1
|
Poulen G, Perrin FE. Advances in spinal cord injury: insights from non-human primates. Neural Regen Res 2024; 19:2354-2364. [PMID: 38526271 PMCID: PMC11090432 DOI: 10.4103/nrr.nrr-d-23-01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 12/22/2023] [Indexed: 03/26/2024] Open
Abstract
Spinal cord injury results in significant sensorimotor deficits, currently, there is no curative treatment for the symptoms induced by spinal cord injury. Basic and pre-clinical research on spinal cord injury relies on the development and characterization of appropriate animal models. These models should replicate the symptoms observed in human, allowing for the exploration of functional deficits and investigation into various aspects of physiopathology of spinal cord injury. Non-human primates, due to their close phylogenetic association with humans, share more neuroanatomical, genetic, and physiological similarities with humans than rodents. Therefore, the responses to spinal cord injury in nonhuman primates most likely resemble the responses to traumatism in humans. In this review, we will discuss nonhuman primate models of spinal cord injury, focusing on in vivo assessments, including behavioral tests, magnetic resonance imaging, and electrical activity recordings, as well as ex vivo histological analyses. Additionally, we will present therapeutic strategies developed in non-human primates and discuss the unique specificities of non-human primate models of spinal cord injury.
Collapse
Affiliation(s)
- Gaetan Poulen
- University of Montpellier, INSERM, EPHE, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Florence E. Perrin
- University of Montpellier, INSERM, EPHE, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Bleyer M, Radespiel U, Klein A, Kollikowski A, Ströbel P, Mätz-Rensing K, Gruber-Dujardin E. Spontaneous soft tissue tumours in aged mouse lemurs (Microcebus spp). J Comp Pathol 2024; 215:47-54. [PMID: 39520914 DOI: 10.1016/j.jcpa.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Mouse lemurs (Microcebus spp) are small Madagascan strepsirrhine primates increasingly used as an animal model in ageing research. During a period of 10 years, neoplastic disease occurred in 47 grey (Microcebus murinus) and Goodman's (Microcebus lehilahtsara) mouse lemurs from a captive colony in Germany. Approximately half of these tumours appeared histologically as soft tissue tumours (STTs) with a significantly higher proportion of STTs in Goodman's mouse lemurs (87.5%) compared with grey mouse lemurs (38.5%) (P ≤0.025). Most STTs grew subcutaneously in old or senile animals and were commonly located on the trunk, less often on the head and rarely at visceral sites. The majority of STTs were of fibrous or myofibroblastic origin, followed by undifferentiated pleomorphic sarcomas and extraskeletal chondro-osseous neoplasia. Histological grading of malignant STTs revealed all but one as grade II or III, with more than 60% being grade III. Female mouse lemurs of both species were affected significantly more often by grade II and III tumours than males (P = 0.0412). This study gives a comprehensive overview of the spectrum of mesenchymal neoplastic disease in mouse lemurs and highlights some histomorphological characteristics of spontaneous STTs in this small non-human primate species.
Collapse
Affiliation(s)
- Martina Bleyer
- Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Annette Klein
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Annika Kollikowski
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Centre, Göttingen, Germany
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Eva Gruber-Dujardin
- Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
3
|
Sengupta A, Wang F, Mishra A, Reed JL, Chen LM, Gore JC. Detection and characterization of resting state functional networks in squirrel monkey brain. Cereb Cortex Commun 2023; 4:tgad018. [PMID: 37753115 PMCID: PMC10518810 DOI: 10.1093/texcom/tgad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Resting-state fMRI based on analyzing BOLD signals is widely used to derive functional networks in the brain and how they alter during disease or injury conditions. Resting-state networks can also be used to study brain functional connectomes across species, which provides insights into brain evolution. The squirrel monkey (SM) is a non-human primate (NHP) that is widely used as a preclinical model for experimental manipulations to understand the organization and functioning of the brain. We derived resting-state networks from the whole brain of anesthetized SMs using Independent Component Analysis of BOLD acquisitions. We detected 15 anatomically constrained resting-state networks localized in the cortical and subcortical regions as well as in the white-matter. Networks encompassing visual, somatosensory, executive control, sensorimotor, salience and default mode regions, and subcortical networks including the Hippocampus-Amygdala, thalamus, basal-ganglia and brainstem region correspond well with previously detected networks in humans and NHPs. The connectivity pattern between the networks also agrees well with previously reported seed-based resting-state connectivity of SM brain. This study demonstrates that SMs share remarkable homologous network organization with humans and other NHPs, thereby providing strong support for their suitability as a translational animal model for research and additional insight into brain evolution across species.
Collapse
Affiliation(s)
- Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Psychology, Vanderbilt University, Nashville, TN, United States of America
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
4
|
Klösener L, Samolovac S, Barnekow I, König J, Moussavi A, Boretius S, Fuchs D, Haegens A, Hinkel R, Mietsch M. Functional Cardiovascular Characterization of the Common Marmoset ( Callithrix jacchus). BIOLOGY 2023; 12:1123. [PMID: 37627007 PMCID: PMC10452209 DOI: 10.3390/biology12081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Appropriate cardiovascular animal models are urgently needed to investigate genetic, molecular, and therapeutic approaches, yet the translation of results from the currently used species is difficult due to their genetic distance as well as their anatomical or physiological differences. Animal species that are closer to the human situation might help to bridge this translational gap. The common marmoset (Callithrix jacchus) is an interesting candidate to investigate certain heart diseases and cardiovascular comorbidities, yet a basic functional characterization of its hemodynamic system is still missing. Therefore, cardiac functional analyses were performed by utilizing the invasive intracardiac pressure-volume loops (PV loop) system in seven animals, magnetic resonance imaging (MRI) in six animals, and echocardiography in five young adult male common marmosets. For a direct comparison between the three methods, only data from animals for which all three datasets could be acquired were selected. All three modalities were suitable for characterizing cardiac function, though with some systemic variations. In addition, vena cava occlusions were performed to investigate the load-independent parameters collected with the PV loop system, which allowed for a deeper analysis of the cardiac function and for a more sensitive detection of the alterations in a disease state, such as heart failure or certain cardiovascular comorbidities.
Collapse
Affiliation(s)
- Lina Klösener
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Sabine Samolovac
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Ina Barnekow
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Jessica König
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Amir Moussavi
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Susann Boretius
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg August University, 37077 Göttingen, Germany
| | - Dieter Fuchs
- FUJIFILM VisualSonics Inc., 1114 AB Amsterdam, The Netherlands
| | | | - Rabea Hinkel
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Characterization of sinoatrial automaticity in Microcebus murinus to study the effect of aging on cardiac activity and the correlation with longevity. Sci Rep 2023; 13:3054. [PMID: 36810863 PMCID: PMC9944915 DOI: 10.1038/s41598-023-29723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Microcebus murinus, or gray mouse lemur (GML), is one of the smallest primates known, with a size in between mice and rats. The small size, genetic proximity to humans and prolonged senescence, make this lemur an emerging model for neurodegenerative diseases. For the same reasons, it could help understand how aging affects cardiac activity. Here, we provide the first characterization of sinoatrial (SAN) pacemaker activity and of the effect of aging on GML heart rate (HR). According to GML size, its heartbeat and intrinsic pacemaker frequencies lie in between those of mice and rats. To sustain this fast automaticity the GML SAN expresses funny and Ca2+ currents (If, ICa,L and ICa,T) at densities similar to that of small rodents. SAN automaticity was also responsive to β-adrenergic and cholinergic pharmacological stimulation, showing a consequent shift in the localization of the origin of pacemaker activity. We found that aging causes decrease of basal HR and atrial remodeling in GML. We also estimated that, over 12 years of a lifetime, GML generates about 3 billion heartbeats, thus, as many as humans and three times more than rodents of equivalent size. In addition, we estimated that the high number of heartbeats per lifetime is a characteristic that distinguishes primates from rodents or other eutherian mammals, independently from body size. Thus, cardiac endurance could contribute to the exceptional longevity of GML and other primates, suggesting that GML's heart sustains a workload comparable to that of humans in a lifetime. In conclusion, despite the fast HR, GML replicates some of the cardiac deficiencies reported in old people, providing a suitable model to study heart rhythm impairment in aging. Moreover, we estimated that, along with humans and other primates, GML presents a remarkable cardiac longevity, enabling longer life span than other mammals of equivalent size.
Collapse
|
6
|
Sheh A, Artim SC, Burns MA, Molina-Mora JA, Lee MA, Dzink-Fox J, Muthupalani S, Fox JG. Analysis of gut microbiome profiles in common marmosets (Callithrix jacchus) in health and intestinal disease. Sci Rep 2022; 12:4430. [PMID: 35292670 PMCID: PMC8924212 DOI: 10.1038/s41598-022-08255-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic gastrointestinal (GI) diseases are the most common diseases in captive common marmosets. To understand the role of the microbiome in GI diseases, we characterized the gut microbiome of 91 healthy marmosets (303 samples) and 59 marmosets diagnosed with inflammatory bowel disease (IBD) (200 samples). Healthy marmosets exhibited "humanized," Bacteroidetes-dominant microbiomes. After up to 2 years of standardized diet, housing and husbandry, marmoset microbiomes could be classified into four distinct marmoset sources based on Prevotella and Bacteroides levels. Using a random forest (RF) model, marmosets were classified by source with an accuracy of 93% with 100% sensitivity and 95% specificity using abundance data from 4 Prevotellaceae amplicon sequence variants (ASVs), as well as single ASVs from Coprobacter, Parabacteroides, Paraprevotella, Phascolarctobacterium, Oribacterium and Fusobacterium. A single dysbiotic IBD state was not found across all marmoset sources, but IBD was associated with lower alpha diversity and a lower Bacteroides:Prevotella copri ratio within each source. IBD was highest in a Prevotella-dominant cohort, and consistent with Prevotella-linked diseases, pro-inflammatory genes in the jejunum were upregulated. RF analysis of serum biomarkers identified serum calcium, hemoglobin and red blood cell (RBC) counts as potential biomarkers for marmoset IBD. This study characterizes the microbiome of healthy captive common marmosets and demonstrates that source-specific microbiomes can be retained despite standardized diets and husbandry practices. Marmosets with IBD had decreased alpha diversity and a shift in the ratio of Bacteroides:Prevotella copri compared to healthy marmosets.
Collapse
Affiliation(s)
- Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Stephen C Artim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Merck Research Laboratories, Merck, South San Francisco, CA, USA
| | - Monika A Burns
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Mary Anne Lee
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Goy RW, Shrestha HK, Colman RJ, Dukes NJ, Ziegler TE, Kapoor A. Development and Validation of an LC-MS/MS Based Quantitative Assay for Marmoset Insulin in Serum. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1195:123150. [PMID: 35247678 PMCID: PMC8958664 DOI: 10.1016/j.jchromb.2022.123150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Insulin is a peptide hormone that is secreted by the β cells of the pancreas and is essential to the metabolism of carbohydrates, fats, and proteins in the body. The marmoset insulin peptide is not homologous with human insulin and therefore commonly available assays do not work for this species. Due to the increasing popularity of marmoset research, a simple, specific assay for the quantitation of marmoset insulin is needed. This study aimed to develop and validate a bottom-up proteomic workflow with trypsin digestion and analysis using LC coupled with triple quadrupole mass spectrometry (LC-MS/MS). Marmoset serum proteins were subjected to denaturation, reduction, and enzymatic cleavage to extract a unique, 7 amino acid peptide for quantitation of marmoset insulin. Resolution of the peptide was achieved by LC-MS/MS using electrospray ionization operating in positive mode. Calibration was achieved by aliquot dilution of fully synthetic marmoset insulin tryptic peptide into macaque serum. A stable-isotope labeled (13C, 15N) synthetic marmoset insulin tryptic peptide was used as internal standard. The assay was fully validated according to bioanalytical method validation guidelines for linearity, precision, and dilution linearity using purified marmoset insulin. The limit of detection was 15.49 pmol/L and the limit of quantitation was 140.78 pmol/L. Biological validation was achieved by comparison of samples previously run by radioimmunoassay and measurement of the marmoset insulin response to glucose via an oral glucose tolerance test (OGTT). The physiological range of marmoset insulin was shown to be 84.5 to 1222 pmol/L. In summary, this paper presents a simple, reproducible method to measure marmoset insulin in serum using LC-MS/MS.
Collapse
|
8
|
Rothwell ES, Workman KP, Wang D, Lacreuse A. Sex differences in cognitive aging: a 4-year longitudinal study in marmosets. Neurobiol Aging 2022; 109:88-99. [PMID: 34700200 PMCID: PMC8841951 DOI: 10.1016/j.neurobiolaging.2021.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023]
Abstract
Longitudinal studies are essential to understand healthy and pathological neurocognitive aging such as Alzheimer's Disease, but longitudinal designs are rare in both humans and non-human primate models of aging because of the difficulty of tracking cognitive change in long-lived primates. Common marmosets (Callithrix jacchus) are uniquely suited for aging studies due to their naturally short lifespan (10-12 years), sophisticated cognitive and social abilities and Alzheimer Disease-like neuropathology. We report the first longitudinal study of cognitive aging in marmosets (N = 28) as they transitioned from middle- (∼5 years) to old age (∼9 years). We characterized aging trajectories using reversal learning with different stimuli each year. Marmosets initially improved on cognitive performance due to practice, but worsened in the final year, suggesting the onset of age-related decline. Cognitive impairment emerged earlier in females than males and was more prominent for discrimination than for reversal learning. Sex differences in cognitive aging could not be explained by differences in motivation or motor abilities, which improved or remained stable across aging. Likewise, males and females did not differ in aging trajectories of overall behavior or reactivity to a social stressor, with the exception of a progressive decline in the initiation of social behavior in females. Patterns of cognitive aging were highly variable across marmosets of both sexes, suggesting the potential for pathological aging for some individuals. Future work will link individual cognitive trajectories to neuropathology in order to better understand the relationships between neuropathologic burden and vulnerability to age-related cognitive decline in each sex.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Kathryn P Workman
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Dongwei Wang
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
9
|
Ho CLA, Fichtel C, Huber D. The gray mouse lemur (Microcebus murinus) as a model for early primate brain evolution. Curr Opin Neurobiol 2021; 71:92-99. [PMID: 34768148 DOI: 10.1016/j.conb.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
The gray mouse lemur (Microcebus murinus), one of the world's smallest primates, is thought to share a similar ecological niche and many anatomical traits with early euprimates. As a result, it has been considered a suitable model system for early primate physiology and behavior. Moreover, recent studies have demonstrated that mouse lemurs have comparable cognitive abilities and cortical functional organization as haplorhines. Finally, the small brain size of mouse lemurs provides us with actual lower limits for miniaturization of functional brain circuits within the primate clade. Considering its phylogenetic position and early primate-like traits, the mouse lemurs are a perfect model species to study the early evolution of primate brains.
Collapse
Affiliation(s)
- Chun Lum Andy Ho
- University of Geneva, Department of Basic Neurosciences, Rue Michel Servet 1, 1206 Geneva, Switzerland
| | - Claudia Fichtel
- Verhaltensökologie und Soziobiologie, Deutsches Primatenzentrum, Kellnerweg 4, 37077 Göttingen, Germany; Leibniz Science Campus 'Primate Cognition', 37077 Göttingen, Germany
| | - Daniel Huber
- University of Geneva, Department of Basic Neurosciences, Rue Michel Servet 1, 1206 Geneva, Switzerland.
| |
Collapse
|
10
|
Pallikkuth S, Mendez R, Russell K, Sirupangi T, Kvistad D, Pahwa R, Villinger F, Banerjee S, Pahwa S. Age Associated Microbiome and Microbial Metabolites Modulation and Its Association With Systemic Inflammation in a Rhesus Macaque Model. Front Immunol 2021; 12:748397. [PMID: 34737748 PMCID: PMC8560971 DOI: 10.3389/fimmu.2021.748397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 01/19/2023] Open
Abstract
Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate the age associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 geriatric (age 19-24 years) and 4 young adult (age 3-4 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in peripheral blood mononuclear cells (PBMC) by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate, and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the gut microbiome in geriatric animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young adults. Highly abundant microbes in the geriatric animals showed a direct association with plasma biomarkers of inflammation and immune activation such as neopterin, CRP, TNF, IL-2, IL-6, IL-8 and IFN-γ. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of geriatric animals compared to the young adults. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile. Aging NHP can serve as a model for investigating the relationship of the gut microbiome to particular age-associated comorbidities and for strategies aimed at modulating the microbiome.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberto Mendez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kyle Russell
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tirupataiah Sirupangi
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Daniel Kvistad
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Santanu Banerjee
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Miami Integrative Metabolomics Research Center (MIMRC), University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Scientific Review, National Institute of Health, Bethesda, MD, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
11
|
Chaudron Y, Pifferi F, Aujard F. Overview of age-related changes in psychomotor and cognitive functions in a prosimian primate, the gray mouse lemur (Microcebus murinus): Recent advances in risk factors and antiaging interventions. Am J Primatol 2021; 83:e23337. [PMID: 34706117 DOI: 10.1002/ajp.23337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/13/2023]
Abstract
Aging is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. Impaired glucose homeostasis is a major risk factor for cognitive decline in middle-aged humans, pointing at the existence of early markers of unhealthy aging. The gray mouse lemur (Microcebus murinus), a small lemuriform Malagasy primate, shows relatively slow aging with decreased psychomotor capacities at middle-age (around 5-year old). In some cases (∼10%), it spontaneously leads to pathological aging. In this case, some age-related deficits, such as severe cognitive decline, brain atrophy, amyloidosis, and glucoregulatory imbalance are congruent with what is observed in humans. In the present review, we inventory the changes occurring in psychomotor and cognitive functions during healthy and pathological aging in mouse lemur. It includes a summary of the cerebral, metabolic, and cellular alterations that occur during aging and their relation to cognitive decline. As nutrition is one of the major nonpharmacological antiaging strategies with major potential effects on cognitive performances, we also discuss its role in brain functions and cognitive decline in this species. We show that the overall approach of aging studies in the gray mouse lemur offers promising ways of investigation for understanding, prevention, and treatments of pathological aging in humans.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| |
Collapse
|
12
|
Royo J, Forkel SJ, Pouget P, Thiebaut de Schotten M. The squirrel monkey model in clinical neuroscience. Neurosci Biobehav Rev 2021; 128:152-164. [PMID: 34118293 DOI: 10.1016/j.neubiorev.2021.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/27/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Clinical neuroscience research relying on animal models brought valuable translational insights into the function and pathologies of the human brain. The anatomical, physiological, and behavioural similarities between humans and mammals have prompted researchers to study cerebral mechanisms at different levels to develop and test new treatments. The vast majority of biomedical research uses rodent models, which are easily manipulable and have a broadly resembling organisation to the human nervous system but cannot satisfactorily mimic some disorders. For these disorders, macaque monkeys have been used as they have a more comparable central nervous system. Still, this research has been hampered by limitations, including high costs and reduced samples. This review argues that a squirrel monkey model might bridge the gap by complementing translational research from rodents, macaque, and humans. With the advent of promising new methods such as ultrasound imaging, tool miniaturisation, and a shift towards open science, the squirrel monkey model represents a window of opportunity that will potentially fuel new translational discoveries in the diagnosis and treatment of brain pathologies.
Collapse
Affiliation(s)
- Julie Royo
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France; Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Pierre Pouget
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France; Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| |
Collapse
|
13
|
Harper JM, Holmes DJ. New Perspectives on Avian Models for Studies of Basic Aging Processes. Biomedicines 2021; 9:biomedicines9060649. [PMID: 34200297 PMCID: PMC8230007 DOI: 10.3390/biomedicines9060649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
Avian models have the potential to elucidate basic cellular and molecular mechanisms underlying the slow aging rates and exceptional longevity typical of this group of vertebrates. To date, most studies of avian aging have focused on relatively few of the phenomena now thought to be intrinsic to the aging process, but primarily on responses to oxidative stress and telomere dynamics. But a variety of whole-animal and cell-based approaches to avian aging and stress resistance have been developed-especially the use of primary cell lines and isolated erythrocytes-which permit other processes to be investigated. In this review, we highlight newer studies using these approaches. We also discuss recent research on age-related changes in neural function in birds in the context of sensory changes relevant to homing and navigation, as well as the maintenance of song. More recently, with the advent of "-omic" methodologies, including whole-genome studies, new approaches have gained momentum for investigating the mechanistic basis of aging in birds. Overall, current research suggests that birds exhibit an enhanced resistance to the detrimental effects of oxidative damage and maintain higher than expected levels of cellular function as they age. There is also evidence that genetic signatures associated with cellular defenses, as well as metabolic and immune function, are enhanced in birds but data are still lacking relative to that available from more conventional model organisms. We are optimistic that continued development of avian models in geroscience, especially under controlled laboratory conditions, will provide novel insights into the exceptional longevity of this animal taxon.
Collapse
Affiliation(s)
- James M. Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
- Correspondence: ; Tel.: +1-936-294-1543
| | - Donna J. Holmes
- Department of Biological Sciences and WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
14
|
Casey KM, Karanewsky CJ, Pendleton JL, Krasnow MR, Albertelli MA. Fibrous Osteodystrophy, Chronic Renal Disease, and Uterine Adenocarcinoma in Aged Gray Mouse Lemurs ( Microcebus murinus). Comp Med 2021; 71:256-266. [PMID: 34082858 DOI: 10.30802/aalas-cm-20-000078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The gray mouse lemur (Microcebus murinus, GML) is a nocturnal, arboreal, prosimian primate that is native to Madagascar. Captive breeding colonies of GMLs have been established primarily for noninvasive studies on questions related to circadian rhythms and metabolism. GMLs are increasingly considered to be a strong translational model for neurocognitive aging due to overlapping histopathologic features shared with aged humans. However, little information is available describing the clinical presentations, naturally occurring diseases, and histopathology of aged GMLs. In our colony, a 9 y-old, male, GML was euthanized after sudden onset of weakness, lethargy, and tibial fracture. Evaluation of this animal revealed widespread fibrous osteodystrophy (FOD) of the mandible, maxilla, cranium, appendicular, and vertebral bones. FOD and systemic metastatic mineralization were attributed to underlying chronic renal disease. Findings in this GML prompted periodic colony-wide serum biochemical screenings for azotemia and electrolyte abnormalities. Subsequently, 3 additional GMLs (2 females and 1 male) were euthanized due to varying clinical and serum biochemical presentations. Common to all 4 animals were FOD, chronic renal disease, uterine adenocarcinoma (females only), cataracts, and osteoarthritis. This case study highlights the concurrent clinical and histopathologic abnormalities that are relevant to use of GMLs in the expanding field of aging research.
Collapse
Affiliation(s)
- Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Caitlin J Karanewsky
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Jozeph L Pendleton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Mark R Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Megan A Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California;,
| |
Collapse
|
15
|
Rothwell ES, Freire-Cobo C, Varghese M, Edwards M, Janssen WGM, Hof PR, Lacreuse A. The marmoset as an important primate model for longitudinal studies of neurocognitive aging. Am J Primatol 2021; 83:e23271. [PMID: 34018622 DOI: 10.1002/ajp.23271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Age-related cognitive decline has been extensively studied in humans, but the majority of research designs are cross-sectional and compare across younger and older adults. Longitudinal studies are necessary to capture variability in cognitive aging trajectories but are difficult to carry out in humans and long-lived nonhuman primates. Marmosets are an ideal primate model for neurocognitive aging as their naturally short lifespan facilitates longitudinal designs. In a longitudinal study of marmosets tested on reversal learning starting in middle-age, we found that, on average, the group of marmosets declined in cognitive performance around 8 years of age. However, we found highly variable patterns of cognitive aging trajectories across individuals. Preliminary analyses of brain tissues from this cohort also show highly variable degrees of neuropathology. Future work will tie together behavioral trajectories with brain pathology and provide a window into the factors that predict age-related cognitive decline.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Carmen Freire-Cobo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mélise Edwards
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Agnès Lacreuse
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
16
|
Robert C, Wilson CS, Lipton RB, Arreto CD. Evolution of the Research Literature and the Scientific Community of Alzheimer's Disease from 1983-2017: A 35-Year Survey. J Alzheimers Dis 2021; 75:1105-1134. [PMID: 32390624 DOI: 10.3233/jad-191281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study surveys the development of Alzheimer's disease (AD) in the research literature, the scientific community, and the journals containing AD papers over a 35-year period. Research papers on AD published from 1983 to 2017 in journals indexed in the Web of Science were analyzed in seven five-year periods. The number of AD papers increased from 1,095 in 1983-1987 to 50,532 by 2013-2017 and in the same time period, the number of participating countries went from 27 to 152. The US was the most prolific country throughout, followed by several European countries, Canada, Australia, and Japan. Asian countries have emerged and by 2013-2017, China surpassed all but the US in productivity. Countries in Latin America and Africa have also contributed to AD research. Additionally, several new non-governmental institutions (e.g., ADNI, ADI) have emerged and now play a key role in the fight against AD. Likewise the AD scientific publishing universe evolved in various aspects: an increase in number of journals containing AD papers (227 journals in 1983-1987 to 3,257 in 2013-2017); appearance of several AD-focused journals, e.g., Alzheimer's & Dementia, Journal of Alzheimer's Disease; and the development of special issues dedicated to AD. Our paper complements the numerous extant papers on theoretical and clinical aspects of AD and provides a description of the research landscape of the countries and journals contributing papers related to AD.
Collapse
Affiliation(s)
- Claude Robert
- Université Paris Descartes, Paris, France.,Gliaxone, Saint Germain Sous Doue, France
| | - Concepción S Wilson
- Formerly at: School of Information Systems, Technology and Management, University of New South Wales, UNSW Sydney, Australia
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles-Daniel Arreto
- Gliaxone, Saint Germain Sous Doue, France.,Université Paris Descartes, Faculté de Chirurgie Dentaire, Hôpital Bretonneau, HUPNVS, AP-HP, Paris, France
| |
Collapse
|
17
|
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev 2021; 66:101251. [PMID: 33385543 DOI: 10.1016/j.arr.2020.101251] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
As the world's population progressively ages, the burden on the socio-economic and health systems is escalating, demanding sustainable and lasting solutions. Cellular senescence, one of the hallmarks of ageing, is a state of irreversible cell cycle arrest that occurs in response to various genotoxic stressors and is considered an important factor in the development of many age-related diseases and therefore a potential therapeutic target. Here, the role of senescent cells in age-related diseases is discussed, focusing on their formation and main characteristics. The mechanisms leading to senescent cells are presented, including replicative and premature senescence as well as senescence that occurs in various physiological processes, such as wound healing. The second part comprises a comprehensive description of various biomarkers currently used for the detection of senescent cells along with the investigated therapeutic approaches, namely senolytics, senomorphics and the clearance of senescent cells by the immune system. Potential delivery systems suitable for such therapies and model organisms to study senescence are also briefly examined. This in-depth overview of cellular senescence contributes to a deeper understanding of a rapidly evolving area aimed to tackle the age-related diseases in a more mechanistic way, as well as highlights future research opportunities.
Collapse
|
18
|
Sheh A. The Gastrointestinal Microbiota of the Common Marmoset (Callithrix jacchus). ILAR J 2021; 61:188-198. [PMID: 33620078 DOI: 10.1093/ilar/ilaa025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
The microbiota is heavily involved in both health and disease pathogenesis, but defining a normal, healthy microbiota in the common marmoset has been challenging. The aim of this review was to systematically review recent literature involving the gastrointestinal microbiome of common marmosets in health and disease. Twelve sources were included in this review. The gut microbiome composition was reviewed across institutions worldwide, and taxonomic shifts between healthy individuals were described. Unlike the human gut microbiome, which is dominated by Firmicutes and Bacteroidetes, the marmoset gut microbiome shows great plasticity across institutions, with 5 different phyla described as dominant in different healthy cohorts. Genera shared across institutions include Anaerobiospirillum, Bacteroides, Bifidobacterium, Collinsella, Fusobacterium, Megamonas, Megasphaera, Phascolarctobacterium, and Prevotella. Shifts in the abundance of Prevotella or Bifidobacterium or invasion by pathogens like Clostridium perfringens may be associated with disease. Changes in microbial composition have been described in healthy and diseased marmosets, but factors influencing the severe changes in microbial composition have not been established. Multi-institutional, prospective, and longitudinal studies that utilize multiple testing methodologies are required to determine sources of variability in the reporting of marmoset microbiomes. Furthermore, methods of microbial manipulation, whether by diet, enrichment, fecal microbiome transplantation, etc, need to be established to modulate and maintain robust and resilient microbiome communities in marmoset colonies and reduce the incidence of idiopathic gastrointestinal disease.
Collapse
Affiliation(s)
- Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
19
|
Fritz RG, Zimmermann E, Meier M, Mestre-Francés N, Radespiel U, Schmidtke D. Neurobiological substrates of animal personality and cognition in a nonhuman primate (Microcebus murinus). Brain Behav 2020; 10:e01752. [PMID: 32683780 PMCID: PMC7507526 DOI: 10.1002/brb3.1752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The gray mouse lemur (Microcebus murinus) is an important nonhuman primate model in biomedical research. Numerous studies investigated mouse lemur behavior and possible factors underlying interindividual variation in both, animal personality and cognitive performance. Some effects, such as an age-related decline in executive functioning, have robustly been found across laboratory colonies; however, little is known about the brain structural substrates in mouse lemurs. METHODS Here, we provide first exploratory data linking in vivo magnetic resonance imaging of 34 mouse lemurs to performance in a standardized, touchscreen-based task on object discrimination and reversal learning as well as to animal personality under different scenarios in an open field. RESULTS High interindividual variability in both brain morphometric and behavioral measurements was found, but only few significant correlations between brain structure and behavior were revealed: Object discrimination learning was linked to the volume of the hippocampus and to temporal lobe thickness, while reversal learning was linked to thalamic volume and the thickness of the anterior cingulate lobe. Emergence latency into the open field correlated with volume of the amygdala. General exploration-avoidance in the empty open-field arena correlated with thicknesses of the anterior cingulate lobe and fronto-parietal substructures. Neophilia, assessed as exploration of a novel object placed in the arena, among others, related to the volume of the caudate nucleus. CONCLUSION In summary, our data suggest a prominent role of temporal structures (including the hippocampus) for learning capability, as well as thalamic and anterior cingulate structures for cognitive flexibility and response inhibition. The amygdala, the anterior cingulate lobe, and the caudate nucleus are particularly linked to animal personality in the open-field setting. These findings are congruent with the comparative psychological literature and provide a valuable basis for future studies elucidating aspects of behavioral variation in this nonhuman primate model.
Collapse
Affiliation(s)
- Rebecca Grace Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
20
|
Gonçalves FB, Gonçalves BSB, Cavalcante JS, Azevedo CVM. Aging-related changes on social synchronization of circadian activity rhythm in a diurnal primate ( Callithrix jacchus). Chronobiol Int 2020; 37:980-992. [PMID: 32573282 DOI: 10.1080/07420528.2020.1773495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The input of environmental time cues and expression of circadian activity rhythms may change with aging. Among nonphotic zeitgebers, social cues from conspecific vocalizations may contribute to the stability and survival of individuals of social species, such as nonhuman primates. We evaluated aging-related changes on social synchronization of the circadian activity rhythm (CAR) in a social diurnal primate, the common marmoset. The activity of 18 male marmosets was recorded by actiwatches in two conditions. (1) Experimental - 4 young adult (5 ± 2 yrs of age) and 4 older (10 ± 2 yrs of age) animals maintained under LD 12/12 h and LL in a room with full insulation for light but only partial insulation for sound from vocalizations of conspecifics maintained outdoors in the colony; and (2) Control - 10 young adult animals maintained outdoors in the colony (5 animals as a control per age group). In LL, the CAR of young adults showed more stable synchronization with controls. Among the aged marmosets, two free-ran with τ > 24 h, whereas the other two showed relative coordination during the first 30 days in LL, but free-ran thereafter. These differences were reflected in the "social" phase angles (ψon and ψoff ) between rhythms of experimental and control animal groups. Moreover, the activity patterns of aged animals showed lower social synchrony with controls compared to young adults, with the time lags of the time series between each experimental group and control group being negative in aged and positive in young adult animals (t-test, p < 0.05). The index of stability of the CAR showed no differences according to age, while the intradaily variability of the CAR was higher in the aged animals during LD-resynchronization, who took additional days to resynchronize. Thus, the social modulation on CAR may vary with age in marmosets. In the aged group, there was a lower effect of social synchronization, which may be associated with aging-related changes in the synchronization and generation of the CAR as well as in system outputs.
Collapse
Affiliation(s)
- Fabiana B Gonçalves
- Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte , Caicó, RN, Brazil
| | - Bruno S B Gonçalves
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo , São Paulo, SP, Brazil
| | - Jeferson S Cavalcante
- Laboratório de Estudos Neuroquímicos, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte , Natal, RN, Brazil
| | - Carolina V M Azevedo
- Laboratório de Cronobiologia, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte , Natal, RN, Brazil
| |
Collapse
|
21
|
Epelbaum J, Terrien J. Mini-review: Aging of the neuroendocrine system: Insights from nonhuman primate models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109854. [PMID: 31891735 DOI: 10.1016/j.pnpbp.2019.109854] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/27/2019] [Indexed: 01/29/2023]
Abstract
The neuroendocrine system (NES) plays a crucial role in synchronizing the physiology and behavior of the whole organism in response to environmental constraints. The NES consists of a hypothalamic-pituitary-target organ axis that acts in coordination to regulate growth, reproduction, stress and basal metabolism. The growth (or somatotropic), hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axes are therefore finely tuned by the hypothalamus through the successive release of hypothalamic and pituitary hormones to control the downstream physiological functions. These functions rely on a complex set of mechanisms requiring tight synchronization between peripheral organs and the hypothalamic-pituitary complex, whose functionality can be altered during aging. Here, we review the results of research on the effects of aging on the NES of nonhuman primate (NHP) species in wild and captive conditions. A focus on the age-related dysregulation of the master circadian pacemaker, which, in turn, alters the synchronization of the NES with the organism environment, is proposed. Finally, practical and ethical considerations of using NHP models to test the effects of nutrition-based or hormonal treatments to combat the deterioration of the NES are discussed.
Collapse
Affiliation(s)
- Jacques Epelbaum
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France; Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Jérémy Terrien
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France.
| |
Collapse
|
22
|
Pifferi F, Cunnane SC, Guesnet P. Evidence of the Role of Omega-3 Polyunsaturated Fatty Acids in Brain Glucose Metabolism. Nutrients 2020; 12:nu12051382. [PMID: 32408634 PMCID: PMC7285025 DOI: 10.3390/nu12051382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
In mammals, brain function, particularly neuronal activity, has high energy needs. When glucose is supplemented by alternative oxidative substrates under different physiological conditions, these fuels do not fully replace the functions fulfilled by glucose. Thus, it is of major importance that the brain is almost continuously supplied with glucose from the circulation. Numerous studies describe the decrease in brain glucose metabolism during healthy or pathological ageing, but little is known about the mechanisms that cause such impairment. Although it appears difficult to determine the exact role of brain glucose hypometabolism during healthy ageing or during age-related neurodegenerative diseases such as Alzheimer’s disease, uninterrupted glucose supply to the brain is still of major importance for proper brain function. Interestingly, a body of evidence suggests that dietary n-3 polyunsaturated fatty acids (PUFAs) might play significant roles in brain glucose regulation. Thus, the goal of the present review is to summarize this evidence and address the role of n-3 PUFAs in brain energy metabolism. Taken together, these data suggest that ensuring an adequate dietary supply of n-3 PUFAs could constitute an essential aspect of a promising strategy to promote optimal brain function during both healthy and pathological ageing.
Collapse
Affiliation(s)
- Fabien Pifferi
- Unité Mixte de Recherche (UMR), Centre Nationnal de la Recherche Scientifique (CNRS), Museum National d’Histoire Naturelle (MNHN) 7179, Mécanismes Adaptatifs et Evolution (MECADEV), 1 Avenue du Petit Château, 91800 Brunoy, France
- Correspondence:
| | - Stephen C. Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Research Center on Aging, Sherbrooke, QC J1H 4C4, Canada
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | |
Collapse
|
23
|
Fritz RG, Zimmermann E, Picq JL, Lautier C, Meier M, Kästner S, Schmidtke D. Sex-specific patterns of age-related cerebral atrophy in a nonhuman primate Microcebus murinus. Neurobiol Aging 2020; 91:148-159. [PMID: 32229027 DOI: 10.1016/j.neurobiolaging.2020.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
Steadily aging populations result in a growing need for research regarding age-related brain alterations and neurodegenerative pathologies. By allowing a good translation of results to humans, nonhuman primates, such as the gray mouse lemur Microcebus murinus, have gained attention in this field. Our aim was to examine correlations between atrophy-induced brain alterations and age, with special focus on sex differences in mouse lemurs. For cerebral volumetric measurements, in vivo magnetic resonance imaging was performed on 59 animals (28♀♀/31♂♂) aged between 1.0 to 11.9 years. Volumes of different brain regions, cortical thicknesses, and ventricular expansions were evaluated. Analyses revealed significant brain atrophies with increasing age, particularly around the caudate nucleus, the thalamus, and frontal, parietal, and temporo-occipital regions. Especially old females showed a strong decline in cingulate cortex thickness and had higher values of ventricular expansion, whereas cortical thickness of the splenium and occipital regions decreased mainly in males. Our study, thus, provides first evidence for sex-specific, age-related brain alterations in a nonhuman primate, suggesting that mouse lemurs can help elucidating the mechanism underlying sex disparities in cerebral aging, for which there is mixed evidence in humans.
Collapse
Affiliation(s)
- Rebecca G Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jean-Luc Picq
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-Roses, France; Laboratoire de Psychopathologie et de Neuropsychologie, Université Paris 8, St Denis, France
| | - Corinne Lautier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Sabine Kästner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
24
|
Pifferi F, Aujard F. Caloric restriction, longevity and aging: Recent contributions from human and non-human primate studies. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109702. [PMID: 31325469 DOI: 10.1016/j.pnpbp.2019.109702] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023]
Abstract
The health benefits of chronic caloric restriction (CR) resulting in lifespan extension are well established in many species and has been recently demonstrated also in non-human primates, but its effects in humans remain to be proven on a long-term basis. CR might be a very efficient anti-aging strategy but its definition and limits must be well understood before envisaging to apply it to human. In this review, we first report and compare the recently issued CR studies in non-human primates and humans and then try to understand what an optimal caloric intake is. In a last part, we will discuss the pertinence of using CR as an anti-aging strategy with respect to the risks of frailty and obesity.
Collapse
Affiliation(s)
- Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France.
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France
| |
Collapse
|
25
|
Sengupta A, Weljie AM. Metabolism of sleep and aging: Bridging the gap using metabolomics. NUTRITION AND HEALTHY AGING 2019; 5:167-184. [PMID: 31984245 PMCID: PMC6971829 DOI: 10.3233/nha-180043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep is a conserved behavior across the evolutionary timescale. Almost all known animal species demonstrate sleep or sleep like states. Despite extensive study, the mechanistic aspects of sleep need are not very well characterized. Sleep appears to be needed to generate resources that are utilized during the active stage/wakefulness as well as clearance of waste products that accumulate during wakefulness. From a metabolic perspective, this means sleep is crucial for anabolic activities. Decrease in anabolism and build-up of harmful catabolic waste products is also a hallmark of aging processes. Through this lens, sleep and aging processes are remarkably parallel- for example behavioral studies demonstrate an interaction between sleep and aging. Changes in sleep behavior affect neurocognitive phenotypes important in aging such as learning and memory, although the underlying connections are largely unknown. Here we draw inspiration from the similar metabolic effects of sleep and aging and posit that large scale metabolic phenotyping, commonly known as metabolomics, can shed light to interleaving effects of sleep, aging and progression of diseases related to aging. In this review, data from recent sleep and aging literature using metabolomics as principal molecular phenotyping methods is collated and compared. The present data suggests that metabolic effects of aging and sleep also demonstrate similarities, particularly in lipid metabolism and amino acid metabolism. Some of these changes also overlap with metabolomic data available from clinical studies of Alzheimer's disease. Together, metabolomic technologies show promise in elucidating interleaving effects of sleep, aging and progression of aging disorders at a molecular level.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Pifferi F, Epelbaum J, Aujard F. Strengths and Weaknesses of the Gray Mouse Lemur ( Microcebus murinus) as a Model for the Behavioral and Psychological Symptoms and Neuropsychiatric Symptoms of Dementia. Front Pharmacol 2019; 10:1291. [PMID: 31736761 PMCID: PMC6833941 DOI: 10.3389/fphar.2019.01291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023] Open
Abstract
To face the load of the prevalence of Alzheimer’s disease in the aging population, there is an urgent need to develop more translatable animal models with similarities to humans in both the symptomatology and physiopathology of dementia. Due to their close evolutionary similarity to humans, non-human primates (NHPs) are of primary interest. Of the NHPs, to date, the gray mouse lemur (Microcebus murinus) has shown promising evidence of its translatability to humans. The present review reports the known advantages and limitations of using this species at all levels of investigation in the context of neuropsychiatric conditions. In this easily bred Malagasy primate with a relatively short life span (approximately 12 years), age-related cognitive decline, amyloid angiopathy, and risk factors (i.e., glucoregulatory imbalance) are congruent with those observed in humans. More specifically, analogous behavioral and psychological symptoms and neuropsychiatric symptoms of dementia (BPSD/NPS) to those in humans can be found in the aging mouse lemur. Aged mouse lemurs show typical age-related alterations of locomotor activity daily rhythms such as decreased rhythm amplitude, increased fragmentation, and increased activity during the resting-sleeping phase of the day and desynchronization with the light-dark cycle. In addition, sleep deprivation successfully induces cognitive deficits in adult mouse lemurs, and the effectiveness of approved cognitive enhancers such as acetylcholinesterase inhibitors or N-methyl-D-aspartate antagonists is demonstrated in sleep–deprived animals. This result supports the translational potential of this animal model, especially for unraveling the mechanisms underlying dementia and for developing novel therapeutics to prevent age-associated cognitive decline. In conclusion, actual knowledge of BPSD/NPS-like symptoms of age-related cognitive deficits in the gray mouse lemur and the recent demonstration of the similarity of these symptoms with those seen in humans offer promising new ways of investigating both the prevention and treatment of pathological aging.
Collapse
Affiliation(s)
- Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Jacques Epelbaum
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France.,Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| |
Collapse
|
27
|
Abstract
Traditional animal models have been used to make seminal discoveries in biomedical research including a better understanding of the biology of the aging process. However, translation of these findings from laboratory to clinical populations has likely been hindered due to fundamental biological and physiological differences between common laboratory animals and humans. Non-human primates (NHP) may serve as an effective bridge towards translation, and short-lived NHP like the common marmoset offer many advantages as models for aging research. Here, we address these advantages and discuss what is currently understood about the changes in physiology and pathology that occur with age in the marmoset. In addition, we discuss how aging research might best utilize this model resource, and outline an ongoing study to address whether pharmaceutical intervention can slow aging in the marmoset. With this manuscript, we clarify how common marmosets might assist researchers in geroscience as a potential model for pre-clinical translation.
Collapse
Affiliation(s)
- Corinna N Ross
- Department of Science and Mathematics, Texas A&M University San Antonio, San Antonio, TX, USA.,The Sam and Ann Barshop Institute for Longevity and Aging Studies and The University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and The University of Texas Health Science Center at San Antonio, San Antonio TX, USA.,Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
28
|
Gary C, Lam S, Hérard AS, Koch JE, Petit F, Gipchtein P, Sawiak SJ, Caillierez R, Eddarkaoui S, Colin M, Aujard F, Deslys JP, Brouillet E, Buée L, Comoy EE, Pifferi F, Picq JL, Dhenain M. Encephalopathy induced by Alzheimer brain inoculation in a non-human primate. Acta Neuropathol Commun 2019; 7:126. [PMID: 31481130 PMCID: PMC6724379 DOI: 10.1186/s40478-019-0771-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 02/28/2023] Open
Abstract
Alzheimer’s disease is characterized by cognitive alterations, cerebral atrophy and neuropathological lesions including neuronal loss, accumulation of misfolded and aggregated β-amyloid peptides (Aβ) and tau proteins. Iatrogenic induction of Aβ is suspected in patients exposed to pituitary-derived hormones, dural grafts, or surgical instruments, presumably contaminated with Aβ. Induction of Aβ and tau lesions has been demonstrated in transgenic mice after contamination with Alzheimer’s disease brain homogenates, with very limited functional consequences. Unlike rodents, primates naturally express Aβ or tau under normal conditions and attempts to transmit Alzheimer pathology to primates have been made for decades. However, none of earlier studies performed any detailed functional assessments. For the first time we demonstrate long term memory and learning impairments in a non-human primate (Microcebus murinus) following intracerebral injections with Alzheimer human brain extracts. Animals inoculated with Alzheimer brain homogenates displayed progressive cognitive impairments (clinical tests assessing cognitive and motor functions), modifications of neuronal activity (detected by electroencephalography), widespread and progressive cerebral atrophy (in vivo MRI assessing cerebral volume loss using automated voxel-based analysis), neuronal loss in the hippocampus and entorhinal cortex (post mortem stereology). They displayed parenchymal and vascular Aβ depositions and tau lesions for some of them, in regions close to the inoculation sites. Although these lesions were sparse, they were never detected in control animals. Tau-positive animals had the lowest performances in a memory task and displayed the greatest neuronal loss. Our study is timely and important as it is the first one to highlight neuronal and clinical dysfunction following inoculation of Alzheimer’s disease brain homogenates in a primate. Clinical signs in a chronic disease such as Alzheimer take a long time to be detectable. Documentation of clinical deterioration and/or dysfunction following intracerebral inoculations with Alzheimer human brain extracts could lead to important new insights about Alzheimer initiation processes.
Collapse
|
29
|
Hozer C, Pifferi F, Aujard F, Perret M. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Front Physiol 2019; 10:1033. [PMID: 31447706 PMCID: PMC6696974 DOI: 10.3389/fphys.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms, which measure time on a scale of 24 h, are genetically generated by the circadian clock, which plays a crucial role in the regulation of almost every physiological and metabolic process in most organisms. This review gathers all the available information about the circadian clock in a small Malagasy primate, the gray mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony at Brunoy (France). Although the mouse lemur has long been seen as a "primitive" species, its clock displays high phenotypic plasticity, allowing perfect adaptation of its biological rhythms to environmental challenges (seasonality, food availability). The alterations of the circadian timing system in M. murinus during aging show many similarities with those in human aging. Comparisons are drawn with other mammalian species (more specifically, with rodents, other non-human primates and humans) to demonstrate that the gray mouse lemur is a good complementary and alternative model for studying the circadian clock and, more broadly, brain aging and pathologies.
Collapse
|
30
|
Yabumoto T, Yoshida F, Miyauchi H, Baba K, Tsuda H, Ikenaka K, Hayakawa H, Koyabu N, Hamanaka H, Papa SM, Hirata M, Mochizuki H. MarmoDetector: A novel 3D automated system for the quantitative assessment of marmoset behavior. J Neurosci Methods 2019; 322:23-33. [PMID: 30946879 DOI: 10.1016/j.jneumeth.2019.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Callithrix jacchus, generally known as the common marmoset, has recently garnered interest as an experimental primate model for better understanding the basis of human social behavior, architecture and function. Modelling human neurological and psychological diseases in marmosets can enhance the knowledge obtained from rodent research for future pre-clinical studies. Hence, comprehensive and quantitative assessments of marmoset behaviors are crucial. However, systems for monitoring and analyzing marmoset behaviors have yet to be established. NEW METHOD In this paper, we present a novel multimodal system, MarmoDetector, for the automated 3D analysis of marmoset behavior under freely moving conditions. MarmoDetector allows the quantitative assessment of marmoset behaviors using computerised tracking analysis techniques that are based on a Kinect system equipped with video recordings, infrared images and depth analysis. RESULTS Using MarmoDetector, we assessed behavioral circadian rhythms continuously over several days in home cages. In addition, MarmoDetector detected acute, transient complex behaviors of alcohol injected marmosets. COMPARISON TO EXISTING METHOD Compared to 2D recording, MarmoDetector detects activities more precisely and is very sensitive as we could detect behavioral defects specifically induced by alcohol administration. CONCLUSION MarmoDetector facilitates the rapid and accurate analysis of marmoset behavior and will enhance research on the neural basis of brain disorders.
Collapse
Affiliation(s)
- Taiki Yabumoto
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Fumiaki Yoshida
- Department of Neurological Diagnosis and Restoration, Graduat School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Neurosurgery, Osaka University Medical School, Suita, Osaka, Japan; Department of Anatomy & Physiology, Faculty of Medicine, Saga University, Saga, Japan; Japan Science and Technology Agency, PRESTO, Japan
| | | | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Tsuda
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideki Hayakawa
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nozomu Koyabu
- The Institute of Large Laboratory Animal Sciences, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroki Hamanaka
- Department of Neurological Diagnosis and Restoration, Graduat School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduat School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Neurosurgery, Osaka University Medical School, Suita, Osaka, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, Osaka, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
31
|
Pifferi F, Terrien J, Perret M, Epelbaum J, Blanc S, Picq JL, Dhenain M, Aujard F. Promoting healthspan and lifespan with caloric restriction in primates. Commun Biol 2019; 2:107. [PMID: 30911682 PMCID: PMC6420603 DOI: 10.1038/s42003-019-0348-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Recent data confirmed the efficiency of caloric restriction for promoting both healthspan and lifespan in primates, but also revealed potential adverse effects at the central level. This paper proposes perspectives and future directions to counterbalance potential adverse effects. Efforts should be made in combining nutrition-based clinical protocols with therapeutic and/or behavioral interventions to aim for synergetic effects, and therefore delay the onset of age-related diseases without adverse effects.
Collapse
Affiliation(s)
- Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France
| | - Jérémy Terrien
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France
| | - Martine Perret
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France
| | - Jacques Epelbaum
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France
- Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Stéphane Blanc
- Université de Strasbourg, IPHC, 23 rue Becquerel, 67087 Strasbourg, France
- CNRS, UMR7178, 67087 Strasbourg, France
| | - Jean-Luc Picq
- Laboratoire de psychopathologie et de neuropsychologie, E.A. 2027, Université Paris 8, 2 rue de la liberté, 93000 St. Denis, France
- CNRS, CEA, Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, 92265 Fontenay-aux-Roses, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
| | - Marc Dhenain
- CNRS, CEA, Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, 92265 Fontenay-aux-Roses, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France
| |
Collapse
|
32
|
Hoffman JM, Ross C, Tran V, Promislow DEL, Tardif S, Jones DP. The metabolome as a biomarker of mortality risk in the common marmoset. Am J Primatol 2018; 81:e22944. [PMID: 30585652 DOI: 10.1002/ajp.22944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
Recently, the common marmoset has been proposed as a non-human primate model of aging. Their short lifespan coupled with pathologies that are similar to humans make them an ideal model to understand the genetic, metabolic, and environmental factors that influence aging and longevity. However, many of the underlying physiological changes that occur with age in the marmoset are unknown. Here, we attempt to determine if individual metabolites are predictive of future death and to recapitulate past metabolomic results after a change in environment (move across the country) was imposed on a colony of marmosets. We first determined that low levels of tryptophan metabolism metabolites were associated with risk of death in a 2-year follow-up in the animals, suggesting these metabolites may be used as future biomarkers of mortality. We also discovered that betaine metabolism and methionine metabolism are associated with aging regardless of environment for the animals, or of metabolomic assay technique. These two metabolic pathways are therefore of particular interest to examine as future targets for health and lifespan extending interventions. Many of the pathways associated with age in our first study of marmoset metabolomics were not found to have significant age effects in our second study, suggesting more work is needed to understand the reproducibility of large scale metabolomic studies in mammalian models. Overall, we were able to show that while several metabolomics markers show promise in understanding health and lifespan relationships with aging, it is possible that choice of technique for assay and reproducibility in these types of studies are still issues that need to be examined further.
Collapse
Affiliation(s)
- Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Corinna Ross
- Department of Science and Mathematics, Texas A&M University San Antonio, San Antonio, Texas
| | - ViLinh Tran
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Emory University, Atlanta, Georgia.,Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, Washington.,Department of Biology, University of Washington, Seattle, Washington
| | - Suzette Tardif
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Dean P Jones
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Emory University, Atlanta, Georgia.,Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
33
|
Folch J, Busquets O, Ettcheto M, Sánchez-López E, Pallàs M, Beas-Zarate C, Marin M, Casadesus G, Olloquequi J, Auladell C, Camins A. Experimental Models for Aging and their Potential for Novel Drug Discovery. Curr Neuropharmacol 2018; 16:1466-1483. [PMID: 28685671 PMCID: PMC6295931 DOI: 10.2174/1570159x15666170707155345] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background: An interesting area of scientific research is the development of potential antiaging drugs. In order to pursue this goal, it is necessary to gather the specific knowledge about the adequate preclinical models that are available to evaluate the beneficial effects of new potential drugs. This review is focused on invertebrate and vertebrate preclinical models used to evaluate the efficacy of antiaging compounds, with the objective to extend life span and health span. Methods: Research and online content related to aging, antiaging drugs, experimental aging models is reviewed. Moreover, in this review, the main experimental preclinical models of organisms that have contributed to the research in the pharmacol-ogy of lifespan extension and the understanding of the aging process are discussed. Results: Dietary restriction (DR) constitutes a common experimental process to extend life span in all organisms. Besides, classical antiaging drugs such as resveratrol, rapamycin and metformin denominated as DR mimetics are also discussed. Likewise, the main therapeutic targets of these drugs include sirtuins, IGF-1, and mTOR, all of them being modulated by DR. Conclusion: Advances in molecular biology have uncovered the potential molecular pathways involved in the aging process. Due to their characteristics, invertebrate models are mainly used for drug screening. The National Institute on Aging (NIA) developed the Interventions Testing Program (ITP). At the pre-clinical level, the ITP uses Heterogeneous mouse model (HET) which is probably the most suitable rodent model to study potential drugs against aging prevention. The accelerated-senescence mouse P8 is also a mammalian rodent model for aging research. However, when evaluating the effect of drugs on a preclinical level, the evaluation must be done in non-human primates since it is the mammalian specie closest to humans. Research is needed to investigate the impact of new potential drugs for the increase of human quality of
Collapse
Affiliation(s)
- Jaume Folch
- Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Busquets
- Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unitat de Farmacia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Departamento de Biologia Celulary Molecular, C.U.C.B.A., Universidad de Guadalajara and Division de Neurociencias, Sierra Mojada 800, Col. Independencia, Guadalajara, Jalisco 44340, Mexico
| | - Miguel Marin
- Centro de Biotecnologia. Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia. Loja, Ecuador
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Jordi Olloquequi
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Talca, Chile
| | - Carme Auladell
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Departamento de Biologia Celulary Molecular, C.U.C.B.A., Universidad de Guadalajara and Division de Neurociencias, Sierra Mojada 800, Col. Independencia, Guadalajara, Jalisco 44340, Mexico.,Departament de Biologia Cellular, Fisiologia i Inmunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Biotecnologia. Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia. Loja, Ecuador
| |
Collapse
|
34
|
Workman KP, Healey B, Carlotto A, Lacreuse A. One-year change in cognitive flexibility and fine motor function in middle-aged male and female marmosets (Callithrix jacchus). Am J Primatol 2018; 81:e22924. [PMID: 30281810 DOI: 10.1002/ajp.22924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/07/2022]
Abstract
The common marmoset (Callithrix jacchus) is uniquely suited for longitudinal studies of cognitive aging, due to a relatively short lifespan, sophisticated cognitive abilities, and patterns of brain aging that resemble those of humans. We examined cognitive function and fine motor skills in male and female marmosets (mean age ∼5 at study entry) followed longitudinally for 2 years. Each year, monkeys were tested on a reversal learning task with three pairs of stimuli (n = 18, 9 females) and a fine motor task requiring them to grasp small rewards from two staircases (Hill and Valley test, n = 12, 6 females). There was little evidence for a decline in cognitive flexibility between the two time points, in part because of practice effects. However, independent of year of testing, females took longer than males to reach criterion in the reversals, indicating impaired cognitive flexibility. Motivation was unlikely to contribute to this effect, as males refused a greater percentage of trials than females in the reversals. With regards to motor function, females were significantly faster than males in the Hill and Valley task. From Year 1 to Year 2, a slight slowing of motor function was observed in both sexes, but accuracy decreased significantly in males only. This study (1) demonstrates that marmosets exhibit sex differences in cognitive flexibility and fine motor function that resemble those described in humans; (2) that changes in fine motor function can already be detected at middle-age; and (3) that males may experience greater age-related changes in fine motor skills than females. Additional data points will determine whether these sex and age differences persist over time.
Collapse
Affiliation(s)
- Kathryn P Workman
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Brianna Healey
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Alyssa Carlotto
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts.,Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, Massachusetts.,Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
35
|
Does Calorie Restriction in Primates Increase Lifespan? Revisiting Studies on Macaques (
Macaca mulatta
) and Mouse Lemurs (
Microcebus murinus
). Bioessays 2018; 40:e1800111. [DOI: 10.1002/bies.201800111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Indexed: 01/16/2023]
|
36
|
Le Corre M, Noristani HN, Mestre-Frances N, Saint-Martin GP, Coillot C, Goze-Bac C, Lonjon N, Perrin FE. A Novel Translational Model of Spinal Cord Injury in Nonhuman Primate. Neurotherapeutics 2018; 15:751-769. [PMID: 29181770 PMCID: PMC6095780 DOI: 10.1007/s13311-017-0589-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injuries (SCI) lead to major disabilities affecting > 2.5 million people worldwide. Major shortcomings in clinical translation result from multiple factors, including species differences, development of moderately predictive animal models, and differences in methodologies between preclinical and clinical studies. To overcome these obstacles, we first conducted a comparative neuroanatomical analysis of the spinal cord between mice, Microcebus murinus (a nonhuman primate), and humans. Next, we developed and characterized a new model of lateral spinal cord hemisection in M. murinus. Over a 3-month period after SCI, we carried out a detailed, longitudinal, behavioral follow-up associated with in vivo magnetic resonance imaging (1H-MRI) monitoring. Then, we compared lesion extension and tissue alteration using 3 methods: in vivo 1H-MRI, ex vivo 1H-MRI, and classical histology. The general organization and glial cell distribution/morphology in the spinal cord of M. murinus closely resembles that of humans. Animals assessed at different stages following lateral hemisection of the spinal cord presented specific motor deficits and spinal cord tissue alterations. We also found a close correlation between 1H-MRI signal and microglia reactivity and/or associated post-trauma phenomena. Spinal cord hemisection in M. murinus provides a reliable new nonhuman primate model that can be used to promote translational research on SCI and represents a novel and more affordable alternative to larger primates.
Collapse
Affiliation(s)
- Marine Le Corre
- INSERM U1051, Rue Augustin Fliche, F-34095, Montpellier Cedex 5, France
- CHRU Montpellier, Gui de Chauliac Hospital, F-34095, Montpellier, France
| | - Harun N Noristani
- INSERM U1051, Rue Augustin Fliche, F-34095, Montpellier Cedex 5, France
- INSERM U1198, University of Montpellier, EPHE, Place Eugène Bataillon CC105, F-34095, Montpellier, France
| | - Nadine Mestre-Frances
- INSERM U1198, University of Montpellier, EPHE, PSL Research University, Place Eugène Bataillon CC105, F-34095, Montpellier, France
| | - Guillaume P Saint-Martin
- INSERM U1198, University of Montpellier, EPHE, Place Eugène Bataillon CC105, F-34095, Montpellier, France
- CNRS UMR 5221, University of Montpellier, Place Eugène Bataillon, F-34095, Montpellier, France
| | - Christophe Coillot
- CNRS UMR 5221, University of Montpellier, Place Eugène Bataillon, F-34095, Montpellier, France
| | - Christophe Goze-Bac
- CNRS UMR 5221, University of Montpellier, Place Eugène Bataillon, F-34095, Montpellier, France
| | - Nicolas Lonjon
- CHRU Montpellier, Gui de Chauliac Hospital, F-34095, Montpellier, France
- INSERM U1198, University of Montpellier, EPHE, Place Eugène Bataillon CC105, F-34095, Montpellier, France
| | - Florence E Perrin
- INSERM U1051, Rue Augustin Fliche, F-34095, Montpellier Cedex 5, France.
- INSERM U1198, University of Montpellier, EPHE, Place Eugène Bataillon CC105, F-34095, Montpellier, France.
| |
Collapse
|
37
|
Nakamura K, Koba R, Miwa M, Yamaguchi C, Suzuki H, Takemoto A. A Method to Train Marmosets in Visual Working Memory Task and Their Performance. Front Behav Neurosci 2018; 12:46. [PMID: 29615876 PMCID: PMC5864906 DOI: 10.3389/fnbeh.2018.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Learning and memory processes are similarly organized in humans and monkeys; therefore, monkeys can be ideal models for analyzing human aging processes and neurodegenerative diseases such as Alzheimer's disease. With the development of novel gene modification methods, common marmosets (Callithrix jacchus) have been suggested as an animal model for neurodegenerative diseases. Furthermore, the common marmoset's lifespan is relatively short, which makes it a practical animal model for aging. Working memory deficits are a prominent symptom of both dementia and aging, but no data are currently available for visual working memory in common marmosets. The delayed matching-to-sample task is a powerful tool for evaluating visual working memory in humans and monkeys; therefore, we developed a novel procedure for training common marmosets in such a task. Using visual discrimination and reversal tasks to direct the marmosets' attention to the physical properties of visual stimuli, we successfully trained 11 out of 13 marmosets in the initial stage of the delayed matching-to-sample task and provided the first available data on visual working memory in common marmosets. We found that the marmosets required many trials to initially learn the task (median: 1316 trials), but once the task was learned, the animals needed fewer trials to learn the task with novel stimuli (476 trials or fewer, with the exception of one marmoset). The marmosets could retain visual information for up to 16 s. Our novel training procedure could enable us to use the common marmoset as a useful non-human primate model for studying visual working memory deficits in neurodegenerative diseases and aging.
Collapse
Affiliation(s)
- Katsuki Nakamura
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Reiko Koba
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Miki Miwa
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Chieko Yamaguchi
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Hiromi Suzuki
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Atsushi Takemoto
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
38
|
Anti-Inflamm-Ageing and/or Anti-Age-Related Disease Emerging Treatments: A Historical Alchemy or Revolutionary Effective Procedures? Mediators Inflamm 2018; 2018:3705389. [PMID: 29576745 PMCID: PMC5822866 DOI: 10.1155/2018/3705389] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/13/2017] [Indexed: 01/16/2023] Open
Abstract
The “long-life elixir” has long represented for humans a dream, a vanity's sin for remaining young and to long survive. Today, because of ageing population phenomenon, the research of antiageing interventions appears to be more important than ever, for preserving health in old age and retarding/or delaying the onset of age-related diseases. A hope is given by experimental data, which evidence the possibility of retarding ageing in animal models. In addition, it has been also demonstrated in animal life-extending studies not only the possibility of increasing longevity but also the ability to retard the onset of age-related diseases. Interestingly, this recent evidence is leading to promise of obtaining the same effects in humans and resulting in benefits for their health in old ages. In order to achieve this goal, different approaches have been used ranging from pharmacological targeting of ageing, basic biological assays, and big data analysis to the recent use of young blood, stem cells, cellular, genetic, and epigenetic reprogramming, or other techniques of regenerative medicine. However, only a little fraction of these approaches has the features for being tested in clinical applications. Here, new emerging molecules, drugs, and procedures will be described, by evidencing potential benefits and limitations.
Collapse
|
39
|
Yong KSM, Her Z, Chen Q. Humanized Mice as Unique Tools for Human-Specific Studies. Arch Immunol Ther Exp (Warsz) 2018; 66:245-266. [PMID: 29411049 PMCID: PMC6061174 DOI: 10.1007/s00005-018-0506-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
With an increasing human population, medical research is pushed to progress into an era of precision therapy. Humanized mice are at the very heart of this new forefront where it is acutely required to decipher human-specific disease pathogenesis and test an array of novel therapeutics. In this review, “humanized” mice are defined as immunodeficient mouse engrafted with functional human biological systems. Over the past decade, researchers have been conscientiously making improvements on the development of humanized mice as a model to closely recapitulate disease pathogenesis and drug mechanisms in humans. Currently, literature is rife with descriptions of novel and innovative humanized mouse models that hold a significant promise to become a panacea for drug innovations to treat and control conditions such as infectious disease and cancer. This review will focus on the background of humanized mice, diseases, and human-specific therapeutics tested on this platform as well as solutions to improve humanized mice for future clinical use.
Collapse
Affiliation(s)
- Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
40
|
Poulen G, Perrin FE. Microcebus murinus: A novel promising non-human primate model of spinal cord injury. Neural Regen Res 2018; 13:421-422. [PMID: 29623923 PMCID: PMC5900501 DOI: 10.4103/1673-5374.228721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Gaëtan Poulen
- University of Montpellier, Institut National de la Santé et de la Recherche Médicale Unit 1198; Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Florence Evelyne Perrin
- University of Montpellier, Institut National de la Santé et de la Recherche Médicale Unit 1198, Montpellier, France
| |
Collapse
|
41
|
Ross CN, Austad S, Brasky K, Brown CJ, Forney LJ, Gelfond JA, Lanford R, Richardson A, Tardif SD. The development of a specific pathogen free (SPF) barrier colony of marmosets ( Callithrix jacchus) for aging research. Aging (Albany NY) 2017; 9:2544-2558. [PMID: 29227963 PMCID: PMC5764392 DOI: 10.18632/aging.101340] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022]
Abstract
A specific pathogen free (SPF) barrier colony of breeding marmosets (Callithrix jacchus) was established at the Barshop Institute for Longevity and Aging Studies. Rodent and other animal models maintained as SPF barrier colonies have demonstrated improved health and lengthened lifespans enhancing the quality and repeatability of aging research. The marmosets were screened for two viruses and several bacterial pathogens prior to establishing the new SPF colony. Twelve founding animals successfully established a breeding colony with increased reproductive success, improved health parameters, and increased median lifespan when compared to a conventionally housed, open colony. The improved health and longevity of marmosets from the SPF barrier colony suggests that such management can be used to produce a unique resource for future studies of aging processes in a nonhuman primate model.
Collapse
Affiliation(s)
- Corinna N. Ross
- Department of Science and Mathematics, Texas A&M University San Antonio, San Antonio, TX 78224, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, TX 78245, USA
| | - Steven Austad
- Nathan Shock Center of Excellence in the Basic Biology of Aging, Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kathy Brasky
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Larry J. Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Jonathan A. Gelfond
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, TX 78245, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Suzette D. Tardif
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, TX 78245, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
42
|
Dubicanac M, Radespiel U, Zimmermann E. A review on ocular findings in mouse lemurs: potential links to age and genetic background. Primate Biol 2017; 4:215-228. [PMID: 32110707 PMCID: PMC7041539 DOI: 10.5194/pb-4-215-2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Mouse lemurs, the world's smallest primates, inhabit forests in
Madagascar. They are nocturnal, arboreal and dependent on vision
for their everyday lives. In the last decades, the grey mouse
lemur became increasingly important for biomedical research, in particular
aging research. Experiments which require the combination of visual
fitness and old age consequently depend on a solid knowledge of
ocular pathologies. Although ocular diseases in mouse lemurs have
been described as being common, they have not received much
attention so far. Yet it is important to know when and why ocular
diseases in captive mouse lemurs may occur. This review aims to
provide a comprehensive overview of known ocular findings in mouse
lemurs. It summarizes the frequency of ocular findings in captive
mouse lemur colonies and points to their likely causes and treatment
options based on the evidence available from other animals and
humans. In addition, it shall be discussed whether age or genetic
background may affect their development. This review may be used as
a reference for future studies which require an assessment of visual
performance in mouse lemurs and help to evaluate observed clinical
signs and ocular diseases. Furthermore, the high incidence of
specific diseases may provide new perspectives and set the groundwork
for a new animal model for ocular research.
Collapse
Affiliation(s)
- Marko Dubicanac
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
43
|
de Magalhães JP, Stevens M, Thornton D. The Business of Anti-Aging Science. Trends Biotechnol 2017; 35:1062-1073. [PMID: 28778607 DOI: 10.1016/j.tibtech.2017.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/18/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022]
Abstract
Age-related conditions are the leading causes of death and health-care costs. Reducing the rate of aging would have enormous medical and financial benefits. Myriad genes and pathways are known to regulate aging in model organisms, fostering a new crop of anti-aging companies. Approaches range from drug discovery efforts to big-data methods and direct-to-consumer (DTC) strategies. Challenges and pitfalls of commercialization include reliance on findings from short-lived model organisms, poor biological understanding of aging, and hurdles in performing clinical trials for aging. A large number of potential aging-associated interventions and targets exist, but given the long validation times only a small fraction can be explored for clinical applications. If even one company succeeds, however, the impact will be huge.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; Joint first authors.
| | - Michael Stevens
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; Joint first authors
| | - Daniel Thornton
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
44
|
Le Gal R, Bernaudin M, Toutain J, Touzani O. Assessment of behavioural deficits following ischaemic stroke in the marmoset. Behav Brain Res 2017; 352:151-160. [PMID: 28760698 DOI: 10.1016/j.bbr.2017.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 11/29/2022]
Abstract
Stroke is a common and devastating disease worldwide. Over the last two decades, many therapeutic approaches to ameliorate ischaemic stroke have been promising in animal studies but failed when transferred to the clinical situation. One of the possible explanations for these failures is the widespread use of animal models of cerebral ischemia that do not mimic the pathology encountered in the clinic. Accordingly, many expert committees recommended the integration of higher order species such as non-human primates in pre-clinical stroke studies. The common marmoset (Callithrix jacchus), a small New World monkey, start to stand out in the neuroscience field as a good compromise between larger primates and rodents. In this review, we discuss the relevance of the use of the marmoset in stroke studies. We will focus on behavioural tests developed in this species to assess sensorimotor deficits and their recovery during acute and chronic stages of brain ischaemia. The aim of this appraisal is to provide a comprehensive overview of the existing approaches to induce stroke in the marmoset as well as the paradigms for behavioural testing in this species. The data summarized in this review should contribute to the improvement of future stoke studies in the marmoset and accordingly improve the translation of the results from bench to bed.
Collapse
Affiliation(s)
- Rozenn Le Gal
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Myriam Bernaudin
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Jérôme Toutain
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Omar Touzani
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France.
| |
Collapse
|
45
|
Colman RJ. Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2733-2741. [PMID: 28729086 DOI: 10.1016/j.bbadis.2017.07.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
There has been, and continues to be, a dramatic shift in the human population towards older ages necessitating biomedical research aimed at better understanding the basic biology of aging and age-related diseases and facilitating new and improved therapeutic options. As it is not practical to perform the breadth of this research in humans, animal models are necessary to recapitulate the complexity of the aging environment. The mouse model is most frequently chosen for these endeavors, however, they are frequently not the most appropriate model. Non-human primates, on the other hand, are more closely related to humans and recapitulate the human aging process and development of age-related diseases. Extensive aging research has been performed in the well-characterized rhesus macaque aging model. More recently, the common marmoset, a small non-human primate with a shorter lifespan, has been explored as a potential aging model. This model holds particular promise as an aging disease model in part due to the successful creation of transgenic marmosets. Limitations to the use of non-human primates in aging research exist but can be mitigated somewhat by the existence of available resources supported by the National Institutes of Health. This article is part of a Special Issue entitled: Animal models of aging - edited by "Houtkooper Riekelt".
Collapse
Affiliation(s)
- Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715, USA.
| |
Collapse
|
46
|
Visual discrimination and reversal learning in aged common marmosets (Callithrix jacchus). Neurosci Res 2017; 124:57-62. [PMID: 28602996 DOI: 10.1016/j.neures.2017.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/11/2017] [Accepted: 06/02/2017] [Indexed: 11/21/2022]
Abstract
Common marmosets (Callithrix jacchus) have been suggested as a new model for analysis of age-related changes and neurodegenerative diseases. However, the effects of age on learning and memory processes are not well defined within this species. Therefore, we employed visual discrimination and reversal learning tasks to evaluate learning and memory in four aged common marmosets relative to a younger cohort. We found that aged marmosets commit significantly more errors in initial stages of visual discrimination and more perseverative errors in reversal learning, indicating prefrontal dysfunction. However, they showed comparable performance with younger marmosets in the later stages of both tasks.
Collapse
|
47
|
Ezran C, Karanewsky CJ, Pendleton JL, Sholtz A, Krasnow MR, Willick J, Razafindrakoto A, Zohdy S, Albertelli MA, Krasnow MA. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health. Genetics 2017; 206:651-664. [PMID: 28592502 PMCID: PMC5499178 DOI: 10.1534/genetics.116.199448] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/08/2017] [Indexed: 01/24/2023] Open
Abstract
Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs (Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while providing an example of how hands-on science education can help transform developing countries.
Collapse
Affiliation(s)
- Camille Ezran
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | | | | | - Alex Sholtz
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | - Maya R Krasnow
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | - Jason Willick
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | - Andriamahery Razafindrakoto
- Department of Animal Biology, Faculty of Science, University of Antananarivo, Antananarivo 101, BP 566, Madagascar, and
| | - Sarah Zohdy
- School of Forestry and Wildlife Sciences and College of Veterinary Medicine, Auburn University, Alabama 36849
| | - Megan A Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, California 94305
| | - Mark A Krasnow
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| |
Collapse
|
48
|
Walker LC, Jucker M. The Exceptional Vulnerability of Humans to Alzheimer's Disease. Trends Mol Med 2017; 23:534-545. [PMID: 28483344 DOI: 10.1016/j.molmed.2017.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
Like many humans, non-human primates deposit copious misfolded Aβ protein in the brain as they age. Nevertheless, the complete behavioral and pathologic phenotype of Alzheimer's disease, including Aβ plaques, neurofibrillary (tau) tangles, and dementia, has not yet been identified in a non-human species. Recent research suggests that the crucial link between Aβ aggregation and tauopathy is somehow disengaged in aged monkeys. Understanding why Alzheimer's disease fails to develop in species that are biologically proximal to humans could disclose new therapeutic targets in the chain of events leading to neurodegeneration and dementia.
Collapse
Affiliation(s)
- Lary C Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, and the German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany.
| |
Collapse
|
49
|
Dubicanac M, Strueve J, Mestre-Frances N, Verdier JM, Zimmermann E, Joly M. Photoperiodic regime influences onset of lens opacities in a non-human primate. PeerJ 2017; 5:e3258. [PMID: 28484672 PMCID: PMC5420196 DOI: 10.7717/peerj.3258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/30/2017] [Indexed: 11/24/2022] Open
Abstract
Background Opacities of the lens are typical age-related phenomena which have a high influence on photoreception and consequently circadian rhythm. In mouse lemurs, a small bodied non-human primate, a high incidence (more than 50% when >seven years) of cataracts has been previously described during aging. Previous studies showed that photoperiodically induced accelerated annual rhythms alter some of mouse lemurs’ life history traits. Whether a modification of photoperiod also affects the onset of age dependent lens opacities has not been investigated so far. The aim of this study was therefore to characterise the type of opacity and the mouse lemurs’ age at its onset in two colonies with different photoperiodic regimen. Methods Two of the largest mouse lemur colonies in Europe were investigated: Colony 1 having a natural annual photoperiodic regime and Colony 2 with an induced accelerated annual cycle. A slit-lamp was used to determine opacities in the lens. Furthermore, a subset of all animals which showed no opacities in the lens nucleus in the first examination but developed first changes in the following examination were further examined to estimate the age at onset of opacities. In total, 387 animals were examined and 57 represented the subset for age at onset estimation. Results The first and most commonly observable opacity in the lens was nuclear sclerosis. Mouse lemurs from Colony 1 showed a delayed onset of nuclear sclerosis compared to mouse lemurs from Colony 2 (4.35 ± 1.50 years vs. 2.75 ± 0.99 years). For colony 1, the chronological age was equivalent to the number of seasonal cycles experienced by the mouse lemurs. For colony 2, in which seasonal cycles were accelerated by a factor of 1.5, mouse lemurs had experienced 4.13 ± 1.50 seasonal cycles in 2.75 ± 0.99 chronological years. Discussion Our study showed clear differences in age at the onset of nuclear sclerosis formation between lemurs kept under different photoperiodic regimes. Instead of measuring the chronological age, the number of seasonal cycles (N = four) experienced by a mouse lemur can be used to estimate the risk of beginning nuclear sclerosis formation. Ophthalmological examinations should be taken into account when animals older than 5–6 seasonal cycles are used for experiments in which unrestricted visual ability has to be ensured. This study is the first to assess and demonstrate the influence of annual photoperiod regime on the incidence of lens opacities in a non-human primate.
Collapse
Affiliation(s)
- Marko Dubicanac
- Institute of Zoology, Tierärztliche Hochschule Hannover, Hanover, Lower Saxony, Germany
| | - Julia Strueve
- Clinic for Small Animals, Tierärztliche Hochschule Hannover, Hanover, Lower Saxony, Germany
| | - Nadine Mestre-Frances
- Department of Molecular Mechanisms in Neurodegenerative Diseases Inserm U1198, Univ. Montpellier, Montpellier, France
| | - Jean-Michel Verdier
- Department of Molecular Mechanisms in Neurodegenerative Diseases Inserm U1198, Univ. Montpellier, Montpellier, France
| | - Elke Zimmermann
- Institute of Zoology, Tierärztliche Hochschule Hannover, Hanover, Lower Saxony, Germany
| | - Marine Joly
- Centre for Comparative and Evolutionary Psychology, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
50
|
Cichon N, Lampe K, Bremmer F, Becker T, Mätz-Rensing K. Unique case of granulomatous arteritis in a grey mouse lemur (Microcebus murinus) - first case description. Primate Biol 2017; 4:71-75. [PMID: 32110694 PMCID: PMC7041525 DOI: 10.5194/pb-4-71-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/09/2017] [Indexed: 11/11/2022] Open
Abstract
Overall, diseases of the vascular system are rarely observed entities among
nonhuman primates that are commonly associated with systemic infections,
septicemia or bacteremia. Rhesus monkeys infected with simian
immunodeficiency virus (SIV) may develop a chronic occlusive arteriopathy of
unknown etiology in late stages of the disease. This SIV associated
arteriopathy is the only well-known specific vascular entity described in
nonhuman primates. We herein report a unique case of granulomatous
arteritis in a grey mouse lemur affecting multiple organs, which is not
comparable to other disease entities formerly described in nonhuman
primates. The features of the entity most closely resemble disseminated
visceral giant cell arteritis in humans. A concise description of the
disease is given, and the differential diagnoses are discussed. An idiopathic
pathogenesis is suspected.
Collapse
Affiliation(s)
- Nicole Cichon
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Karen Lampe
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Felix Bremmer
- Georg-August-Universität, Universitätsmedizin Göttingen, Robert Kochstr. 40, 37075 Göttingen, Germany
| | - Tamara Becker
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | |
Collapse
|