and discuss the role of lncRNAs in the pathogenesis of SZ and their potential value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Guangxian Wu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yanhong Du
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jinzhi Lv
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
35
|
Bosch S, Mignot G. [Extracellular vesicles are players of the immune continuum]. Med Sci (Paris) 2021; 37:1139-1145. [PMID: 34928218 DOI: 10.1051/medsci/2021206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regulation of immune responses was among the first functions of extracellular vesicles to be identified, more than twenty years ago. What exactly defines the outcome of an immune response remains a challenging issue. Owing to their reduced size, extracellular vesicles easily diffuse in interstitial and lymphatic fluids, where they can interact with the multiple effectors of the immune system. By accelerating and amplifying immune interactions, these ultra-mobile units may contribute to local and systemic coordination for efficient adaption to external and internal changes. Here we introduce the related ground-breaking studies of extracellular vesicle-mediated immune effects and present ongoing considerations on their potential roles in health and the development of immune disorders.
Collapse
Affiliation(s)
- Steffi Bosch
- Laboratoire d'immuno-endocrinologie cellulaire et moléculaire (IECM), École nationale vétérinaire, agroalimentaire et de l'alimentation de Nantes-Atlantique (ONIRIS), INRAE, USC (unités sous-contrats)1383, 44000 Nantes, France
| | - Grégoire Mignot
- Laboratoire d'immuno-endocrinologie cellulaire et moléculaire (IECM), École nationale vétérinaire, agroalimentaire et de l'alimentation de Nantes-Atlantique (ONIRIS), INRAE, USC (unités sous-contrats)1383, 44000 Nantes, France
| |
Collapse
|
36
|
Lin R, Lopez JP, Cruceanu C, Pierotti C, Fiori LM, Squassina A, Chillotti C, Dieterich C, Mellios N, Turecki G. Circular RNA circCCNT2 is upregulated in the anterior cingulate cortex of individuals with bipolar disorder. Transl Psychiatry 2021; 11:629. [PMID: 34893581 PMCID: PMC8664854 DOI: 10.1038/s41398-021-01746-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023] Open
Abstract
Gene expression dysregulation in the brain has been associated with bipolar disorder, but little is known about the role of non-coding RNAs. Circular RNAs are a novel class of long noncoding RNAs that have recently been shown to be important in brain development and function. However, their potential role in psychiatric disorders, including bipolar disorder, has not been well investigated. In this study, we profiled circular RNAs in the brain tissue of individuals with bipolar disorder. Total RNA sequencing was initially performed in samples from the anterior cingulate cortex of a cohort comprised of individuals with bipolar disorder (N = 13) and neurotypical controls (N = 13) and circular RNAs were identified and analyzed using "circtools". Significant circular RNAs were validated by RT-qPCR and replicated in the anterior cingulate cortex in an independent cohort (24 bipolar disorder cases and 27 controls). In addition, we conducted in vitro studies using B-lymphoblastoid cells collected from bipolar cases (N = 19) and healthy controls (N = 12) to investigate how circular RNAs respond following lithium treatment. In the discovery RNA sequencing analysis, 26 circular RNAs were significantly differentially expressed between bipolar disorder cases and controls (FDR < 0.1). Of these, circCCNT2 was RT-qPCR validated showing significant upregulation in bipolar disorder (p = 0.03). This upregulation in bipolar disorder was replicated in an independent post-mortem human anterior cingulate cortex cohort and in B-lymphoblastoid cell culture. Furthermore, circCCNT2 expression was reduced in response to lithium treatment in vitro. Together, our study is the first to associate circCCNT2 to bipolar disorder and lithium treatment.
Collapse
Affiliation(s)
- Rixing Lin
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada
| | - Juan Pablo Lopez
- grid.419548.50000 0000 9497 5095Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria 80804 Germany
| | - Cristiana Cruceanu
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Caroline Pierotti
- grid.266832.b0000 0001 2188 8502Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Laura M. Fiori
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Alessio Squassina
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Nikolaos Mellios
- grid.266832.b0000 0001 2188 8502Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM USA ,Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada. .,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
37
|
Rouillard ME, Sutter PA, Durham OR, Willis CM, Crocker SJ. Astrocyte-Derived Extracellular Vesicles (ADEVs): Deciphering their Influences in Aging. Aging Dis 2021; 12:1462-1475. [PMID: 34527422 PMCID: PMC8407882 DOI: 10.14336/ad.2021.0608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are an abundant and dynamic glial cell exclusive to the central nervous system (CNS). In the context of injury, inflammation, and/or diseases of the nervous system, astrocyte responses, termed reactive astrogliosis, are a recognized pathological feature across a range of conditions and diseases. However, the impact of reactive astrogliosis is not uniform and varies by context and duration (time). In recent years, extracellular communication between glial cells via extracellular vesicles (EVs) has garnered interest as a process connected with reactive astrogliosis. In this review, we relate recent findings on astrocyte-derived extracellular vesicles (ADEVs) with a focus on factors that can influence the effects of ADEVs and identified age related changes in the function of ADEVs. Additionally, we will discuss the current limitations of existing experimental approaches and identify questions that highlight areas for growth in this field, which will continue to enhance our understanding of ADEVs in age-associated processes.
Collapse
Affiliation(s)
- Megan E Rouillard
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Pearl A Sutter
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Olivia R Durham
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Cory M Willis
- 2Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Stephen J Crocker
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
38
|
Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, Garavito-Galofre P. Exosomes: Potential Disease Biomarkers and New Therapeutic Targets. Biomedicines 2021; 9:1061. [PMID: 34440265 PMCID: PMC8393483 DOI: 10.3390/biomedicines9081061] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are extracellular vesicles released by cells, both constitutively and after cell activation, and are present in different types of biological fluid. Exosomes are involved in the pathogenesis of diseases, such as cancer, neurodegenerative diseases, pregnancy disorders and cardiovascular diseases, and have emerged as potential non-invasive biomarkers for the detection, prognosis and therapeutics of a myriad of diseases. In this review, we describe recent advances related to the regulatory mechanisms of exosome biogenesis, release and molecular composition, as well as their role in health and disease, and their potential use as disease biomarkers and therapeutic targets. In addition, the advantages and disadvantages of their main isolation methods, characterization and cargo analysis, as well as the experimental methods used for exosome-mediated drug delivery, are discussed. Finally, we present potential perspectives for the use of exosomes in future clinical practice.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia;
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| |
Collapse
|
39
|
Luo X, Jean-Toussaint R, Sacan A, Ajit SK. Differential RNA packaging into small extracellular vesicles by neurons and astrocytes. Cell Commun Signal 2021; 19:75. [PMID: 34246289 PMCID: PMC8272329 DOI: 10.1186/s12964-021-00757-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) mediate intercellular communication by transferring RNA, proteins, and lipids to recipient cells. These cargo molecules are selectively loaded into sEVs and mirror the physiological state of the donor cells. Given that sEVs can cross the blood-brain barrier and their composition can change in neurological disorders, the molecular signatures of sEVs in circulation can be potential disease biomarkers. Characterizing the molecular composition of sEVs from different cell types is an important first step in determining which donor cells contribute to the circulating sEVs. METHODS Cell culture supernatants from primary mouse cortical neurons and astrocytes were used to purify sEVs by differential ultracentrifugation and sEVs were characterized using nanoparticle tracking analysis, transmission electron microscopy and western blot. RNA sequencing was used to determine differential expression and loading patterns of miRNAs in sEVs released by primary neurons and astrocytes. Motif analysis was conducted on enriched miRNAs in sEVs and their respective donor cells. RESULTS Sequencing total cellular RNA, and miRNAs from sEVs isolated from culture media of postnatal mouse cortical neurons and astrocytes revealed a distinct profile between sEVs and their corresponding cells. Though the total number of detected miRNAs in astrocytes was greater than neurons, neurons expressed more sEV-associated miRNAs than astrocytes. Only 20.7% of astrocytic miRNAs were loaded into sEVs, while 41.0% of neuronal miRNAs were loaded into sEVs, suggesting differences in the cellular sorting mechanisms. We identified short RNA sequence motifs, or EXOmotifs, on the miRNAs that were differentially loaded or excluded from sEVs. A sequence motif GUAC was enriched in astrocytic sEVs. miRNAs preferably retained in neurons or astrocytes had a similar RNA motif CACACA, suggesting a cell-type-independent mechanism to maintain cellular miRNAs. mRNAs of five RNA-binding proteins associated with passive or active RNA sorting into sEVs were differentially expressed between neurons and astrocytes, one of which, major vault protein was higher in astrocytes than in neurons and detected in astrocytic sEVs. CONCLUSIONS Our studies suggest differences in RNA sorting into sEVs. These differences in miRNA signatures can be used for determining the cellular sources of sEVs altered in neurological disorders. Video abstract.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 USA
| | - Renée Jean-Toussaint
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| | - Seena K. Ajit
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 USA
| |
Collapse
|
40
|
Mittal R, Bencie N, Langlie J, Mittal J, Eshraghi AA. Exosomes as drug delivery vehicles and biomarkers for neurological and auditory systems. J Cell Physiol 2021; 236:8035-8049. [PMID: 34224589 DOI: 10.1002/jcp.30484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/19/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Exosomes are small extracellular membrane particles that play a crucial role in intracellular signaling. Research shows that exosomes have the potential to be used as biomarkers or drug delivery systems in specific organs, such as the neurological system and the inner ear. Exosomes in neurological and auditory systems release different molecules when under stress versus in healthy states, highlighting their potential use as biomarkers in the identification of diseased states. Studies have suggested that exosomes can be harnessed for drug delivery to hard-to-reach organs, such as cochlear sensory hair cells and the brain due to their ability to cross the blood-labyrinth and blood-brain barriers. In this article, we describe the biogenesis, classification, and characterization methods of exosomes. We then discuss recent studies that indicate their potential usage as biomarkers and drug delivery systems to help treat inner ear and neurological disorders.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nicole Bencie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jake Langlie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
41
|
O'Leary LA, Mechawar N. Implication of cerebral astrocytes in major depression: A review of fine neuroanatomical evidence in humans. Glia 2021; 69:2077-2099. [PMID: 33734498 DOI: 10.1002/glia.23994] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Postmortem investigations have implicated astrocytes in many neurological and psychiatric conditions. Multiple brain regions from individuals with major depressive disorder (MDD) have lower expression levels of astrocyte markers and lower densities of astrocytes labeled for these markers, suggesting a loss of astrocytes in this mental illness. This paper reviews the general properties of human astrocytes, the methods to study them, and the postmortem evidence for astrocyte pathology in MDD. When comparing astrocyte density and morphometry studies, astrocytes are more abundant and smaller in human subcortical than cortical brain regions, and immunohistochemical labeling for the astrocyte markers glial fibrillary acidic protein (GFAP) and vimentin (VIM) reveals fewer than 15% of all astrocytes that are present in cortical and subcortical regions, as revealed using other staining techniques. By combining astrocyte densities and morphometry, a model was made to illustrate that domain organization is mostly limited to GFAP-IR astrocytes. Using these markers and others, alterations of astrocyte densities appear more widespread than those for astrocyte morphologies throughout the brain of individuals having died with MDD. This review suggests how reduced astrocyte densities may relate to the association of depressive episodes in MDD with elevated S100 beta (S100B) cerebrospinal fluid serum levels. Finally, a potassium imbalance theory is proposed that integrates the reduced astrocyte densities generated from postmortem studies with a hypothesis for the antidepressant effects of ketamine generated from rodent studies.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
42
|
Mathew B, Mansuri MS, Williams KR, Nairn AC. Exosomes as Emerging Biomarker Tools in Neurodegenerative and Neuropsychiatric Disorders-A Proteomics Perspective. Brain Sci 2021; 11:258. [PMID: 33669482 PMCID: PMC7922222 DOI: 10.3390/brainsci11020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/05/2023] Open
Abstract
Exosomes are synthesized and secreted by different cell types and contain proteins, lipids, metabolites and RNA species that reflect the physiological status of the cell of origin. As such, exosomes are increasingly being used as a novel reservoir for disease biomarker discovery. However, isolation of exosomes can be challenging due to their nonuniformity of shape and variable tissue of origin. Moreover, various analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein isolated from exosomes. Despite these challenges, techniques to improve proteomic yield and increase protein dynamic range continue to improve at a rapid rate. In this review, we highlight the importance of exosome proteomics in neurodegenerative and neuropsychiatric disorders and the associated technical difficulties. Furthermore, current progress and technological advancements in exosome proteomics research are discussed with an emphasis on disease-associated protein biomarkers.
Collapse
Affiliation(s)
- Boby Mathew
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - M. Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R. Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Angus C. Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
43
|
Bhatt S, Kanoujia J, Dhar AK, Arumugam S, Silva AKA, Mishra N. Exosomes: A Novel Therapeutic Paradigm for the Treatment of Depression. Curr Drug Targets 2021; 22:183-191. [PMID: 33023431 DOI: 10.2174/1389450121999201006193005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles (EVs) of endocytic origin are known as exosomes. These vesicles are released by cells and are found in biofluids, such as saliva, urine, and plasma. These vesicles are made up of small RNA, DNA, proteins, and play a vital role in many physiological processes. In the central nervous system (CNS), they participate in various physiological processes such as stress of nerve cells, communication between the cells, synaptic plasticity, and neurogenesis. The role of exosomes in depression needs to be explored further. It is known that exosomes can cross the blood brain barrier (BBB), which is made up of glial cells astrocytes. One of the advantages of these vesicles is that they are able to transfer macromolecules like DNA, protein, mRNAs, and miRNAs to recipient cells. This review focuses on the potential role of exosomes in depression and their utilization as a treatment option or diagnostic tool of depression.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - Arghya Kusum Dhar
- School of Pharmacy, Neotia University, Sarisa, D.H road, 24 pgs(south), West Bengal 743368, India
| | - Surendar Arumugam
- Laboratoire Matiere et Systemes Complexes (MSC), Universite de Paris, UMR 7057 CNRS, 75205 Paris cedex 13, France
| | - Amanda K A Silva
- Laboratoire Matiere et Systemes Complexes (MSC), Universite de Paris, UMR 7057 CNRS, 75205 Paris cedex 13, France
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| |
Collapse
|
44
|
Leakage of astrocyte-derived extracellular vesicles in stress-induced exhaustion disorder: a cross-sectional study. Sci Rep 2021; 11:2009. [PMID: 33479350 PMCID: PMC7820323 DOI: 10.1038/s41598-021-81453-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with stress-induced exhaustion disorder (SED) demonstrate cognitive dysfunction similar to patients with minor traumatic brain injury (TBI). We have previously detected elevated concentrations of astrocyte-derived extracellular vesicles (EVs) in patients with TBI. As such, we hypothesized that astrocyte-derived EVs could be higher in patients with SED than in patients with major depressive disorder (MDD) and healthy controls. Patients with SED (n = 31), MDD (n = 31), and healthy matched controls (n = 61) were included. Astrocyte-derived EVs (previously known as microparticles) were measured in plasma with flow cytometry and labeled against glial fibrillary acidic protein (GFAP) and aquaporin 4 (AQP4). In addition, platelet EVs and their CD40 ligand expression were measured. Patients with SED had significantly higher concentrations of AQP4 and GFAP-positive EVs and EVs co-expressing AQP4/GFAP than patients with MDD and healthy controls. Patients with MDD had significantly higher concentrations of GFAP-positive EVs and EVs co-expressing AQP4/GFAP than healthy controls. Platelet EVs did not differ between groups. CD40 ligand expression was significantly higher in patients with SED and MDD than in controls. In conclusion, the present study suggests that patients with SED, and to some extent, patients with MDD, have increased leakage of astrocyte-derived EVs through the blood–brain barrier.
Collapse
|
45
|
Yousif G, Qadri S, Haik M, Haik Y, Parray AS, Shuaib A. Circulating Exosomes of Neuronal Origin as Potential Early Biomarkers for Development of Stroke. Mol Diagn Ther 2021; 25:163-180. [DOI: 10.1007/s40291-020-00508-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
|
46
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2021; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
47
|
Soares E, Reis J, Rodrigues M, Ribeiro CF, Pereira FC. Circulating Extracellular Vesicles: The Missing Link between Physical Exercise and Depression Management? Int J Mol Sci 2021; 22:ijms22020542. [PMID: 33430399 PMCID: PMC7827999 DOI: 10.3390/ijms22020542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is associated with an increased risk of aging-related diseases. It is also seemingly a common psychological reaction to pandemic outbreaks with forced quarantines and lockdowns. Thus, depression represents, now more than ever, a major global health burden with therapeutic management challenges. Clinical data highlights that physical exercise is gaining momentum as a non-pharmacological intervention in depressive disorders. Although it may contribute to the reduction of systemic inflammation associated with depression, the mechanisms underlying the beneficial physical exercise effects in emotional behavior remain to be elucidated. Current investigations indicate that a rapid release of extracellular vesicles into the circulation might be the signaling mediators of systemic adaptations to physical exercise. These biological entities are now well-established intercellular communicators, playing a major role in relevant physiological and pathophysiological functions, including brain cell-cell communication. We also reviewed emerging evidence correlating depression with modified circulating extracellular vesicle surfaces and cargo signatures (e.g., microRNAs and proteins), envisioned as potential biomarkers for diagnosis, efficient disease stratification and appropriate therapeutic management. Accordingly, the clinical data summarized in the present review prompted us to hypothesize that physical exercise-related circulating extracellular vesicles contribute to its antidepressant effects, particularly through the modulation of inflammation. This review sheds light on the triad "physical exercise-extracellular vesicles-depression" and suggests new avenues in this novel emerging field.
Collapse
Affiliation(s)
- Edna Soares
- Institute of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.); (M.R.); (C.F.R.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Correspondence: (E.S.); (F.C.P.)
| | - Julie Reis
- Institute of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.); (M.R.); (C.F.R.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Mariana Rodrigues
- Institute of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.); (M.R.); (C.F.R.)
| | - Carlos Fontes Ribeiro
- Institute of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.); (M.R.); (C.F.R.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Frederico C. Pereira
- Institute of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.); (M.R.); (C.F.R.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Correspondence: (E.S.); (F.C.P.)
| |
Collapse
|
48
|
Azizi F, Askari S, Javadpour P, Hadjighassem M, Ghasemi R. Potential role of exosome in post-stroke reorganization and/or neurodegeneration. EXCLI JOURNAL 2020; 19:1590-1606. [PMID: 33408596 PMCID: PMC7783471 DOI: 10.17179/excli2020-3025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/05/2020] [Indexed: 12/29/2022]
Abstract
Currently, stroke is a common and devastating condition, which is sometimes associated with permanent cerebral damages. Although in early time after stroke, the related treatments are mainly focused on the restoration of cerebral blood flow (CBF), at the same time, some changes are commencing that continue for a long time and need to be specially noticed. Previous studies have proposed several molecular mechanisms in these post-stroke events. Exosomes are a type of vesicle, which are formed and secreted by most cells as a mean to transfer cellular constituents such as proteins, DNA and/or RNA to distant cells. Therefore, they are considered as a novel mechanism of cellular communication. Herein, we reviewed the current knowledge on cascades, which are activated after stroke and consequently lead to the reorganization and/or continuance of tissue damage and development of other disorders such as Neurodegenerative diseases (ND). Thereafter, we summarized the latest proofs about the possible participation of exosomes in transferring some components such as proteins and micro-RNAs (miRs), from the affected areas to other parts of the brain and eventually cause the above-mentioned post-stroke events.
Collapse
Affiliation(s)
- Fateme Azizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Gharbi T, Zhang Z, Yang GY. The Function of Astrocyte Mediated Extracellular Vesicles in Central Nervous System Diseases. Front Cell Dev Biol 2020; 8:568889. [PMID: 33178687 PMCID: PMC7593543 DOI: 10.3389/fcell.2020.568889] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocyte activation plays an important role during disease-induced inflammatory response in the brain. Exosomes in the brain could be released from bone marrow (BM)-derived stem cells, neuro stem cells (NSC), mesenchymal stem cells (MSC), etc. We summarized that exosomes release and transport signaling to the target cells, and then produce function. Furthermore, we discussed the pathological interactions between astrocytes and other brain cells, which are related to brain diseases such as stroke, Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) disease, multiple sclerosis (MS), psychiatric, traumatic brain injury (TBI), etc. We provide up-to-date, comprehensive and valuable information on the involvement of exosomes in brain diseases, which is beneficial for basic researchers and clinical physicians.
Collapse
Affiliation(s)
- Tahereh Gharbi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Dugershaw BB, Aengenheister L, Hansen SSK, Hougaard KS, Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part Fibre Toxicol 2020; 17:31. [PMID: 32653006 PMCID: PMC7353685 DOI: 10.1186/s12989-020-00359-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological and animal studies provide compelling indications that environmental and engineered nanomaterials (NMs) pose a risk for pregnancy, fetal development and offspring health later in life. Understanding the origin and mechanisms underlying NM-induced developmental toxicity will be a cornerstone in the protection of sensitive populations and the design of safe and sustainable nanotechnology applications. MAIN BODY Direct toxicity originating from NMs crossing the placental barrier is frequently assumed to be the key pathway in developmental toxicity. However, placental transfer of particles is often highly limited, and evidence is growing that NMs can also indirectly interfere with fetal development. Here, we outline current knowledge on potential indirect mechanisms in developmental toxicity of NMs. SHORT CONCLUSION Until now, research on developmental toxicity has mainly focused on the biodistribution and placental translocation of NMs to the fetus to delineate underlying processes. Systematic research addressing NM impact on maternal and placental tissues as potential contributors to mechanistic pathways in developmental toxicity is only slowly gathering momentum. So far, maternal and placental oxidative stress and inflammation, activation of placental toll-like receptors (TLRs), impairment of placental growth and secretion of placental hormones, and vascular factors have been suggested to mediate indirect developmental toxicity of NMs. Therefore, NM effects on maternal and placental tissue function ought to be comprehensively evaluated in addition to placental transfer in the design of future studies of developmental toxicity and risk assessment of NM exposure during pregnancy.
Collapse
Affiliation(s)
- Battuja Batbajar Dugershaw
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Signe Schmidt Kjølner Hansen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| |
Collapse
|