1
|
Dao F, Niangaly A, Sogore F, Wague M, Dabitao D, Goita S, Hadara AS, Diakite O, Maiga M, Maiga FO, Cazevieille C, Cassan C, Talman AM, Djimde AA, Marin-Menendez A, Dembélé L. Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion. PLoS Negl Trop Dis 2025; 19:e0012790. [PMID: 39761327 PMCID: PMC11735006 DOI: 10.1371/journal.pntd.0012790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/15/2025] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species. In this study, we embarked on an investigation of P. malariae, including exploring its clinical disease characteristics, molecular aspects of red blood cell (RBC) invasion, and host-cell preferences. We conducted our research using parasites collected from infected individuals in Mali. Our findings revealed anaemia in most of P. malariae infected participants presented, in both symptomatic and asymptomatic cases. Regarding RBC invasion, quantified by an adapted flow cytometry based method, our study indicated that none of the seven antibodies tested, against receptors known for their role in P. falciparum invasion, had any impact on the ability of P. malariae to penetrate the host cells. However, when RBCs were pre-treated with various enzymes (neuraminidase, trypsin, and chymotrypsin), we observed a significant reduction in P. malariae invasion, albeit not a complete blockade. Furthermore, in a subset of P. malariae samples, we observed the parasite's capability to invade reticulocytes. These results suggest that P. malariae employs alternative pathways to enter RBCs of different maturities, which may differ from those used by P. falciparum.
Collapse
Affiliation(s)
- Francois Dao
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Amadou Niangaly
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fanta Sogore
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mamadou Wague
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Djeneba Dabitao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Siaka Goita
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Aboubacrin S. Hadara
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Ousmaila Diakite
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mohamed Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fatoumata O. Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Cecile Cassan
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Arthur M. Talman
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Laurent Dembélé
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| |
Collapse
|
2
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Feufack-Donfack LB, Baldor L, Roesch C, Tat B, Orban A, Seng D, Salvador J, Khim N, Carias L, King CL, Russell B, Nosten F, Ong AS, Mao H, Renia L, Lo E, Witkowski B, Popovici J. The PvRBP2b-TfR1 interaction is not essential for reticulocytes invasion by Plasmodium vivax isolates from Cambodia. NPJ Vaccines 2024; 9:232. [PMID: 39578462 PMCID: PMC11584642 DOI: 10.1038/s41541-024-01031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Plasmodium vivax is the most widespread of the different Plasmodium species able to infect humans and is responsible for most malaria cases outside Africa. An effective, strain-transcending vaccine that alleviates or suppresses erythrocyte invasion would be a game-changer in eliminating vivax malaria. Recently, the binding of P. vivax Reticulocyte Binding Protein 2b (PvRBP2b) to human Transferrin receptor (TfR1) has been described as essential for reticulocyte invasion, making this parasite protein an appealing vaccine candidate. Here, using P. vivax Cambodian clinical isolates in robust ex vivo invasion assays, we show that anti-PvRBP2b polyclonal and monoclonal antibodies that inhibit binding of PvRBP2b to TfR1 do not block P. vivax invasion into reticulocytes even at high concentrations. Anti-TfR1 antibodies do not inhibit P. vivax invasion either. Combinations at high concentrations of human monoclonal antibodies targeting different PvRBP2b epitopes do not inhibit invasion. Combinations of anti-PvRBP2b with anti-PvDBP do not enhance invasion inhibition caused by anti-PvDBP alone. We also show that the invasion of Cambodian P. vivax is trypsin-resistant while TfR1 is trypsin-sensitive, and we demonstrate that TfR1 is not recycled following trypsin treatment. We determined the PvRBP2b sequence of all isolates used in the invasion assays and analyzed polymorphism within epitopes recognized by anti-PvRBP2b antibodies. We show that polymorphism does not explain the absence of neutralization. Anti-PvRBP2b polyclonal antibodies recognized all four isolates tested in immunofluorescence assays while not inhibiting P. vivax invasion. Overall, our results demonstrate that PvRBP2b binding to TfR1 is not essential for invasion into reticulocytes of P. vivax Cambodian strains questioning the relevance of PvRBP2b as vaccine candidate.
Collapse
Affiliation(s)
| | - Léa Baldor
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Baura Tat
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Agnes Orban
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Dynang Seng
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Jeremy Salvador
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Nimol Khim
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lenore Carias
- Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, USA
- Cleveland Veterans Affairs Medical Center, Cleveland, USA
| | - Bruce Russell
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Old Road, Oxford, UK
| | - Alice Sm Ong
- A*STAR ID Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
| | - Haitong Mao
- A*STAR ID Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
| | - Laurent Renia
- A*STAR ID Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
| | - Eugenia Lo
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, USA
| | - Benoit Witkowski
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Université Paris-Cité, Paris, France.
| |
Collapse
|
4
|
Anstey NM, Tham WH, Shanks GD, Poespoprodjo JR, Russell BM, Kho S. The biology and pathogenesis of vivax malaria. Trends Parasitol 2024; 40:573-590. [PMID: 38749866 DOI: 10.1016/j.pt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/06/2024]
Abstract
Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dennis Shanks
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Jeanne R Poespoprodjo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia; Mimika District Hospital and District Health Authority, Timika, Central Papua, Indonesia
| | - Bruce M Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia
| |
Collapse
|
5
|
Little E, Shenkutie TT, Negash MT, Abagero BR, Abebe A, Popovici J, Feleke SM, Lo E. Prevalence and Characteristics of Plasmodium vivax Gametocytes in Duffy-Positive and Duffy-Negative Populations across Ethiopia. Am J Trop Med Hyg 2024; 110:1091-1099. [PMID: 38626749 PMCID: PMC11154031 DOI: 10.4269/ajtmh.23-0877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 04/18/2024] Open
Abstract
Plasmodium parasites replicate asexually in human hosts. The proportion of infections that carries gametocytes is a proxy for human-to-mosquito transmissibility. It is unclear which proportion of Plasmodium vivax infections in Duffy-negative populations carries gametocytes. We determined the prevalence and characteristics of P. vivax gametocytes in Duffy-positive and -negative populations across broad regions of Ethiopia. Finger-prick blood samples were collected for microscopic and molecular screening of Plasmodium parasites and Duffy status of individuals. Molecular screening of Plasmodium species and Duffy blood group genotyping was done using SYBR green and the Taqman quantitative polymerase chain reaction method. Of the 447 febrile patients who were shown to be P. vivax smear positive, 414 (92.6%) were confirmed by molecular screening as P. vivax and 16 (3.9%) of them were from Duffy-negative individuals. Of these, 5 of 16 (31.3%) Duffy-negative P. vivax-infected samples were detected with gametocytes. Of the 398 Duffy-positive P. vivax-infected samples, 150 (37.7%) were detected with gametocytes, slightly greater than that in Duffy-negative samples. This study highlights the presence of P. vivax gametocytes in Duffy-negative infections, suggestive of human-to-mosquito transmissibility. Although P. vivax infections in Duffy-negative individuals were commonly associated with low parasitemia, some of these infections were shown to have relatively high parasitemia and may represent a prominent erythrocyte invasion capability of P. vivax, and hidden reservoirs that can contribute to transmission. A better understanding of P. vivax transmission biology and gametocyte function particularly in Duffy-negative populations would aid future treatment and management of P. vivax malaria in Africa.
Collapse
Affiliation(s)
- Ebony Little
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina
| | - Tassew T. Shenkutie
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, Pennsylvania
- Department of Medical Laboratory Sciences, Debre Brehan University, Ethiopia
| | | | - Beka R. Abagero
- Department of Molecular and Cellular Biology and Genetics, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Bouyssou I, El Hoss S, Doderer-Lang C, Schoenhals M, Rasoloharimanana LT, Vigan-Womas I, Ratsimbasoa A, Abate A, Golassa L, Mabilotte S, Kessler P, Guillotte-Blisnick M, Martinez FJ, Chitnis CE, Strouboulis J, Ménard D. Unveiling P. vivax invasion pathways in Duffy-negative individuals. Cell Host Microbe 2023; 31:2080-2092.e5. [PMID: 38056460 PMCID: PMC10727064 DOI: 10.1016/j.chom.2023.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Vivax malaria has long been thought to be absent from sub-Saharan Africa owing to the high proportion of individuals lacking the Duffy antigen receptor for chemokines (DARC) in their erythrocytes. The interaction between P. vivax Duffy-binding protein (PvDBP) and DARC is assumed to be the main pathway used by merozoites to invade reticulocytes. However, the increasing number of reports of vivax malaria cases in genotypically Duffy-negative (DN) individuals has raised questions regarding the P. vivax invasion pathway(s). Here, we show that a subset of DN erythroblasts transiently express DARC during terminal erythroid differentiation and that P. vivax merozoites, irrespective of their origin, can invade DARC+ DN erythroblasts. These findings reveal that a large number of DN individuals may represent a silent reservoir of deep P. vivax infections at the sites of active erythropoiesis with low or no parasitemia, and it may represent an underestimated biological problem with potential clinical consequences in sub-Saharan Africa.
Collapse
Affiliation(s)
- Isabelle Bouyssou
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015 Paris, France; École Doctorale ED515 "Complexité du Vivant", Sorbonne Université, 75005 Paris, France; Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Sara El Hoss
- Red Cell Haematology Laboratory, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, UK.
| | - Cécile Doderer-Lang
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Matthieu Schoenhals
- Immunology of Infectious Diseases, Institut Pasteur of Madagascar, Antananarivo 101, Madagasca
| | | | | | - Arsène Ratsimbasoa
- Faculté de Médecine, Université de Fianarantsoa, Fianarantsoa 301, Madagascar
| | - Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Solenne Mabilotte
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Pascal Kessler
- Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | | | - Francisco J Martinez
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - John Strouboulis
- Red Cell Haematology Laboratory, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, UK.
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France; Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
7
|
Little E, Shenkutie TT, Negash MT, Abagero BR, Abebe A, Popovici J, Mekasha S, Lo E. Prevalence and characteristics of Plasmodium vivax Gametocytes in Duffy-positive and Duffy-negative populations across Ethiopia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.10.23299780. [PMID: 38168152 PMCID: PMC10760292 DOI: 10.1101/2023.12.10.23299780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Plasmodium parasites replicate asexually in the human host. The proportion of infections that carries gametocytes is a proxy for human-to-mosquito transmissibility. It is unclear what proportion of P. vivax infections in Duffy-negatives carries gametocytes. This study aims to determine the prevalence of P. vivax in Duffy-negatives across broad regions of Ethiopia and characterize parasite stages. Finger-prick blood samples were collected for microscopic and molecular screening of Plasmodium parasites and Duffy status of individuals. Molecular screening of plasmodium species and Duffy blood group genotyping was done using SYBR green and Taqman qPCR method. Among the total 447 samples, 414 (92.6%) were P. vivax confirmed and, 16 (3.9%) of them were from Duffy-negatives. Of these, 5/16 (31.3%) Duffy-negative P. vivax-infected samples were detected with gametocytes. Of the 398 Duffy-positive P. vivax-infected samples, 150 (37.7%) were detected with gametocytes, slightly higher than that in Duffy-negatives. This study highlights the presence of P. vivax gametocytes in Duffy-negative infections, suggestive of human-to-mosquito transmissibility. Although P. vivax infections in Duffy-negatives are commonly associated with low parasitemia, some of these infections were shown with relatively high parasitemia and may represent better erythrocyte invasion capability of P. vivax and hidden reservoirs that can contribute to transmission. A better understanding of P. vivax transmission biology and gametocyte function particularly in Duffy-negative populations would aid future treatment and management of vivax malaria in Africa.
Collapse
Affiliation(s)
- Ebony Little
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina, USA
| | - Tassew T. Shenkutie
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, USA
- Department of Medical Laboratory Sciences, Debre Brehan University, Debre Brehan, Ethiopia
| | | | - Beka R. Abagero
- Department of Molecular and Cellular Biology and Genetics, Drexel University, College of Medicine, Philadelphia, PA, USA
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Sindew Mekasha
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina, USA
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Dash R, Skillman KM, Pereira L, Mascarenhas A, Dass S, Walke J, Almeida A, Fernandes M, Gomes E, White J, Chery-Karschney L, Khandeparkar A, Rathod PK, Duraisingh MT, Kanjee U. Development of a Plasmodium vivax biobank for functional ex vivo assays. Malar J 2023; 22:250. [PMID: 37653486 PMCID: PMC10470152 DOI: 10.1186/s12936-023-04668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. METHODS In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either - 80 °C or liquid nitrogen were also compared. RESULTS Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P < 0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection of 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitaemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (> 20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 h. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average of 30.0% post-MACS parasitaemia and an average of 5.30 × 105 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 days) or long-term (7-10 years) storage at - 80 °C on parasite recovery, enrichment or viability was observed. CONCLUSIONS Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.
Collapse
Affiliation(s)
- Rashmi Dash
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Kristen M Skillman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ligia Pereira
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Anjali Mascarenhas
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jayashri Walke
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Anvily Almeida
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mezia Fernandes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Edwin Gomes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Laura Chery-Karschney
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | | | - Pradipsinh K Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
10
|
Biswal D, Mirdha BR. A case of atypical vivax malaria with a global review of reports on myriads of morpho-variations in parasitized red blood cells. Access Microbiol 2023; 5:000461.v3. [PMID: 37223061 PMCID: PMC10202396 DOI: 10.1099/acmi.0.000461.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/07/2023] [Indexed: 05/25/2023] Open
Abstract
Plasmodium vivax, one of the major species associated with human malaria, continues to be a major public health problem in many parts of the world. Numerous studies related to vivax malaria have described quantitative haematological findings (level of haemoglobin, thrombocytopaenia, haematocrit values), but diverse morphological changes of parasite forms within infected red blood cells (iRBCs) have been mentioned only in few studies. Here we report a case of a 13-year-old boy who presented with fever, significant low platelet counts and hypovolaemia that created a diagnostic dilemma. Detection of microgametocytes by microscopic examinations, further confirmed by multiplex nested PCR assays and response to anti-malarials, helped to make the diagnosis. We present an atypical case of vivax malaria with a review of morpho-variations of iRBCs and have summarized the characteristics that aid in creating increased awareness among laboratory health professionals and public health workers.
Collapse
Affiliation(s)
- Debasish Biswal
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bijay Ranjan Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Kumari S, Sinha A. Culture and transfection: Two major bottlenecks in understanding Plasmodium vivax biology. Front Microbiol 2023; 14:1144453. [PMID: 37082177 PMCID: PMC10110902 DOI: 10.3389/fmicb.2023.1144453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The long term in vitro culture of Plasmodium falciparum was successfully established by Trager and Jensen in 1976; however it largely remains unachieved for P. vivax. The major obstacle associated with Plasmodium vivax in vitro culture is its predilection for invading younger reticulocytes and the complex remodelling of invaded reticulocytes. There are many factors under exploration for this predilection and host–parasite interactions between merozoites and invaded reticulocytes. These include various factors related to parasite, host and environment such as compromised reticulocyte osmotic stability after invasion, abundance of iron in the reticulocytes which makes them favourable for P. vivax growth and propagation and role of a hypoxic environment in P. vivax in vitro growth. P. vivax blood stage transfection represents another major hurdle towards understanding this parasite’s complex biology. Efforts in making this parasite amenable for molecular investigation by genetic modification are limited. Newer approaches in sustaining a longer in vitro culture and thereby help advancing transfection technologies in P. vivax are urgently needed that can be explored to understand the unique biology of this parasite.
Collapse
|
12
|
Dash R, Skillman KM, Pereira L, Mascarenhas A, Dass S, Walke J, Almeida A, Fernandes M, Gomes E, White J, Chery-Karschney L, Khandeparkar A, Rathod PK, Duraisingh MT, Kanjee U. Development of a Plasmodium vivax biobank for functional ex vivo assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533128. [PMID: 36993272 PMCID: PMC10055260 DOI: 10.1101/2023.03.17.533128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. Methods In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either -80°C or liquid nitrogen were also compared. Results Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P<0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection with 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (>20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 hours. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average 30.0% post-MACS parasitemia and an average 5.30 × 10 5 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 day) or long term (7 - 10 year) storage at -80°C on parasite recovery, enrichment or viability was observed. Conclusions Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.
Collapse
|
13
|
Duffy PE. Current approaches to malaria vaccines. Curr Opin Microbiol 2022; 70:102227. [PMID: 36343566 PMCID: PMC11127243 DOI: 10.1016/j.mib.2022.102227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The complex Plasmodium life cycle offers different vaccine approaches with distinct parasitological and clinical effects. The approaches and their rationales were established decades ago: vaccines targeting pre-erythrocytic (sporozoite and liver-stage) parasites prevent infection, those to blood-stage parasites reduce disease, and those to sexual-stage parasites or mosquito vector reduce transmission and eliminate malaria through herd immunity. The pre-erythrocytic RTS,S vaccine (Mosquirix, GlaskoSmithKline (GSK)), recommended by WHO in 2021, reduces clinical malaria in children. Knowledge of parasite biology, host-parasite interactions, and immune mechanisms is informing new concepts to improve on RTS,S and to target other parasite stages. This review emphasizes vaccine approaches and candidates currently in the clinic or likely to enter clinical testing soon.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Molina-Franky J, Reyes C, Picón Jaimes YA, Kalkum M, Patarroyo MA. The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes. Int J Mol Sci 2022; 23:ijms232314528. [PMID: 36498854 PMCID: PMC9739029 DOI: 10.3390/ijms232314528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease's extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax's exclusive invasion of reticulocytes, which represent 1-2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite's alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax's merozoite invasion to contribute to a better understanding of the parasite's biology, pathogenesis and epidemiology.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - César Reyes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Animal Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | | | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: (M.K.); (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence: (M.K.); (M.A.P.)
| |
Collapse
|
15
|
Satchwell TJ. Generation of red blood cells from stem cells: Achievements, opportunities and perspectives for malaria research. Front Cell Infect Microbiol 2022; 12:1039520. [PMID: 36452302 PMCID: PMC9702814 DOI: 10.3389/fcimb.2022.1039520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 06/22/2024] Open
Abstract
Parasites of the genus Plasmodium that cause malaria survive within humans by invasion of, and proliferation within, the most abundant cell type in the body, the red blood cell. As obligate, intracellular parasites, interactions between parasite and host red blood cell components are crucial to multiple aspects of the blood stage malaria parasite lifecycle. The requirement for, and involvement of, an array of red blood cell proteins in parasite invasion and intracellular development is well established. Nevertheless, detailed mechanistic understanding of host cell protein contributions to these processes are hampered by the genetic intractability of the anucleate red blood cell. The advent of stem cell technology and more specifically development of methods that recapitulate in vitro the process of red blood cell development known as erythropoiesis has enabled the generation of erythroid cell stages previously inaccessible in large numbers for malaria studies. What is more, the capacity for genetic manipulation of nucleated erythroid precursors that can be differentiated to generate modified red blood cells has opened new horizons for malaria research. This review summarises current methodologies that harness in vitro erythroid differentiation of stem cells for generation of cells that are susceptible to malaria parasite invasion; discusses existing and emerging approaches to generate novel red blood cell phenotypes and explores the exciting potential of in vitro derived red blood cells for improved understanding the broad role of host red blood cell proteins in malaria pathogenesis.
Collapse
|
16
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Chakrabarti R, Chery-Karschney L, White J, Mascarenhas A, Skillman KM, Kanjee U, Babar PH, Patrapuvich R, Mohapatra PK, Patankar S, Smith JD, Anvikar A, Valecha N, Rahi M, Duraisingh MT, Rathod PK. Diverse Malaria Presentations across National Institutes of Health South Asia International Center for Excellence in Malaria Research Sites in India. Am J Trop Med Hyg 2022; 107:107-117. [PMID: 36228910 PMCID: PMC9662227 DOI: 10.4269/ajtmh.21-1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/14/2022] [Indexed: 11/07/2022] Open
Abstract
The Malaria Evolution in South Asia (MESA) International Center for Excellence in Malaria Research (ICEMR) was established by the US National Institutes of Health (US NIH) as one of 10 malaria research centers in endemic countries. In 10 years of hospital-based and field-based work in India, the MESA-ICEMR has documented the changing epidemiology and transmission of malaria in four different parts of India. Malaria Evolution in South Asia-ICEMR activities, in collaboration with Indian partners, are carried out in the broad thematic areas of malaria case surveillance, vector biology and transmission, antimalarial resistance, pathogenesis, and host response. The program integrates insights from surveillance and field studies with novel basic science studies. This is a two-pronged approach determining the biology behind the disease patterns seen in the field, and generating new relevant biological questions about malaria to be tested in the field. Malaria Evolution in South Asia-ICEMR activities inform local and international stakeholders on the current status of malaria transmission in select parts of South Asia including updates on regional vectors of transmission of local parasites. The community surveys and new laboratory tools help monitor ongoing efforts to control and eliminate malaria in key regions of South Asia including the state of evolving antimalarial resistance in different parts of India, new host biomarkers of recent infection, and molecular markers of pathogenesis from uncomplicated and severe malaria.
Collapse
Affiliation(s)
- Rimi Chakrabarti
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa, India
| | | | - John White
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Anjali Mascarenhas
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa, India
| | - Kristen M. Skillman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Prasad H. Babar
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa, India
| | - Rapatbhorn Patrapuvich
- Drug Research Unit for Malaria (DRUM), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Swati Patankar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| | | | - Anup Anvikar
- National Institute of Biologicals, Noida, UP, India
| | - Neena Valecha
- National Institute of Malaria Research, New Delhi, India
| | - Manju Rahi
- Division of Epidemiology and Communicable Disease, Indian Council of Medical Research, New Delhi, India
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
18
|
De Meulenaere K, Prajapati SK, Villasis E, Cuypers B, Kattenberg JH, Kasian B, Laman M, Robinson LJ, Gamboa D, Laukens K, Rosanas-Urgell A. Band 3-mediated Plasmodium vivax invasion is associated with transcriptional variation in PvTRAg genes. Front Cell Infect Microbiol 2022; 12:1011692. [PMID: 36250048 PMCID: PMC9563252 DOI: 10.3389/fcimb.2022.1011692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
The Plasmodium vivax reticulocyte invasion process is still poorly understood, with only a few receptor-ligand interactions identified to date. Individuals with the Southeast Asian ovalocytosis (SAO) phenotype have a deletion in the band 3 protein on the surface of erythrocytes, and are reported to have a lower incidence of clinical P. vivax malaria. Based on this observation, band 3 has been put forward as a receptor for P. vivax invasion, although direct proof is still lacking. In this study, we combined functional ex vivo invasion assays and transcriptome sequencing to uncover a band 3-mediated invasion pathway in P. vivax and potential band 3 ligands. Invasion by P. vivax field isolates was 67%-71% lower in SAO reticulocytes compared with non-SAO reticulocytes. Reticulocyte invasion was decreased by 40% and 27%-31% when blocking with an anti-band 3 polyclonal antibody and a PvTRAg38 peptide, respectively. To identify new band 3 receptor candidates, we mRNA-sequenced schizont-stage isolates used in the invasion assays, and observed high transcriptional variability in multigene and invasion-related families. Transcriptomes of isolates with low or high dependency on band 3 for invasion were compared by differential expression analysis, which produced a list of band 3 ligand candidates with high representation of PvTRAg genes. Our ex vivo invasion assays have demonstrated that band 3 is a P. vivax invasion receptor and confirm previous in vitro studies showing binding between PvTRAg38 and band 3, although the lower and variable inhibition levels observed suggest the involvement of other ligands. By coupling transcriptomes and invasion phenotypes from the same isolates, we identified a list of band 3 ligand candidates, of which the overrepresented PvTRAg genes are the most promising for future research.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Surendra Kumar Prajapati
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | | | - Bernadine Kasian
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Leanne J. Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Health Security and Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Thiam LG, Mangou K, Ba A, Mbengue A, Bei AK. Leveraging genome editing to functionally evaluate Plasmodium diversity. Trends Parasitol 2022; 38:558-571. [PMID: 35469746 DOI: 10.1016/j.pt.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The ambitious goal of malaria elimination requires an in-depth understanding of the parasite's biology to counter the growing threat of antimalarial resistance and immune evasion. Timely assessment of the functional impact of antigenic diversity in the early stages of vaccine development will be critical for achieving the goal of malaria control, elimination, and ultimately eradication. Recent advances in targeted genome editing enabled the functional validation of resistance-associated markers in Plasmodium falciparum, the deadliest malaria-causing pathogen and strain-specific immune neutralization. This review explores recent advances made in leveraging genome editing to aid the functional evaluation of Plasmodium diversity and highlights how these techniques can assist in prioritizing both therapeutic and vaccine candidates.
Collapse
Affiliation(s)
- Laty Gaye Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Khadidiatou Mangou
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amy K Bei
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| |
Collapse
|
20
|
Shaw S, Knüsel S, Abbühl D, Naguleswaran A, Etzensperger R, Benninger M, Roditi I. Cyclic AMP signalling and glucose metabolism mediate pH taxis by African trypanosomes. Nat Commun 2022; 13:603. [PMID: 35105902 PMCID: PMC8807625 DOI: 10.1038/s41467-022-28293-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/18/2022] [Indexed: 01/20/2023] Open
Abstract
The collective movement of African trypanosomes on semi-solid surfaces, known as social motility, is presumed to be due to migration factors and repellents released by the parasites. Here we show that procyclic (insect midgut) forms acidify their environment as a consequence of glucose metabolism, generating pH gradients by diffusion. Early and late procyclic forms exhibit self-organising properties on agarose plates. While early procyclic forms are repelled by acid and migrate outwards, late procyclic forms remain at the inoculation site. Furthermore, trypanosomes respond to exogenously formed pH gradients, with both early and late procyclic forms being attracted to alkali. pH taxis is mediated by multiple cyclic AMP effectors: deletion of one copy of adenylate cyclase ACP5, or both copies of the cyclic AMP response protein CARP3, abrogates the response to acid, while deletion of phosphodiesterase PDEB1 completely abolishes pH taxis. The ability to sense pH is biologically relevant as trypanosomes experience large changes as they migrate through their tsetse host. Supporting this, a CARP3 null mutant is severely compromised in its ability to establish infections in flies. Based on these findings, we propose that the expanded family of adenylate cyclases in trypanosomes might govern other chemotactic responses in their two hosts. African trypanosomes collectively move in a process called social motility. Here, the authors show that procyclic forms acidify their environment as a consequence of glucose metabolism, generating pH gradients by diffusion that are sensed via cyclic AMP signalling. Parasite mutants defective in cAMP signaling are inhibited in fly infection.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Daniel Abbühl
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Hoque MR, Nyunt MH, Han JH, Muh F, Lee SK, Park JH, Lu F, Park WS, Han ET, Na S. Identification of Reticulocyte Binding Domain of Plasmodium ovale curtisi Duffy Binding Protein (PocDBP) Involved in Reticulocyte Invasion. Front Cell Infect Microbiol 2021; 11:764293. [PMID: 34956929 PMCID: PMC8704803 DOI: 10.3389/fcimb.2021.764293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The Plasmodium ovale curtisi (Poc) prevalence has increased substantially in sub-Saharan African countries as well as regions of Southeast Asia. Poc parasite biology has not been explored much to date; in particular, the invasion mechanism of this malaria parasite remains unclear. In this study, the binding domain of the Duffy binding protein of P. ovale curtisi (PocDBP) was characterized as an important ligand for reticulocyte invasion. The homologous region of the P. vivax Duffy binding protein in PocDBP, named PocDBP-RII herein, was selected, and the recombinant PocDBP-RII protein was expressed in an Escherichia coli system. This was used to analyze reticulocyte binding activity using fluorescence-activated cell sorting and immune serum production in rabbits. The binding specificity was proven by treating reticulocytes with trypsin, chymotrypsin and neuraminidase. The amino acid sequence homology in the N-terminal Cys-rich region was found to be ~ 44% between PvDBP and PocDBP. The reticulocyte binding activity of PocDBP-RII was significantly higher than the erythrocyte binding activity and was concentration dependent. Erythrocyte binding was reduced significantly by chymotrypsin treatment and inhibited by an anti-PocDBP-RII antibody. This finding suggests that PocDBP may be an important ligand in the reticulocyte invasion process of P. ovale curtisi.
Collapse
Affiliation(s)
- Mohammad Rafiul Hoque
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | | | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Feng Lu
- School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
22
|
Baird JK. Basic Research of Plasmodium vivax Biology Enabling Its Management as a Clinical and Public Health Problem. Front Cell Infect Microbiol 2021; 11:696598. [PMID: 34540716 PMCID: PMC8447957 DOI: 10.3389/fcimb.2021.696598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
The emerging understanding of Plasmodium vivax as an infection seated in extravascular spaces of its human host carries fundamentally important implications for its management as a complex clinical and public health problem. This progress begins to reverse decades of neglected research borne of the false dogma of P. vivax as an intrinsically benign and inconsequential parasite. This Review provides real world context for the on-going laboratory explorations of the molecular and cellular events in the life of this parasite. Chemotherapies against the latent reservoir impose extraordinarily complex and difficult problems of science and medicine, but great strides in studies of the biology of hepatic P. vivax promise solutions. Fundamental assumptions regarding the interpretation of parasitaemia in epidemiology, clinical medicine, and public health are being revisited and reassessed in light of new studies of P. vivax cellular/molecular biology and pathogenesis. By examining these long overlooked complexities of P. vivax malaria, we open multiple new avenues to vaccination, chemoprevention, countermeasures against transmission, epidemiology, diagnosis, chemotherapy, and clinical management. This Review expresses how clarity of vision of biology and pathogenesis may rationally and radically transform the multiple means by which we may combat this insidiously harmful infection.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat Microbiol 2021; 6:991-999. [PMID: 34294905 DOI: 10.1038/s41564-021-00939-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
More than one-third of the world's population is exposed to Plasmodium vivax malaria, mainly in Asia1. P. vivax preferentially invades reticulocytes (immature red blood cells)2-4. Previous work has identified 11 parasite proteins involved in reticulocyte invasion, including erythrocyte binding protein 2 (ref. 5) and the reticulocyte-binding proteins (PvRBPs)6-10. PvRBP2b binds to the transferrin receptor CD71 (ref. 11), which is selectively expressed on immature reticulocytes12. Here, we identified CD98 heavy chain (CD98), a heteromeric amino acid transporter from the SLC3 family (also known as SLCA2), as a reticulocyte-specific receptor for the PvRBP2a parasite ligand using mass spectrometry, flow cytometry, biochemical and parasite invasion assays. We characterized the expression level of CD98 at the surface of immature reticulocytes (CD71+) and identified an interaction between CD98 and PvRBP2a expressed at the merozoite surface. Our results identify CD98 as an additional host membrane protein, besides CD71, that is directly associated with P. vivax reticulocyte tropism. These findings highlight the potential of using PvRBP2a as a vaccine target against P. vivax malaria.
Collapse
|
24
|
Thomson-Luque R, Bautista JM. Home Sweet Home: Plasmodium vivax-Infected Reticulocytes-The Younger the Better? Front Cell Infect Microbiol 2021; 11:675156. [PMID: 34055670 PMCID: PMC8162270 DOI: 10.3389/fcimb.2021.675156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023] Open
Abstract
After a century of constant failure to produce an in vitro culture of the most widespread human malaria parasite Plasmodium vivax, recent advances have highlighted the difficulties to provide this parasite with a healthy host cell to invade, develop, and multiply under in vitro conditions. The actual level of understanding of the heterogeneous populations of cells—framed under the name ‘reticulocytes’—and, importantly, their adequate in vitro progression from very immature reticulocytes to normocytes (mature erythrocytes) is far from complete. The volatility of its individual stability may suggest the reticulocyte as a delusory cell, particularly to be used for stable culture purposes. Yet, the recent relevance gained by a specific subset of highly immature reticulocytes has brought some hope. Very immature reticulocytes are characterized by a peculiar membrane harboring a plethora of molecules potentially involved in P. vivax invasion and by an intracellular complexity dynamically changing upon its quick maturation into normocytes. We analyze the potentialities offered by this youngest reticulocyte subsets as an ideal in vitro host cell for P. vivax.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|