1
|
Su SH, Cai XQ, Li YH, Xu AH, Huang Q, Niu H, You QH, Sun GY. The important roles of ERAP1, ERAP2 genes polymorphisms and their DNA methylation levels in pulmonary tuberculosis. BMC Infect Dis 2025; 25:178. [PMID: 39910453 PMCID: PMC11800520 DOI: 10.1186/s12879-025-10452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Genetic variations in endoplasmic reticulum aminopeptidase (ERAP1, ERAP2) genes are associated with the pathogenesis of multiple diseases, including infectious diseases. The objective of our study was to assess whether ERAP1, ERAP2 genes polymorphisms and methylation levels affect the risk of pulmonary tuberculosis (PTB). METHODS We genotyped ten single nucleotide polymorphisms (SNPs) in ERAP1, ERAP2 genes among 497 PTB patients and 502 controls by SNPscan technique. Additionally, we detected the ERAP1, ERAP2 genes methylation levels in 98 PTB patients and 97 controls through Illumina Hiseq platform. RESULTS Our results showed that the GG genotype, G allele frequencies of ERAP2 gene rs2549782 were significantly increased in PTB patients compared to controls, and rs2549782 polymorphism was related to the increased risk of PTB under recessive model. In addition, no significant relationship was found between ERAP1 gene rs13167972, rs17086651, rs469783, rs26618, rs3734016, ERAP2 gene rs17524572, rs1230358, rs2549794, rs117041256 and PTB susceptibility. Among PTB patients, the frequencies of rs17524572 TT genotype, T allele were significantly associated with drug-induced liver injury, and rs1230358, rs2549782, rs2549794 polymorphisms were linked to the occurrence of fever. Haplotype analysis of ERAP2 gene suggested that the frequency of CTGGT haplotype was higher, while the frequency of CTGTT haplotype was lower in PTB patients. When compared with controls, the ERAP1 methylation level was lower in PTB patients, while the ERAP2 methylation level was significantly increased. Moreover, rs1230358 polymorphism was found to affect the ERAP2 methylation level. CONCLUSION The ERAP2 rs2549782 variant and altered methylation levels of ERAP1, ERAP2 genes were related to susceptibility to PTB.
Collapse
Affiliation(s)
- Shi-Hong Su
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-Qian Cai
- Department of Respiratory and Critical Care Medicine, Anhui Chest Hospital, Hefei, China
| | - Yong-Huai Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ai-Hui Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Huang
- School of Public Health, Anhui Medical University, Hefei, China.
| | - Hua Niu
- Department of Respiratory and Critical Care Medicine, Anhui Chest Hospital, Hefei, China.
| | - Qing-Hai You
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Geng-Yun Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Palittapongarnpim P, Tantivitayakul P, Aiewsakun P, Mahasirimongkol S, Jaemsai B. Genomic Interactions Between Mycobacterium tuberculosis and Humans. Annu Rev Genomics Hum Genet 2024; 25:183-209. [PMID: 38640230 DOI: 10.1146/annurev-genom-021623-101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Mycobacterium tuberculosis is considered by many to be the deadliest microbe, with the estimated annual cases numbering more than 10 million. The bacteria, including Mycobacterium africanum, are classified into nine major lineages and hundreds of sublineages, each with different geographical distributions and levels of virulence. The phylogeographic patterns can be a result of recent and early human migrations as well as coevolution between the bacteria and various human populations, which may explain why many studies on human genetic factors contributing to tuberculosis have not been replicable in different areas. Moreover, several studies have revealed the significance of interactions between human genetic variations and bacterial genotypes in determining the development of tuberculosis, suggesting coadaptation. The increased availability of whole-genome sequence data from both humans and bacteria has enabled a better understanding of these interactions, which can inform the development of vaccines and other control measures.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand;
| | - Pakorn Aiewsakun
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Surakameth Mahasirimongkol
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
- Information and Communication Technology Center, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand;
| | - Bharkbhoom Jaemsai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| |
Collapse
|
3
|
Liu Z, Deligen B, Han Z, Gerile C, Da A. Integrated sequence-based genomic, transcriptomic, and methylation characterization of the susceptibility to tuberculosis in monozygous twins. Heliyon 2024; 10:e31712. [PMID: 38845983 PMCID: PMC11153169 DOI: 10.1016/j.heliyon.2024.e31712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Background Tuberculosis (TB) is a complex disease with a spectrum of outcomes for more than six decades; however, the genomic and epigenetic mechanisms underlying the highly heritable susceptibility to TB remain unclear. Methods Integrated sequence-based genomic, transcriptomic, and methylation analyses were conducted to identity the genetic factors associated with susceptibility to TB in two pairs of Mongolian monozygous twins. In this study, whole-genome sequencing was employed to analyze single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and copy number variations (CNVs). Gene expression was assessed through RNA sequencing, and methylation patterns were examined using the Illumina Infinium Methylation EPIC BeadChip. The gene-gene interaction network was analyzed using differentially expressed genes. Results Our study revealed no significant difference in SNP and InDel profiles between participants with and without TB. Genes with CNVs were involved in human immunity (human leukocyte antigen [HLA] family and interferon [IFN] pathway) and the inflammatory response. Different DNA methylation patterns and mRNA expression profiles were observed in genes participating in immunity (HLA family) and inflammatory responses (IFNA, interleukin 10 receptor [IL-10R], IL-12B, Toll-like receptor, and IL-1B). Conclusions The results of this study suggested that susceptibility to TB is associated with transcriptional and epigenetic alternations of genes involved in immune and inflammatory responses. The genes in the HLA family (HLA-A, HLA-B, and HLA-DRB1) and IFN pathway (IFN-α and IFN-γ) may play major roles in susceptibility to TB.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Batu Deligen
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Zhiqiang Han
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Chaolumen Gerile
- Department of Internal Medicine, Xilinguole Meng Mongolian General Hospital, Xilinhaote, 026000, Inner Mongolia, China
| | - An Da
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| |
Collapse
|
4
|
Schurz H, Naranbhai V, Yates TA, Gilchrist JJ, Parks T, Dodd PJ, Möller M, Hoal EG, Morris AP, Hill AVS. Multi-ancestry meta-analysis of host genetic susceptibility to tuberculosis identifies shared genetic architecture. eLife 2024; 13:e84394. [PMID: 38224499 PMCID: PMC10789494 DOI: 10.7554/elife.84394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/23/2023] [Indexed: 01/17/2024] Open
Abstract
The heritability of susceptibility to tuberculosis (TB) disease has been well recognized. Over 100 genes have been studied as candidates for TB susceptibility, and several variants were identified by genome-wide association studies (GWAS), but few replicate. We established the International Tuberculosis Host Genetics Consortium to perform a multi-ancestry meta-analysis of GWAS, including 14,153 cases and 19,536 controls of African, Asian, and European ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic h2 = 26.3%, 95% CI 23.7-29.0%) for susceptibility to TB that is shared across ancestries, highlighting an important host genetic influence on disease. We identified one global host genetic correlate for TB at genome-wide significance (p<5 × 10-8) in the human leukocyte antigen (HLA)-II region (rs28383206, p-value=5.2 × 10-9) but failed to replicate variants previously associated with TB susceptibility. These data demonstrate the complex shared genetic architecture of susceptibility to TB and the importance of large-scale GWAS analysis across multiple ancestries experiencing different levels of infection pressure.
Collapse
Affiliation(s)
- Haiko Schurz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape TownSouth Africa
| | - Vivek Naranbhai
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Massachusetts General HospitalBostonUnited States
- Dana-Farber Cancer InstituteBostonUnited States
- Centre for the AIDS Programme of Research in South AfricaDurbanSouth Africa
- Harvard Medical SchoolBostonUnited States
| | - Tom A Yates
- Division of Infection and Immunity, Faculty of Medical Sciences, University College LondonLondonUnited Kingdom
| | - James J Gilchrist
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Tom Parks
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Department of Infectious Diseases Imperial College LondonLondonUnited Kingdom
| | - Peter J Dodd
- School of Health and Related Research, University of SheffieldSheffieldUnited Kingdom
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape TownSouth Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape TownSouth Africa
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of ManchesterManchesterUnited Kingdom
| | - Adrian VS Hill
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Jenner Institute, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
5
|
Phelan J, Gomez-Gonzalez PJ, Andreu N, Omae Y, Toyo-Oka L, Yanai H, Miyahara R, Nedsuwan S, de Sessions PF, Campino S, Sallah N, Parkhill J, Smittipat N, Palittapongarnpim P, Mushiroda T, Kubo M, Tokunaga K, Mahasirimongkol S, Hibberd ML, Clark TG. Genome-wide host-pathogen analyses reveal genetic interaction points in tuberculosis disease. Nat Commun 2023; 14:549. [PMID: 36725857 PMCID: PMC9892022 DOI: 10.1038/s41467-023-36282-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
The genetics underlying tuberculosis (TB) pathophysiology are poorly understood. Human genome-wide association studies have failed so far to reveal reproducible susceptibility loci, attributed in part to the influence of the underlying Mycobacterium tuberculosis (Mtb) bacterial genotype on the outcome of the infection. Several studies have found associations of human genetic polymorphisms with Mtb phylo-lineages, but studies analysing genome-genome interactions are needed. By implementing a phylogenetic tree-based Mtb-to-human analysis for 714 TB patients from Thailand, we identify eight putative genetic interaction points (P < 5 × 10-8) including human loci DAP and RIMS3, both linked to the IFNγ cytokine and host immune system, as well as FSTL5, previously associated with susceptibility to TB. Many of the corresponding Mtb markers are lineage specific. The genome-to-genome analysis reveals a complex interactome picture, supports host-pathogen adaptation and co-evolution in TB, and has potential applications to large-scale studies across many TB endemic populations matched for host-pathogen genomic diversity.
Collapse
Affiliation(s)
- Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Nuria Andreu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Yosuke Omae
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Licht Toyo-Oka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Yanai
- Fukujuji Hospital and Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Reiko Miyahara
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Neneh Sallah
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nat Smittipat
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Prasit Palittapongarnpim
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
6
|
Chihab LY, Kuan R, Phillips EJ, Mallal SA, Rozot V, Davis MM, Scriba TJ, Sette A, Peters B, Lindestam Arlehamn CS, the SATVI Study Group. Expression of specific HLA class II alleles is associated with an increased risk for active tuberculosis and a distinct gene expression profile. HLA 2023; 101:124-137. [PMID: 36373948 PMCID: PMC10027422 DOI: 10.1111/tan.14880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Several HLA allelic variants have been associated with protection from or susceptibility to infectious and autoimmune diseases. Here, we examined whether specific HLA alleles would be associated with different Mycobacterium tuberculosis (Mtb) infection outcomes. The HLA alleles present at the -A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, and -DRB3/4/5 loci were determined in a cohort of 636 individuals with known Mtb infection outcomes from South Africa and the United States. Among these individuals, 203 were QuantiFERON (QFT) negative, and 433 were QFT positive, indicating Mtb exposure. Of these, 99 QFT positive participants either had active tuberculosis (TB) upon enrollment or were diagnosed in the past. We found that DQA1*03:01, DPB1*04:02, and DRB4*01:01 were significantly more frequent in individuals with active TB (susceptibility alleles), as judged by Odds Ratios and associated p-values, while DPB1*105:01 was associated with protection from active TB. Peripheral blood mononuclear cells (PMBCs) from a subset of individuals were stimulated with Mtb antigens, revealing individuals who express any of the three susceptibility alleles were associated with lower magnitude of responses. Furthermore, we defined a gene signature associated with individuals expressing the susceptibility alleles that was characterized by lower expression of APC-related genes. In summary, we have identified specific HLA alleles associated with susceptibility to active TB and found that the expression of these alleles was associated with a decreased Mtb-specific T cell response and a specific gene expression signature. These results will help understand individual risk factors in progressing to active TB.
Collapse
Affiliation(s)
- Leila Y. Chihab
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Rebecca Kuan
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious DiseasesMurdoch UniversityPerthWestern AustraliaAustralia
- Vanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Simon A. Mallal
- Institute for Immunology and Infectious DiseasesMurdoch UniversityPerthWestern AustraliaAustralia
- Vanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of PathologyUniversity of Cape TownCape TownSouth Africa
| | - Mark M. Davis
- Institute for Immunity, Transplantation and InfectionStanford University School of MedicineStanfordCaliforniaUSA
- Howard Hughes Medical InstituteStanford University School of MedicineStanfordCaliforniaUSA
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of PathologyUniversity of Cape TownCape TownSouth Africa
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | |
Collapse
|
7
|
Lu T, Wang M, Liu N, Zhang S, Shi L, Bao L, Luo F, Shi L, Liu S, Yao Y. Transporter Associated with Antigen Processing 1 Gene Polymorphisms Increase the Susceptibility to Tuberculosis. Pharmgenomics Pers Med 2023; 16:325-336. [PMID: 37077653 PMCID: PMC10108862 DOI: 10.2147/pgpm.s404339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose Tuberculosis (TB) is known to result from a complex interaction between the host immune response and Mycobacterium infection. The transporter associated with antigen processing (TAP) plays an important role in the processing and presentation pathways for the Mycobacterium tuberculosis (M. tb) antigen. To investigate the possible association of the TAP1 and TAP2 genes with TB. Patients and Methods A total of 449 TB patients and 435 control subjects were included in this study, and single nucleotide polymorphisms (SNPs) in the TAP gene, as well as TAP1 and TAP2 alleles, were genotyped. Results TAP gene association analysis of TB diseases showed that rs41551515-T in the TAP1 gene was significantly associated with susceptibility to TB (P=7.96E-04, OR=4.124, 95% CI: 1.683-10.102), especially pulmonary TB (PTB, P=6.84E-04, OR=4.350, 95% CI: 1.727-10.945), and the combination of rs1057141-T-rs1135216-C in the TAP1 gene significantly increased the risk of TB susceptibility (P=5.51E-05, OR=10.899, 95% CI: 2.555-46.493). Five novel TAP1 alleles were detected in Yunnan Han people, and the allele frequency of TAP1*unknown_3 (rs41555220-rs41549617-rs1057141-rs1135216-rs1057149-rs41551515: C-A-T-C-C-T) was notably increased in all TB patients, including in the PTB and EPTB subgroups, and was significantly associated with the risk of susceptibility to TB. However, no association between the TAP2 gene and TB was found in this study. Conclusion Host genetic variants of rs41551515-T and the combination rs1057141-T-rs1135216-C, as well as TAP1*unknown_3 may play a critical role in susceptibility to TB disease.
Collapse
Affiliation(s)
- Tianchang Lu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Minyi Wang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
- School of Life Science, Yunnan University, Kunming, 650500, People’s Republic of China
| | - Nannan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Shuqiong Zhang
- Department of Clinical Laboratory, The Third People’s Hospital of Kunming, Kunming, 650041, People’s Republic of China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Ling Bao
- Department of Clinical Laboratory, The Third People’s Hospital of Kunming, Kunming, 650041, People’s Republic of China
| | - Feng Luo
- Department of Clinical Laboratory, The Third People’s Hospital of Kunming, Kunming, 650041, People’s Republic of China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
- Correspondence: Shuyuan Liu, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China, Tel +86 871 68334483, Email
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, People’s Republic of China
- Yufeng Yao, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, People’s Republic of China, Tel +86 871 68335632, Email
| |
Collapse
|
8
|
Ndong Sima CAA, Smith D, Petersen DC, Schurz H, Uren C, Möller M. The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 2022; 75:215-230. [DOI: 10.1007/s00251-022-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
|
9
|
Asante-Poku A, Morgan P, Osei-Wusu S, Aboagye SY, Asare P, Otchere ID, Adadey SM, Mnika K, Esoh K, Mawuta KH, Arthur N, Forson A, Mazandu GK, Wonkam A, Yeboah-Manu D. Genetic Analysis of TB Susceptibility Variants in Ghana Reveals Candidate Protective Loci in SORBS2 and SCL11A1 Genes. Front Genet 2022; 12:729737. [PMID: 35242163 PMCID: PMC8886735 DOI: 10.3389/fgene.2021.729737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
Despite advancements made toward diagnostics, tuberculosis caused by Mycobacterium africanum (Maf) and Mycobacterium tuberculosis sensu stricto (Mtbss) remains a major public health issue. Human host factors are key players in tuberculosis (TB) outcomes and treatment. Research is required to probe the interplay between host and bacterial genomes. Here, we explored the association between selected human/host genomic variants and TB disease in Ghana. Paired host genotype datum and infecting bacterial isolate information were analyzed for associations using a multinomial logistic regression. Mycobacterium tuberculosis complex (MTBC) isolates were obtained from 191 TB patients and genotyped into different phylogenetic lineages by standard methods. Two hundred and thirty-five (235) nondisease participants were used as healthy controls. A selection of 29 SNPs from TB disease-associated genes with high frequency among African populations was assayed using a TaqMan® SNP Genotyping Assay and iPLEX Gold Sequenom Mass Genotyping Array. Using 26 high-quality SNPs across 326 case-control samples in an association analysis, we found a protective variant, rs955263, in the SORBS2 gene against both Maf and Mtb infections (P BH = 0.05; OR = 0.33; 95% CI = 0.32-0.34). A relatively uncommon variant, rs17235409 in the SLC11A1 gene was observed with an even stronger protective effect against Mtb infection (MAF = 0.06; PBH = 0.04; OR = 0.05; 95% CI = 0.04-0.05). These findings suggest SLC11A1 and SORBS2 as a potential protective gene of substantial interest for TB, which is an important pathogen in West Africa, and highlight the need for in-depth host-pathogen studies in West Africa.
Collapse
Affiliation(s)
- Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Portia Morgan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Samuel Yaw Aboagye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Samuel Mawuli Adadey
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Khuthala Mnika
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kevin Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kenneth Hayibor Mawuta
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Nelly Arthur
- Department of Chest Diseases, Korle-Bu Teaching Hospital Korle-Bu, Accra, Ghana
| | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital Korle-Bu, Accra, Ghana
| | - Gaston Kuzamunu Mazandu
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
10
|
McHenry ML, Wampande EM, Joloba ML, Malone LL, Mayanja-Kizza H, Bush WS, Boom WH, Williams SM, Stein CM. Interaction between M. tuberculosis Lineage and Human Genetic Variants Reveals Novel Pathway Associations with Severity of TB. Pathogens 2021; 10:pathogens10111487. [PMID: 34832643 PMCID: PMC8617877 DOI: 10.3390/pathogens10111487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) remains a major public health threat globally, especially in sub-Saharan Africa. Both human and Mycobacterium tuberculosis (MTBC) genetic variation affect TB outcomes, but few studies have examined if and how the two genomes interact to affect disease. We hypothesize that long-term coexistence between human genomes and MTBC lineages modulates disease to affect its severity. We examined this hypothesis in our TB household contact study in Kampala, Uganda, in which we identified three MTBC lineages, of which one, L4.6-Uganda, is clearly derived and hence recent. We quantified TB severity using the Bandim TBscore and examined the interaction between MTBC lineage and human single-nucleotide polymorphisms (SNPs) genome-wide, in two independent cohorts of TB cases (n = 149 and n = 127). We found a significant interaction between an SNP in PPIAP2 and the Uganda lineage (combined p = 4 × 10−8). PPIAP2 is a pseudogene that is highly expressed in immune cells. Pathway and eQTL analyses indicated potential roles between coevolving SNPs and cellular replication and metabolism as well as platelet aggregation and coagulation. This finding provides further evidence that host–pathogen interactions affect clinical presentation differently than host and pathogen genetic variation independently, and that human–MTBC coevolution is likely to explain patterns of disease severity.
Collapse
Affiliation(s)
- Michael L. McHenry
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44016, USA; (M.L.M.); (W.S.B.); (S.M.W.)
| | - Eddie M. Wampande
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda; (E.M.W.); (M.L.J.)
| | - Moses L. Joloba
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda; (E.M.W.); (M.L.J.)
| | - LaShaunda L. Malone
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (L.L.M.); (W.H.B.)
| | - Harriet Mayanja-Kizza
- Department of Medicine and Mulago Hospital, School of Medicine, Makerere University, Kampala, Uganda;
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44016, USA; (M.L.M.); (W.S.B.); (S.M.W.)
| | - W. Henry Boom
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (L.L.M.); (W.H.B.)
| | - Scott M. Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44016, USA; (M.L.M.); (W.S.B.); (S.M.W.)
| | - Catherine M. Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44016, USA; (M.L.M.); (W.S.B.); (S.M.W.)
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda; (E.M.W.); (M.L.J.)
- Correspondence:
| |
Collapse
|
11
|
Müller SJ, Schurz H, Tromp G, van der Spuy GD, Hoal EG, van Helden PD, Owusu-Dabo E, Meyer CG, Muntau B, Thye T, Niemann S, Warren RM, Streicher E, Möller M, Kinnear C. A multi-phenotype genome-wide association study of clades causing tuberculosis in a Ghanaian- and South African cohort. Genomics 2021; 113:1802-1815. [PMID: 33862184 DOI: 10.1016/j.ygeno.2021.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 01/31/2023]
Abstract
Despite decades of research and advancements in diagnostics and treatment, tuberculosis remains a major public health concern. New computational methods are needed to interrogate the intersection of host- and bacterial genomes. Paired host genotype datum and infecting bacterial isolate information were analysed for associations using a multinomial logistic regression framework implemented in SNPTest. A cohort of 853 admixed South African participants and a Ghanaian cohort of 1359 participants were included. Two directly genotyped variants, namely rs529920 and rs41472447, were identified in the Ghanaian cohort as being statistically significantly associated with risk for infection with strains of different members of the MTBC. Thus, a multinomial logistic regression using paired host-pathogen data may prove valuable for investigating the complex relationships driving infectious disease.
Collapse
Affiliation(s)
- Stephanie J Müller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Haiko Schurz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gian D van der Spuy
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ellis Owusu-Dabo
- School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian G Meyer
- Institute of Tropical Medicine, Eberhard-Karls University, Tübingen, Germany; Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Birgit Muntau
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thorsten Thye
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Niemann
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Menardo F, Rutaihwa LK, Zwyer M, Borrell S, Comas I, Conceição EC, Coscolla M, Cox H, Joloba M, Dou HY, Feldmann J, Fenner L, Fyfe J, Gao Q, García de Viedma D, Garcia-Basteiro AL, Gygli SM, Hella J, Hiza H, Jugheli L, Kamwela L, Kato-Maeda M, Liu Q, Ley SD, Loiseau C, Mahasirimongkol S, Malla B, Palittapongarnpim P, Rakotosamimanana N, Rasolofo V, Reinhard M, Reither K, Sasamalo M, Silva Duarte R, Sola C, Suffys P, Batista Lima KV, Yeboah-Manu D, Beisel C, Brites D, Gagneux S. Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim. F1000Res 2021; 10:60. [PMID: 33732436 PMCID: PMC7921886 DOI: 10.12688/f1000research.28318.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC) causing tuberculosis (TB) in humans. L1 and L3 are prevalent around the rim of the Indian Ocean, the region that accounts for most of the world's new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Methods: We analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We reconstructed the evolutionary history of these two lineages and identified genes under positive selection. Results: We found a strongly asymmetric pattern of migration from South Asia toward neighboring regions, highlighting the historical role of South Asia in the dispersion of L1 and L3. Moreover, we found that several genes were under positive selection, including genes involved in virulence and resistance to antibiotics. For L1 we identified signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Conclusions: Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Liliana K Rutaihwa
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Michaela Zwyer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, Valencia, Spain
| | - Emilyn Costa Conceição
- Instituto de Microbiologia, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Helen Cox
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Zhunan, Taiwan
| | - Julia Feldmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lukas Fenner
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
| | - Qian Gao
- Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Darío García de Viedma
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias, Madrid, Spain.,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alberto L Garcia-Basteiro
- Barcelona Institute for Global Health, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Sebastian M Gygli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jerry Hella
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hellen Hiza
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Levan Jugheli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lujeko Kamwela
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Qingyun Liu
- Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Serej D Ley
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Chloe Loiseau
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Surakameth Mahasirimongkol
- Department of Microbiology, Mahidol University, Bangkok, Thailand.,National Science and Technology Development Agency, Bangkok, Thailand
| | - Bijaya Malla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Prasit Palittapongarnpim
- Department of Microbiology, Mahidol University, Bangkok, Thailand.,National Science and Technology Development Agency, Bangkok, Thailand
| | | | | | - Miriam Reinhard
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Klaus Reither
- University of Basel, Basel, Switzerland.,Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Mohamed Sasamalo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Rafael Silva Duarte
- Instituto de Microbiologia, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christophe Sola
- Université Paris-Saclay, Paris, France.,INSERM-Université de Paris, Paris, France
| | - Philip Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Karla Valeria Batista Lima
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil.,Instituto Evandro Chagas, Ananindeua, Brazil
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Seedat F, James I, Loubser S, Waja Z, Mallal SA, Hoffmann C, Tiemessen CT, Chaisson RE, Martinson NA. Human leukocyte antigen associations with protection against tuberculosis infection and disease in human immunodeficiency virus-1 infected individuals, despite household tuberculosis exposure and immune suppression. Tuberculosis (Edinb) 2021; 126:102023. [PMID: 33249336 DOI: 10.1016/j.tube.2020.102023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND To determine the association of human leukocyte antigen (HLA) alleles as correlates of risk for and protection against tuberculin skin test (TST) positivity and active TB disease amongst HIV-infected adults. METHODS Genomic DNA was extracted from 754 HIV-infected adults whole-blood. HLA-A, -B, -C and -DRB1 loci were genotyped by next generation sequencing methods. HLA alleles were analysed by the presence/absence of TST immune conversion and active TB disease and further stratified by exposure to a household TB contact, CD4+ T-cell count and, for active TB disease, TST-positivity. RESULTS HLA-A*29:11 and - B*45:01/07 were associated with TST-positivity, while HLA-A*24:02, -A*29:02 and -B*15:16 with TST-negativity. In participants with a household TB contact, HLA-A*66:01, -A*68:02 and -B*49:01 were associated with TST-negativity. For TB disease, HLA-B*41:01, -C*06:02, -DRB1*04:01 and -DRB1*15:01 were associated with susceptibility, while HLA-B*07:02 and -DRB1*11:01 were protective, even for CD4+ T-cell count <350 cells/mm3. For initial TST-positivity and subsequent TB disease, HLA-A*01:01 and -DRB1*11:01 conveyed protection including for those with CD4+ T-cell count <350 cells/mm3. CONCLUSION Several HLA alleles are noted as correlates of TB infection, risk and natural protection in HIV-infected individuals. HLA associations may enable risk stratification of those with HIV infection. Protective alleles may assist in future TB vaccine development.
Collapse
Affiliation(s)
- Faheem Seedat
- Department of Internal Medicine, Klerksdorp Tshepong Hospital Complex, Benji Oliphant Road, North West Province Department of Health, University of the Witwatersrand, South Africa.
| | - Ian James
- Institute for Immunology and Infectious Diseases, 90 South Street, Murdoch University, Western Australia, Australia
| | - Shayne Loubser
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road and Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit (PHRU), MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Chris Hani Road, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, South Africa
| | - Simon A Mallal
- Department of Pathology, Microbiology and Immunology, 2201, West End Avenue, Vanderbilt University, Nashville, TN, USA
| | - Christopher Hoffmann
- Johns Hopkins University Centre for TB Research, Charles Street, John Hopkins University, Baltimore, MD, USA
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road and Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, South Africa
| | - Richard E Chaisson
- Johns Hopkins University Centre for TB Research, Charles Street, John Hopkins University, Baltimore, MD, USA
| | - Neil A Martinson
- Perinatal HIV Research Unit (PHRU), MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Chris Hani Road, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, South Africa
| |
Collapse
|
14
|
Uren C, Hoal EG, Möller M. Mycobacterium tuberculosis complex and human coadaptation: a two-way street complicating host susceptibility to TB. Hum Mol Genet 2020; 30:R146-R153. [PMID: 33258469 DOI: 10.1093/hmg/ddaa254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 11/14/2022] Open
Abstract
For centuries, the Mycobacterium tuberculosis complex (MTBC) has infected numerous populations, both human and non-human, causing symptomatic tuberculosis (TB) in some hosts. Research investigating the MTBC and how it has evolved with its host over time is sparse and has not resulted in many significant findings. There are even fewer studies investigating adaptation of the human host susceptibility to TB and these have largely focused on genome-wide association and candidate gene association studies. However, results emanating from these association studies are rarely replicated and appear to be population specific. It is, therefore, necessary to relook at the approach taken to investigate the relationship between the MTBC and the human host. Understanding that the evolution of the pathogen is coupled to the evolution of the host might be the missing link needed to effectively investigate their relationship. We hypothesize that this knowledge will bolster future efforts in combating the disease.
Collapse
Affiliation(s)
- Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, 7602 Stellenbosch, South Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, 7602 Stellenbosch, South Africa
| |
Collapse
|
15
|
Sutiwisesak R, Hicks ND, Boyce S, Murphy KC, Papavinasasundaram K, Carpenter SM, Boucau J, Joshi N, Le Gall S, Fortune SM, Sassetti CM, Behar SM. A natural polymorphism of Mycobacterium tuberculosis in the esxH gene disrupts immunodomination by the TB10.4-specific CD8 T cell response. PLoS Pathog 2020; 16:e1009000. [PMID: 33075106 PMCID: PMC7597557 DOI: 10.1371/journal.ppat.1009000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/29/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
CD8 T cells provide limited protection against Mycobacterium
tuberculosis (Mtb) infection in the mouse model. As Mtb causes
chronic infection in mice and humans, we hypothesize that Mtb impairs T cell
responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in
people, nonhuman primates, and mice, which is encoded by the
esxH gene. In C57BL/6 mice, 30–50% of pulmonary CD8 T cells
recognize the TB10.44−11 epitope. However, TB10.4-specific CD8 T
cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits
immunodominant CD8 T cell responses to antigens that are inefficiently presented
by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here,
we leverage naturally occurring polymorphisms in esxH, which
frequently occur in lineage 1 strains, to test this “decoy hypothesis”. Using
the clinical isolate 667, which contains an EsxHA10T polymorphism, we
observe a drastic change in the hierarchy of CD8 T cells. Using isogenic
Erd.EsxHA10T and Erd.EsxHWT strains, we prove that
this polymorphism alters the hierarchy of immunodominant CD8 T cell responses.
Our data are best explained by immunodomination, a mechanism by which
competition for APC leads to dominant responses suppressing subdominant
responses. These results were surprising as the variant epitope can bind to
H2-Kb and is recognized by TB10.4-specific CD8 T cells. The
dramatic change in TB10.4-specific CD8 responses resulted from increased
proteolytic degradation of A10T variant, which destroyed the
TB10.44-11epitope. Importantly, this polymorphism affected T cell
priming and recognition of infected cells. These data support a model in which
nonprotective CD8 T cells become immunodominant and suppress subdominant
responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv
sequence-based vaccines could lead to a mismatch between T cells that are primed
by vaccines and the epitopes presented by infected cells. Reprograming host
immune responses should be considered in the future design of vaccines. An important question for vaccine developers is the relative potency of CD4 vs.
CD8 T cells against Mtb, as strategies differ for eliciting these different T
cell subsets. Despite robust antigen-specific pulmonary CD8 T cell responses,
CD4 T cells mediate more protection than CD8 T cells in the murine model. Most
CD8 T cells recognize a single antigen, TB10.4, which is encoded by the
esxH gene. Based on finding that
TB10.44−11-specific CD8 T cells poorly recognize Mtb-infected
macrophages, we hypothesized that Mtb evades detection by CD8 T cells and
focuses the CD8 T cell response on non-protective antigen. We termed these
antigens “decoy antigens.” To test this hypothesis, we took advantage of a
natural variant of the esxH gene, which contains an A10T
polymorphism within the TB10.44−11 epitope. This polymorphism
drastically alters the hierarchy of CD8 T cell responses elicited by Mtb. These
data suggest that immunodomination by the TB10.4 epitope acts to suppress
subdominant CD8 T cell responses to other Mtb antigens, impairing the CD8 T cell
response to other Mtb antigens, some of which might be presented by Mtb-infected
macrophages and be targets of protective immunity. Importantly, this single
amino acid polymorphism, which does not significantly alter MHC-binding or T
cell recognition, alters the half-life of the epitope and consequently, has a
profound effect on CD8 T cell priming and recognition of infected cells. These
data also provide a mechanism that could be exploited to manipulate the
hierarchy of immunodominant responses.
Collapse
Affiliation(s)
- Rujapak Sutiwisesak
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts, United States of
America
| | - Shayla Boyce
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Kenan C. Murphy
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Neelambari Joshi
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Sylvie Le Gall
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts, United States of
America
| | - Christopher M. Sassetti
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
- * E-mail:
| |
Collapse
|
16
|
McHenry ML, Williams SM, Stein CM. Genetics and evolution of tuberculosis pathogenesis: New perspectives and approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104204. [PMID: 31981609 PMCID: PMC7192760 DOI: 10.1016/j.meegid.2020.104204] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis is the most lethal infectious disease globally, but the vast majority of people who are exposed to the primary causative pathogen, Mycobacterium tuberculosis (MTB), do not develop active disease. Most people do, however, show signs of infection that remain throughout their lifetimes. In this review, we develop a framework that describes several possible transitions from pathogen exposure to TB disease and reflect on the genetics studies to address many of these. The evidence strongly supports a human genetic component for both infection and active disease, but many of the existing studies, including some of our own, do not clearly delineate what transition(s) is being explicitly examined. This can make interpretation difficult in terms of why only some people develop active disease. Nonetheless, both linkage peaks and associations with either active disease or latent infection have been identified. For transition to active disease, pathways defined as active TB altered T and B cell signaling in rheumatoid arthritis and T helper cell differentiation are significantly associated. Pathways that affect transition from exposure to infection are less clear-cut, as studies of this phenotype are less common, and a primary response, if it exists, is not yet well defined. Lastly, we discuss the role that interaction between the MTB lineage and human genetics can play in TB disease, especially severity. Severity of TB is at present the only way to study putative co-evolution between MTB and humans as it is impossible in the absence of disease to know the MTB lineage(s) to which an individual has been exposed. In addition, even though severity has been defined in multiple heterogeneous ways, it appears that MTB-human co-evolution may shape pathogenicity. Further analysis of co-evolution, requiring careful analysis of paired samples, may be the best way to completely assess the genetic basis of TB.
Collapse
Affiliation(s)
- Michael L McHenry
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
17
|
Detecting HLA-infectious disease associations for multi-strain pathogens. INFECTION GENETICS AND EVOLUTION 2020; 83:104344. [PMID: 32387563 DOI: 10.1016/j.meegid.2020.104344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/24/2022]
Abstract
Human Leukocyte Antigen (HLA) molecules play a vital role helping our immune system to detect the presence of pathogens. Previous work to try and ascertain which HLA alleles offer advantages against particular pathogens has generated inconsistent results. We have constructed an epidemiological model to understand why this may occur. The model captures the epidemiology of a multi strain pathogen for which the host's ability to generate immunological memory responses to particular strains depends on that host's HLA genotype. We find that an HLA allele's ability to protect against infection, as measured in a case control study, depends on the population frequency of that HLA allele. Furthermore, our capability to detect associations between HLA alleles and infection with a multi strain pathogen may be affected by the properties of the pathogen itself (i.e R0 and length of infectious period). Both host and pathogen genetics must be considered in order to identify true HLA associations. However, in the absence of detailed pathogen genetic information, a negative correlation between the frequency of an HLA type and its apparent protectiveness against disease caused by multi strain pathogen is a strong indication that the HLA type in question is well adapted to a subset of strains of that pathogen.
Collapse
|
18
|
McHenry ML, Bartlett J, Igo RP, Wampande EM, Benchek P, Mayanja-Kizza H, Fluegge K, Hall NB, Gagneux S, Tishkoff SA, Wejse C, Sirugo G, Boom WH, Joloba M, Williams SM, Stein CM. Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution? PLoS Genet 2020; 16:e1008728. [PMID: 32352966 PMCID: PMC7217476 DOI: 10.1371/journal.pgen.1008728] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/12/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Genetic studies of both the human host and Mycobacterium tuberculosis (MTB) demonstrate independent association with tuberculosis (TB) risk. However, neither explains a large portion of disease risk or severity. Based on studies in other infectious diseases and animal models of TB, we hypothesized that the genomes of the two interact to modulate risk of developing active TB or increasing the severity of disease, when present. We examined this hypothesis in our TB household contact study in Kampala, Uganda, in which there were 3 MTB lineages of which L4-Ugandan (L4.6) is the most recent. TB severity, measured using the Bandim TBscore, was modeled as a function of host SNP genotype, MTB lineage, and their interaction, within two independent cohorts of TB cases, N = 113 and 121. No association was found between lineage and severity, but association between multiple polymorphisms in IL12B and TBscore was replicated in two independent cohorts (most significant rs3212227, combined p = 0.0006), supporting previous associations of IL12B with TB susceptibility. We also observed significant interaction between a single nucleotide polymorphism (SNP) in SLC11A1 and the L4-Ugandan lineage in both cohorts (rs17235409, meta p = 0.0002). Interestingly, the presence of the L4-Uganda lineage in the presence of the ancestral human allele associated with more severe disease. These findings demonstrate that IL12B is associated with severity of TB in addition to susceptibility, and that the association between TB severity and human genetics can be due to an interaction between genes in the two species, consistent with host-pathogen coevolution in TB.
Collapse
Affiliation(s)
- Michael L. McHenry
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jacquelaine Bartlett
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Robert P. Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Eddie M. Wampande
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Harriet Mayanja-Kizza
- Department of Medicine and Mulago Hospital, School of Medicine, Makerere University, Kampala, Uganda
| | - Kyle Fluegge
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Noemi B. Hall
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah A. Tishkoff
- Departments of Genetics and Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christian Wejse
- Department of Infectious Diseases and Center for Global Health, Aarhus University, Aarhus, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea Bissau
| | - Giorgio Sirugo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, Unites States of America
| | - W. Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Moses Joloba
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Scott M. Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Catherine M. Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
19
|
Human leukocyte antigen class I (A, B, C) and class II (DPB1, DQB1, DRB1) allele and haplotype variation in Black South African individuals. Hum Immunol 2019; 81:6-7. [PMID: 31843212 DOI: 10.1016/j.humimm.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
South Africa has a population of 58.78 million, of which 80.7% are Black African individuals, representing 9 predominant ethnic/linguistic groups (Zulu, Xhosa, Pedi, Tswana, South Sotho, Tsonga, Swati, Venda and Ndebele). HIV-1 and Mycobacterium tuberculosis infection are the leading causes of death (7.8% and 5.9%, respectively) in this population group. To provide reference HLA allele and haplotype data for studies of gene-associations with infectious/non-infectious diseases or vaccine development, we have updated previously published HLA class I (A, B, C) and class II DRB1 genotypes and determined high-resolution class II (DPB1, DQB1) genotypes for n = 142 healthy, unrelated Black South African individuals.
Collapse
|
20
|
Correa-Macedo W, Cambri G, Schurr E. The Interplay of Human and Mycobacterium Tuberculosis Genomic Variability. Front Genet 2019; 10:865. [PMID: 31620169 PMCID: PMC6759583 DOI: 10.3389/fgene.2019.00865] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB), caused by the human pathogens Mycobacterium tuberculosis (Mtb) and Mycobacterium africanum, has plagued humanity for millennia and remains the deadliest infectious disease in the modern world. Mycobacterium tuberculosis and M. africanum can be subdivided phylogenetically into seven lineages exhibiting a low but significant degree of genomic diversity and preferential geographic distributions. Human genetic variability impacts all stages of TB pathogenesis ranging from susceptibility to infection with Mtb, progression of infection to disease, and the development of distinct clinical subtypes. The genetic study of severe childhood TB identified strong inborn single-gene errors revealing crucial pathways of vulnerability to TB. However, the identification of major TB-susceptibility genes on the population level has remained elusive. In particular, the replication of findings from candidate and genome-wide association studies across distinct human populations has proven difficult, thus hampering the characterization of reliable host molecular markers of susceptibility. Among the possible confounding factors of genetic association studies is Mtb genomic variability, which generally was not taken into account by human genetic studies. In support of this possibility, Mtb lineage was found to be a contributing factor to clinical presentation of TB and epidemiological spread of Mtb in exposed populations. The confluence of pathogen and human host genetic variability to TB pathogenesis led to the consideration of a possible coadaptation of Mtb strains and their human hosts, which should reveal itself in significant interaction effects between Mtb strain and TB-susceptibility/resistance alleles. Here, we present some of the most consistent findings of genetic susceptibility factors in human TB and review studies that point to genome-to-genome interaction between humans and Mtb lineages. The limited results available so far suggest that analyses considering joint human–Mtb genomic variability may provide improved power for the discovery of pathogenic drivers of the ongoing TB epidemic.
Collapse
Affiliation(s)
- Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Geison Cambri
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Salvatore PP, Proaño A, Kendall EA, Gilman RH, Dowdy DW. Linking Individual Natural History to Population Outcomes in Tuberculosis. J Infect Dis 2019; 217:112-121. [PMID: 29106638 PMCID: PMC5853266 DOI: 10.1093/infdis/jix555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
Background Substantial individual heterogeneity exists in the clinical manifestations and duration of active tuberculosis. We sought to link the individual-level characteristics of tuberculosis disease to observed population-level outcomes. Methods We developed an individual-based, stochastic model of tuberculosis disease in a hypothetical cohort of patients with smear-positive tuberculosis. We conceptualized the disease process as consisting of 2 states—progression and recovery—including transitions between the 2. We then used a Bayesian process to calibrate the model to clinical data from the prechemotherapy era, thus identifying the rates of progression and recovery (and probabilities of transition) consistent with observed population-level clinical outcomes. Results Observed outcomes are consistent with slow rates of disease progression (median doubling time: 84 days, 95% uncertainty range 62–104) and a low, but nonzero, probability of transition from disease progression to recovery (median 16% per year, 95% uncertainty range 11%–21%). Other individual-level dynamics were less influential in determining observed outcomes. Conclusions This simplified model identifies individual-level dynamics—including a long doubling time and low probability of immune recovery—that recapitulate population-level clinical outcomes of untreated tuberculosis patients. This framework may facilitate better understanding of the population-level impact of interventions acting at the individual host level.
Collapse
Affiliation(s)
- Phillip P Salvatore
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Alvaro Proaño
- Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Emily A Kendall
- Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert H Gilman
- Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Asociación Benéfica PRISMA, Lima, Peru.,Department of International Health, Baltimore, Maryland
| | - David W Dowdy
- Department of International Health, Baltimore, Maryland.,Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
22
|
The arms race between man and Mycobacterium tuberculosis: Time to regroup. INFECTION GENETICS AND EVOLUTION 2018; 66:361-375. [DOI: 10.1016/j.meegid.2017.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022]
|
23
|
Wiens KE, Woyczynski LP, Ledesma JR, Ross JM, Zenteno-Cuevas R, Goodridge A, Ullah I, Mathema B, Djoba Siawaya JF, Biehl MH, Ray SE, Bhattacharjee NV, Henry NJ, Reiner RC, Kyu HH, Murray CJL, Hay SI. Global variation in bacterial strains that cause tuberculosis disease: a systematic review and meta-analysis. BMC Med 2018; 16:196. [PMID: 30373589 PMCID: PMC6206891 DOI: 10.1186/s12916-018-1180-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The host, microbial, and environmental factors that contribute to variation in tuberculosis (TB) disease are incompletely understood. Accumulating evidence suggests that one driver of geographic variation in TB disease is the local ecology of mycobacterial genotypes or strains, and there is a need for a comprehensive and systematic synthesis of these data. The objectives of this study were to (1) map the global distribution of genotypes that cause TB disease and (2) examine whether any epidemiologically relevant clinical characteristics were associated with those genotypes. METHODS We performed a systematic review of PubMed and Scopus to create a comprehensive dataset of human TB molecular epidemiology studies that used representative sampling techniques. The methods were developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We extracted and synthesized data from studies that reported prevalence of bacterial genotypes and from studies that reported clinical characteristics associated with those genotypes. RESULTS The results of this study are twofold. First, we identified 206 studies for inclusion in the study, representing over 200,000 bacterial isolates collected over 27 years in 85 countries. We mapped the genotypes and found that, consistent with previously published maps, Euro-American lineage 4 and East Asian lineage 2 strains are widespread, and West African lineages 5 and 6 strains are geographically restricted. Second, 30 studies also reported transmission chains and 4 reported treatment failure associated with genotypes. We performed a meta-analysis and found substantial heterogeneity across studies. However, based on the data available, we found that lineage 2 strains may be associated with increased risk of transmission chains, while lineages 5 and 6 strains may be associated with reduced risk, compared with lineage 4 strains. CONCLUSIONS This study provides the most comprehensive systematic analysis of the evidence for diversity in bacterial strains that cause TB disease. The results show both geographic and epidemiological differences between strains, which could inform our understanding of the global burden of TB. Our findings also highlight the challenges of collecting the clinical data required to inform TB diagnosis and treatment. We urge future national TB programs and research efforts to prioritize and reinforce clinical data collection in study designs and results dissemination.
Collapse
Affiliation(s)
- Kirsten E Wiens
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Lauren P Woyczynski
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Jorge R Ledesma
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Jennifer M Ross
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
- Departments of Global Health and Medicine, University of Washington, Seattle, WA, USA
| | | | - Amador Goodridge
- Tuberculosis Biomarker Research Unit, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama, Panama
| | - Irfan Ullah
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
- Programmatic Management of Drug-Resistant TB Unit, BSL-II TB Culture Laboratory, Mufti Mehmood Memorial Teaching Hospital, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joel Fleury Djoba Siawaya
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique, Libreville, Gabon
- Centre Hospitalier Universitaire Mère-Enfant Fondation Jeanne EBORI, Libreville, Gabon
| | - Molly H Biehl
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Sarah E Ray
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Natalia V Bhattacharjee
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Nathaniel J Henry
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Hmwe H Kyu
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA.
| |
Collapse
|
24
|
Verhein KC, Vellers HL, Kleeberger SR. Inter-individual variation in health and disease associated with pulmonary infectious agents. Mamm Genome 2018; 29:38-47. [PMID: 29353387 PMCID: PMC5851710 DOI: 10.1007/s00335-018-9733-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Respiratory infectious diseases resulting from bacterial or viral pathogens such as Mycobacterium tuberculosis, Streptococcus pneumoniae, respiratory syncytial virus (RSV), or influenza, are major global public health concerns. Lower respiratory tract infections are leading causes of morbidity and mortality, only behind ischemic heart disease and stroke (GBD 2015 LRI Collaborators in Lancet Infect Dis 17(11):1133–1161, 2017). Developing countries are particularly impacted by these diseases. However, while many are infected with viruses such as RSV (> 90% of all individuals are infected by age 2), only sub-populations develop severe disease. Many factors may contribute to the inter-individual variation in response to respiratory infections, including gender, age, socioeconomic status, nutrition, and genetic background. Association studies with functional single nucleotide polymorphisms in biologically plausible gene candidates have been performed in human populations to provide insight to the molecular genetic contribution to pulmonary infections and disease severity. In vitro cell models and genome-wide association studies in animal models of genetic susceptibility to respiratory infections have also identified novel candidate susceptibility genes, some of which have also been found to contribute to disease susceptibility in human populations. Genetic background may also contribute to differential efficacy of vaccines against respiratory infections. Development of new genetic mouse models such as the collaborative cross and diversity outbred mice should provide additional insight to the mechanisms of genetic susceptibility to respiratory infections. Continued investigation of susceptibility factors should provide insight to novel strategies to prevent and treat disease that contributes to global morbidity and mortality attributed to respiratory infections.
Collapse
Affiliation(s)
- Kirsten C Verhein
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Building 101, Rm. D240, Research Triangle Park, NC, 27709, USA.
| | - Heather L Vellers
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Steven R Kleeberger
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
25
|
Möller M, Kinnear CJ, Orlova M, Kroon EE, van Helden PD, Schurr E, Hoal EG. Genetic Resistance to Mycobacterium tuberculosis Infection and Disease. Front Immunol 2018; 9:2219. [PMID: 30319657 PMCID: PMC6170664 DOI: 10.3389/fimmu.2018.02219] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Natural history studies of tuberculosis (TB) have revealed a spectrum of clinical outcomes after exposure to Mycobacterium tuberculosis, the cause of TB. Not all individuals exposed to the bacterium will become diseased and depending on the infection pressure, many will remain infection-free. Intriguingly, complete resistance to infection is observed in some individuals (termed resisters) after intense, continuing M. tuberculosis exposure. After successful infection, the majority of individuals will develop latent TB infection (LTBI). This infection state is currently (and perhaps imperfectly) defined by the presence of a positive tuberculin skin test (TST) and/or interferon gamma release assay (IGRA), but no detectable clinical disease symptoms. The majority of healthy individuals with LTBI are resistant to clinical TB, indicating that infection is remarkably well-contained in these non-progressors. The remaining 5-15% of LTBI positive individuals will progress to active TB. Epidemiological investigations have indicated that the host genetic component contributes to these infection and disease phenotypes, influencing both susceptibility and resistance. Elucidating these genetic correlates is therefore a priority as it may translate to new interventions to prevent, diagnose or treat TB. The most successful approaches in resistance/susceptibility investigation have focused on specific infection and disease phenotypes and the resister phenotype may hold the key to the discovery of actionable genetic variants in TB infection and disease. This review will not only discuss lessons from epidemiological studies, but will also focus on the contribution of epidemiology and functional genetics to human genetic resistance to M. tuberculosis infection and disease.
Collapse
Affiliation(s)
- Marlo Möller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Elouise E. Kroon
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Eileen G. Hoal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
26
|
Chihota VN, Niehaus A, Streicher EM, Wang X, Sampson SL, Mason P, Källenius G, Mfinanga SG, Pillay M, Klopper M, Kasongo W, Behr MA, Gey van Pittius NC, van Helden PD, Couvin D, Rastogi N, Warren RM. Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS One 2018; 13:e0200632. [PMID: 30067763 PMCID: PMC6070189 DOI: 10.1371/journal.pone.0200632] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the distribution of Mycobacterium tuberculosis genotypes across Africa. Methods The SITVIT2 global repository and PUBMED were searched for spoligotype and published genotype data respectively, of M. tuberculosis from Africa. M. tuberculosis lineages in Africa were described and compared across regions and with those from 7 European and 6 South-Asian countries. Further analysis of the major lineages and sub-lineages using Principal Component analysis (PCA) and hierarchical cluster analysis were done to describe clustering by geographical regions. Evolutionary relationships were assessed using phylogenetic tree analysis. Results A total of 14727 isolates from 35 African countries were included in the analysis and of these 13607 were assigned to one of 10 major lineages, whilst 1120 were unknown. There were differences in geographical distribution of major lineages and their sub-lineages with regional clustering. Southern African countries were grouped based on high prevalence of LAM11-ZWE strains; strains which have an origin in Portugal. The grouping of North African countries was due to the high percentage of LAM9 strains, which have an origin in the Eastern Mediterranean region. East African countries were grouped based on Central Asian (CAS) and East-African Indian (EAI) strain lineage possibly reflecting historic sea trade with Asia, while West African Countries were grouped based on Cameroon lineage of unknown origin. A high percentage of the Haarlem lineage isolates were observed in the Central African Republic, Guinea, Gambia and Tunisia, however, a mixed distribution prevented close clustering. Conclusions This study highlighted that the TB epidemic in Africa is driven by regional epidemics characterized by genetically distinct lineages of M. tuberculosis. M. tuberculosis in these regions may have been introduced from either Europe or Asia and has spread through pastoralism, mining and war. The vast array of genotypes and their associated phenotypes should be considered when designing future vaccines, diagnostics and anti-TB drugs.
Collapse
Affiliation(s)
- Violet N. Chihota
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- The Aurum Institute, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Antoinette Niehaus
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Xia Wang
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Samantha L. Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter Mason
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Gunilla Källenius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Sayoki G. Mfinanga
- National Institute for Medical Research Muhimbili Medical Research Centre, Dar es Saalam, Tanzania
| | - Marnomorney Pillay
- Department of Medical Microbiology University of KwaZulu Natal, Durban, South Africa
| | - Marisa Klopper
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | - Marcel A. Behr
- Division of Infectious Diseases, Department of Medicine McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicolaas C. Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
27
|
Liao C, Yang J, Wang J, Du X, Wang R, Zhang S, He W, Wen Q, Ma L. [Association between HLA-A and HLA-DRB1 allele polymorphisms and susceptibility to tuberculosis in southern Chinese population]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:95-100. [PMID: 33177020 DOI: 10.3969/j.issn.1673-4254.2018.01.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study the relationship between HLA allele frequencies in peripheral blood mononuclear cells (PBMCs) and the susceptibility to tuberculosis in southern Chinese population. METHODS The polymorphisms of HLA-A and HLA-DRB1 loci in the PBMCs were analyzed in 294 patients with active tuberculosis using polymerase chain reaction-sequence based typing (PCT-SBT). The allele frequencies in the patients were compared with the data from 644 control southern Chinese subjects obtained from the online database Allele Frequencies in Worldwide Population. RESULTS The frequencies of HLA-A* 0101 and HLA-DRB1*1454 alleles in the patient cohort with pulmonary tuberculosis were significantly higher than those in the control group (2.4% vs 0.6%, χ2=10.788, P=0.001, Pc=0.016; 7.5% vs 0%, χ2=69.850, P < 0.0001); the frequencies of HLA-DRB1*1202 and HLA-DRB1*1401 alleles were significantly lower in this patient cohort than in the control group (10.4% vs 16.1%, χ2=9.845, P=0.002, Pc=0.044; 0% vs 3.1%, χ2=18.520, P < 0.001). CONCLUSIONS The frequencies of HLA-A and HLA-DRB1 alleles are correlated with the susceptibility to active tuberculosis in this southern Chinese population. HLA-A*0101, HLA-DRB1*1454 and the other 3 alleles are likely susceptible genes to tuberculosis, while HLA-DRB1*1202, HLA-DRB1*1401 and the other 4 alleles can be protective genes in this population.
Collapse
Affiliation(s)
- Chunxin Liao
- Department of Internal Medicine, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jiahui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jinli Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ruining Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shimeng Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Wenting He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Bastos HN, Osório NS, Gagneux S, Comas I, Saraiva M. The Troika Host-Pathogen-Extrinsic Factors in Tuberculosis: Modulating Inflammation and Clinical Outcomes. Front Immunol 2018; 8:1948. [PMID: 29375571 PMCID: PMC5767228 DOI: 10.3389/fimmu.2017.01948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022] Open
Abstract
The already enormous burden caused by tuberculosis (TB) will be further aggravated by the association of this disease with modern epidemics, as human immunodeficiency virus and diabetes. Furthermore, the increasingly aging population and the wider use of suppressive immune therapies hold the potential to enhance the incidence of TB. New preventive and therapeutic strategies based on recent advances on our understanding of TB are thus needed. In particular, understanding the intricate network of events modulating inflammation in TB will help to build more effective vaccines and host-directed therapies to stop TB. This review integrates the impact of host, pathogen, and extrinsic factors on inflammation and the almost scientifically unexplored complexity emerging from the interactions between these three factors. We highlight the exciting data showing a contribution of this troika for the clinical outcome of TB and the need of incorporating it when developing novel strategies to rewire the immune response in TB.
Collapse
Affiliation(s)
- Helder Novais Bastos
- Department of Pneumology, Centro Hospitalar do São João, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Stein CM, Sausville L, Wejse C, Sobota RS, Zetola NM, Hill PC, Boom WH, Scott WK, Sirugo G, Williams SM. Genomics of human pulmonary tuberculosis: from genes to pathways. CURRENT GENETIC MEDICINE REPORTS 2017; 5:149-166. [PMID: 29805915 DOI: 10.1007/s40142-017-0130-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose of review Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major public health threat globally. Several lines of evidence support a role for host genetic factors in resistance/susceptibility to TB disease and MTB infection. However, results across candidate gene and genome-wide association studies (GWAS) are largely inconsistent, so a cohesive genetic model underlying TB risk has not emerged. Recent Findings Despite the difficulties in identifying consistent genetic associations, genetic studies of TB and MTB infection have revealed a few well-documented loci. These well validated genes are presented in this review, but there remains a large gap in how these genes translate into better understanding of TB. To address this, we present a pathway based extension of standard association analyses, seeding the results with the best validated genes from candidate gene and GWAS studies. Summary Several pathways were significantly enriched using pathway analyses that may help to explain population patterns of TB risk. In conclusion, we advocate for novel approaches to the study of host genetic analysis of TB that extend traditional association approaches.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Cleveland, OH.,Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - Lindsay Sausville
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| | - Christian Wejse
- Dept of Infectious Diseases/Center for Global Health, Aarhus University, Aarhus, Denmark
| | - Rafal S Sobota
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL
| | - Nicola M Zetola
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA 19104, USA.,Botswana-UPenn Partnership, Gaborone, Botswana.,Department of Medicine, University of Botswana, Gaborone, Botswana
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - William K Scott
- Department of Human Genetics and Genomics, University of Miami School of Medicine, Miami, FL
| | - Giorgio Sirugo
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| |
Collapse
|
30
|
Mozzi A, Pontremoli C, Sironi M. Genetic susceptibility to infectious diseases: Current status and future perspectives from genome-wide approaches. INFECTION GENETICS AND EVOLUTION 2017; 66:286-307. [PMID: 28951201 PMCID: PMC7106304 DOI: 10.1016/j.meegid.2017.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied to identify genetic factors that affect complex diseases or traits. Presently, the GWAS Catalog includes > 2800 human studies. Of these, only a minority have investigated the susceptibility to infectious diseases or the response to therapies for the treatment or prevention of infections. Despite their limited application in the field, GWASs have provided valuable insights by pinpointing associations to both innate and adaptive immune response loci, as well as novel unexpected risk factors for infection susceptibility. Herein, we discuss some issues and caveats of GWASs for infectious diseases, we review the most recent findings ensuing from these studies, and we provide a brief summary of selected GWASs for infections in non-human mammals. We conclude that, although the general trend in the field of complex traits is to shift from GWAS to next-generation sequencing, important knowledge on infectious disease-related traits can be still gained by GWASs, especially for those conditions that have never been investigated using this approach. We suggest that future studies will benefit from the leveraging of information from the host's and pathogen's genomes, as well as from the exploration of models that incorporate heterogeneity across populations and phenotypes. Interactions within HLA genes or among HLA variants and polymorphisms located outside the major histocompatibility complex may also play an important role in shaping the susceptibility and response to invading pathogens. Relatively few GWASs for infectious diseases were performed. Phenotype heterogeneity and case/control misclassification can affect GWAS power. Adaptive and innate immunity loci were identified in several infectious disease GWASs. Unexpected loci (e.g., lncRNAs) were also associated with infection susceptibility. GWASs should integrate host and pathogen diversity and use complex association models.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy.
| |
Collapse
|
31
|
Omae Y, Toyo-Oka L, Yanai H, Nedsuwan S, Wattanapokayakit S, Satproedprai N, Smittipat N, Palittapongarnpim P, Sawanpanyalert P, Inunchot W, Pasomsub E, Wichukchinda N, Mushiroda T, Kubo M, Tokunaga K, Mahasirimongkol S. Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis. J Hum Genet 2017; 62:1015-1022. [PMID: 28878339 PMCID: PMC5709719 DOI: 10.1038/jhg.2017.82] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/12/2023]
Abstract
Tuberculosis (TB) is known to be affected by host genetic factors. We reported a specific genetic risk factor through a genome-wide association study (GWAS) that focused on young age onset TB. In this study, we further focused on the heterogeneity of Mycobacterium tuberculosis (M. tb) lineages and assessed its possible interaction with age at onset on host genetic factors. We identified the pathogen lineage in 686 Thai TB cases and GWAS stratified by both infected pathogen lineage information and age at onset revealed a genome-wide significant association of one single-nucleotide polymorphism (SNP) on chromosome 1p13, which was specifically associated with non-Beijing lineage-infected old age onset cases (P=2.54E-08, OR=1.74 (95% CI=1.43–2.12)), when we compared them to the population-matched healthy controls. This SNP locates near the CD53 gene, which encodes a leukocyte surface glycoprotein. Interestingly, the expression of CD53 was also correlated with the patients’ active TB status. This is the first report of a pathogen lineage-based genome-wide association study. The results suggested that host genetic risk in TB is depended upon the pathogen genetic background and demonstrate the importance of analyzing the interaction between host and pathogen genomes in TB.
Collapse
Affiliation(s)
- Yosuke Omae
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Licht Toyo-Oka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Yanai
- Fukujuji Hospital and Research Institute of Tuberculosis (RIT), Japan Anti-Tuberculosis Association (JATA), Kiyose, Japan
| | - Supalert Nedsuwan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiang Rai, Thailand
| | - Sukanya Wattanapokayakit
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nusara Satproedprai
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nat Smittipat
- Tuberculosis Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | | | - Wimala Inunchot
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Ekawat Pasomsub
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nuanjun Wichukchinda
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
32
|
Kinnear C, Hoal EG, Schurz H, van Helden PD, Möller M. The role of human host genetics in tuberculosis resistance. Expert Rev Respir Med 2017; 11:721-737. [PMID: 28703045 DOI: 10.1080/17476348.2017.1354700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tuberculosis (TB) remains a public health problem: the latest estimate of new incident cases per year is a staggering 10.4 million. Despite this overwhelming number, the majority of the immunocompetent population can control infection with Mycobacterium tuberculosis. The human genome underlies the immune response and contributes to the outcome of TB infection. Areas covered: Investigations of TB resistance in the general population have closely mirrored those of other infectious diseases and initially involved epidemiological observations. Linkage and association studies, including studies of VDR, SLC11A1 and HLA-DRB1 followed. Genome-wide association studies of common variants, not necessarily sufficient for disease, became possible after technological advancements. Other approaches involved the identification of those individuals with rare disease-causing mutations that strongly predispose to TB, epistasis and the role of ethnicity in disease. Despite these efforts, infection outcome, on an individual basis, cannot yet be predicted. Expert commentary: The early identification of future disease progressors is necessary to stem the TB epidemic. Human genetics may contribute to this endeavour and could in future suggest pathways to target for disease prevention. This will however require concerted efforts to establish large, well-phenotyped cohorts from different ethnicities, improved genomic resources and a better understanding of the human genome architecture.
Collapse
Affiliation(s)
- Craig Kinnear
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Eileen G Hoal
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Haiko Schurz
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Paul D van Helden
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Marlo Möller
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| |
Collapse
|
33
|
van Tong H, Velavan TP, Thye T, Meyer CG. Human genetic factors in tuberculosis: an update. Trop Med Int Health 2017; 22:1063-1071. [PMID: 28685916 DOI: 10.1111/tmi.12923] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB) is a major threat to human health, especially in many developing countries. Human genetic variability has been recognised to be of great relevance in host responses to Mycobacterium tuberculosis infection and in regulating both the establishment and the progression of the disease. An increasing number of candidate gene and genome-wide association studies (GWAS) have focused on human genetic factors contributing to susceptibility or resistance to TB. To update previous reviews on human genetic factors in TB we searched the MEDLINE database and PubMed for articles from 1 January 2014 through 31 March 2017 and reviewed the role of human genetic variability in TB. Search terms applied in various combinations were 'tuberculosis', 'human genetics', 'candidate gene studies', 'genome-wide association studies' and 'Mycobacterium tuberculosis'. Articles in English retrieved and relevant references cited in these articles were reviewed. Abstracts and reports from meetings were also included. This review provides a recent summary of associations of polymorphisms of human genes with susceptibility/resistance to TB.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Thorsten Thye
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
34
|
Toyo‐oka L, Mahasirimongkol S, Yanai H, Mushiroda T, Wattanapokayakit S, Wichukchinda N, Yamada N, Smittipat N, Juthayothin T, Palittapongarnpim P, Nedsuwan S, Kantipong P, Takahashi A, Kubo M, Sawanpanyalert P, Tokunaga K. Strain‐based
HLA
association analysis identified
HLA‐DRB1
*09:01
associated with modern strain tuberculosis. HLA 2017; 90:149-156. [DOI: 10.1111/tan.13070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 01/08/2023]
Affiliation(s)
- L. Toyo‐oka
- Medical Genetics Center, Medical Life Science Institute Department of Medical Sciences, Ministry of Public Health Nonthaburi Thailand
- Department of Human Genetics, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - S. Mahasirimongkol
- Medical Genetics Center, Medical Life Science Institute Department of Medical Sciences, Ministry of Public Health Nonthaburi Thailand
| | - H. Yanai
- Fukujuji Hospital Japan Anti‐Tuberculosis Association (JATA) Kiyose Japan
- Research Institute of Tuberculosis Japan Anti‐Tuberculosis Association (JATA) Kiyose Japan
| | - T. Mushiroda
- Laboratory for Pharmacogenomics RIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - S. Wattanapokayakit
- Medical Genetics Center, Medical Life Science Institute Department of Medical Sciences, Ministry of Public Health Nonthaburi Thailand
| | - N. Wichukchinda
- Medical Genetics Center, Medical Life Science Institute Department of Medical Sciences, Ministry of Public Health Nonthaburi Thailand
| | - N. Yamada
- Research Institute of Tuberculosis Japan Anti‐Tuberculosis Association (JATA) Kiyose Japan
| | - N. Smittipat
- Tuberculosis Research Laboratory, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Thailand Science Park (TSP) Pathum Thani Thailand
| | - T. Juthayothin
- Tuberculosis Research Laboratory, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Thailand Science Park (TSP) Pathum Thani Thailand
| | - P. Palittapongarnpim
- Department of Microbiology, Faculty of Science Mahidol University Bangkok Thailand
| | - S. Nedsuwan
- Chiangrai Prachanukroh Hospital Ministry of Public Health Chiang Rai Thailand
| | - P. Kantipong
- Chiangrai Prachanukroh Hospital Ministry of Public Health Chiang Rai Thailand
| | - A. Takahashi
- Laboratory for Statistical Analysis RIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - M. Kubo
- Laboratory for Genotyping Development RIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - P. Sawanpanyalert
- Health Technical Office Ministry of Public Health Nonthaburi Thailand
| | - K. Tokunaga
- Department of Human Genetics, Graduate School of Medicine The University of Tokyo Tokyo Japan
| |
Collapse
|
35
|
Gentle NL, Loubser S, Paximadis M, Puren A, Tiemessen CT. Killer-cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA) class I genetic diversity in four South African populations. Hum Immunol 2017; 78:503-509. [PMID: 28571758 DOI: 10.1016/j.humimm.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 11/29/2022]
Abstract
Killer-cell Immunoglobulin-like Receptor (KIR) and Human Leukocyte Antigen (HLA) genotypes vary considerably between individuals and populations due to KIR/HLA allelic variation and variable haplotype configurations of KIR. HLA mediate natural killer cell activity by serving as KIR ligands. KIR/HLA polymorphisms associate with both disease susceptibility and severity. We determined the frequencies of KIR, KIR genotypes and KIR-HLA combinations in 364 healthy individuals from four South African populations. Study participants included black African (n=167), Caucasian (n=97), Mixed ancestry (n=50) and Indian (n=50) individuals. We identified 48 KIR genotypes that included two genotypes not previously reported. Based on KIR gene content, Indian individuals represented the most distinct group, showing the highest frequencies of KIR2DL2, KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3 and KIR3DS1, the lowest frequencies of KIR2DL3, KIR2DS4 and KIR3DL1; and a KIR2DL4-negative individual. KIR2DS1 and KIR3DS1 were infrequent in black African populations. HLA-C2 was more common in black African individuals, while HLA-C1 predominated in the other populations. Indian individuals were more likely to possess KIR2DL2 paired with HLA-C1, while Caucasian individuals exhibited the highest frequencies of KIR2DL3 paired with HLA-C1. This report provides comprehensive reference data for further study of the roles of KIR/HLA in non-communicable and infectious diseases in South African populations.
Collapse
Affiliation(s)
- Nikki L Gentle
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Shayne Loubser
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Adrian Puren
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa.
| |
Collapse
|
36
|
Human leukocyte antigen class I (A, B and C) allele and haplotype variation in a South African Mixed ancestry population. Hum Immunol 2017; 78:399-400. [PMID: 28438553 PMCID: PMC5451074 DOI: 10.1016/j.humimm.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 11/20/2022]
Abstract
South Africa has a large (∼53million), ethnically diverse population (black African, Caucasian, Indian/Asian and Mixed ancestry) and a high disease burden (particularly HIV-1 and Mycobacterium tuberculosis). The Mixed ancestry population constitutes ∼9% of the total population and was established ∼365years ago in the Western Cape region through interracial mixing of black Africans, Europeans and Asians. Admixed populations present unique opportunities to identify genetic factors involved in disease susceptibility. Since HLA genes are important mediators of host immunity, we investigated HLA-A, -B and -C allele and haplotype diversity in 50 healthy, unrelated individuals recruited from the Mixed ancestry population.
Collapse
|
37
|
Uren C, Henn BM, Franke A, Wittig M, van Helden PD, Hoal EG, Möller M. A post-GWAS analysis of predicted regulatory variants and tuberculosis susceptibility. PLoS One 2017; 12:e0174738. [PMID: 28384278 PMCID: PMC5383035 DOI: 10.1371/journal.pone.0174738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/14/2017] [Indexed: 01/19/2023] Open
Abstract
Utilizing data from published tuberculosis (TB) genome-wide association studies (GWAS), we use a bioinformatics pipeline to detect all polymorphisms in linkage disequilibrium (LD) with variants previously implicated in TB disease susceptibility. The probability that these variants had a predicted regulatory function was estimated using RegulomeDB and Ensembl's Variant Effect Predictor. Subsequent genotyping of these 133 predicted regulatory polymorphisms was performed in 400 admixed South African TB cases and 366 healthy controls in a population-based case-control association study to fine-map the causal variant. We detected associations between tuberculosis susceptibility and six intronic polymorphisms located in MARCO, IFNGR2, ASHAS2, ACACA, NISCH and TLR10. Our post-GWAS approach demonstrates the feasibility of combining multiple TB GWAS datasets with linkage information to identify regulatory variants associated with this infectious disease.
Collapse
Affiliation(s)
- Caitlin Uren
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brenna M. Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Rosalind-Franklin-Strasse Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Rosalind-Franklin-Strasse Kiel, Germany
| | - Paul D. van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G. Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
38
|
HLA-A, B, DRB1, DQA1, DQB1 alleles and haplotype frequencies in Dene and Cree cohorts in Manitoba, Canada. Hum Immunol 2017; 78:401-411. [PMID: 28359736 DOI: 10.1016/j.humimm.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/01/2017] [Accepted: 03/18/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND First Nations in the Canadian province of Manitoba have disproportionately high rates of epidemic and endemic TB. Gene polymorphisms that modulate HLA Class I and II antigens are among the risk markers for TB, along with other biologic, and social determinants of health. HLA-A, B, DRB1, DQA1, DQB1 were typed in two Manitoba First Nation indigenous groups to identify and compare the frequency of gene polymorphisms that may influence susceptibility or resistance to TB. METHODS Participants who self-identified as either Dene or Cree enrolled into the study from two First Nation communities in Manitoba, Canada. Genomic DNA was extracted from blood samples collected with informed consent from Dene (N=63) and Cree (N=42) First Nation study participants. Participants self-reported having treated active TB, treated latent TB or no TB. HLA Class I and II molecules were typed using sequence-specific oligonucleotide (SSO) probes from commercially available kits. RESULTS The rates of treated active and latent TB were marginally higher among the Dene than the Cree participants (p=0.112). Class I and II HLA loci were in Hardy-Weinberg equilibrium in both the Dene and Cree groups. In this exploratory analysis of TB and HLA allele frequencies in Dene and Cree cohorts HLA-A*03 and HLA-DQB1*05:03 were significantly associated with TB. CONCLUSIONS The high incidence of TB in both Dene and Cree populations in Canada requires both biomedical and socioeconomic prevention and control measures. Among the former, an understanding of HLA diversity among First Nations groups may aid the development of new effective vaccine and therapeutic modalities that depend on the interaction between small molecules and specific HLA epitopes.
Collapse
|
39
|
Tientcheu LD, Koch A, Ndengane M, Andoseh G, Kampmann B, Wilkinson RJ. Immunological consequences of strain variation within the Mycobacterium tuberculosis complex. Eur J Immunol 2017; 47:432-445. [PMID: 28150302 PMCID: PMC5363233 DOI: 10.1002/eji.201646562] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 11/11/2022]
Abstract
In 2015, there were an estimated 10.4 million new cases of tuberculosis (TB) globally, making it one of the leading causes of death due to an infectious disease. TB is caused by members of the Mycobacterium tuberculosis complex (MTBC), with human disease resulting from infection by M. tuberculosis sensu stricto and M. africanum. Recent progress in genotyping techniques, in particular the increasing availability of whole genome sequence data, has revealed previously under appreciated levels of genetic diversity within the MTBC. Several studies have shown that this genetic diversity may translate into differences in TB transmission, clinical manifestations of disease, and host immune responses. This suggests the existence of MTBC genotype‐dependent host–pathogen interactions which may influence the outcome of infection and progression of disease. In this review, we highlight the studies demonstrating differences in innate and adaptive immunological outcomes consequent on MTBC genetic diversity, and discuss how these differences in immune response might influence the development of TB vaccines, diagnostics and new therapies.
Collapse
Affiliation(s)
- Leopold D Tientcheu
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia.,Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Anastasia Koch
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Republic of South Africa
| | - Mthawelenga Ndengane
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Republic of South Africa
| | - Genevieve Andoseh
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia.,Department of Medicine, Imperial College, London, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Republic of South Africa.,Department of Medicine, Imperial College, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
40
|
Uren C, Möller M, van Helden PD, Henn BM, Hoal EG. Population structure and infectious disease risk in southern Africa. Mol Genet Genomics 2017; 292:499-509. [PMID: 28229227 DOI: 10.1007/s00438-017-1296-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Abstract
The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.
Collapse
Affiliation(s)
- Caitlin Uren
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Paul D van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa.
| |
Collapse
|
41
|
Characterization of promoter of the tuberculosis-resistant gene intracellular pathogen resistance 1. Immunol Res 2016; 64:143-54. [PMID: 26590945 DOI: 10.1007/s12026-015-8732-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, which most commonly affects the lungs and causes over 1.3 million people die annually. Variation in host genes is known to influence susceptibility to tuberculosis. Expression of the intracellular pathogen resistance 1 (Ipr1) gene could enhance the host resistance to mycobacterium. Here, we analyzed the coding region sequence and promoter of Ipr1 gene of mouse strains C57BL/6 and BALB/c. We found that the coding sequences of Ipr1 gene both in C57BL/6 and in BALB/c mice encode the same protein, while the Ipr1 promoter of BALB/c exists a short deletion and showed a slight of decreased transcriptional activity when compared with C57BL/6. Moreover, the optimal and minimal Ipr1 promoter was identified by luciferase assays using truncated reporter constructs, and the region from -293 to +95 bp showed the highest transcriptional activity and responsible for IFN-γ stimulation. Furthermore, the results showed that IFN-γ activates JAK/STAT and NF-κB signaling pathways to induce Ipr1 expression, and the signal transducer and activator of transcription 1 (Stat1) are critical for IFN-γ-induced Ipr1 expression, because overexpression of Stat1 promotes Ipr1 transcription, but knockdown of Stat1 reduced Ipr1 expression. Collectively, for the first time, our study characterizes Ipr1 promoter and investigates the positive and negative regulation of Ipr1 expression, providing basic data for application of Ipr1 in animal breeding.
Collapse
|
42
|
Asante-Poku A, Otchere ID, Osei-Wusu S, Sarpong E, Baddoo A, Forson A, Laryea C, Borrell S, Bonsu F, Hattendorf J, Ahorlu C, Koram KA, Gagneux S, Yeboah-Manu D. Molecular epidemiology of Mycobacterium africanum in Ghana. BMC Infect Dis 2016; 16:385. [PMID: 27506391 PMCID: PMC4977717 DOI: 10.1186/s12879-016-1725-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background Mycobacterium africanum comprises two phylogenetic lineages within the M. tuberculosis complex (MTBC) and is an important cause of human tuberculosis (TB) in West Africa. The reasons for this geographic restriction of M. africanum remain unclear. Here, we performed a prospective study to explore associations between the characteristics of TB patients and the MTBC lineages circulating in Ghana. Method We genotyped 1,211 MTBC isolates recovered from pulmonary TB patients recruited between 2012 and 2014 using single nucleotide polymorphism typing and spoligotyping. Associations between patient and pathogen variables were assessed using univariate and multivariate logistic regression. Results Of the 1,211 MTBC isolates analysed, 71.9 % (871) belonged to Lineage 4; 12.6 % (152) to Lineage 5 (also known as M. africanum West-Africa 1), 9.2 % (112) to Lineage 6 (also known as M. africanum West-Africa 2) and 0.6 % (7) to Mycobacterium bovis. Univariate analysis revealed that Lineage 6 strains were less likely to be isoniazid resistant compared to other strains (odds ratio = 0.25, 95 % confidence interval (CI): 0.05–0.77, P < 0.01). Multivariate analysis showed that Lineage 5 was significantly more common in patients from the Ewe ethnic group (adjusted odds ratio (adjOR): 2.79; 95 % CI: 1.47–5.29, P < 0.001) and Lineage 6 more likely to be found among HIV-co-infected TB patients (adjOR = 2.2; 95 % confidence interval (CI: 1.32–3.7, P < 0.001). Conclusion Our findings confirm the importance of M. africanum in Ghana and highlight the need to differentiate between Lineage 5 and Lineage 6, as these lineages differ in associated patient variables. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1725-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.,Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Esther Sarpong
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Akosua Baddoo
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Korle-bu, Accra, Ghana
| | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Korle-bu, Accra, Ghana
| | | | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Frank Bonsu
- National Tuberculosis Programme, Ghana health Service, Accra, Ghana
| | - Jan Hattendorf
- University of Basel, Basel, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Collins Ahorlu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| |
Collapse
|
43
|
Wamala D, Buteme HK, Kirimunda S, Kallenius G, Joloba M. Association between human leukocyte antigen class II and pulmonary tuberculosis due to mycobacterium tuberculosis in Uganda. BMC Infect Dis 2016; 16:23. [PMID: 26803588 PMCID: PMC4724396 DOI: 10.1186/s12879-016-1346-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is reported to infect about a third of the world's population but only 10% are thought to develop active tuberculosis (TB) disease. Host immunity regulated by human leukocyte antigens (HLA) is an important determinant of the outcome of the disease. Here we investigate HLA class II gene polymorphisms in susceptibility to TB, and whether particular HLA class II alleles were associated with TB in Uganda. METHODS HIV negative patients with pulmonary TB (n = 43) and genetically related healthy household controls (n = 42) were typed for their HLA II class alleles using polymerase chain reaction sequence specific primer amplification. RESULTS The HLA-DQB1*03:03 allele was significantly less frequent in patients compared to healthy controls (10% in controls versus 0% in patients, p = 0.003). After correction for multiple comparisons the difference remained significant (p = 0.018). CONCLUSIONS Our results suggest that the HLA-DQB1*03:03 allele may be associated with resistance to TB.
Collapse
Affiliation(s)
- Dan Wamala
- Department of Pathology, Mulago Hospital and Makerere University, Kampala, Uganda. .,Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| | - Helen Koyokoyo Buteme
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Samuel Kirimunda
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gunilla Kallenius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Moses Joloba
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
44
|
Uys P, Brand H, Warren R, van der Spuy G, Hoal EG, van Helden PD. The Risk of Tuberculosis Reinfection Soon after Cure of a First Disease Episode Is Extremely High in a Hyperendemic Community. PLoS One 2015; 10:e0144487. [PMID: 26649422 PMCID: PMC4674135 DOI: 10.1371/journal.pone.0144487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 11/19/2015] [Indexed: 11/18/2022] Open
Abstract
Elevated rates of reinfection tuberculosis in various hyperendemic regions have been reported and, in particular, it has been shown that in a high-incidence setting near Cape Town, South Africa, the rate of reinfection tuberculosis (TB) disease after cure of a previous TB disease episode is about four times greater than the rate of first-time TB disease. It is not known whether this elevated rate is caused by a high reinfection rate due, for instance, to living circumstances, or a high rate of progress to disease specific to the patients, or both. In order to address that question we analysed an extensive data set from clinics attended by TB patients in the high-incidence setting near Cape Town, South Africa and found that, in fact, the (average) rate of reinfection (as opposed to the rate of reinfection disease) after cure of a previous TB disease episode is initially about 0.85 per annum. This rate diminishes rapidly over time and after about ten years this rate is similar to the rate of infection in the general population. Also, the rate of progress to disease after reinfection is initially high but declines in subsequent years down to the figure typical for the general population. These findings suggest that the first few months after cure of a TB disease episode form a critical period for controlling reinfection disease in a hyperendemic setting and that monitoring such cured patients could pre-empt a reinfection progressing to active disease.
Collapse
Affiliation(s)
- Pieter Uys
- SACEMA, DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis, University of Stellenbosch, Stellenbosch, Western Cape, South Africa.,DST/NRF Centre of Excellence for Biomedical Tuberculosis Research / MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, University of Stellenbosch, Western Cape, South Africa
| | - Hilmarie Brand
- SACEMA, DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| | - Robin Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research / MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, University of Stellenbosch, Western Cape, South Africa
| | - Gian van der Spuy
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research / MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, University of Stellenbosch, Western Cape, South Africa
| | - Eileen G Hoal
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research / MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, University of Stellenbosch, Western Cape, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research / MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, University of Stellenbosch, Western Cape, South Africa
| |
Collapse
|
45
|
Abstract
The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future 'genome-to-genome' studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines.
Collapse
Affiliation(s)
- Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | | |
Collapse
|
46
|
Salie M, Daya M, Möller M, Hoal EG. Activating KIRs alter susceptibility to pulmonary tuberculosis in a South African population. Tuberculosis (Edinb) 2015; 95:817-821. [PMID: 26542219 DOI: 10.1016/j.tube.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
We investigate the role of killer immunoglobulin-like receptor (KIR) genes and human leukocyte antigen class-I (HLA) variants in susceptibility to tuberculosis in a South African population. In a sample set comprising 408 TB cases and 351 healthy controls, we show that the KIR3DS1 gene and KIR genotypes with five or more activating KIRs, and the presence of 3DS1, protect against developing active TB in the South African Coloured population. Several HLA class-I alleles were identified as susceptibility factors for TB disease. However, none of the KIR-HLA compound genotypes were found to be associated with TB. Our data suggests that the KIR genes may play an important role in TB disease.
Collapse
Affiliation(s)
- Muneeb Salie
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Michelle Daya
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
47
|
Salie M, Daya M, Lucas LA, Warren RM, van der Spuy GD, van Helden PD, Hoal EG, Möller M. Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms. INFECTION GENETICS AND EVOLUTION 2015; 34:221-9. [PMID: 26160538 DOI: 10.1016/j.meegid.2015.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/25/2015] [Accepted: 07/05/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Toll-like receptors (TLRs) are involved in the recognition of conserved microbial structures, leading to activation of an inflammatory response and formation of an adaptive immune response. METHODS Twenty-three polymorphisms in five TLR genes were genotyped in 729 tuberculosis cases and 487 healthy controls in a population-based case-control association study in a South African population. RESULTS We detected sex-specific associations for TLR8 polymorphisms, with rs3761624 (OR=1.54, p<0.001), rs3764879 (OR=1.41, p=0.011) and rs3764880 (OR=1.42, p=0.011) associated in females and rs3764879 (OR=0.72, p=0.013) and rs3764880 (OR=0.75, p=0.036) associated in males. Epistatic interactions between the TLR genes were investigated and the TLR1_rs4833095 polymorphism was shown to interact with TLR2_rs3804100 and (GT)n microsatellite (p=0.002) and alter susceptibility to TB. We also studied the role of TLRs in disease caused by different Mycobacterium tuberculosis genotypes in 257 tuberculosis cases, and identified associations between specific TLR polymorphisms and disease caused by specific strains. CONCLUSION This study provides further evidence that the TLRs play an important role in the outcome of tuberculosis disease, and suggests a partial explanation for the male bias in tuberculosis ratios.
Collapse
Affiliation(s)
- Muneeb Salie
- MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg 7505, South Africa
| | - Michelle Daya
- MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg 7505, South Africa
| | - Lance A Lucas
- MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg 7505, South Africa
| | - Robin M Warren
- MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg 7505, South Africa
| | - Gian D van der Spuy
- MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg 7505, South Africa
| | - Paul D van Helden
- MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg 7505, South Africa
| | - Eileen G Hoal
- MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg 7505, South Africa
| | - Marlo Möller
- MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
48
|
Correlates between models of virulence for Mycobacterium tuberculosis among isolates of the Central Asian lineage: a case for lysozyme resistance testing? Infect Immun 2015; 83:2213-23. [PMID: 25776753 DOI: 10.1128/iai.03080-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established.
Collapse
|
49
|
Daya M, van der Merwe L, van Helden PD, Möller M, Hoal EG. The role of ancestry in TB susceptibility of an admixed South African population. Tuberculosis (Edinb) 2014; 94:413-20. [DOI: 10.1016/j.tube.2014.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/30/2014] [Indexed: 12/30/2022]
|
50
|
White MJ, Tacconelli A, Chen JS, Wejse C, Hill PC, Gomes VF, Velez-Edwards DR, Østergaard LJ, Hu T, Moore JH, Novelli G, Scott WK, Williams SM, Sirugo G. Epiregulin (EREG) and human V-ATPase (TCIRG1): genetic variation, ethnicity and pulmonary tuberculosis susceptibility in Guinea-Bissau and The Gambia. Genes Immun 2014; 15:370-7. [PMID: 24898387 DOI: 10.1038/gene.2014.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023]
Abstract
We analyzed two West African samples (Guinea-Bissau: n=289 cases and 322 controls; The Gambia: n=240 cases and 248 controls) to evaluate single-nucleotide polymorphisms (SNPs) in Epiregulin (EREG) and V-ATPase (T-cell immune regulator 1 (TCIRG1)) using single and multilocus analyses to determine whether previously described associations with pulmonary tuberculosis (PTB) in Vietnamese and Italians would replicate in African populations. We did not detect any significant single locus or haplotype associations in either sample. We also performed exploratory pairwise interaction analyses using Visualization of Statistical Epistasis Networks (ViSEN), a novel method to detect only interactions among multiple variables, to elucidate possible interaction effects between SNPs and demographic factors. Although we found no strong evidence of marginal effects, there were several significant pairwise interactions that were identified in either the Guinea-Bissau or the Gambian samples, two of which replicated across populations. Our results indicate that the effects of EREG and TCIRG1 variants on PTB susceptibility, to the extent that they exist, are dependent on gene-gene interactions in West African populations as detected with ViSEN. In addition, epistatic effects are likely to be influenced by inter- and intra-population differences in genetic or environmental context and/or the mycobacterial lineages causing disease.
Collapse
Affiliation(s)
- M J White
- 1] Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA [2] Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - A Tacconelli
- Centro di Ricerca, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - J S Chen
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - C Wejse
- 1] Bandim Health Project, Danish Epidemiology Science Centre and Statens Serum Institute, Bissau, Guinea-Bissau [2] Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark [3] Center for Global Health, School of Public Health, Aarhus University, Skejby, Denmark
| | - P C Hill
- 1] Centre for International Health, University of Otago School of Medicine, Dunedin, New Zealand [2] MRC Laboratories, Fajara, The Gambia
| | - V F Gomes
- Bandim Health Project, Danish Epidemiology Science Centre and Statens Serum Institute, Bissau, Guinea-Bissau
| | - D R Velez-Edwards
- 1] Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, TN, USA [2] Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN, USA [3] Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA [4] Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| | - L J Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
| | - T Hu
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - J H Moore
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - G Novelli
- 1] Centro di Ricerca, Ospedale San Pietro Fatebenefratelli, Rome, Italy [2] Dipartimento di Biomedicina e Prevenzione, Sezione di Genetica, Università di Roma 'Tor Vergata', Rome, Italy
| | - W K Scott
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S M Williams
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - G Sirugo
- Centro di Ricerca, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| |
Collapse
|