1
|
Thawornpan P, Kochayoo P, Salsabila ZZ, Chootong P. Development and longevity of naturally acquired antibody and memory B cell responses against Plasmodium vivax infection. PLoS Negl Trop Dis 2024; 18:e0012600. [PMID: 39446698 PMCID: PMC11500939 DOI: 10.1371/journal.pntd.0012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Plasmodium vivax malaria causes significant public health problems in endemic regions. Considering the rapid spread of drug-resistant parasite strains and the development of hypnozoites in the liver with potential for relapse, development of a safe and effective vaccine for preventing, controlling, and eliminating the infection is critical. Immunity to malaria is mediated by antibodies that inhibit sporozoite or merozoite invasion into host cells and protect against clinical disease. Epidemiologic data from malaria endemic regions show the presence of naturally acquired antibodies to P. vivax antigens during and following infection. But data on the persistence of these antibodies, development of P. vivax-specific memory B cells (MBCs), and their relation to reduction of malaria severity and risk is limited. This review provides an overview of the acquisition and persistence of naturally acquired humoral immunity to P. vivax infection. Also, we summarize and discuss current progress in assessment of immune responses to candidate vaccine antigens in P. vivax patients from different transmission settings. Longitudinal studies of MBC and antibody responses to these antigens will open new avenues for developing vaccines against malaria infection and its transmission.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Zulfa Zahra Salsabila
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Núñez A, Ntumngia FB, Guerra Y, Adams JH, Sáenz FE. Genetic diversity and natural selection of Plasmodium vivax reticulocyte invasion genes in Ecuador. Malar J 2023; 22:225. [PMID: 37537581 PMCID: PMC10398936 DOI: 10.1186/s12936-023-04640-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Knowledge of the diversity of invasion ligands in malaria parasites in endemic regions is essential to understand how natural selection influences genetic diversity of these ligands and their feasibility as possible targets for future vaccine development. In this study the diversity of four genes for merozoite invasion ligands was studied in Ecuadorian isolates of Plasmodium vivax. METHODS Eighty-eight samples from P. vivax infected individuals from the Coast and Amazon region of Ecuador were obtained between 2012 and 2015. The merozoite invasion genes pvmsp-1-19, pvdbpII, pvrbp1a-2 and pvama1 were amplified, sequenced, and compared to the Sal-1 strain. Polymorphisms were mapped and genetic relationships between haplotypes were determined. RESULTS Only one nonsynonymous polymorphism was detected in pvmsp-1-19, while 44 nonsynonymous polymorphisms were detected in pvdbpII, 56 in pvrbp1a-2 and 33 in pvama1. While haplotypes appeared to be more related within each area of study and there was less relationship between parasites of the coastal and Amazon regions of the country, diversification processes were observed in the two Amazon regions. The highest haplotypic diversity for most genes occurred in the East Amazon of the country. The high diversity observed in Ecuadorian samples is closer to Brazilian and Venezuelan isolates, but lower than reported in other endemic regions. In addition, departure from neutrality was observed in Ecuadorian pvama1. Polymorphisms for pvdbpII and pvama1 were associated to B-cell epitopes. CONCLUSIONS pvdbpII and pvama1 genetic diversity found in Ecuadorian P. vivax was very similar to that encountered in other malaria endemic countries with varying transmission levels and segregated by geographic region. The highest diversity of P. vivax invasion genes in Ecuador was found in the Amazonian region. Although selection appeared to have small effect on pvdbpII and pvrbp1a-2, pvama1 was influenced by significant balancing selection.
Collapse
Affiliation(s)
- Andrés Núñez
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Francis B Ntumngia
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, FL, Tampa, USA
| | - Yasel Guerra
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - John H Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, FL, Tampa, USA
| | - Fabián E Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| |
Collapse
|
3
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
4
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
De Meulenaere K, Prajapati SK, Villasis E, Cuypers B, Kattenberg JH, Kasian B, Laman M, Robinson LJ, Gamboa D, Laukens K, Rosanas-Urgell A. Band 3-mediated Plasmodium vivax invasion is associated with transcriptional variation in PvTRAg genes. Front Cell Infect Microbiol 2022; 12:1011692. [PMID: 36250048 PMCID: PMC9563252 DOI: 10.3389/fcimb.2022.1011692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
The Plasmodium vivax reticulocyte invasion process is still poorly understood, with only a few receptor-ligand interactions identified to date. Individuals with the Southeast Asian ovalocytosis (SAO) phenotype have a deletion in the band 3 protein on the surface of erythrocytes, and are reported to have a lower incidence of clinical P. vivax malaria. Based on this observation, band 3 has been put forward as a receptor for P. vivax invasion, although direct proof is still lacking. In this study, we combined functional ex vivo invasion assays and transcriptome sequencing to uncover a band 3-mediated invasion pathway in P. vivax and potential band 3 ligands. Invasion by P. vivax field isolates was 67%-71% lower in SAO reticulocytes compared with non-SAO reticulocytes. Reticulocyte invasion was decreased by 40% and 27%-31% when blocking with an anti-band 3 polyclonal antibody and a PvTRAg38 peptide, respectively. To identify new band 3 receptor candidates, we mRNA-sequenced schizont-stage isolates used in the invasion assays, and observed high transcriptional variability in multigene and invasion-related families. Transcriptomes of isolates with low or high dependency on band 3 for invasion were compared by differential expression analysis, which produced a list of band 3 ligand candidates with high representation of PvTRAg genes. Our ex vivo invasion assays have demonstrated that band 3 is a P. vivax invasion receptor and confirm previous in vitro studies showing binding between PvTRAg38 and band 3, although the lower and variable inhibition levels observed suggest the involvement of other ligands. By coupling transcriptomes and invasion phenotypes from the same isolates, we identified a list of band 3 ligand candidates, of which the overrepresented PvTRAg genes are the most promising for future research.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Surendra Kumar Prajapati
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | | | - Bernadine Kasian
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Leanne J. Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Health Security and Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Kar S, Sinha A. Plasmodium vivax Duffy Binding Protein-Based Vaccine: a Distant Dream. Front Cell Infect Microbiol 2022; 12:916702. [PMID: 35909975 PMCID: PMC9325973 DOI: 10.3389/fcimb.2022.916702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host’s reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.
Collapse
|
7
|
Park JH, Kim MH, Sutanto E, Na SW, Kim MJ, Yeom JS, Nyunt MH, Abbas Elfaki MM, Abdel Hamid MM, Cha SH, Alemu SG, Sriprawat K, Anstey NM, Grigg MJ, Barber BE, William T, Gao Q, Liu Y, Pearson RD, Price RN, Nosten F, Yoon SI, No JH, Han ET, Auburn S, Russell B, Han JH. Geographical distribution and genetic diversity of Plasmodium vivax reticulocyte binding protein 1a correlates with patient antigenicity. PLoS Negl Trop Dis 2022; 16:e0010492. [PMID: 35737709 PMCID: PMC9258880 DOI: 10.1371/journal.pntd.0010492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/06/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.
Collapse
Affiliation(s)
- Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Min-Hee Kim
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Edwin Sutanto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Seok-Won Na
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Min-Jae Kim
- Department of Infectious Diseases, Asan Medical Center, Seoul, Republic of Korea
| | - Joon Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Mohammed Mohieldien Abbas Elfaki
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Jizan, Saudi Arabia
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Seok Ho Cha
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sisay Getachew Alemu
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Jimma Road, Addis Ababa, Ethiopia
- Bioreliance, Rockville, Maryland, United States of America
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Gleneagles Hospital, Sabah, Malaysia
| | - Qi Gao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
Kochayoo P, Sanguansuttikul P, Thawornpan P, Wangriatisak K, Adams JH, Ntumngia FB, Chootong P. The presence of circulating antibody secreting cells and long-lived memory B cell responses to reticulocyte binding protein 1a in Plasmodium vivax patients. Malar J 2021; 20:474. [PMID: 34930312 PMCID: PMC8686587 DOI: 10.1186/s12936-021-04015-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of an effective vaccine against blood-stage malaria requires the induction of long-term immune responses. Plasmodium vivax Reticulocyte Binding Protein 1a (PvRBP1a) is a blood-stage parasite antigen which is associated with invasion of red blood cells and induces antibody responses. Thus, PvRBP1a is considered as a target for design of a blood-stage vaccine against vivax malaria. METHODS Both cross-sectional and cohort studies were used to explore the development and persistence of long-lived antibody and memory B cell responses to PvRBP1a in individuals who lived in an area of low malaria endemicity. Antibody titers and frequency of memory B cells specific to PvRBP1a were measured during infection and following recovery for up to 12 months. RESULTS IgG antibody responses against PvRBP1a were prevalent during acute vivax malaria, predominantly IgG1 subclass responses. High responders to PvRBP1a had persistent antibody responses for at least 12-month post-infection. Further analysis of high responder found a direct relation between antibody titers and frequency of activated and atypical memory B cells. Furthermore, circulating antibody secreting cells and memory B cells specific to PvRBP1a were generated during infection. The PvRBP1a-specific memory B cells were maintained for up to 3-year post-infection, indicating the ability of PvRBP1a to induce long-term humoral immunity. CONCLUSION The study revealed an ability of PvRBP1a protein to induce the generation and maintenance of antibody and memory B cell responses. Therefore, PvRBP1a could be considered as a vaccine candidate against the blood-stage of P. vivax.
Collapse
Affiliation(s)
- Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Pattarawan Sanguansuttikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, University of South Florida, Tampa, FL, 33612, USA
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, University of South Florida, Tampa, FL, 33612, USA.
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
9
|
Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat Microbiol 2021; 6:991-999. [PMID: 34294905 DOI: 10.1038/s41564-021-00939-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
More than one-third of the world's population is exposed to Plasmodium vivax malaria, mainly in Asia1. P. vivax preferentially invades reticulocytes (immature red blood cells)2-4. Previous work has identified 11 parasite proteins involved in reticulocyte invasion, including erythrocyte binding protein 2 (ref. 5) and the reticulocyte-binding proteins (PvRBPs)6-10. PvRBP2b binds to the transferrin receptor CD71 (ref. 11), which is selectively expressed on immature reticulocytes12. Here, we identified CD98 heavy chain (CD98), a heteromeric amino acid transporter from the SLC3 family (also known as SLCA2), as a reticulocyte-specific receptor for the PvRBP2a parasite ligand using mass spectrometry, flow cytometry, biochemical and parasite invasion assays. We characterized the expression level of CD98 at the surface of immature reticulocytes (CD71+) and identified an interaction between CD98 and PvRBP2a expressed at the merozoite surface. Our results identify CD98 as an additional host membrane protein, besides CD71, that is directly associated with P. vivax reticulocyte tropism. These findings highlight the potential of using PvRBP2a as a vaccine target against P. vivax malaria.
Collapse
|
10
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
11
|
Chan L, Dietrich MH, Nguitragool W, Tham W. Plasmodium vivax Reticulocyte Binding Proteins for invasion into reticulocytes. Cell Microbiol 2020; 22:e13110. [PMID: 31469946 PMCID: PMC7003471 DOI: 10.1111/cmi.13110] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/25/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
Abstract
Plasmodium vivax is responsible for most of the malaria infections outside Africa and is currently the predominant malaria parasite in countries under elimination programs. P. vivax preferentially enters young red cells called reticulocytes. Advances in understanding the molecular and cellular mechanisms of entry are hampered by the inability to grow large numbers of P. vivax parasites in a long-term in vitro culture. Recent progress in understanding the biology of the P. vivax Reticulocyte Binding Protein (PvRBPs) family of invasion ligands has led to the identification of a new invasion pathway into reticulocytes, an understanding of their structural architecture and PvRBPs as targets of the protective immune response to P. vivax infection. This review summarises current knowledge on the role of reticulocytes in P. vivax infection, the function of the PvRBP family of proteins in generating an immune response in human populations, and the characterization of anti-PvRBP antibodies in blocking parasite invasion.
Collapse
Affiliation(s)
- Li‐Jin Chan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Wai‐Hong Tham
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
12
|
Thomson-Luque R, Adams JH, Kocken CHM, Pasini EM. From marginal to essential: the golden thread between nutrient sensing, medium composition and Plasmodium vivax maturation in in vitro culture. Malar J 2019; 18:344. [PMID: 31601222 PMCID: PMC6785855 DOI: 10.1186/s12936-019-2949-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Historically neglected, due to its biological peculiarities, the absence of a continuous long-term in vitro blood stage culture system and a propensity towards high morbidity rather than mortality, Plasmodium vivax was put back on the agenda during the last decade by the paradigm shift in the fight against malaria from malaria control to malaria eradication. While the incidence of the deadliest form of malaria, Plasmodium falciparum malaria, has declined since this paradigm shift took hold, the prospects of eradication are now threatened by the increase in the incidence of other human malaria parasite species. Plasmodium vivax is geographically the most widely distributed human malaria parasite, characterized by millions of clinical cases every year and responsible for a massive economic burden. The urgent need to tackle the unique biological challenges posed by this parasite led to renewed efforts aimed at establishing a continuous, long-term in vitro P. vivax blood stage culture. Based on recent discoveries on the role of nutrient sensing in Plasmodium’s pathophysiology, this review article critically assesses the extensive body of literature concerning Plasmodium culture conditions with a specific focus on culture media used in attempts to culture different Plasmodium spp. Hereby, the effect of specific media components on the parasite’s in vitro fitness and the maturation of the parasite’s host cell, the reticulocyte, is analysed. Challenging the wide-held belief that it is sufficient to find the right parasite isolate and give it the right type of cells to invade for P. vivax to grow in vitro, this review contends that a healthy side-by-side maturation of both the parasite and its host cell, the reticulocyte, is necessary in the adaptation of P. vivax to in vitro growth and argues that culture conditions and the media in particular play an essential role in this maturation process.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - John H Adams
- Center for Global Health, & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404 IDRB, Tampa, FL, USA
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg, 161, 2288 GJ, Rijswijk, The Netherlands
| | - Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg, 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
13
|
He WQ, Karl S, White MT, Nguitragool W, Monteiro W, Kuehn A, Gruszczyk J, França CT, Sattabongkot J, Lacerda MVG, Tham WH, Mueller I. Antibodies to Plasmodium vivax reticulocyte binding protein 2b are associated with protection against P. vivax malaria in populations living in low malaria transmission regions of Brazil and Thailand. PLoS Negl Trop Dis 2019; 13:e0007596. [PMID: 31425514 PMCID: PMC6726234 DOI: 10.1371/journal.pntd.0007596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/04/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The Plasmodium vivax Reticulocyte Binding Protein (PvRBP) family is involved in red blood cell recognition and members of this family are potential targets for antibodies that may block P. vivax invasion. To date, the acquisition of immunity against PvRBPs in low malaria transmission settings and in a broad age group of exposed individuals has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS Total IgG antibody levels to six members of the PvRBP family (PvRBP1a, PvRBP1b, PvRBP2a, PvRBP2b, a non-binding fragment of PvRBP2c (PvRBP2cNB) and PvRBP2-P2) were measured in samples collected from individuals living in two regions of low P. vivax endemicity in Brazil and Thailand. In both settings, levels of total IgG to PvRBP1a, PvRBP2b, PvRBP2cNB, and PvRBP2P-2 increased significantly with age (rho = 0.17-0.49; P<0.001). IgG responses to PvRBP1a, PvRBP2b and PvRBP2cNB were significantly higher in infected individuals by using Wilcoxon's signed-rank test (P<0.001). Of the six PvRBPs examined, only antibodies to PvRBP2b were associated with protection against clinical malaria in both settings. CONCLUSION/SIGNIFICANCE Our results indicate that PvRBP2b warrants further preclinical development as a blood-stage vaccine candidate against P. vivax. Total IgG responses to PvRBPs were also shown to be promising immunological markers of exposure to P. vivax infection.
Collapse
Affiliation(s)
- Wen-Qiang He
- Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Stephan Karl
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Michael T. White
- Malaria Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Wuelton Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Andrea Kuehn
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
| | - Jakub Gruszczyk
- Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
| | - Camila T. França
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marcus V. G. Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Wai-Hong Tham
- Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Malaria Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
14
|
Zhang D, Jiang N, Chen Q. ROP9, MIC3, and SAG2 are heparin-binding proteins in Toxoplasma gondii and involved in host cell attachment and invasion. Acta Trop 2019; 192:22-29. [PMID: 30664845 DOI: 10.1016/j.actatropica.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii (T. gondii) is an obligatory intracellular parasite that can infect varieties of warm-blooded animals, including humans and birds. Heparan sulfate (HS) is widely distributed on the eukaryotic cell surface of vertebrates and can inhibit T. gondii invasion. In this study, we investigated the transcription and expression of the level of TgROP9, TgMIC3, and TgSAG2 in T. gondii RH strain, and found that the expression levels of these three proteins in invading parasites were higher compared to those free ranging parasites. The recombinant proteins showed specific binding activity to both heparin and host cell surface. Incubation of these proteins with the host cells could block T. gondiiinvasion. Furthermore, protein-specific antibodies also blocked parasite invasion. Antibodies in the sera of T. gondii infected individuals recognized the recombinant TgROP9, TgMIC3, and TgSAG2, which suggested the exposure of these proteins to human immune system. Mice immunized with the three proteins exhibited protective immunity against lethal challenge. The data collectively suggested that these parasitic proteins may be used as candidate antigens for development of anti-toxoplasmosis vaccine.
Collapse
|
15
|
Zhang D, Jiang N, Chen Q. Vaccination with recombinant adenoviruses expressing Toxoplasma gondii MIC3, ROP9, and SAG2 provide protective immunity against acute toxoplasmosis in mice. Vaccine 2019; 37:1118-1125. [DOI: 10.1016/j.vaccine.2018.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022]
|
16
|
Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol 2018; 46:109-115. [PMID: 30366310 DOI: 10.1016/j.mib.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|