1
|
Lebedev A, Kim K, Ozhmegova E, Antonova A, Kazennova E, Tumanov A, Kuznetsova A. Rev Protein Diversity in HIV-1 Group M Clades. Viruses 2024; 16:759. [PMID: 38793640 PMCID: PMC11125641 DOI: 10.3390/v16050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The HIV-1 Rev protein expressed in the early stage of virus replication is involved in the nuclear export of some forms of virus RNA. Naturally occurring polymorphisms in the Rev protein could influence its activity. The association between the genetic features of different virus variants and HIV infection pathogenesis has been discussed for many years. In this study, Rev diversity among HIV-1 group M clades was analyzed to note the signatures that could influence Rev activity and, subsequently, clinical characteristics. From the Los Alamos HIV Sequence Database, 4962 Rev sequences were downloaded and 26 clades in HIV-1 group M were analyzed for amino acid changes, conservation in consensus sequences, and the presence of clade-specific amino acid substitutions (CSSs) and the Wu-Kabat protein variability coefficient (WK). Subtypes G, CRF 02_AG, B, and A1 showed the largest amino acid changes and diversity. The mean conservation of the Rev protein was 80.8%. In consensus sequences, signatures that could influence Rev activity were detected. In 15 out of 26 consensus sequences, an insertion associated with the reduced export activity of the Rev protein, 95QSQGTET96, was identified. A total of 32 CSSs were found in 16 clades, wherein A6 had the 41Q substitution in the functionally significant region of Rev. The high values of WK coefficient in sites 51 and 82, located on the Rev interaction surface, indicate the susceptibility of these positions to evolutionary replacements. Thus, the noted signatures require further investigation.
Collapse
Affiliation(s)
- Aleksey Lebedev
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
- Mechnikov Scientific Research Institute of Vaccines and Serums, 105064 Moscow, Russia
| | - Kristina Kim
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Ekaterina Ozhmegova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anastasiia Antonova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Elena Kazennova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Aleksandr Tumanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anna Kuznetsova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| |
Collapse
|
2
|
Getaneh Y, Getnet F, Ning F, Rashid A, Liao L, Yi F, Shao Y. HIV-1 Disease Progression and Drug Resistance Mutations among Children on First-Line Antiretroviral Therapy in Ethiopia. Biomedicines 2023; 11:2293. [PMID: 37626789 PMCID: PMC10452141 DOI: 10.3390/biomedicines11082293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Background: High rates of disease progression and HIV drug resistance (HIVDR) among adults taking highly active antiretroviral treatment (HAART) in Sub-Saharan Africa were previously documented. However, children were generally not considered despite their greater risk. Hence, this study was aimed to evaluate HIV-1 disease progression and drug resistance mutation among children on first-line antiretroviral therapy in Ethiopia. Method: A longitudinal study was conducted among 551 HIV-positive children (<15 years old) recruited between 2017 and 2019 at 40 antiretroviral treatment delivery sites in Ethiopia. Disease progression was retrospectively measured over a 12-year (2007-2019) follow-up as the progress towards immunosuppression. Two consecutive viral load (VL) tests were conducted in 6-month intervals to assess virologic failure (VF). For children with VF, HIV-1 genotyping and sequencing was performed for the pol gene region using in-house assay validated at the Chinese Center for Disease Control and Prevention, and the Stanford HIVDB v9.0 algorithm was used for identification of drug resistance mutations. The Kaplan-Meier analysis and Cox proportional hazards regression model were used to estimate the rate and predictors of disease progression, respectively. Results: The disease progression rate was 6.3 per 100 person-years-observation (95% CI = 4.21-8.53). Overall immunosuppression (CD4 count < 200 cells/mm3) during the 12-year follow-up was 11.3% (95% CI = 7.5-15.1). Immunosuppression was significantly increased as of the mean duration of 10.5 (95% CI = 10.1-10.8) years (38.2%) to 67.8% at 12 years (p < 0.001). Overall, 14.5% had resistance to at least one drug, and 6.2% had multi-drug resistance. A resistance of 67.8% was observed among children with VF. Resistance to non-nucleotide reverse transcriptase inhibitors (NNRTI) and nucleotide reverse transcriptase inhibitors (NRTI) drugs were 11.4% and 10.1%, respectively. Mutations responsible for NRTI resistance were M184V (30.1%), K65R (12.1%), and D67N (5.6%). Moreover, NNRTI-associated mutations were K103N (14.8%), Y181C (11.8%), and G190A (7.7%). Children who had a history of opportunistic infection [AHR (95% CI) = 3.4 (1.8-6.2)], vitamin D < 20 ng/mL [AHR (95% CI) = 4.5 (2.1-9.9)], drug resistance [AHR (95% CI) = 2.2 (1.4-3.6)], and VF [AHR (95% CI) = 2.82 (1.21, 3.53)] had a higher hazard of disease progression; whereas, being orphan [AOR (95% CI) = 1.8 (1.2-3.1)], history of drug substitution [(AOR (95% CI) = 4.8 (2.1-6.5), hemoglobin < 12 mg/dL [AOR (95% CI) = 1.2 (1.1-2.1)] had higher odds of developing drug resistance. Conclusions: Immunosuppression was increasing over time and drug resistance was also substantially high. Enhancing routine monitoring of viral load and HIVDR and providing a vitamin-D supplement during clinical management could help improve the immunologic outcome. Limiting HAART substitution is also crucial for children taking HAART in Ethiopia.
Collapse
Affiliation(s)
- Yimam Getaneh
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310027, China;
- Ethiopian Public Health Institute, Addis Ababa P.O. Box 1242, Ethiopia
| | - Fentabil Getnet
- Ethiopian Public Health Institute, Addis Ababa P.O. Box 1242, Ethiopia
- Takemi Program in International Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Feng Ning
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Abdur Rashid
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Lingjie Liao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Feng Yi
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yiming Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310027, China;
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
3
|
Troyano-Hernáez P, Reinosa R, Holguín A. Genetic Diversity and Low Therapeutic Impact of Variant-Specific Markers in HIV-1 Pol Proteins. Front Microbiol 2022; 13:866705. [PMID: 35910645 PMCID: PMC9330395 DOI: 10.3389/fmicb.2022.866705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of new HIV-1 variants pose a challenge for the effectiveness of antiretrovirals (ARV) targeting Pol proteins. During viral evolution, non-synonymous mutations have fixed along the viral genome, leading to amino acid (aa) changes that can be variant-specific (V-markers). Those V-markers fixed in positions associated with drug resistance mutations (DRM), or R-markers, can impact drug susceptibility and resistance pathways. All available HIV-1 Pol sequences from ARV-naïve subjects were downloaded from the United States Los Alamos HIV Sequence Database, selecting 59,733 protease (PR), 6,437 retrotranscriptase (RT), and 6,059 integrase (IN) complete sequences ascribed to the four HIV-1 groups and group M subtypes and circulating recombinant forms (CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio), we inferred the consensus sequences for each Pol protein and HIV-1 variant to analyze the aa conservation in Pol. We analyzed the Wu–Kabat protein variability coefficient (WK) in PR, RT, and IN group M to study the susceptibility of each site to evolutionary replacements. We identified as V-markers the variant-specific aa changes present in >75% of the sequences in variants with >5 available sequences, considering R-markers those V-markers that corresponded to DRM according to the IAS-USA2019 and Stanford-Database 9.0. The mean aa conservation of HIV-1 and group M consensus was 82.60%/93.11% in PR, 88.81%/94.07% in RT, and 90.98%/96.02% in IN. The median group M WK was 10 in PR, 4 in RT, and 5 in IN. The residues involved in binding or catalytic sites showed a variability <0.5%. We identified 106 V-markers: 31 in PR, 28 in RT, and 47 in IN, present in 11, 12, and 13 variants, respectively. Among them, eight (7.5%) were R-markers, present in five variants, being minor DRM with little potential effect on ARV susceptibility. We present a thorough analysis of Pol variability among all HIV-1 variants circulating to date. The relatively high aa conservation observed in Pol proteins across HIV-1 variants highlights their critical role in the viral cycle. However, further studies are needed to understand the V-markers’ impact on the Pol proteins structure, viral cycle, or treatment strategies, and periodic variability surveillance studies are also required to understand PR, RT, and IN evolution.
Collapse
|
4
|
Genetic variability of the U5 and downstream sequence of major HIV-1 subtypes and circulating recombinant forms. Sci Rep 2020; 10:13214. [PMID: 32764600 PMCID: PMC7411029 DOI: 10.1038/s41598-020-70083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/03/2020] [Indexed: 11/08/2022] Open
Abstract
The critical role of the regulatory elements at the 5′ end of the HIV-1 genome in controlling the life cycle of HIV-1 indicates that this region significantly influences virus fitness and its biological properties. In this study, we performed a detailed characterization of strain-specific variability of sequences from the U5 to upstream of the gag gene start codon of diverse HIV-1 strains by using next-generation sequencing (NGS) techniques. Overall, we found that this region of the HIV-1 genome displayed a low degree of intra-strain variability. On the other hand, inter-strain variability was found to be as high as that reported for gag and env genes (13–17%). We observed strain-specific single point and clustered mutations in the U5, PBS, and gag leader sequences (GLS), generating potential strain-specific transcription factor binding sites (TFBS). Using an infrared gel shift assay, we demonstrated the presence of potential TFBS such as E-box in CRF22_01A, and Stat 6 in subtypes A and G, as well as in their related CRFs. The strain-specific variation found in the sequence corresponding at the RNA level to functional domains of the 5ʹ UTR, could also potentially impact the secondary/tertiary structural rearrangement of this region. Thus, the variability observed in this 5′ end of the genomic region of divergent HIV-1 strains strongly suggests that functions of this region might be affected in a strain-specific manner. Our findings provide new insights into DNA–protein interactions that regulate HIV-1 replication and the influence of strain characterization on the biology of HIV-1 infection.
Collapse
|
5
|
Capoferri AA, Lamers SL, Grabowski MK, Rose R, Wawer MJ, Serwadda D, Gray RH, Quinn TC, Kigozi G, Kagaayi J, Laeyendecker O, Abeler-Dörner L, Ayles H, Bonsall D, Bowden R, Calvez V, Cohen M, Denis A, Frampton D, de Oliveira T, Essex M, Fidler S, Fraser C, Golubchik T, Hayes R, Herbeck JT, Hoppe A, Kaleebu P, Kellam P, Kityo C, Leigh-Brown A, Lingappa JR, Novitsky V, Paton N, Pillay D, Rambaut A, Ratmann O, Seeley J, Ssemwanga D, Tanser F. Recombination Analysis of Near Full-Length HIV-1 Sequences and the Identification of a Potential New Circulating Recombinant Form from Rakai, Uganda. AIDS Res Hum Retroviruses 2020; 36:467-474. [PMID: 31914792 DOI: 10.1089/aid.2019.0150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Phylogenetics And Networks for Generalized HIV Epidemics in Africa (PANGEA-HIV) consortium has been vital in the generation and examination of near full-length HIV-1 sequences generated from Sub-Saharan Africa. In this study, we examined a subset (n = 275) of sequences from Rakai, Uganda, collected between August 2011 and January 2015. Sequences were initially screened with COMET for subtyping and then evaluated using bootscanning and phylogenetic inference. Among 275 sequences, 38.6% were subtype D, 19.3% were subtype A, 2.9% were subtype C, and 39.3% were recombinant. The recombinants were structurally diverse in the number of breakpoints observed, the location of recombinant segments, and represented subtypes, with AD recombinants accounting for the majority of all recombinants (29.8%). Within the AD subpopulation, we identified a potential new circulating recombinant form in five individuals where the polymerase gene was subtype D and most of env was subtype A (D-A junctures at HXB2 6760 and 8709). While the breakpoints were identical for the viruses from these individuals, the viral fragments did not cluster together. These results suggest selection for a viral strain where properties of the subtype A and subtype D portions of the virus confer a survival advantage. The continued study of recombinants will increase our breadth of knowledge for the genetic diversity and evolution of HIV-1, which can further contribute to our understanding toward a universal HIV-1 vaccine.
Collapse
Affiliation(s)
- Adam A. Capoferri
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Mary Kate Grabowski
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Rakai Health Sciences Program, Entebbe, Uganda
| | | | - Maria J. Wawer
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Rakai Health Sciences Program, Entebbe, Uganda
| | - David Serwadda
- Rakai Health Sciences Program, Entebbe, Uganda
- Makerere University School of Public Health, Kampala, Uganda
| | - Ronald H. Gray
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Rakai Health Sciences Program, Entebbe, Uganda
| | - Thomas C. Quinn
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | - Oliver Laeyendecker
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Characterization of a large cluster of HIV-1 A1 infections detected in Portugal and connected to several Western European countries. Sci Rep 2019; 9:7223. [PMID: 31076722 PMCID: PMC6510806 DOI: 10.1038/s41598-019-43420-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/12/2019] [Indexed: 11/10/2022] Open
Abstract
HIV-1 subtypes associate with differences in transmission and disease progression. Thus, the existence of geographic hotspots of subtype diversity deepens the complexity of HIV-1/AIDS control. The already high subtype diversity in Portugal seems to be increasing due to infections with sub-subtype A1 virus. We performed phylogenetic analysis of 65 A1 sequences newly obtained from 14 Portuguese hospitals and 425 closely related database sequences. 80% of the A1 Portuguese isolates gathered in a main phylogenetic clade (MA1). Six transmission clusters were identified in MA1, encompassing isolates from Portugal, Spain, France, and United Kingdom. The most common transmission route identified was men who have sex with men. The origin of the MA1 was linked to Greece, with the first introduction to Portugal dating back to 1996 (95% HPD: 1993.6–1999.2). Individuals infected with MA1 virus revealed lower viral loads and higher CD4+ T-cell counts in comparison with those infected by subtype B. The expanding A1 clusters in Portugal are connected to other European countries and share a recent common ancestor with the Greek A1 outbreak. The recent expansion of this HIV-1 subtype might be related to a slower disease progression leading to a population level delay in its diagnostic.
Collapse
|
7
|
Eshleman SH, Laeyendecker O, Kammers K, Chen A, Sivay MV, Kottapalli S, Sie BM, Yuan T, Monaco DR, Mohan D, Wansley D, Kula T, Morrison C, Elledge SJ, Brookmeyer R, Ruczinski I, Larman HB. Comprehensive Profiling of HIV Antibody Evolution. Cell Rep 2019; 27:1422-1433.e4. [PMID: 31042470 PMCID: PMC6519133 DOI: 10.1016/j.celrep.2019.03.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 03/26/2019] [Indexed: 01/02/2023] Open
Abstract
This study evaluates HIV antibody responses and their evolution during the course of HIV infection. A phage display system is used to characterize antibody binding to >3,300 HIV peptides in 57 adults with early- to late-stage infection. We find that the number of unique epitopes targeted ("antibody breadth") increases early in infection and then stabilizes or declines. A decline in antibody breadth 9 months to 2 years after infection is associated with subsequent antiretroviral treatment (ART) initiation, and a faster decline in antibody breadth is associated with a shorter time to ART initiation. We identify 266 peptides with increasing antibody reactivity over time and 43 peptides with decreasing reactivity over time. These data are used to design a prototype four-peptide "serosignature" to predict duration of HIV infection. We also demonstrate that epitope engineering can be used to optimize peptide binding properties for applications such as cross-sectional HIV incidence estimation.
Collapse
Affiliation(s)
- Susan H Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Oliver Laeyendecker
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athena Chen
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mariya V Sivay
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay Kottapalli
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brandon M Sie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tiezheng Yuan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Monaco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Divya Mohan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Wansley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | | | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | - Ron Brookmeyer
- Department of Biostatistics, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Bertels F, Marzel A, Leventhal G, Mitov V, Fellay J, Günthard HF, Böni J, Yerly S, Klimkait T, Aubert V, Battegay M, Rauch A, Cavassini M, Calmy A, Bernasconi E, Schmid P, Scherrer AU, Müller V, Bonhoeffer S, Kouyos R, Regoes RR. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity. Mol Biol Evol 2019; 35:27-37. [PMID: 29029206 PMCID: PMC5850767 DOI: 10.1093/molbev/msx246] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as “per-parasite pathogenicity”. Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence—measured as the rate of decline of CD4+ T cells—and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor–recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5–30%), and that of the per-parasite pathogenicity is 17% (4–29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12–46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor.
Collapse
Affiliation(s)
- Frederic Bertels
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Alex Marzel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Venelin Mitov
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sabine Yerly
- Division of Infectious Diseases, Laboratory of Virology, Geneva University Hospital, Geneva, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | - Vincent Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, Lausanne, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Berne University Hospital and University of Berne, Berne, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland
| | - Alexandra Calmy
- HIV/AIDS Unit, Infectious Disease Service, Geneva University Hospital, Geneva, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Alexandra U Scherrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany, Hungary
| | | | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
9
|
Naidoo L, Mzobe Z, Jin SW, Rajkoomar E, Reddy T, Brockman MA, Brumme ZL, Ndung'u T, Mann JK. Nef-mediated inhibition of NFAT following TCR stimulation differs between HIV-1 subtypes. Virology 2019; 531:192-202. [PMID: 30927712 DOI: 10.1016/j.virol.2019.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/11/2023]
Abstract
Functional characterisation of different HIV-1 subtypes may improve understanding of viral pathogenesis and spread. Here, we evaluated the ability of 345 unique HIV-1 Nef clones representing subtypes A, B, C and D to inhibit NFAT signalling following TCR stimulation. The contribution of this Nef function to disease progression was also assessed in 211 additional Nef clones isolated from unique subtype C infected individuals in early or chronic infection. On average, subtype A and C Nef clones exhibited significantly lower ability to inhibit TCR-mediated NFAT signalling compared to subtype B and D Nef clones. While this observation corroborates accumulating evidence supporting relative attenuation of subtypes A and C that may paradoxically contribute to their increased global prevalence and spread, no significant correlations between Nef-mediated NFAT inhibition activity and clinical markers of HIV-1 infection were observed, indicating that the relationship between Nef function and pathogenesis is complex.
Collapse
Affiliation(s)
- Lisa Naidoo
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Zinhle Mzobe
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Erasha Rajkoomar
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Tarylee Reddy
- Medical Research Council, Biostatistics Unit, Durban 4001, South Africa
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Africa Health Research Institute, Durban 4001, South Africa; Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
10
|
Luo XL, Mo LD, Su GS, Huang JP, Wu JY, Su HZ, Huang WH, Luo SD, Ni ZY. Incidence and types of HIV-1 drug resistance mutation among patients failing first-line antiretroviral therapy. J Pharmacol Sci 2019; 139:275-279. [PMID: 30928089 DOI: 10.1016/j.jphs.2018.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE This study aims to investigate the prevalence and types of drug resistance mutations among patients failing first-line antiretroviral therapy (ART). METHODS Plasma samples from 112 patients with human immunodeficiency virus-1 (HIV-1) were collected for virus RNA extract and gene amplification. The mutations related to drug resistance were detected and the incidence was statistically analyzed, and the drug resistance rate against common drugs was also evaluated. RESULTS 103 cases were successfully amplified, and the main drug resistance mutations in the reverse transcriptase (RT) region were M184V (50.49%), K103N (28.16%), Y181C (25.24%), and K65R (27.18%), while no drug main resistance mutation was found in the protease (PR) region. The incidence of drug resistance mutations was significantly different among patients with different ages, routes of infection, duration of treatment, initial ART regimens and viral load. The drug resistance rate to the common drugs was assessed, including Efavirenz (EFV, 71.84%), Nevirapine (NVP, 74.76%), Lamivudine (3TC, 66.02%), Zidovudine (AZT, 4.85%), Stavudine (D4T, 16.51%), and Tenofovir (TDF, 21.36%). CONCLUSION The drug resistance mutations to NRTIs and NNRTIs are complex and highly prevalent, which was the leading cause of first-line ART failure. This study provides significant theoretical support for developing the second-line and third-line therapeutic schemes.
Collapse
Affiliation(s)
- Xiao-Lu Luo
- The 4th People's Hospital of Nanning, The Infectious Disease Hospital of Nanning Affiliated to Guangxi Medical University, and the AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, 530023, China
| | - Li-da Mo
- The 4th People's Hospital of Nanning, The Infectious Disease Hospital of Nanning Affiliated to Guangxi Medical University, and the AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, 530023, China.
| | - Guo-Sheng Su
- The 4th People's Hospital of Nanning, The Infectious Disease Hospital of Nanning Affiliated to Guangxi Medical University, and the AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, 530023, China
| | - Jin-Ping Huang
- The 4th People's Hospital of Nanning, The Infectious Disease Hospital of Nanning Affiliated to Guangxi Medical University, and the AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, 530023, China
| | - Jing-Yu Wu
- The Disease Control and Prevention Center of Xingning District of Nanning, Nanning 530023, Guangxi, China
| | - Han-Zhen Su
- The 4th People's Hospital of Nanning, The Infectious Disease Hospital of Nanning Affiliated to Guangxi Medical University, and the AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, 530023, China
| | - Wan-Hong Huang
- The 4th People's Hospital of Nanning, The Infectious Disease Hospital of Nanning Affiliated to Guangxi Medical University, and the AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, 530023, China
| | - Shun-da Luo
- The 4th People's Hospital of Nanning, The Infectious Disease Hospital of Nanning Affiliated to Guangxi Medical University, and the AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, 530023, China
| | - Zu-Yan Ni
- The 4th People's Hospital of Nanning, The Infectious Disease Hospital of Nanning Affiliated to Guangxi Medical University, and the AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, 530023, China
| |
Collapse
|
11
|
Nagata S, Imai J, Makino G, Tomita M, Kanai A. Evolutionary Analysis of HIV-1 Pol Proteins Reveals Representative Residues for Viral Subtype Differentiation. Front Microbiol 2017; 8:2151. [PMID: 29163435 PMCID: PMC5666293 DOI: 10.3389/fmicb.2017.02151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 11/15/2022] Open
Abstract
RNA viruses have been used as model systems to understand the patterns and processes of molecular evolution because they have high mutation rates and are genetically diverse. Human immunodeficiency virus 1 (HIV-1), the etiological agent of acquired immune deficiency syndrome, is highly genetically diverse, and is classified into several groups and subtypes. However, it has been difficult to use its diverse sequences to establish the overall phylogenetic relationships of different strains or the trends in sequence conservation with the construction of phylogenetic trees. Our aims were to systematically characterize HIV-1 subtype evolution and to identify the regions responsible for HIV-1 subtype differentiation at the amino acid level in the Pol protein, which is often used to classify the HIV-1 subtypes. In this study, we systematically characterized the mutation sites in 2,052 Pol proteins from HIV-1 group M (144 subtype A; 1,528 subtype B; 380 subtype C), using sequence similarity networks. We also used spectral clustering to group the sequences based on the network graph structures. A stepwise analysis of the cluster hierarchies allowed us to estimate a possible evolutionary pathway for the Pol proteins. The subtype A sequences also clustered according to when and where the viruses were isolated, whereas both the subtype B and C sequences remained as single clusters. Because the Pol protein has several functional domains, we identified the regions that are discriminative by comparing the structures of the domain-based networks. Our results suggest that sequence changes in the RNase H domain and the reverse transcriptase (RT) connection domain are responsible for the subtype classification. By analyzing the different amino acid compositions at each site in both domain sequences, we found that a few specific amino acid residues (i.e., M357 in the RT connection domain and Q480, Y483, and L491 in the RNase H domain) represent the differences among the subtypes. These residues were located on the surface of the RT structure and in the vicinity of the amino acid sites responsible for RT enzymatic activity or function.
Collapse
Affiliation(s)
- Shohei Nagata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Junnosuke Imai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Gakuto Makino
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
12
|
Joshi A, Cox EK, Sedano MJ, Punke EB, Lee RT, Maurer-Stroh S, Kaur P, Ng OT, Garg H. HIV-1 subtype CRF01_AE and B differ in utilization of low levels of CCR5, Maraviroc susceptibility and potential N-glycosylation sites. Virology 2017; 512:222-233. [PMID: 29020646 DOI: 10.1016/j.virol.2017.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/18/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
HIV subtypes not only predominate in different geographical regions but also differ in key phenotypic characteristics. To determine if genotypic and/or phenotypic differences in the Envelope (Env) glycoprotein can explain subtype related differences, we cloned 37 full length Envs from Subtype B and AE HIV infected individuals from Singapore. Our data demonstrates that CRF01_AE Envs have lower Potential N Glycosylation Sites and higher risk of ×4 development. Phenotypically, CRF01_AE were less infectious than subtype B Envs in cells expressing low levels of CCR5. Moreover, the Maraviroc IC50 was higher for subtype B Envs and correlated with infectivity in low CCR5 expressing cells as well as PNGS. Specifically, the glycosylation site N301 in the V3 loop was seen less frequently in AE subtype and CXCR4 topic viruses. CRF01_AE differs from B subtype in terms of CCR5 usage and Maraviroc susceptibility which may have implications for HIV pathogenesis and virus evolution.
Collapse
Affiliation(s)
- Anjali Joshi
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| | - Emily K Cox
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Melina J Sedano
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Erin B Punke
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Raphael Tc Lee
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Palvinder Kaur
- Department of Infectious Disease, Tan Tock Seng Hospital, Singapore
| | - Oon Tek Ng
- Department of Infectious Disease, Tan Tock Seng Hospital, Singapore
| | - Himanshu Garg
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
13
|
Subtype-Specific Differences in Gag-Protease-Driven Replication Capacity Are Consistent with Intersubtype Differences in HIV-1 Disease Progression. J Virol 2017; 91:JVI.00253-17. [PMID: 28424286 DOI: 10.1128/jvi.00253-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates (r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases (P < 0.0001); this observation remained consistent when representative Gag-protease sequences were engineered into an HIV-1 subtype C backbone. We identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C < D < intersubtype recombinants (P < 0.0029), which is consistent with reported intersubtype differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes.IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that HIV-1 Gag-protease-driven replication capacity correlates with the replication capacity of whole virus isolates. We further show that subtype B displays a significantly higher Gag-protease-mediated replication capacity than does subtype C, and we identify a major genetic determinant of these differences. Moreover, in two independent East African cohorts we demonstrate a reproducible hierarchy of Gag-protease-driven replicative capacity, whereby recombinants exhibit the greatest replication, followed by subtype D, followed by subtypes A and C. Our data identify Gag-protease as a major determinant of subtype differences in disease progression among HIV-1 subtypes; furthermore, we propose that the poorer viral replicative capacity of subtypes A and C may paradoxically contribute to their more efficient spread in sub-Saharan Africa.
Collapse
|
14
|
Gounder K, Oyaro M, Padayachi N, Zulu TM, de Oliveira T, Wylie J, Ndung'u T. Complex Subtype Diversity of HIV-1 Among Drug Users in Major Kenyan Cities. AIDS Res Hum Retroviruses 2017; 33:500-510. [PMID: 28068781 DOI: 10.1089/aid.2016.0321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Drug users are increasingly recognized as a key population driving human immunodeficiency virus (HIV) spread in sub-Saharan Africa. To determine HIV-1 subtypes circulating in this population group and explore possible geographic differences, we analyzed HIV-1 sequences among drug users from Nairobi, Mombasa, and Kisumu in Kenya. We sequenced gag and env from 55 drug users. Subtype analysis from 220 gag clonal sequences from 54 of 55 participants (median = 4/participant) showed that 44.4% were A, 16.7% were C, 3.7% were D, and 35.2% were intersubtype recombinants. Of 156 env clonal sequences from 48 of 55 subjects (median = 3/participant), 45.8% were subtype A, 14.6% were C, 6.3% were D, and 33.3% were recombinants. Comparative analysis of both genes showed that 30 (63.8%) participants had concordant subtypes, while 17 (36.2%) were discordant. We identified one genetically linked transmission pair and two cases of dual infection. These data are indicative of extensive HIV-1 intersubtype recombination in Kenya and suggest decline in subtype D prevalence.
Collapse
Affiliation(s)
- Kamini Gounder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Micah Oyaro
- Immunology Unit, Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | - Nagavelli Padayachi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thando Mbali Zulu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Africa Centre for Population Health, University of KwaZulu-Natal, Durban, South Africa
| | - John Wylie
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
15
|
Sakai K, Chikata T, Brumme ZL, Brumme CJ, Gatanaga H, Gatanag H, Oka S, Takiguchi M. Lack of a significant impact of Gag-Protease-mediated HIV-1 replication capacity on clinical parameters in treatment-naive Japanese individuals. Retrovirology 2015; 12:98. [PMID: 26585907 PMCID: PMC4653850 DOI: 10.1186/s12977-015-0223-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/08/2015] [Indexed: 01/29/2023] Open
Abstract
Background HLA class I-associated escape mutations in HIV-1 Gag can reduce viral replication, suggesting that associated fitness costs could impact HIV-1 disease progression. Previous studies in North American and African cohorts have reported reduced Gag-Protease mediated viral replication capacity (Gag-Pro RC) in individuals expressing protective HLA class I alleles including HLA-B*57:01, B*27:05, and B*81:01. These studies also reported significant positive associations between Gag-Pro RCs and plasma viral load (pVL). However, these HLA alleles are virtually absent in Japan, and the importance of Gag as an immune target is not clearly defined in this population. Results We generated chimeric NL4-3 viruses carrying patient-derived Gag-Protease from 306 treatment-naive Japanese individuals chronically infected with HIV-1 subtype B. We analyzed associations between Gag-Pro RC and clinical markers of HIV-1 infection and host HLA expression. We observed no significant correlation between Gag-Pro RC and pVL in Japan in the overall cohort. However, upon exclusion of individuals expressing Japanese protective alleles HLA-B*52:01 and B*67:01, Gag-Pro RC correlated positively with pVL and negatively with CD4 T-cell count. Our results thus contrast with studies from other global cohorts reporting significantly lower Gag-Pro RC among persons expressing protective HLA alleles, and positive relationships between Gag-Pro RC and pVL in the overall study populations. We also identified five amino acids in Gag-Protease significantly associated with Gag-Pro RC, whose effects on RC were confirmed by site-directed mutagenesis. However, of the four mutations that decreased Gag-Pro RC, none were associated with reductions in pVL in Japan though two were associated with lower pVL in North America. Conclusions These data indicate that Gag fitness does not affect clinical outcomes in subjects with protective HLA class I alleles as well as the whole Japanese population. Moreover, the impact of Gag fitness costs on HIV-1 clinical parameters in chronic infection is likely low in Japan compared to other global populations. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0223-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiko Sakai
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada. .,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | | | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan. .,National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan. .,Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Huruy K, Maier M, Mulu A, Liebert UG. Limited increase in primary HIV-1C drug resistance mutations in treatment naïve individuals in Ethiopia. J Med Virol 2015; 87:978-84. [PMID: 25649964 DOI: 10.1002/jmv.24110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 11/06/2022]
Abstract
Antiretroviral drug resistance is a major challenge for management and control of HIV-1 infection worldwide and particularly in resource limited countries. The frequency of primary drug resistance mutations (DRMs) and of naturally occurring polymorphisms was determined in 83 antiretroviral treatment (ART) naïve Ethiopian individuals infected with HIV-1, consecutively enrolled in 2010. In all individuals HIV-1C was found. The median (interquartile range) of CD4(+) T-cell count and viral load were 100 (49-201) cells/μl and 44,640 (12,553-134,664) copies/ml, respectively. Protease (PR) and reverse transcriptase (RT) genes of HIV-1 RNA were amplified and sequenced. The proportion of primary DRM to any drug class, using the World Health Organization mutation lists, was 7.2% (6/83), thus exceeding the WHO threshold limit of 5%. Three individuals (3.6%) had non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations, two individuals (2.4%) had protease inhibitor mutations, and one (1.2%) had mutations associated with two drug classes (nucleoside reverse transcriptase inhibitor and NNRTI). In addition, the frequency of polymorphisms in the PR and RT genes was higher compared with previous studies in Ethiopian as well as worldwide isolates. Hence, genotypic drug resistance testing as part of routine management of individuals seems reasonable even in resource limited countries prior to treatment in order to allow proper choice of ART.
Collapse
Affiliation(s)
- Kahsay Huruy
- Institute of Virology, Leipzig University, Leipzig, Germany; Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| | | | | | | |
Collapse
|
17
|
Kouri V, Khouri R, Alemán Y, Abrahantes Y, Vercauteren J, Pineda-Peña AC, Theys K, Megens S, Moutschen M, Pfeifer N, Van Weyenbergh J, Pérez AB, Pérez J, Pérez L, Van Laethem K, Vandamme AM. CRF19_cpx is an Evolutionary fit HIV-1 Variant Strongly Associated With Rapid Progression to AIDS in Cuba. EBioMedicine 2015; 2:244-54. [PMID: 26137563 PMCID: PMC4484819 DOI: 10.1016/j.ebiom.2015.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
Abstract
Background Clinicians reported an increasing trend of rapid progression (RP) (AIDS within 3 years of infection) in Cuba. Methods Recently infected patients were prospectively sampled, 52 RP at AIDS diagnosis (AIDS-RP) and 21 without AIDS in the same time frame (non-AIDS). 22 patients were sampled at AIDS diagnosis (chronic-AIDS) retrospectively assessed as > 3 years infected. Clinical, demographic, virological, epidemiological and immunological data were collected. Pol and env sequences were used for subtyping, transmission cluster analysis, and prediction of resistance, co-receptor use and evolutionary fitness. Host, immunological and viral predictors of RP were explored through data mining. Findings Subtyping revealed 26 subtype B strains, 6 C, 6 CRF18_cpx, 9 CRF19_cpx, 29 BG-recombinants and other subtypes/URFs. All patients infected with CRF19 belonged to the AIDS-RP group. Data mining identified CRF19, oral candidiasis and RANTES levels as the strongest predictors of AIDS-RP. CRF19 was more frequently predicted to use the CXCR4 co-receptor, had higher fitness scores in the protease region, and patients had higher viral load at diagnosis. Interpretation CRF19 is a recombinant of subtype D (C-part of Gag, PR, RT and nef), subtype A (N-part of Gag, Integrase, Env) and subtype G (Vif, Vpr, Vpu and C-part of Env). Since subtypes D and A have been associated with respectively faster and slower disease progression, our findings might indicate a fit PR driving high viral load, which in combination with co-infections may boost RANTES levels and thus CXCR4 use, potentially explaining the fast progression. We propose that CRF19 is evolutionary very fit and causing rapid progression to AIDS in many newly infected patients in Cuba. We propose that CRF19 is evolutionary very fit, causing rapid progression to AIDS in many newly infected patients in Cuba. CRF19 is a recombinant of subtype D, subtype A and subtype G, with a subtype D protease estimated to be particularly fit. A fit protease with high viral load and co-infections, may boost RANTES levels and thus CXCR4 use, hence fast progression.
Collapse
Affiliation(s)
- Vivian Kouri
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Ricardo Khouri
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium ; LIMI-LIP, Centro de Pesquisa Gonçalo Moniz, FIOCRUZ, Salvador-Bahia, Brazil
| | - Yoan Alemán
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Yeissel Abrahantes
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Jurgen Vercauteren
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Andrea-Clemencia Pineda-Peña
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium ; Clinical and Molecular Infectious Diseases Group, Faculty of Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia
| | - Kristof Theys
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Sarah Megens
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Michel Moutschen
- AIDS Reference Center, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Campus E1 4, 66123 Saarbrücken, Germany
| | - Johan Van Weyenbergh
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Ana B Pérez
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Jorge Pérez
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Lissette Pérez
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Kristel Van Laethem
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium ; Centro de Malária e outras Doenças Tropicais and Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Pena-Cruz V, Etemad B, Chatziandreou N, Nyein PH, Stock S, Reynolds SJ, Laeyendecker O, Gray RH, Serwadda D, Lee SJ, Quinn TC, Sagar M. HIV-1 envelope replication and α4β7 utilization among newly infected subjects and their corresponding heterosexual partners. Retrovirology 2013; 10:162. [PMID: 24369910 PMCID: PMC3883469 DOI: 10.1186/1742-4690-10-162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Previous studies suggest that active selection limits the number of HIV-1 variants acquired by a newly infected individual from the diverse variants circulating in the transmitting partner. We compared HIV-1 envelopes from 9 newly infected subjects and their linked transmitting partner to explore potential mechanisms for selection. RESULTS Recipient virus envelopes had significant genotypic differences compared to those present in the transmitting partner. Recombinant viruses incorporating pools of recipient and transmitter envelopes showed no significant difference in their sensitivity to receptor and fusion inhibitors, suggesting they had relatively similar entry capacity in the presence of low CD4 and CCR5 levels. Aggregate results in primary cells from up to 4 different blood or skin donors showed that viruses with envelopes from the transmitting partner as compared to recipient envelopes replicated more efficiently in CD4+ T cells, monocyte derived dendritic cell (MDDC) - CD4+ T cell co-cultures, Langerhans cells (LCs) - CD4+ T cell co-cultures and CD4+ T cells expressing high levels of the gut homing receptor, α4β7, and demonstrated greater binding to α4β7 high / CD8+ T cells. These transmitter versus recipient envelope virus phenotypic differences, however, were not always consistent among the primary cells from all the different blood or skin donation volunteers. CONCLUSION Although genotypically unique variants are present in newly infected individuals compared to the diverse swarm circulating in the chronically infected transmitting partner, replication in potential early target cells and receptor utilization either do not completely dictate this genetic selection, or these potential transmission phenotypes are lost very soon after HIV-1 acquisition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Manish Sagar
- Department of Medicine, Division of Infectious Diseases, Boston University, Boston, MA, USA.
| |
Collapse
|