1
|
Elmore K, DeVincenzo J, Rhodin MHJ, Rottinghaus ST, Ahmad A. EDP-323, a First-In-Class, Once-Daily, Oral L-Protein Inhibitor for the Treatment of RSV: Results From a Phase 1 Study in Healthy Adults. Clin Transl Sci 2025; 18:e70231. [PMID: 40293399 PMCID: PMC12036344 DOI: 10.1111/cts.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Respiratory syncytial virus (RSV) remains a significant health concern, particularly for vulnerable populations. Despite preventive strategies, there remains a need for effective antiviral treatments. EDP-323 is a first-in-class, potent oral selective non-nucleoside inhibitor of the large protein (L polymerase) of RSV under investigation for the treatment of RSV infection. This phase 1, randomized, double-blind, placebo-controlled study evaluated the safety and pharmacokinetics of EDP-323. This study included fasted single ascending dose (SAD; EDP-323 50/100/200/400/600/800 mg doses, 3:1 to placebo), fed multiple ascending dose (MAD; EDP-323200/400/600/800 mg doses, 3:1 to placebo), and food effect (EDP-323200 mg dose, 4:1 to placebo) cohorts in healthy adult participants. Key objectives were to assess the safety, tolerability, and pharmacokinetic (PK) profile of EDP-323 in plasma and urine, and to evaluate the effect of food intake on its pharmacokinetics. Among 82 randomized participants (SAD, n = 50; MAD, n = 32), EDP-323 was well tolerated up to the highest tested dose (800 mg once daily for 7 days). Adverse events (AEs) were reported in 14.6% of total participants, with the majority being mild and deemed unlikely related to the study drug. Headache was the most frequent AE (n = 3). PK analysis showed that EDP-323 was rapidly absorbed (Tmax = 3.0-5.0 h), with exposures increasing with ascending dose. The half-life of EDP-323 (t1/2 = 10.8-16.6 h) supported once-daily dosing, and no food effect was observed. EDP-323 demonstrated a favorable safety and PK profile, supporting its potential as a once-daily oral treatment for RSV.
Collapse
Affiliation(s)
| | | | | | | | - Alaa Ahmad
- Enanta Pharmaceuticals, Inc.WatertownMassachusettsUSA
| |
Collapse
|
2
|
Juarez MG, O'Rourke SM, Dzimianski JV, Gagnon D, Penunuri G, Serrão VHB, Corbett-Detig RB, Kauvar LM, DuBois RM. Structures of respiratory syncytial virus G bound to broadly reactive antibodies provide insights into vaccine design. Sci Rep 2025; 15:8666. [PMID: 40082629 PMCID: PMC11906780 DOI: 10.1038/s41598-025-92886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in infants and older adults. The attachment glycoprotein (RSV G) binds to the chemokine receptor CX3CR1 to promote viral entry and modulate host immunity. Antibodies against RSV G are a known correlate of protection. Previously, several broadly reactive, high-affinity anti-RSV G human monoclonal antibodies were isolated from RSV-exposed individuals and were shown to be protective in vitro and in vivo. Here, we determined the structures of three of these antibodies in complex with RSV G and defined distinct conformational epitopes comprised of highly conserved RSV G residues. Binding competition and structural studies demonstrated that this highly conserved region displays two non-overlapping antigenic sites. Analyses of anti-RSV G antibody sequences reveal that antigenic site flexibility may promote the elicitation of diverse antibody germlines. Together, these findings provide a foundation for next-generation RSV prophylactics, and they expand concepts in vaccine design for the elicitation of germline lineage-diverse, broadly reactive, high-affinity antibodies.
Collapse
Affiliation(s)
- Maria G Juarez
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sara M O'Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - John V Dzimianski
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Delia Gagnon
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Gabriel Penunuri
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Vitor H B Serrão
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
- Biomolecular Cryo-Electron Microscopy Facility, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russell B Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
3
|
Levene RE, DeVincenzo J, Conery AL, Ahmad A, Or YS, Rhodin MHJ. EDP-938 Has a High Barrier to Resistance in Healthy Adults Experimentally Infected with Respiratory Syncytial Virus. J Infect Dis 2025; 231:e290-e298. [PMID: 39441691 PMCID: PMC11841640 DOI: 10.1093/infdis/jiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND EDP-938 is an oral once-daily RSV nucleoprotein (N) inhibitor with potent antiviral activity. In a human RSV challenge trial, EDP-938 significantly reduced viral load and symptom severity. During antiviral development, it is critical to understand the propensity for resistance to develop. In vitro studies of EDP-938 suggest a higher barrier to resistance as compared to RSV fusion inhibitors. We evaluated the development of viral resistance to EDP-938 in a human challenge trial. METHODS A subset of the 124 participants with RSV infection were chosen for genetic analysis; 159 nasal wash samples from 48 participants were analyzed using next-generation sequencing of the N gene of RSV. Of the 48 participant sampled, 37 were from EDP-938-treated and 11 were placebo-treated participants, representing 45% and 26% of the participants, respectively. The effects of treatment-emergent mutations on viral load, EDP-938 efficacy, and viral fitness were evaluated. RESULTS Two of the 37 EDP-938-treated participants with samples sequenced had treatment-emergent mutations: N:L139I and N:E112G. From in vitro analysis, N:L139I reduced sensitivity to EDP-938 by approximately 10-fold, while N:E112G had no effect. However, N:L139I was associated with a reduction in viral fitness, suggesting clinical resistance is associated with fitness costs. Neither of these variants were associated with reduced viral clearance. CONCLUSIONS In human RSV infections treated with EDP-938, emergence of RSV variants with reduced sensitivity to EDP-938 occurred in only 1 participant and was associated with reduced viral fitness. EDP-938's high barrier to resistance highlights its robust mechanism of action. CLINICAL TRIALS REGISTRATION NCT03691623.
Collapse
Affiliation(s)
| | | | - Annie L Conery
- Enanta Pharmaceuticals, Inc, Watertown, Massachusetts, USA
| | - Alaa Ahmad
- Enanta Pharmaceuticals, Inc, Watertown, Massachusetts, USA
| | - Yat Sun Or
- Enanta Pharmaceuticals, Inc, Watertown, Massachusetts, USA
| | | |
Collapse
|
4
|
Li Q, Li H, Li Z, Wang Y. Vaccine and therapeutic agents against the respiratory syncytial virus: resolved and unresolved issue. MedComm (Beijing) 2024; 5:e70016. [PMID: 39575302 PMCID: PMC11581781 DOI: 10.1002/mco2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a predominant pathogen responsible for respiratory tract infections among infants, the elderly, and immunocompromised individuals. In recent years, significant progress has been made in innovative vaccines and therapeutic agents targeting RSV. Nevertheless, numerous challenges and bottlenecks persist in the prevention and treatment of RSV infections. This review will provide an overview of the resolved and unresolved issues surrounding the development of vaccines and therapeutic agents against RSV. As of September 2024, three RSV vaccines against acute lower respiratory infections (ALRI) have been approved globally. Additionally, there have been notable progress in the realm of passive immunoprophylactic antibodies, with the monoclonal antibody nirsevimab receiving regulatory approval for the prevention of RSV infections in infants. Furthermore, a variety of RSV therapeutic agents are currently under clinical investigation, with the potential to yield breakthrough advancements in the foreseeable future. This review delineates the advancements and challenges faced in vaccines and therapeutic agents targeting RSV. It aims to provide insights that will guide the development of effective preventive and control measures for RSV.
Collapse
Affiliation(s)
- Qianqian Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Huan Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Zhihua Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Youchun Wang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| |
Collapse
|
5
|
Sevendal ATK, Hurley S, Bartlett AW, Rawlinson W, Walker GJ. Systematic Review of the Efficacy and Safety of RSV-Specific Monoclonal Antibodies and Antivirals in Development. Rev Med Virol 2024; 34:e2576. [PMID: 39209729 DOI: 10.1002/rmv.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infection amongst all ages, causing a significant global health burden. Preventative and therapeutic options for RSV infection have long been under development, and recently, several widely-publicised vaccines targeting older adult and maternal populations have become available. Promising monoclonal antibody (mAb) and antiviral (AV) therapies are also progressing in clinical trials, with the prophylactic mAb nirsevimab recently approved for clinical use in infant populations. A systematic review on current progress in this area is lacking. We performed a systematic literature search (PubMed, Embase, Web of Science, ClinicalTrials.gov, EudraCT, ANZCTR-searched Nov 29th, 2023) to identify studies on all RSV-specific mAbs and AV therapies that has undergone human clinical trials since year 2000. Data extraction focused on outcomes related to the therapeutic efficacy and safety of the intervention on trial, and all studies were graded against the OCEBM Levels of Evidence Table. Results from 59 studies were extracted, covering efficacy and safety data on six mAbs (motavizumab, motavizumab-YTE, nirsevimab, ALX-0171, suptavumab, clesrovimab) and 12 AV therapies (ALN-RSV01, RSV604, presatovir, MDT-637, lumicitabine, IFN-α1b, rilematovir, enzaplatovir, AK0529, sisunatovir, PC786, EDP-938). Of the mAbs reviewed, nirsevimab and clesrovimab hold considerable promise. The timeline for RSV-specific AV availability is less advanced, although EDP-938 and AK0529 have reported promising phase 2 efficacy and safety data. Moving forward, passive immunisation and treatment options for RSV infection will play a significant role in reducing the health burden of RSV, complementing recent advancements in vaccine development. TRIAL REGISTRATION: PROSPERO registration: CRD42022376633.
Collapse
Affiliation(s)
- Andrea T K Sevendal
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
| | - Siobhan Hurley
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
| | - Adam W Bartlett
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital Network, Sydney, Australia
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - William Rawlinson
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Gregory J Walker
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
6
|
Xiong Y, Tan G, Tao K, Zhou Y, Li J, Ou W, Shen C, Xie T, Zhang C, Hou Y, Ji J. Emodin inhibits respiratory syncytial virus entry by interactions with fusion protein. Front Microbiol 2024; 15:1393511. [PMID: 38817970 PMCID: PMC11137228 DOI: 10.3389/fmicb.2024.1393511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Respiratory syncytial virus (RSV) fusion (F) protein is essential for facilitating virus entry into host cells, providing a hopeful path for combating viral diseases. However, F protein inhibitors can rapidly select for viral resistance. Thus, discovering new inhibitors of F-protein is necessary to enrich the RSV drug development pipeline. Methods In this study, we screen 25 bioactive compounds from Chinese herbal medicines that exhibit a strong binding to the RSV-F protein using surface plasmon resonance. Results After screening, we found emodin could strongly bind to RSV-F protein, and could effectively curb RSV infection. Further investigations certificated that emodin specifically disrupts the attachment and internalization phases of RSV infection by targeting the RSV-F protein. In vivo studies with mice infected with RSV demonstrated that emodin effectively reduces lung pathology. This therapeutic effect is attributed to emodin's capacity to diminish pro-inflammatory cytokine production and reduce viral load in the lungs. Discussion In conclusion, our findings provide initial insights into the mechanism by which emodin counters RSV infection via engagement with the RSV-F protein, establishing it as a viable contender for the development of novel therapeutic agents aimed at RSV.
Collapse
Affiliation(s)
- Yingcai Xiong
- Wuxi Traditional Chinese Medicine Hospial Afiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangxing Tan
- Wuxi Traditional Chinese Medicine Hospial Afiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Keyu Tao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinghui Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiying Ou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol 2023; 21:734-749. [PMID: 37438492 DOI: 10.1038/s41579-023-00919-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
The large global burden of respiratory syncytial virus (RSV) respiratory tract infections in young children and older adults has gained increased recognition in recent years. Recent discoveries regarding the neutralization-specific viral epitopes of the pre-fusion RSV glycoprotein have led to a shift from empirical to structure-based design of RSV therapeutics, and controlled human infection model studies have provided early-stage proof of concept for novel RSV monoclonal antibodies, vaccines and antiviral drugs. The world's first vaccines and first monoclonal antibody to prevent RSV among older adults and all infants, respectively, have recently been approved. Large-scale introduction of RSV prophylactics emphasizes the need for active surveillance to understand the global impact of these interventions over time and to timely identify viral mutants that are able to escape novel prophylactics. In this Review, we provide an overview of RSV interventions in clinical development, highlighting global disease burden, seasonality, pathogenesis, and host and viral factors related to RSV immunity.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands.
- ReSViNET Foundation, Zeist, the Netherlands.
| |
Collapse
|
8
|
Huang L, Schibler A, Huang Y, Tai A, Chi H, Chieng C, Wang J, Goldbart A, Tang S, Huang Y, George S, Alabaz D, Bentur L, Su S, de Bruyne J, Karadag B, Gu F, Zou G, Toovey S, DeVincenzo JP, Wu JZ. Safety and efficacy of AK0529 in respiratory syncytial virus-infected infant patients: A phase 2 proof-of-concept trial. Influenza Other Respir Viruses 2023; 17:e13176. [PMID: 37502622 PMCID: PMC10368966 DOI: 10.1111/irv.13176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) infection is a cause of substantial morbidity and mortality in young children. There is currently no effective therapy available. Methods This was a Phase 2 study of the oral RSV fusion protein inhibitor AK0529 in infants aged 1-24 months, hospitalized with RSV infection. In Part 1, patients (n = 24) were randomized 2:1 to receive a single dose of AK0529 up to 4 mg/kg or placebo. In Part 2, patients (n = 48) were randomized 2:1 to receive AK0529 at 0.5, 1, or 2 mg/kg bid or placebo for 5 days. Sparse pharmacokinetic samples were assessed using population pharmacokinetics modelling. Safety, tolerability, viral load, and respiratory signs and symptoms were assessed daily during treatment. Results No safety or tolerability signals were detected for AK0529: grade ≥3 treatment-emergent adverse events occurring in 4.1% of patients in AK0529 and 4.2% in placebo groups, respectively, and none led to death or withdrawal from the study. In Part 2, targeted drug exposure was reached with 2 mg/kg bid. A numerically greater reduction in median viral load with 2 mg/kg bid AK0529 than with placebo at 96 h was observed. A -4.0 (95% CI: -4.51, -2.03) median reduction in Wang Respiratory Score from baseline to 96 h was observed in the 2 mg/kg group compared with -2.0 (95% CI: -3.42, -1.82) in the placebo group. Conclusions AK0529 was well tolerated in hospitalized RSV-infected infant patients. Treatment with AK0529 2 mg/kg bid was observed to reduce viral load and Wang Respiratory Score. Clinical Trials Registration NCT02654171.
Collapse
Affiliation(s)
- Li‐Min Huang
- Department of Pediatrics, National Taiwan University Children's HospitalNational Taiwan UniversityTaipeiTaiwan
| | - Andreas Schibler
- Pediatric Intensive Care UnitQueensland Children's HospitalSouth BrisbaneQueenslandAustralia
| | - Yi‐Chuan Huang
- Department of PediatricsKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Andrew Tai
- Department of Pediatric Respiratory and Sleep MedicineWomen's and Children's HospitalAdeladeSouth AustraliaAustralia
| | - Hsin Chi
- Department of PediatricsMacKay Children's Hospital and MacKay Memorial HospitalTaipeiTaiwan
| | | | - Jinn‐Li Wang
- Department of Pediatrics, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Aviv Goldbart
- Department of PediatricsSoroka University Medical CenterBeer‐ShevaIsrael
| | - Swee‐Ping Tang
- Department of PediatricsSelayang HospitalBatu CavesSelangorMalaysia
| | - Yhu‐Chering Huang
- Department of PediatricsChang Gung Children's Hospital, Linkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Shane George
- Departments of Emergency Medicine and Children's Critical CareGold Coast University HospitalGold CoastQueenslandAustralia
| | - Derya Alabaz
- Department of Pediatric Infectious DiseasesÇukurova University Faculty of MedicineBalcalıTurkey
| | - Lea Bentur
- Department of Pediatric PulmonologyRuth Rappaport Children's HospitalHaifaIsrael
| | - Siew‐Choo Su
- Department of PediatricsHospital Tengku Ampuan RahimahKlangSelangorMalaysia
| | - Jessie de Bruyne
- Department of PediatricsUniversity Malaya Medical CenterKuala LumpurMalaysia
| | - Bulent Karadag
- Division of Pediatric PulmonologyMarmara UniversityIstanbulTurkey
| | - Feng Gu
- Ark BiopharmaceuticalShanghaiChina
| | - Gang Zou
- Ark BiopharmaceuticalShanghaiChina
| | | | - John P. DeVincenzo
- Children's Foundation Research InstituteLe Bonheur Children's HospitalMemphisTennesseeUSA
| | | |
Collapse
|
9
|
Respiratory Syncytial Virus Two-Step Infection Screen Reveals Inhibitors of Early and Late Life Cycle Stages. Antimicrob Agents Chemother 2022; 66:e0103222. [PMID: 36346232 PMCID: PMC9765014 DOI: 10.1128/aac.01032-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) infection is a leading cause of severe respiratory tract infections. Effective, directly acting antivirals against hRSV are not available. We aimed to discover new and chemically diverse candidates to enrich the hRSV drug development pipeline. We used a two-step screen that interrogates compound efficacy after primary infection and a consecutive virus passaging. We resynthesized selected hit molecules and profiled their activities with hRSV lentiviral pseudotype cell entry, replicon, and time-of-addition assays. The breadth of antiviral activity was tested against recent RSV clinical strains and human coronavirus (hCoV-229E), and in pseudotype-based entry assays with non-RSV viruses. Screening 6,048 molecules, we identified 23 primary candidates, of which 13 preferentially scored in the first and 10 in the second rounds of infection, respectively. Two of these molecules inhibited hRSV cell entry and selected for F protein resistance within the fusion peptide. One molecule inhibited transcription/replication in hRSV replicon assays, did not select for phenotypic hRSV resistance and was active against non-hRSV viruses, including hCoV-229E. One compound, identified in the second round of infection, did not measurably inhibit hRSV cell entry or replication/transcription. It selected for two coding mutations in the G protein and was highly active in differentiated BCi-NS1.1 lung cells. In conclusion, we identified four new hRSV inhibitor candidates with different modes of action. Our findings build an interesting platform for medicinal chemistry-guided derivatization approaches followed by deeper phenotypical characterization in vitro and in vivo with the aim of developing highly potent hRSV drugs.
Collapse
|
10
|
Highly Potent Host-Specific Small-Molecule Inhibitor of Paramyxovirus and Pneumovirus Replication with High Resistance Barrier. mBio 2021; 12:e0262121. [PMID: 34724816 PMCID: PMC8561388 DOI: 10.1128/mbio.02621-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Multiple enveloped RNA viruses of the family Paramyxoviridae and Pneumoviridae, like measles virus (MeV), Nipah virus (NiV), canine distemper virus (CDV), or respiratory syncytial virus (RSV), are of high clinical relevance. Each year a huge number of lives are lost as a result of these viral infections. Worldwide, MeV infection alone is responsible for over a hundred thousand deaths each year despite available vaccine. Therefore, there is an urgent need for treatment options to counteract these viral infections. The development of antiviral drugs in general stands as a huge challenge due to the rapid emergence of viral escape mutants. Here, we disclose the discovery of a small-molecule antiviral, compound 1 (ZHAWOC9045), active against several pneumo-/paramyxoviruses, including MeV, NiV, CDV, RSV, and parainfluenza virus type 5 (PIV-5). A series of mechanistic characterizations revealed that compound 1 targets a host factor which is indispensable for viral genome replication. Drug resistance profiling against a paramyxovirus model (CDV) demonstrated no detectable adaptation despite prolonged time of investigation, thereby mitigating the rapid emergence of escape variants. Furthermore, a thorough structure-activity relationship analysis of compound 1 led to the invention of 100-times-more potent-derivatives, e.g., compound 2 (ZHAWOC21026). Collectively, we present in this study an attractive host-directed pneumoviral/paramyxoviral replication inhibitor with potential therapeutic application.
Collapse
|
11
|
EDP-938, a novel nucleoprotein inhibitor of respiratory syncytial virus, demonstrates potent antiviral activities in vitro and in a non-human primate model. PLoS Pathog 2021; 17:e1009428. [PMID: 33720995 PMCID: PMC7993833 DOI: 10.1371/journal.ppat.1009428] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/25/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
EDP-938 is a novel non-fusion replication inhibitor of respiratory syncytial virus (RSV). It is highly active against all RSV-A and B laboratory strains and clinical isolates tested in vitro in various cell lines and assays, with half-maximal effective concentrations (EC50s) of 21, 23 and 64 nM against Long (A), M37 (A) and VR-955 (B) strains, respectively, in the primary human bronchial epithelial cells (HBECs). EDP-938 inhibits RSV at a post-entry replication step of the viral life cycle as confirmed by time-of-addition study, and the activity appears to be mediated by viral nucleoprotein (N). In vitro resistance studies suggest that EDP-938 presents a higher barrier to resistance compared to viral fusion or non-nucleoside L polymerase inhibitors with no cross-resistance observed. Combinations of EDP-938 with other classes of RSV inhibitors lead to synergistic antiviral activity in vitro. Finally, EDP-938 has also been shown to be efficacious in vivo in a non-human primate model of RSV infection. Respiratory syncytial virus (RSV) is a ubiquitous viral pathogen which inflicts a significant healthcare burden and is responsible for thousands of deaths annually. Currently no vaccine or targeted therapeutic exists. This work characterizes a newly discovered small molecule inhibitor of the virus, EDP-938, whose activity is mediated through the viral nucleoprotein. EDP-938 has potent in vitro activities against laboratory strains and clinical isolates of the virus, presents a high-barrier to resistance, can work synergistically with other known fusion or L protein inhibitors, and displays strong in vivo efficacy in a non-human primate model for RSV infection. EDP-938 is currently under evaluation in Phase 2 clinical studies.
Collapse
|
12
|
Pharmacological Characterization of TP0591816, a Novel Macrocyclic Respiratory Syncytial Virus Fusion Inhibitor with Antiviral Activity against F Protein Mutants. Antimicrob Agents Chemother 2020; 65:AAC.01407-20. [PMID: 33046486 DOI: 10.1128/aac.01407-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in early childhood. However, no vaccines have yet been approved for prevention of RSV infection, and the treatment options are limited. Therefore, development of effective and safe anti-RSV drugs is needed. In this study, we evaluated the antiviral activity and mechanism of action of a novel macrocyclic anti-RSV compound, TP0591816. TP0591816 showed significant antiviral activities against both subgroup A and subgroup B RSV, while exerting no cytotoxicity. Notably, the antiviral activity of TP0591816 was maintained against a known fusion inhibitor-resistant RSV strain with a mutation in the cysteine-rich region or in heptad repeat B. Results of a time-of-addition assay and a temperature shift assay indicated that TP0591816 inhibited fusion of RSV with the cell membrane during viral entry. In addition, TP0591816 added after cell infection also inhibited cell-cell fusion. A TP0591816-resistant virus strain selected by serial passage had an L141F mutation, but no mutation in the cysteine-rich region or in heptad repeat B in the fusion (F) protein. Treatment with TP0591816 reduced lung virus titers in a dose-dependent manner in a mouse model of RSV infection. Furthermore, the estimated effective dose of TP0591816 for use against F protein mutants was thought to be clinically realistic and potentially tolerable. Taken together, these findings suggest that TP0591816 is a promising novel candidate for the treatment of resistant RSV infection.
Collapse
|
13
|
DeVincenzo J, Cass L, Murray A, Woodward K, Meals E, Coates M, Daly L, Wheeler V, Mori J, Brindley C, Davis A, McCurdy M, Ito K, Murray B, Strong P, Rapeport G. Safety and Antiviral Effects of Nebulized PC786 in a Respiratory Syncytial Virus Challenge Study. J Infect Dis 2020; 225:2087-2096. [PMID: 33216113 PMCID: PMC9200148 DOI: 10.1093/infdis/jiaa716] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
Background PC786 is a nebulized nonnucleoside respiratory syncytial virus (RSV) polymerase inhibitor designed to treat RSV, which replicates in the superficial layer of epithelial cells lining the airways. Methods Fifty-six healthy volunteers inoculated with RSV-A (Memphis 37b) were randomly dosed with either nebulized PC786 (5 mg) or placebo, twice daily for 5 days, from either 12 hours after confirmation of RSV infection or 6 days after virus inoculation. Viral load (VL), disease severity, pharmacokinetics, and safety were assessed until discharge. RSV infection was confirmed by reverse-transcription quantitative polymerase chain reaction with any positive value (intention-to-treat infected [ITT-I] population) or RSV RNA ≥1 log10 plaque-forming unit equivalents (PFUe)/mL (specific intention-to-treat infection [ITT-IS] population) in nasal wash samples. Results In the ITT-I population, the mean VL area under the curve (AUC) was lower in the PC786 group than the placebo group (274.1 vs 406.6 log10 PFUe/mL × hour; P = .0359). PC786 showed a trend toward reduction of symptom score and mucous weight. In ITT-IS (post hoc analysis), the latter was statistically significant as well as VL AUC (P = .0126). PC786 showed an early time to maximum plasma concentration, limited systemic exposure, and long half-life and consequently a 2-fold accumulation over the 5-day dosing period. PC786 was well tolerated. Conclusions Nebulized PC786 demonstrated a significant antiviral effect against RSV, warranting further clinical study. Clinical Trials Registration ClinicalTrials.gov: NCT03382431; EudraCT: 2017-002563-18.
Collapse
Affiliation(s)
- John DeVincenzo
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | - Elizabeth Meals
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, Tennessee, USA
| | | | - Leah Daly
- Pulmocide Ltd, London, United Kingdom
| | | | - Julie Mori
- hVIVO Services Ltd, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Elawar F, Oraby AK, Kieser Q, Jensen LD, Culp T, West FG, Marchant DJ. Pharmacological targets and emerging treatments for respiratory syncytial virus bronchiolitis. Pharmacol Ther 2020; 220:107712. [PMID: 33121940 DOI: 10.1016/j.pharmthera.2020.107712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022]
Abstract
RSV infection of the lower respiratory tract in infants is the leading cause of pediatric hospitalizations and second to malaria in causing infant deaths worldwide. RSV also causes substantial morbidity in immunocompromised and elderly populations. The only available therapeutic is a prophylactic drug called Palivizumab that is a humanized monoclonal antibody, given to high-risk infants. However, this intervention is expensive and has a limited impact on annual hospitalization rates caused by RSV. No vaccine is available, nor are efficacious antivirals to treat an active infection, and there is still no consensus on how infants with bronchiolitis should be treated during hospital admission. In this comprehensive review, we briefly outline the function of the RSV proteins and their suitability as therapeutic targets. We then discuss the most promising drug candidates, their inhibitory mechanisms, and whether they are in the process of clinical trials. We also briefly discuss the reasons for some of the failures in RSV therapeutics and vaccines. In summary, we provide insight into current antiviral development and the considerations toward producing licensed antivirals and therapeutics.
Collapse
Affiliation(s)
- Farah Elawar
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ahmed K Oraby
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Misr University for Science &Technology, Al-Motamayez District, 6th of October City, P.O. Box 77, Egypt
| | - Quinten Kieser
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lionel D Jensen
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tyce Culp
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - David J Marchant
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
15
|
Targeting the Respiratory Syncytial Virus N 0-P Complex with Constrained α-Helical Peptides in Cells and Mice. Antimicrob Agents Chemother 2020; 64:AAC.00717-20. [PMID: 32660994 PMCID: PMC7508628 DOI: 10.1128/aac.00717-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. We demonstrate that these peptides inhibit RSV replication in vitro and in vivo by preventing the formation of the N0-P complex. The present strategy provides a novel means of targeting RSV replication with constrained macrocyclic peptides or small molecules and is broadly applicable to other viruses of the Mononegavirales order.
Collapse
|
16
|
Porter DP, Guo Y, Perry J, Gossage DL, Watkins TR, Chien JW, Jordan R. Assessment of Drug Resistance during Phase 2b Clinical Trials of Presatovir in Adults Naturally Infected with Respiratory Syncytial Virus. Antimicrob Agents Chemother 2020; 64:e02312-19. [PMID: 32071058 PMCID: PMC7449164 DOI: 10.1128/aac.02312-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 02/04/2023] Open
Abstract
This study summarizes drug resistance analyses in 4 recent phase 2b trials of the respiratory syncytial virus (RSV) fusion inhibitor presatovir in naturally infected adults. Adult hematopoietic cell transplant (HCT) recipients, lung transplant recipients, or hospitalized patients with naturally acquired, laboratory-confirmed RSV infection were enrolled in 4 randomized, double-blind, placebo-controlled studies with study-specific presatovir dosing. Full-length RSV F sequences amplified from nasal swabs obtained at baseline and postbaseline were analyzed by population sequencing. Substitutions at RSV fusion inhibitor resistance-associated positions are reported. Genotypic analyses were performed on 233 presatovir-treated and 149 placebo-treated subjects. RSV F variant V127A was present in 8 subjects at baseline. Population sequencing detected treatment-emergent substitutions in 10/89 (11.2%) HCT recipients with upper and 6/29 (20.7%) with lower respiratory tract infection, 1/35 (2.9%) lung transplant recipients, and 1/80 (1.3%) hospitalized patients treated with presatovir; placebo-treated subjects had no emergent resistance-associated substitutions. Subjects with substitutions at resistance-associated positions had smaller decreases in viral load during treatment relative to those without, but they had similar clinical outcomes. Subject population type and dosing regimen may have influenced RSV resistance development during presatovir treatment. Subjects with genotypic resistance development had decreased virologic responses compared to those without genotypic resistance but had comparable clinical outcomes.
Collapse
Affiliation(s)
| | - Ying Guo
- Gilead Sciences, Inc., Foster City, California, USA
| | - Jason Perry
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | |
Collapse
|
17
|
Hayden FG, Whitley RJ. Respiratory Syncytial Virus Antivirals: Problems and Progress. J Infect Dis 2020; 222:1417-1421. [DOI: 10.1093/infdis/jiaa029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Richard J Whitley
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|