1
|
Villalobos-Segura MDC, Rico-Chávez O, Suzán G, Chaves A. Influence of Host and Landscape-Associated Factors in the Infection and Transmission of Pathogens: The Case of Directly Transmitted Virus in Mammals. Vet Med Sci 2025; 11:e70160. [PMID: 39692054 DOI: 10.1002/vms3.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Among pathogens associated with mammals, numerous viruses with a direct transmission route impact human, domestic and wild species health. Host and landscape factors affect viral infection and transmission dynamics of these viruses, along with barriers to host dispersal and gene exchange. However, studies show biases toward certain locations, hosts and detected pathogens, with regional variations in similar host-virus associations. METHODS Using a systematic review, in two electronic repositories for articles published until December 2022, we analysed the available information on host- and landscape-associated factors influencing the infection and transmission of directly transmitted viruses in mammals. RESULTS In the analysis, about 50% of papers examined either host traits, landscape composition or configuration measures, while approximately 24% combined host and landscape-associated factors. Additionally, approximately 17% of the articles included climatic data and 30% integrated factors related to anthropogenic impact, as these variables have a role in host density, distribution and virus persistence. The most significant and frequent host traits used as predictor variables were sex, age, body weight, host density and species identity. Land cover was the most evaluated landscape attribute, while some explored configuration variables like edge density and fragmentation indexes. Finally, temperature, precipitation and features such as human population density and human footprint index were also typically measured and found impactful. CONCLUSION Given the many contributions host- and landscape-related factors have in pathogen dynamics, this systematic study contributes to a better knowledge of host-virus dynamics and the identification of variables and gaps that can be used for disease prevention.
Collapse
Affiliation(s)
- María Del Carmen Villalobos-Segura
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Oscar Rico-Chávez
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Andrea Chaves
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Banther-McConnell JK, Suriyamongkol T, Goodfellow SM, Nofchissey RA, Bradfute SB, Mali I. Distribution and prevalence of Sin Nombre hantavirus in rodent species in eastern New Mexico. PLoS One 2024; 19:e0296718. [PMID: 38236803 PMCID: PMC10796054 DOI: 10.1371/journal.pone.0296718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024] Open
Abstract
Orthohantaviruses are diverse zoonotic RNA viruses. Small mammals, such as mice and rats are common chronic, asymptomatic hosts that transmit the virus through their feces and urine. In North America, hantavirus infection primarily causes hantavirus cardiopulmonary syndrome (HCPS), which has a mortality rate of nearly 36%. In the United States of America, New Mexico (NM) is leading the nation in the number of HCPS-reported cases (N = 129). However, no reported cases of HCPS have occurred within eastern NM. In this study, we assessed the prevalence of Sin Nombre virus (SNV) in rodent assemblages across eastern NM, using RT-qPCR. We screened for potential rodent hosts in the region, as well as identified areas that may pose significant infection risk to humans. We captured and collected blood and lung tissues from 738 rodents belonging to 23 species. 167 individuals from 16 different species were positive for SNV RNA by RT-qPCR, including 6 species unreported in the literature: Onychomys leucogaster (Northern grasshopper mouse), Dipodomys merriami (Merriam's kangaroo rat), Dipodomys ordii (Ord's kangaroo rat), Dipodomys spectabilis (Banner-tailed kangaroo rat), Perognathus flavus (Silky pocket mouse), and Chaetodipus hispidus (Hispid pocket mouse). The infection rates did not differ between sexes or rodent families (i.e., Cricetidae vs. Heteromyidae). Generalized linear model showed that disturbed habitat types positively influenced the prevalence of SNV at sites of survey. Overall, the results of this study indicate that many rodent species in east New Mexico have the potential to maintain SNV in the environment, but further research is needed to assess species specific infectivity mechanisms and potential risk to humans.
Collapse
Affiliation(s)
- Jaecy K Banther-McConnell
- Department of Biology, Eastern New Mexico University, Portales, New Mexico, United States of America
| | - Thanchira Suriyamongkol
- College of Agricultural Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Samuel M Goodfellow
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Robert A Nofchissey
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ivana Mali
- Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
3
|
Cabrera A, Romero D, Guerrero JC, Clara M, Delfraro A. Deciphering the Hantavirus Host Range Combining Virology and Species Distribution Models with an Emphasis on the Yellow Pygmy Rice Rat ( Oligoryzomys flavescens). Transbound Emerg Dis 2023; 2023:2730050. [PMID: 40303704 PMCID: PMC12017062 DOI: 10.1155/2023/2730050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 05/02/2025]
Abstract
Hantaviruses are the causative agents of hantavirus pulmonary syndrome (HPS) in the Americas. In Central and South America, 28 hantavirus lineages were associated with different Sigmodontinae rodents. Of these, Lechiguanas hantavirus was initially described as a lineage associated with HPS cases in the central region of Argentina. Initial studies on the rodent hosts and viral lineages performed between 1999 and 2005 showed that HPS cases in Uruguay were distributed mostly in the southern region of the country, and that the Lechiguanas hantavirus (LECV) and the closely related Andes Central Plata hantaviruses were the viral lineages most frequently associated with HPS cases, both carried by the yellow pygmy rice rat (Oligoryzomys flavescens). Although these rodents are present all across the Uruguayan territory, determining the extent of the risk areas for hantavirus transmission based on the distribution of the infected rodents may be a useful tool for disease control and prevention. Distribution models are positioned as an effective instrument in the prediction of diseases affecting human health. Assessment of the potential distribution of rodent reservoir hosts and analysis of the influence of environmental factors on hantavirus transmission can help to understand the spatial patterns of disease transmission risk. In the present study, virological studies and species distribution models were integrated to understand the hantavirus infection risk pattern in Uruguay. Virological analyses confirmed that in Uruguay, the primary hantavirus reservoir host for both viral lineages is the yellow pygmy rice rat. Additionally, we report an Azara's grass mouse (Akodon azarae) infected with the Andes Central Plata viral lineage. Based on the seropositive and nonseropositive yellow pygmy rice rats tested, the distribution models emphasized that favorable environmental conditions for the infected rodents are mainly related to the availability of human-disturbed rural environments with high humidity. We conclude that the innovative application of the methodologies reported herein allowed for the assessment of the current risk territory for HPS in Uruguay.
Collapse
Affiliation(s)
- Andrés Cabrera
- Sección Virología, Departamento de Biología Celular y Molecular, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - David Romero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - José Carlos Guerrero
- Laboratorio de Desarrollo Sustentable y Gestión Ambiental del Territorio, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mario Clara
- Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Adriana Delfraro
- Sección Virología, Departamento de Biología Celular y Molecular, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Spruill-Harrell B, Pérez-Umphrey A, Valdivieso-Torres L, Cao X, Owen RD, Jonsson CB. Impact of Predator Exclusion and Habitat on Seroprevalence of New World Orthohantavirus Harbored by Two Sympatric Rodents within the Interior Atlantic Forest. Viruses 2021; 13:1963. [PMID: 34696393 PMCID: PMC8538774 DOI: 10.3390/v13101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding how perturbations to trophic interactions influence virus-host dynamics is essential in the face of ongoing biodiversity loss and the continued emergence of RNA viruses and their associated zoonoses. Herein, we investigated the role of predator exclusion on rodent communities and the seroprevalence of hantaviruses within the Reserva Natural del Bosque Mbaracayú (RNBM), which is a protected area of the Interior Atlantic Forest (IAF). In the IAF, two sympatric rodent reservoirs, Akodon montensis and Oligoryzomys nigripes, harbor Jaborá and Juquitiba hantavirus (JABV, JUQV), respectively. In this study, we employed two complementary methods for predator exclusion: comprehensive fencing and trapping/removal. The goal of exclusion was to preclude the influence of predation on small mammals on the sampling grids and thereby potentially reduce rodent mortality. Following baseline sampling on three grid pairs with different habitats, we closed the grids and began predator removal. By sampling three habitat types, we controlled for habitat-specific effects, which is important for hantavirus-reservoir dynamics in neotropical ecosystems. Our six-month predator exclusion experiment revealed that the exclusion of terrestrial mammalian predators had little influence on the rodent community or the population dynamics of A. montensis and O. nigripes. Instead, fluctuations in species diversity and species abundances were influenced by sampling session and forest degradation. These results suggest that seasonality and landscape composition play dominant roles in the prevalence of hantaviruses in rodent reservoirs in the IAF ecosystem.
Collapse
Affiliation(s)
- Briana Spruill-Harrell
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Anna Pérez-Umphrey
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA;
| | | | - Xueyuan Cao
- Department of Nursing-Acute/Tert Care, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Robert D. Owen
- Centro para el Desarrollo de la Investigación Científica, Asunción C.P. 1371, Paraguay;
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
5
|
Rosenthal LM, Simler-Williamson AB, Rizzo DM. Community-level prevalence of a forest pathogen, not individual-level disease risk, declines with tree diversity. Ecol Lett 2021; 24:2477-2489. [PMID: 34510681 DOI: 10.1111/ele.13871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 08/10/2021] [Indexed: 11/27/2022]
Abstract
Understanding why diversity sometimes limits disease is essential for managing outbreaks; however, mechanisms underlying this 'dilution effect' remain poorly understood. Negative diversity-disease relationships have previously been detected in plant communities impacted by an emerging forest disease, sudden oak death. We used this focal system to empirically evaluate whether these relationships were driven by dilution mechanisms that reduce transmission risk for individuals or from the fact that disease was averaged across the host community. We integrated laboratory competence measurements with plant community and symptom data from a large forest monitoring network. Richness increased disease risk for bay laurel trees, dismissing possible dilution mechanisms. Nonetheless, richness was negatively associated with community-level disease prevalence because the disease was aggregated among hosts that vary in disease susceptibility. Aggregating observations (which is surprisingly common in other dilution effect studies) can lead to misinterpretations of dilution mechanisms and bias towards a negative diversity-disease relationship.
Collapse
Affiliation(s)
- Lisa M Rosenthal
- Graduate Group in Ecology, University of California, Davis, California, USA.,Department of Plant Pathology, University of California, Davis, California, USA
| | | | - David M Rizzo
- Department of Plant Pathology, University of California, Davis, California, USA
| |
Collapse
|
6
|
Modarelli JJ, Westrich BJ, Milholland M, Tietjen M, Castro-Arellano I, Medina RF, Esteve-Gasent MD. Prevalence of protozoan parasites in small and medium mammals in Texas, USA. Int J Parasitol Parasites Wildl 2020; 11:229-234. [PMID: 32195108 PMCID: PMC7078122 DOI: 10.1016/j.ijppaw.2020.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Wildlife interaction with humans increases the risk of potentially infected ticks seeking an opportunistic blood meal and consequently leading to zoonotic transmission. In the United States, human babesiosis is a tick-borne zoonosis most commonly caused by the intraerythrocytic protozoan parasite, Babesia microti. The presence of Babesia microti and other species of Babesia within Texas has not been well characterized, and the molecular prevalence of these pathogens within wildlife species is largely unknown. Small (e.g. rodents) and medium sized mammalian species (e.g. racoons) represent potential reservoirs for specific species of Babesia, though this relationship has not been thoroughly evaluated within Texas. This study aimed to characterize the molecular prevalence of Babesia species within small and medium sized mammals at two sites in East Texas with an emphasis on detection of pathogen presence in these two contrasting wild mammal groups at these sites. To that end, a total of 480 wild mammals representing eight genera were trapped, sampled, and screened for Babesia species using the TickPath layerplex qPCR assay. Two sites were selected for animal collection, including The Big Thicket National Preserve and Gus Engeling Wildlife Management Area. Molecular analysis revealed the prevalence of various Babesia and Hepathozoon species at 0.09% each, and Sarcocystis at 0.06% . Continued molecular prevalence surveys of tick-borne pathogens in Texas wild mammals will be needed to provide novel information as to which species of Babesia are most prevalent and identify specific wildlife species as pathogen reservoirs.
Collapse
Affiliation(s)
- Joseph J. Modarelli
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Bradford J. Westrich
- Indiana Department of Natural Resources, Department of Fish and Wildlife, 5596 East State Road 46, Bloomington, IN, 47401, USA
| | - Matthew Milholland
- College of Agriculture and Natural Resources-Department of Environmental Sciences and Technology, University of Maryland, College Park, MD, 1433, USA
- United States Department of Agriculture-Agriculture Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Mackenzie Tietjen
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ivan Castro-Arellano
- Department of Biology, College of Sciences, Texas State San Marcos, San Marcos, TX, USA
| | - Raul F. Medina
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Maria D. Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
7
|
Milholland MT, Castro-Arellano I, Garcia-Peña GE, Mills JN. The Ecology and Phylogeny of Hosts Drive the Enzootic Infection Cycles of Hantaviruses. Viruses 2019; 11:v11070671. [PMID: 31340455 PMCID: PMC6669546 DOI: 10.3390/v11070671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Hantaviruses (Family: Hantaviridae; genus: Orthohantavirus) and their associated human diseases occur globally and differ according to their geographic distribution. The structure of small mammal assemblages and phylogenetic relatedness among host species are suggested as strong drivers for the maintenance and spread of hantavirus infections in small mammals. We developed predictive models for hantavirus infection prevalence in rodent assemblages using defined ecological correlates from our current knowledge of hantavirus-host distributions to provide predictive models at the global and continental scale. We utilized data from published research between 1971–2014 and determined the biological and ecological characteristics of small mammal assemblages to predict the prevalence of hantavirus infections. These models are useful in predicting hantavirus disease outbreaks based on environmental and biological information obtained through the surveillance of rodents.
Collapse
Affiliation(s)
- Matthew T Milholland
- College of Agriculture and Natural Resources-Department of Environmental Sciences and Technology, University of Maryland, College Park, MD 1433, USA.
- United States Department of Agriculture-Agriculture Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA.
| | | | - Gabriel E Garcia-Peña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City 04510, México
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, México City 04510, México
- UMR MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 5290, CNRIS-IRD-Université de Montpellier, Centre de Recherche IRD, Montpellier Cedex 5 34192, France
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Current Situation and Perspectives on Hantaviruses in Mexico. Viruses 2019; 11:v11070642. [PMID: 31336858 PMCID: PMC6669582 DOI: 10.3390/v11070642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022] Open
Abstract
Hantaviruses are transmitted by rodents producing the hantavirus pulmonary syndrome (HPS) in the Americas. Today, no human cases of HPS have been reported in Mexico in spite of similar environmental conditions with Central America and the USA where several cases have occurred. To understand the current situation of hantaviruses in Mexico and the public health risk, a systematic review of studies was conducted reporting hantaviruses in rodents to known state seroprevalence and hantavirus genotypes. Simultaneously, this study identified the potential hantaviruses based on the phylogenetic diversity (PD) of hantaviruses reported in the Americas in hosts with the distribution in Mexico. A total 3862 rodents belonging to 82 species have been tested since 1999 to 2017. Overall, 392 individuals representing 43 rodent species were seropositive, and the seroprevalence ranged from 0 to 69.22%. Seven hantaviruses genotypes have been described in Mexico and three are zoonotic. Four host species of rodents are widely distributed in Mexico harboring the highest PD of viruses. According to the hosts distribution, 16 genotypes could be circulating in Mexico and some of these represent a potential risk for public health. This study proposed multidisciplinary and interinstitutional collaborations to implement systematic surveillance in rodents.
Collapse
|
9
|
Marklewitz M, Junglen S. Evolutionary and ecological insights into the emergence of arthropod-borne viruses. Acta Trop 2019; 190:52-58. [PMID: 30339799 DOI: 10.1016/j.actatropica.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023]
Abstract
The emergence of arthropod-borne viruses (arboviruses) is of global concern as they can rapidly spread across countries and to new continents as the recent examples of chikungunya virus and Zika virus have demonstrated. Whereas the global movement patterns of emerging arboviruses are comparatively well studied, there is little knowledge on initial emergence processes that enable sylvatic (enzootic) viruses to leave their natural amplification cycle and infect humans or livestock, often also involving infection of anthropophilic vector species. Emerging arboviruses almost exclusively originate in highly biodiverse ecosystems of tropical countries. Changes in host population diversity and density can affect pathogen transmission patterns and are likely to influence arbovirus emergence processes. This review focuses on concepts from disease ecology, explaining the interplay between biodiversity and pathogen emergence.
Collapse
Affiliation(s)
- Marco Marklewitz
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany
| | - Sandra Junglen
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
10
|
Aguirre AA. Changing Patterns of Emerging Zoonotic Diseases in Wildlife, Domestic Animals, and Humans Linked to Biodiversity Loss and Globalization. ILAR J 2018; 58:315-318. [PMID: 29253148 DOI: 10.1093/ilar/ilx035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
The fundamental human threats to biodiversity including habitat destruction, globalization, and species loss have led to ecosystem disruptions altering infectious disease transmission patterns, the accumulation of toxic pollutants, and the invasion of alien species and pathogens. To top it all, the profound role of climate change on many ecological processes has affected the inability of many species to adapt to these relatively rapid changes. This special issue, "Zoonotic Disease Ecology: Effects on Humans, Domestic Animals and Wildlife," explores the complex interactions of emerging infectious diseases across taxa linked to many of these anthropogenic and environmental drivers. Selected emerging zoonoses including RNA viruses, Rift Valley fever, trypanosomiasis, Hanta virus infection, and other vector-borne diseases are discussed in detail. Also, coprophagous beetles are proposed as important vectors in the transmission and maintenance of infectious pathogens. An overview of the impacts of climate change in emerging disease ecology within the context of Brazil as a case study is provided. Animal Care and Use Committee requirements were investigated, concluding that ecology journals have low rates of explicit statements regarding the welfare and wellbing of wildlife during experimental studies. Most of the solutions to protect biodiversity and predicting and preventing the next epidemic in humans originating from wildlife are oriented towards the developed world and are less useful for biodiverse, low-income economies. We need the development of regional policies to address these issues at the local level.
Collapse
Affiliation(s)
- A Alonso Aguirre
- A. Alonso Aguirre is Department Chair of Environmental Science and Policy, George Mason University, Fairfax, Virginia 22030
| |
Collapse
|
11
|
Milholland MT, Castro-Arellano I, Suzán G, Garcia-Peña GE, Lee TE, Rohde RE, Alonso Aguirre A, Mills JN. Global Diversity and Distribution of Hantaviruses and Their Hosts. ECOHEALTH 2018; 15:163-208. [PMID: 29713899 DOI: 10.1007/s10393-017-1305-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
Rodents represent 42% of the world's mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity of disease agents. Thus, knowing the identity, diversity, host-pathogen relationships, and geographic distribution of rodent-borne zoonotic pathogens, is essential for predicting and mitigating zoonotic disease outbreaks. Hantaviruses are hosted by numerous rodent reservoirs. However, the diversity of rodents harboring hantaviruses is likely unknown because research is biased toward specific reservoir hosts and viruses. An up-to-date, systematic review covering all known rodent hosts is lacking. Herein, we document gaps in our knowledge of the diversity and distribution of rodent species that host hantaviruses. Of the currently recognized 681 cricetid, 730 murid, 61 nesomyid, and 278 sciurid species, we determined that 11.3, 2.1, 1.6, and 1.1%, respectively, have known associations with hantaviruses. The diversity of hantaviruses hosted by rodents and their distribution among host species supports a reassessment of the paradigm that each virus is associated with a single-host species. We examine these host-virus associations on a global taxonomic and geographical scale with emphasis on the rodent host diversity and distribution. Previous reviews have been centered on the viruses and not the mammalian hosts. Thus, we provide a perspective not previously addressed.
Collapse
Affiliation(s)
- Matthew T Milholland
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Iván Castro-Arellano
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Gabriel E Garcia-Peña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- UMR MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 5290, CNRS-IRD-Université de Montpellier, Centre de Recherche IRD, Montpellier Cedex 5, France
| | - Thomas E Lee
- Department of Biology, Abilene Christian University, ACU Box 27868, Abilene, TX, 79699, USA
| | - Rodney E Rohde
- College of Health Professions, Clinical Laboratory Science Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|