1
|
Kagaya W. Low-density Plasmodium falciparum infection: "Even a parasite will turn". Parasitol Int 2025; 107:103052. [PMID: 39986449 DOI: 10.1016/j.parint.2025.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
As global malaria control and elimination efforts have resulted in the suppression of Plasmodium falciparum infections, low-density Plasmodium falciparum infections present a significant challenge. These infections, frequently characterized as "submicroscopic" or "asymptomatic", contribute to the persistent transmission in endemic regions. Recent advancements in molecular diagnostic methodologies have enhanced the detection of these infections and elucidated the nature of previously unrecognized infections. These infections harbor smaller populations of parasites; however, the risk of disease progression and transmission remains substantial. The observed infections could be an alternative survival mechanism of this parasite. Thus, control measures should be redesigned to address these infections, rather than merely expanding the current tools. This review provides an overview of the issues surrounding the detection and monitoring of these infections and their importance for infected individuals and populations, with further emphasis on control measures for malaria elimination.
Collapse
Affiliation(s)
- Wataru Kagaya
- Department of Eco-Epidemiology, Institute of Tropical Medicine (Nekken), Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Nagasaki 852-8523, Japan.
| |
Collapse
|
2
|
White NJ, Mehra S, Watson JA. Does mass chloroquine treatment have any role in the elimination of Plasmodium vivax ? Malar J 2025; 24:166. [PMID: 40420173 PMCID: PMC12105338 DOI: 10.1186/s12936-025-05399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
Countries in the Greater Mekong sub-region (GMS) have been encouraged to deploy mass chloroquine treatments given monthly for four months to reduce the burden of vivax malaria. This paper summarizes briefly current knowledge on Plasmodium vivax epidemiology, the biology of vivax relapse and previous experience using dihydroartemisinin-piperaquine mass treatments in the GMS to show why this approach would be extremely cost-ineffective. Around 800 full treatment courses in 200 people would be needed to prevent one symptomatic case. Mass chloroquine treatment will contribute little or nothing to the elimination of vivax malaria in this area.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LG, UK.
| | - Somya Mehra
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LG, UK
| | - James A Watson
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LG, UK
- Infectious Diseases Data Observatory, Oxford, UK
| |
Collapse
|
3
|
Li M, Tan R, Chen P, Rampao HS, D'almeida CAB, Li G, Liu J, Shi G, Chen F, Shu L, Huang X, Deng C, Guo W, Song J. A non-randomized, open-label study to assess the impact of rounds of mass drug administration with artemisinin-piperaquine plus primaquine on malaria in São Tomé Island. Parasit Vectors 2025; 18:177. [PMID: 40380221 DOI: 10.1186/s13071-025-06768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/19/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND The aim of this study was to explore the effect of mass drug administration (MDA) on malaria transmission in low-endemic malaria areas. METHODS Mass drug administration of artemisinin-piperaquine (AP) + primaquine (PMQ) was targeted to 17,438 individuals in the Agua Grande region of São Tomé and Príncipe (STP). The participants were allocated to either a three-round MDA (3-MDA) group or to a two-round MDA (2-MDA) group. The coverage rate, compliance, adverse events and other indicators were evaluated. RESULTS Mass drug administration coverage rate in the 3-MDA group (20,548 person-times) was 84.23-89.14%, with a compliance of 68.38%. MDA coverage rate in the 2-MDA group (15,365 person-times) was 87.30-93.23%, with a compliance of 80.70%. The rates of MDA-related adverse reactions were low in both the 3-MDA (0.75%) and 2-MDA (0.72%) groups, and no serious adverse reactions were observed. Malaria incidence decreased by 80.47% (z = - 2.35, P = 0.019) and 72.27% (z = - 0.89, P = 0.372) in the 3-MDA and 2-MDA groups, respectively, within 1 year. CONCLUSIONS Two or three rounds of MDA with AP and PMQ in STP safely and rapidly reduced the prevalence of malaria cases and infections. It is possible that two rounds of MDA in certain districts may achieve the desired outcomes.
Collapse
Affiliation(s)
- Mingqiang Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | - Ruixiang Tan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | - Peiting Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | | | | | - Guoming Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | - Jingwen Liu
- School of Public Health and Management, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | - Guozhuang Shi
- Science and Technology Park, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | - Fei Chen
- Science and Technology Park, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | - Lei Shu
- Science and Technology Park, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China.
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine (GZUCM), Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
4
|
Hofer LM, Kweyamba PA, Sayi RM, Chabo MS, Mwanga R, Maitra SL, Somboka MM, Schnoz A, Golumbeanu M, Schneeberger PHH, Ross A, Habtewold T, Nsanzabana C, Moore SJ, Tambwe MM. Additional blood meals increase sporozoite infection in Anopheles mosquitoes but not Plasmodium falciparum genetic diversity. Sci Rep 2024; 14:17467. [PMID: 39075150 PMCID: PMC11286785 DOI: 10.1038/s41598-024-67990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The availability of nutrients from mosquito blood meals accelerates the development of Plasmodium falciparum laboratory strains in artificially infected Anopheles gambiae mosquitoes. The impact of multiple blood meals on the number of P. falciparum genotypes developing from polyclonal natural human malaria infections (field-isolates) remains unexplored. Here, we experimentally infect An. gambiae with P. falciparum field-isolates and measure the impact of an additional non-infectious blood meal on parasite development. We also assess parasite genetic diversity at the blood stage level of the parasite in the human host and of the sporozoites in the mosquito. Additional blood meals increase the sporozoite infection prevalence and intensity, but do not substantially affect the genetic diversity of sporozoites in the mosquito. The most abundant parasite genotypes in the human blood were transmitted to mosquitoes, suggesting that there was no preferential selection of specific genotypes. This study underlines the importance of additional mosquito blood meals for the development of parasite field-isolates in the mosquito host.
Collapse
Affiliation(s)
- Lorenz M Hofer
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania.
| | - Prisca A Kweyamba
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Rajabu M Sayi
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Mohamed S Chabo
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Rehema Mwanga
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Sonali L Maitra
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Mariam M Somboka
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Annina Schnoz
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Monica Golumbeanu
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Pierre H H Schneeberger
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Tibebu Habtewold
- Departement of Life Sciences, Imperial College London, London, UK
| | - Christian Nsanzabana
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sarah J Moore
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Arusha, Tanzania
| | - Mgeni M Tambwe
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
5
|
Amoah LE, Cheng NI, Acquah FK, Adu-Amankwah S, Bredu DG, Mensah BA, Anang SF, Abban BC, Busayomi A, Kwarpong SS, Tey PK, Cudjoe E, Asamoah A, Holden TM, Gerardin J, Nonvignon J, Ahorlu C. Diagnostic performance of an ultra-sensitive RDT and a conventional RDT in malaria mass testing, treatment and tracking interventions in southern Ghana. Parasit Vectors 2024; 17:280. [PMID: 38951912 PMCID: PMC11218287 DOI: 10.1186/s13071-024-06354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Application of numerous malaria control interventions has led to reduction in clinical malaria cases and deaths but also the realisation that asymptomatic parasite carriers play a key role in sustaining transmission. This study assessed the effectiveness of using the Ultra-sensitive NxTek eliminate RDT (uRDT) and conventional SD Bioline HRP2 RDT (cRDT) in diagnosing asymptomatic parasitaemia while measuring the impact of mass testing, treatment and tracking (MTTT) on the prevalence of asymptomatic malaria over a 1-year period in Ghana. METHODS A total of 4000 targeted participants from two towns, Obom and Kofi Kwei, with their surrounding villages, were tested for asymptomatic malaria four times over the study period using uRDT (intervention) and the cRDT (control) respectively. Participants carrying malaria parasites were followed by home visit and phone calls for compliance to treatment, and filter paper blood blots collected from participants were used to determine true parasite carriage by PET-PCR. A mathematical model of the study site was developed and used to test the impact of test sensitivity and mass migration on the effect of MTTT. RESULTS The start and end point sensitivities of the cRDT were 48.8% and 41.7% and those for the uRDT were 52.9% and 59.9% respectively. After a year of MTTTs, asymptomatic parasite prevalence, as determined by PCR, did not differ statistically in the control site (40.6% to 40.1%, P = 0.730) but decreased at the intervention site (55.9% to 46.4%, P < 0.0001). Parasite prevalence by RDT, however, indicated statistical reduction in the control site (25.3% to 22.3%, P = 0.017) and no change in the intervention site (35.1% to 36.0%, P = 0.614). The model predicted a mild effect of both diagnostic sensitivity and human movement in diminishing the impact of MTTT in the study sites. CONCLUSIONS Asymptomatic parasite prevalence at the molecular level reduced significantly in the site where the uRDT was used but not where the cRDT was used. Overall, the uRDT exhibited higher sensitivity relative to the cRDT. Highly sensitive molecular techniques such as PET-PCR should be included in parasite prevalence estimation during MTTT exercises.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Ndong Ignatius Cheng
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Festus Kojo Acquah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Susan Adu-Amankwah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Gyama Bredu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Benedicta A Mensah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sherik-Fa Anang
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bernice Cubson Abban
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Abena Busayomi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sebastian Shine Kwarpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prosper Kofi Tey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Elizabeth Cudjoe
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Tobias McKenzie Holden
- Department of Preventive Medicine and Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaline Gerardin
- Department of Preventive Medicine and Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Justice Nonvignon
- Department of Health Policy, Planning and Management, School of Public Health, College of Health Sciences, University of Ghana, P. O. Box LG13, Legon, Ghana
| | - Collins Ahorlu
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Mandai SS, Francis F, Challe DP, Seth MD, Madebe RA, Petro DA, Budodo R, Kisambale AJ, Chacha GA, Moshi R, Mbwambo RB, Pereus D, Bakari C, Aaron S, Mbwambo D, Lusasi A, Kajange S, Lazaro S, Kapologwe N, Mandara CI, Ishengoma DS. High prevalence and risk of malaria among asymptomatic individuals from villages with high prevalence of artemisinin partial resistance in Kyerwa district of Kagera region, north-western Tanzania. Malar J 2024; 23:197. [PMID: 38926854 PMCID: PMC11201325 DOI: 10.1186/s12936-024-05019-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although Tanzania adopted and has been implementing effective interventions to control and eventually eliminate malaria, the disease is still a leading public health problem, and the country experiences heterogeneous transmission. Recent studies reported the emergence of parasites with artemisinin partial resistance (ART-R) in Kagera region with high prevalence (> 10.0%) in two districts of Karagwe and Kyerwa. This study assessed the prevalence and predictors/risk of malaria infections among asymptomatic individuals living in a hyperendemic area where ART-R has emerged in Kyerwa District of Kagera region, north-western Tanzania. METHODS This was a community-based cross-sectional survey which was conducted in July and August 2023 and involved individuals aged ≥ 6 months from five villages in Kyerwa district. Demographic, anthropometric, clinical, parasitological, type of house inhabited and socio-economic status (SES) data were collected using electronic capture tools run on Open Data Kit (ODK) software. Predictors/risks of malaria infections were determined by univariate and multivariate logistic regression, and the results were presented as crude (cORs) and adjusted odds ratios (aORs), with 95% confidence intervals (CIs). RESULTS Overall, 4454 individuals were tested using rapid diagnostic tests (RDTs), and 1979 (44.4%) had positive results. The prevalence of malaria infections ranged from 14.4% to 68.5% and varied significantly among the villages (p < 0.001). The prevalence and odds of infections were significantly higher in males (aOR = 1.28, 95% CI 1.08 -1.51, p = 0.003), school children (aged 5-≤10 years (aOR = 3.88, 95% CI 3.07-4.91, p < 0.001) and 10-≤15 years (aOR = 4.06, 95% CI 3.22-5.13, p < 0.001)) and among individuals who were not using bed nets (aOR = 1.22, 95% CI 1.03-1.46, p = 0.024). The odds of malaria infections were also higher in individuals with lower SES (aOR = 1.42, 95% CI 1.17-1.72, p < 0.001), and living in houses without windows (aOR = 2.08, 95% CI 1.46-2.96, p < 0.001), partially open (aOR = 1.33, 95% CI 1.11-1.58, p = 0.002) or fully open windows (aOR = 1.30, 95%CI 1.05-1.61, p = 0.015). CONCLUSION The five villages had a high prevalence of malaria infections and heterogeneity at micro-geographic levels. Groups with higher odds of malaria infections included school children, males, and individuals with low SES, living in poorly constructed houses or non-bed net users. These are important baseline data from an area with high prevalence of parasites with ART-R and will be useful in planning interventions for these groups, and in future studies to monitor the trends and potential spread of such parasites, and in designing a response to ART-R.
Collapse
Affiliation(s)
- Salehe S Mandai
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Daniel P Challe
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Misago D Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Rule Budodo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Gervas A Chacha
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Ramadhan Moshi
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Ruth B Mbwambo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Dativa Pereus
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Catherine Bakari
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | | | | | - Stella Kajange
- President's Office, Regional Administration and Local Government, Dodoma, Tanzania
| | - Samuel Lazaro
- National Malaria Control Programme, Dodoma, Tanzania
| | - Ntuli Kapologwe
- Directorate of Preventive Services, Ministry of Health, Dodoma, Tanzania
| | - Celine I Mandara
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania.
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
- Harvard T.H Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania.
| |
Collapse
|
7
|
Sikulu-Lord MT, Edstein MD, Goh B, Lord AR, Travis JA, Dowell FE, Birrell GW, Chavchich M. Rapid and non-invasive detection of malaria parasites using near-infrared spectroscopy and machine learning. PLoS One 2024; 19:e0289232. [PMID: 38527002 PMCID: PMC10962802 DOI: 10.1371/journal.pone.0289232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/26/2023] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Novel and highly sensitive point-of-care malaria diagnostic and surveillance tools that are rapid and affordable are urgently needed to support malaria control and elimination. METHODS We demonstrated the potential of near-infrared spectroscopy (NIRS) technique to detect malaria parasites both, in vitro, using dilutions of infected red blood cells obtained from Plasmodium falciparum cultures and in vivo, in mice infected with P. berghei using blood spotted on slides and non-invasively, by simply scanning various body areas (e.g., feet, groin and ears). The spectra were analysed using machine learning to develop predictive models for infection. FINDINGS Using NIRS spectra of in vitro cultures and machine learning algorithms, we successfully detected low densities (<10-7 parasites/μL) of P. falciparum parasites with a sensitivity of 96% (n = 1041), a specificity of 93% (n = 130) and an accuracy of 96% (n = 1171) and differentiated ring, trophozoite and schizont stages with an accuracy of 98% (n = 820). Furthermore, when the feet of mice infected with P. berghei with parasitaemia ≥3% were scanned non-invasively, the sensitivity and specificity of NIRS were 94% (n = 66) and 86% (n = 342), respectively. INTERPRETATION These data highlights the potential of NIRS technique as rapid, non-invasive and affordable tool for surveillance of malaria cases. Further work to determine the potential of NIRS to detect malaria in symptomatic and asymptomatic malaria cases in the field is recommended including its capacity to guide current malaria elimination strategies.
Collapse
Affiliation(s)
- Maggy T. Sikulu-Lord
- School of the Environment, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael D. Edstein
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Brendon Goh
- School of the Environment, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Anton R. Lord
- Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jye A. Travis
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Floyd E. Dowell
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, Manhattan, Kansas, United States of America
| | - Geoffrey W. Birrell
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Marina Chavchich
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Furtado R, Paul M, Zhang J, Sung J, Karell P, Kim RS, Caillat-Zucman S, Liang L, Felgner P, Bauleni A, Gama S, Buchwald A, Taylor T, Seydel K, Laufer M, Delahaye F, Daily JP, Lauvau G. Cytolytic circumsporozoite-specific memory CD4 + T cell clones are expanded during Plasmodium falciparum infection. Nat Commun 2023; 14:7726. [PMID: 38001069 PMCID: PMC10673885 DOI: 10.1038/s41467-023-43376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Clinical immunity against Plasmodium falciparum infection develops in residents of malaria endemic regions, manifesting in reduced clinical symptoms during infection and in protection against severe disease but the mechanisms are not fully understood. Here, we compare the cellular and humoral immune response of clinically immune (0-1 episode over 18 months) and susceptible (at least 3 episodes) during a mild episode of Pf malaria infection in a malaria endemic region of Malawi, by analysing peripheral blood samples using high dimensional mass cytometry (CyTOF), spectral flow cytometry and single-cell transcriptomic analyses. In the clinically immune, we find increased proportions of circulating follicular helper T cells and classical monocytes, while the humoral immune response shows characteristic age-related differences in the protected. Presence of memory CD4+ T cell clones with a strong cytolytic ZEB2+ T helper 1 effector signature, sharing identical T cell receptor clonotypes and recognizing the Pf-derived circumsporozoite protein (CSP) antigen are found in the blood of the Pf-infected participants gaining protection. Moreover, in clinically protected participants, ZEB2+ memory CD4+ T cells express lower level of inhibitory and chemotactic receptors. We thus propose that clonally expanded ZEB2+ CSP-specific cytolytic memory CD4+ Th1 cells may contribute to clinical immunity against the sporozoite and liver-stage Pf malaria.
Collapse
Affiliation(s)
- Raquel Furtado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- RF: BioNTech US, 40 Erie Street, Cambridge, MA, 02139, USA
| | - Mahinder Paul
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Joowhan Sung
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paul Karell
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Sophie Caillat-Zucman
- Université de Paris, AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatiblité, INSERM UMR976, 75010, Paris, France
| | - Li Liang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Philip Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Andy Bauleni
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Syze Gama
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Andrea Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Terrie Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- FD: Precision Oncology, Sanofi, Vitry sur Seine, France
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| |
Collapse
|
9
|
Zaw AS, Win ESS, Yan SW, Thein KS, Verma V, McLean ARD, Kyaw TT, White NJ, Smithuis FM. Successful elimination of falciparum malaria following the introduction of community-based health workers in Eastern Myanmar: A retrospective analysis. PLoS Med 2023; 20:e1004318. [PMID: 38033155 PMCID: PMC10721164 DOI: 10.1371/journal.pmed.1004318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/14/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Myanmar has a large majority of all malaria in the Greater Mekong Subregion. In the past decade, substantial progress was made in malaria control. The residual burden of malaria is in remote areas where currently recommended malaria elimination approaches are generally not feasible. In such hard-to-reach communities in Mon state, East Myanmar, Medical Action Myanmar introduced community health workers (CHWs) to deliver early diagnosis and treatment for malaria. We conducted a retrospective analysis to assess the impact of this intervention. METHODS AND FINDINGS This retrospective analysis involved data collected routinely from a CHW programme in Mon state conducted between 2011 and 2018. A network of 172 CHWs serving a population of 236,340 was deployed. These CHWs carried out 260,201 malaria rapid diagnostic tests (RDTs) to investigate patients with acute febrile illness. The median blood examination rate was 1.33%; interquartile range (IQR) (0.38 to 3.48%); 95% CI [1.28%, 1.36%] per month. The changes in malaria incidence and prevalence in patients presenting with fever were assessed using negative binomial regression mixed effects models fitted to the observed data. The incidence of Plasmodium falciparum malaria (including mixed infections) declined by 70%; 95% CI [65%, 75%]; p < 0.001 for each year of CHW operation. The incidence of P. vivax malaria declined by 56%; 95% CI [50%, 62%]; p < 0.001 per year. Malaria RDT positivity rates for P. falciparum and P. vivax declined by 69%; 95% CI [62%, 75%]; p < 0.001 and 53%; 95% CI [47%, 59%]; p < 0.001 per year, respectively. Between 2017 and 2018, only 1 imported P. falciparum case was detected in 54,961 RDTs. The main limitations of the study are use of retrospective data with possible unidentified confounders and uncharacterised population movement. CONCLUSIONS The introduction of CHWs providing community-based malaria diagnosis and treatment and basic health care services in remote communities in Mon state was associated with a substantial reduction in malaria. Within 6 years, P. falciparum was eliminated and the incidence of P. vivax fell markedly.
Collapse
Affiliation(s)
- Aye Sandar Zaw
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | | | | | | | | | - Alistair R. D. McLean
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Thar Tun Kyaw
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Department of Public Health, Ministry of Health and Sports, Nay Pyi Taw, Myanmar
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Frank M. Smithuis
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Legendre E, Girond F, Herbreteau V, Hoeun S, Rebaudet S, Thu AM, Rae JD, Lehot L, Dieng S, Delmas G, Nosten F, Gaudart J, Landier J. 'Forest malaria' in Myanmar? Tracking transmission landscapes in a diversity of environments. Parasit Vectors 2023; 16:324. [PMID: 37700295 PMCID: PMC10498628 DOI: 10.1186/s13071-023-05915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND In the Greater Mekong Subregion, case-control studies and national-level analyses have shown an association between malaria transmission and forest activities. The term 'forest malaria' hides the diversity of ecosystems in the GMS, which likely do not share a uniform malaria risk. To reach malaria elimination goals, it is crucial to document accurately (both spatially and temporally) the influence of environmental factors on malaria to improve resource allocation and policy planning within given areas. The aim of this ecological study is to characterize the association between malaria dynamics and detailed ecological environments determined at village level over a period of several years in Kayin State, Myanmar. METHODS We characterized malaria incidence profiles at village scale based on intra- and inter-annual variations in amplitude, seasonality, and trend over 4 years (2016-2020). Environment was described independently of village localization by overlaying a 2-km hexagonal grid over the region. Specifically, hierarchical classification on principal components, using remote sensing data of high spatial resolution, was used to assign a landscape and a climate type to each grid cell. We used conditional inference trees and random forests to study the association between the malaria incidence profile of each village, climate and landscape. Finally, we constructed eco-epidemiological zones to stratify and map malaria risk in the region by summarizing incidence and environment association information. RESULTS We identified a high diversity of landscapes (n = 19) corresponding to a gradient from pristine to highly anthropogenically modified landscapes. Within this diversity of landscapes, only three were associated with malaria-affected profiles. These landscapes were composed of a mosaic of dense and sparse forest fragmented by small agricultural patches. A single climate with moderate rainfall and a temperature range suitable for mosquito presence was also associated with malaria-affected profiles. Based on these environmental associations, we identified three eco-epidemiological zones marked by later persistence of Plasmodium falciparum, high Plasmodium vivax incidence after 2018, or a seasonality pattern in the rainy season. CONCLUSIONS The term forest malaria covers a multitude of contexts of malaria persistence, dynamics and populations at risk. Intervention planning and surveillance could benefit from consideration of the diversity of landscapes to focus on those specifically associated with malaria transmission.
Collapse
Affiliation(s)
- Eva Legendre
- Aix Marseille Univ, IRD, INSERM, SESSTIM, ISSPAM, 27 boulevard Jean Moulin, 13005, Marseille, France.
| | - Florian Girond
- Institut de Recherche pour le Développement, UMR 228 Espace-Dev (IRD, UA, UG, UM, UR), Phnom Penh, Cambodia
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Vincent Herbreteau
- Institut de Recherche pour le Développement, UMR 228 Espace-Dev (IRD, UA, UG, UM, UR), Phnom Penh, Cambodia
| | - Sokeang Hoeun
- Institut de Recherche pour le Développement, UMR 228 Espace-Dev (IRD, UA, UG, UM, UR), Phnom Penh, Cambodia
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Stanislas Rebaudet
- Aix Marseille Univ, IRD, INSERM, SESSTIM, ISSPAM, 27 boulevard Jean Moulin, 13005, Marseille, France
- Hôpital Européen Marseille, Marseille, France
| | - Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mae Sot, Thailand
| | - Jade Dean Rae
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mae Sot, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road campus, Oxford, UK
| | - Laurent Lehot
- Aix Marseille Univ, IRD, INSERM, SESSTIM, ISSPAM, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Sokhna Dieng
- Aix Marseille Univ, IRD, INSERM, SESSTIM, ISSPAM, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road campus, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road campus, Oxford, UK
| | - Jean Gaudart
- Aix Marseille Univ, IRD, INSERM, AP-HM, SESSTIM, La Timone Hospital, BioSTIC, Biostatistics and ICT, Marseille, France
| | - Jordi Landier
- Aix Marseille Univ, IRD, INSERM, SESSTIM, ISSPAM, 27 boulevard Jean Moulin, 13005, Marseille, France
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mae Sot, Thailand
| |
Collapse
|
11
|
Van Dung N, Thieu NQ, Canh HD, Le Duy B, Hung VV, Ngoc NTH, Mai NVT, Van Anh NT, Son LD, Oo WH, Htike W, Oo MC, Galau NH, Thu KM, Zaw AK, Htwe EP, Cutts JC, Kearney EA, Wang B, Agius PA, Fowkes FJI, O'Flaherty K. Anopheles diversity, biting behaviour and transmission potential in forest and farm environments of Gia Lai province, Vietnam. Malar J 2023; 22:204. [PMID: 37408026 DOI: 10.1186/s12936-023-04631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Despite recent reductions in Vietnam, malaria transmission persists in some areas in forests and farmlands where a high density of Anopheles mosquitoes relative to other environments occurs. To inform effective malaria control measures, it is important to understand vector bionomics and the malaria transmission role of Anopheles spp. in the highland regions of Vietnam. This study was conducted to quantify the abundance, composition and biting behaviour of the Anopheles mosquito population, and the proportion of Plasmodium spp. infected mosquitoes collected from forest and agricultural farm sites in Gia Lai province, Vietnam. METHODS Forest and agricultural farm sites in Gia Lai province were selected for mosquito collections (total eight sites). Mosquito collection was performed by Human-baited Double Net Trap (HDNT), animal-baited traps (ABT) using cattle, and CDC light traps. Captured mosquitoes were identified morphologically, and salivary glands of Anopheles mosquitoes were examined for sporozoites using microscopy. Plasmodium infection was determined by Polymerase Chain Reaction (PCR), and identification of blood meal type was determined by PCR and diffuse serum agglutination assay. RESULTS A total of 1815 Anopheles mosquitoes belonging to 19 species were collected by ABT (n = 1169), HDNT (n = 471) and CDC light trap (n = 175). Anopheles abundance and diversity varied by district and environment. Capture by HDNT of Anopheles of vectorial concern was observed between early evening and early morning. Plasmodium vivax infection was determined by PCR in two Anopheles dirus specimens captured by HDNT in forest sites. Blood from a range of hosts could, including human blood, could be detected in species considered primary and secondary vectors An. dirus, and Anopheles aconitus, and Anopheles maculatus, respectively. CONCLUSIONS A low number of Anopheles spp. considered primary vectors of concern and very low numbers of Plasmodium spp. infected Anopheles mosquitoes were captured at the end of the rainy season in the Central Highlands of Vietnam. However, capture species of vectorial concern by HDNT throughout the early to late evening demonstrates that use of additional personal protective measures could supplement current preventative measures, such as bed nets to prevent exposure to vectors of concern in this region.
Collapse
Affiliation(s)
- Nguyen Van Dung
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam.
| | - Nguyen Quang Thieu
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hoang Dinh Canh
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Bui Le Duy
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Vu Viet Hung
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | | | | | - Le Duy Son
- Health Poverty Action Vietnam, Hanoi, Vietnam
| | - Win Han Oo
- Health Security Program, Burnet Institute Myanmar, Yangon, Myanmar
| | - Win Htike
- Health Security Program, Burnet Institute Myanmar, Yangon, Myanmar
| | - May Chan Oo
- Health Security Program, Burnet Institute Myanmar, Yangon, Myanmar
| | - Naw Hkawng Galau
- Health Security Program, Burnet Institute Myanmar, Yangon, Myanmar
| | - Kaung Myat Thu
- Health Security Program, Burnet Institute Myanmar, Yangon, Myanmar
| | - Aung Khine Zaw
- Health Security Program, Burnet Institute Myanmar, Yangon, Myanmar
| | - Ei Phyu Htwe
- Health Security Program, Burnet Institute Myanmar, Yangon, Myanmar
| | - Julia C Cutts
- Disease Elimination Program, Burnet Institute, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Ellen A Kearney
- Disease Elimination Program, Burnet Institute, Melbourne, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | | | - Paul A Agius
- Disease Elimination Program, Burnet Institute, Melbourne, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
- Biostatistics Unit, Faculty of Health, Deakin University, Melbourne, Australia
| | - Freya J I Fowkes
- Disease Elimination Program, Burnet Institute, Melbourne, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| | | |
Collapse
|
12
|
Aung JM, Moon Z, VanBik D, Dinzouna-Boutamba SD, Lee S, Ring Z, Chung DI, Hong Y, Goo YK. Prevalence and molecular analysis of glucose-6-phosphate dehydrogenase deficiency in Chin State, Myanmar. PARASITES, HOSTS AND DISEASES 2023; 61:154-162. [PMID: 37258262 DOI: 10.3347/phd.23004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/05/2023] [Indexed: 06/02/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by X-linked recessive disorderliness. It induces severe anemia when a patient with G6PD deficiency is exposed to oxidative stress that occurs with administration of an antimalarial drug, primaquine. The distribution of G6PD deficiency remains unknown while primaquine has been used for malaria treatment in Myanmar. This study aimed to investigate the prevalence of G6PD deficiency and its variants in Chin State, Myanmar. Among 322 participants, 18 (11 males and 7 females) demonstrated a G6PD deficiency. Orissa variant was dominant in the molecular analysis. This would be related to neighboring Indian and Bangladeshi population, in which Orissa variant was also reported as the main mutation type. The screening test for G6PD deficiency before primaquine treatment appears to be important in Myanmar.
Collapse
Affiliation(s)
- Ja Moon Aung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Zin Moon
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Dorene VanBik
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | | | - Sanghyun Lee
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Zau Ring
- Vector Borne Diseases Control Unit, Kachin State Public Health Department, Myanmar
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
13
|
Andagalu B, Watson OJ, Onyango I, Opot B, Okoth R, Chemwor G, Sifuna P, Juma D, Cheruiyot A, Yeda R, Okudo C, Wafubwa J, Yalwala S, Abuom D, Ogutu B, Cowden J, Akala HM, Kamau E. Malaria Transmission Dynamics in a High-Transmission Setting of Western Kenya and the Inadequate Treatment Response to Artemether-Lumefantrine in an Asymptomatic Population. Clin Infect Dis 2023; 76:704-712. [PMID: 35767269 PMCID: PMC9938745 DOI: 10.1093/cid/ciac527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Assessing the infectious reservoir is critical in malaria control and elimination strategies. We conducted a longitudinal epidemiological study in a high-malaria-burden region in Kenya to characterize transmission in an asymptomatic population. METHODS 488 study participants encompassing all ages in 120 households within 30 clusters were followed for 1 year with monthly sampling. Malaria was diagnosed by microscopy and molecular methods. Transmission potential in gametocytemic participants was assessed using direct skin and/or membrane mosquito feeding assays, then treated with artemether-lumefantrine. Study variables were assessed using mixed-effects generalized linear models. RESULTS Asexual and sexual parasite data were collected from 3792 participant visits, with 903 linked with feeding assays. Univariate analysis revealed that the 6-11-year-old age group was at higher risk of harboring asexual and sexual infections than those <6 years old (odds ratio [OR] 1.68, P < .001; and OR 1.81, P < .001), respectively. Participants with submicroscopic parasitemia were at a lower risk of gametocytemia compared with microscopic parasitemia (OR 0.04, P < .001), but they transmitted at a significantly higher rate (OR 2.00, P = .002). A large proportion of the study population who were infected at least once remained infected (despite treatment) with asexual (71.7%, 291/406) or sexual (37.4%, 152/406) parasites. 88.6% (365/412) of feeding assays conducted in individuals who failed treatment the previous month resulted in transmissions. CONCLUSIONS Individuals with asymptomatic infection sustain the transmission cycle, with the 6-11-year age group serving as an important reservoir. The high rates of artemether-lumefantrine treatment failures suggest surveillance programs using molecular methods need to be expanded for accurate monitoring and evaluation of treatment outcomes.
Collapse
Affiliation(s)
- Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Oliver J Watson
- Medical Research Council, Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Irene Onyango
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Benjamin Opot
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Peter Sifuna
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Agnes Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Charles Okudo
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Jackline Wafubwa
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Santos Yalwala
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - David Abuom
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | | | - Jessica Cowden
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Edwin Kamau
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya.,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Surit T, Sripoorote P, Kumpitak C, Suansomjit C, Maneechai N, Cui L, Sattabongkot J, Roobsoong W, Nguitragool W. Transmission efficiency of Plasmodium vivax at low parasitaemia. Malar J 2023; 22:22. [PMID: 36658583 PMCID: PMC9854148 DOI: 10.1186/s12936-022-04435-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Plasmodium vivax is responsible for much of malaria outside Africa. Although most P. vivax infections in endemic areas are asymptomatic and have low parasite densities, they are considered a potentially important source of transmission. Several studies have demonstrated that asymptomatic P. vivax carriers can transmit the parasite to mosquitoes, but the efficiency has not been well quantified. The aim of this study is to determine the relationship between parasite density and mosquito infectivity, particularly at low parasitaemia. METHODS Membrane feeding assays were performed using serial dilutions of P. vivax-infected blood to define the relationship between parasitaemia and mosquito infectivity. RESULTS The infection rate (oocyst prevalence) and intensity (oocyst load) were positively correlated with the parasite density in the blood. There was a broad case-to-case variation in parasite infectivity. The geometric mean parasite density yielding a 10% mosquito infection rate was 33 (CI 95 9-120) parasites/µl or 4 (CI 95 1-17) gametocytes/µl. The geometric mean parasite density yielding a 50% mosquito infection rate was 146 (CI 95 36-586) parasites/µl or 13 (CI 95 3-49) gametocytes/µl. CONCLUSION This study quantified the ability of P. vivax to infect Anopheles dirus at over a broad range of parasite densities. It provides important information about parasite infectivity at low parasitaemia common among asymptomatic P. vivax carriers.
Collapse
Affiliation(s)
- Thitiporn Surit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piyarat Sripoorote
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Chayanut Suansomjit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Nongnuj Maneechai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand.
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand.
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
15
|
Saita S, Roobsoong W, Khammaneechan P, Sukchan P, Lawpoolsri S, Sattabongkot J, Cui L, Okanurak K, Phuanukoonnon S, Parker DM. Community acceptability, participation, and adherence to mass drug administration with primaquine for Plasmodium vivax elimination in Southern Thailand: a mixed methods approach. Malar J 2023; 22:17. [PMID: 36635642 PMCID: PMC9837991 DOI: 10.1186/s12936-023-04443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mass drug administration (MDA) with primaquine (PQ) is being considered for accelerating Plasmodium vivax elimination in remaining active foci. This study aimed to determine the acceptability of MDA with PQ in malaria endemic villages in a malarious setting in the South of Thailand undergoing MDA with PQ. METHODS A cross-sectional mixed-methods approach was conducted in seven malaria endemic villages where MDA with PQ was implemented. The data were collected from community villagers and health workers using structured questionnaires, in-depth interviews, and focus group discussions. Descriptive statistics and logistic regression models were used for quantitative data analysis. Thematic analysis was applied for qualitative data. RESULTS Among a total of 469 participants from the MDA villages, 293 participants were eligible for MDA with PQ and 79.86% (234) completed 14-days of PQ. The logistic regressions indicated that males (adjusted odds ratio: 2.52 [95% confidence interval: 1.33-4.81]) and those who are farmers (2.57 [1.12-5.90]) were most likely to participate in the MDA. Among 293 participants in the post-MDA study, 74.06% had originally agreed to participate in the MDA with PQ while 25.94% had originally reported not wanting to participate in the MDA. Of those who originally reported being willing to participate in the MDA, 71.23% followed through with participation in the first or second round. Conversely, 93.24% of those who originally reported not being willing to participate in the MDA did in fact participate in the MDA. Factors contributing to higher odds of agreeing to participate and following through with participation included being male (1.98 [1.06-3.69]) and correctly responding that malaria is preventable (2.32 [1.01-5.35]) with some differences by village. Five key themes emerged from the qualitative analyses: concern about side effects from taking PQ; disbelief that malaria could be eliminated in this setting; low overall concern about malaria infections; misunderstandings about malaria; and a general need to tailor public health efforts for this unique context. CONCLUSION While the reported likelihood of participating in MDA was high in this setting, actual follow-through was relatively moderate, partially because of eligibility (roughly 71% of those in the follow-up survey who originally agreed to participate actually followed through with participation). One of the largest concerns among study participants was PQ-related side effects-and these concerns likely heavily influenced participant adherence to the MDA. The results of this study can be used to tailor future MDAs, or other public health interventions, in this and potentially other similar settings.
Collapse
Affiliation(s)
- Sayambhu Saita
- grid.412434.40000 0004 1937 1127Faculty of Public Health, Thammasat University, Lampang, Thailand ,grid.412434.40000 0004 1937 1127Thammasat University Research Unit in One Health and Ecohealth, Thammasat University, Pathum Thani, Thailand
| | - Wanlapa Roobsoong
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patthanasak Khammaneechan
- grid.412867.e0000 0001 0043 6347Excellence Center for DACH, Walailak University, Nakhon Si Thammarat, Thailand
| | - Phnom Sukchan
- grid.444076.50000 0004 0388 8009Faculty of Medicine, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Saranath Lawpoolsri
- grid.10223.320000 0004 1937 0490Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- grid.170693.a0000 0001 2353 285XDivision of Infectious Diseases and Internal Medicine, Department of Internal Medicine, University of South Florida, Tampa, FL USA
| | - Kamolnetr Okanurak
- grid.10223.320000 0004 1937 0490Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suparat Phuanukoonnon
- grid.10223.320000 0004 1937 0490Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daniel M. Parker
- grid.266093.80000 0001 0668 7243Department of Population Health and Disease Prevention, University of California, Irvine, USA ,grid.266093.80000 0001 0668 7243Department of Epidemiology and Biostatistics, University of California, Irvine, USA
| |
Collapse
|
16
|
Ngonghala CN. Assessing the impact of insecticide-treated nets in the face of insecticide resistance on malaria control. J Theor Biol 2022; 555:111281. [PMID: 36154815 DOI: 10.1016/j.jtbi.2022.111281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 01/14/2023]
Abstract
The mosquito-borne disease, malaria, continues to impose a devastating health and economic burden worldwide. In malaria-endemic areas, insecticide-treated nets (ITNs) have been useful in curtailing the burden of the disease. However, mosquito resistance to insecticides, decay in ITN efficacy, net attrition, etc., undermine the effectiveness of ITNs in combatting malaria. In this study, mathematical models that account for asymptomatic infectious humans (through a partially immune class or a separate asymptomatic infectious class), insecticide resistance, and decay in ITN efficacy are proposed and analyzed. Analytical and numerical results of the models when ITN efficacy is constant show that there are parameter regimes for which a backward bifurcation occurs. Local and global sensitivity analyses are performed to identify parameters (some of which are potential targets for disease control) with the most significant influence on the control reproduction (Rc) and disease prevalence. These influential parameters include the maximum biting rate of resistant mosquitoes, ITN coverage, initial ITN efficacy against sensitive mosquitoes, the probability that an infectious mosquito (human) infects a susceptible human (mosquito), and the rate at which adult mosquitoes develop (lose) resistance to insecticides. Simulations of the models show that accounting for asymptomatic infectious humans through a separate class, or not accounting for the decay in ITN efficacy leads to an underestimation of disease burden. In particular, if the initial efficacy of ITNs against sensitive and resistance mosquitoes is 96%, the minimum ITN coverage required to reduce Rc below one (and hence, contain malaria) is approximately 11% (27%) lower when ITN efficacy is averaged (constant) for a model with a separate asymptomatic class. For the model with a partially immune class and decaying ITN efficacy, reducing Rc below one is impossible even if the entire populace uses ITNs. The study shows that replacing ITNs before their prescribed lifespans, or designing ITNs with longer lifespans is important for malaria control. Furthermore, the study shows that piperonyl butoxide (PBO) ITNs (which inhibit or reverse insecticide resistance) outperform regular ITNs in malaria control. Hence, prospects for effectively controlling malaria are enhanced by widespread use of high quality ITNs (e.g. PBO ITNs), especially if the useful lifespans of the ITNs are long enough and the ITNs are replaced before the end of their useful lifespans.
Collapse
Affiliation(s)
- Calistus N Ngonghala
- Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, FL 32611, United States of America; Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610, United States of America; Center for African Studies, University of Florida, 427 Grinter Hall 1523 Union Rd, Gainesville, FL 32611, United States of America.
| |
Collapse
|
17
|
Sattabongkot J, Cui L, Bantuchai S, Chotirat S, Kaewkungwal J, Khamsiriwatchara A, Kiattibutr K, Kyaw MP, Lawpoolsri S, Linn NYY, Menezes L, Miao J, Nguitragool W, Parker D, Prikchoo P, Roobsoong W, Sa-Angchai P, Samung Y, Sirichaisinthop J, Sriwichai P, Suk-Uam K, Thammapalo S, Wang B, Zhong D. Malaria Research for Tailored Control and Elimination Strategies in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:152-159. [PMID: 36228914 DOI: 10.4269/ajtmh.21-1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
The malaria landscape in the Greater Mekong Subregion has experienced drastic changes with the ramp-up of the control efforts, revealing formidable challenges that slowed down the progress toward malaria elimination. Problems such as border malaria and cross-border malaria introduction, multidrug resistance in Plasmodium falciparum, the persistence of Plasmodium vivax, the asymptomatic parasite reservoirs, and insecticide resistance in primary vectors require integrated strategies tailored for individual nations in the region. In recognition of these challenges and the need for research, the Southeast Asian International Center of Excellence for Malaria Research has established a network of researchers and stakeholders and conducted basic and translational research to identify existing and emerging problems and develop new countermeasures. The installation of a comprehensive disease and vector surveillance system at sentinel sites in border areas with the implementation of passive/active case detection and cross-sectional surveys allowed timely detection and management of malaria cases, provided updated knowledge for effective vector control measures, and facilitated the efficacy studies of antimalarials. Incorporating sensitive molecular diagnosis to expose the significance of asymptomatic parasite reservoirs for sustaining transmission helped establish the necessary evidence to guide targeted control to eliminate residual transmission. In addition, this program has developed point-of-care diagnostics to monitor the quality of artemisinin combination therapies, delivering the needed information to the drug regulatory authorities to take measures against falsified and substandard antimalarials. To accelerate malaria elimination, this program has actively engaged with stakeholders of all levels, fostered vertical and horizontal collaborations, and enabled the effective dissemination of research findings.
Collapse
Affiliation(s)
- Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | - Sadudee Chotirat
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Kirakorn Kiattibutr
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Nay Yi Yi Linn
- Department of Public Health, Ministry of Health, Nay Pyi Taw, Myanmar
| | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | - Pathomporn Prikchoo
- Office of Disease Prevention and Control 12, Ministry of Public Health, Songkla, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Yudthana Samung
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jeeraphat Sirichaisinthop
- Vector-Borne Disease Control Center, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kritsana Suk-Uam
- Vector Borne Disease Control Center 2.3, Ministry of Public Health, Tak, Thailand
| | - Suwich Thammapalo
- Vector-Borne Disease Control Center, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Baomin Wang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
18
|
Chaumeau V, Kajeechiwa L, Kulabkeeree T, Sawasdichai S, Haohankhunnatham W, Inta A, Phanaphadungtham M, Girond F, Herbreteau V, Delmas G, Nosten F. Outdoor residual spraying for malaria vector-control in Kayin (Karen) state, Myanmar: A cluster randomized controlled trial. PLoS One 2022; 17:e0274320. [PMID: 36083983 PMCID: PMC9462579 DOI: 10.1371/journal.pone.0274320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Outdoor and early biting by mosquitoes challenge the efficacy of bed nets and indoor residual spraying against malaria in the Greater Mekong Subregion. The objective of this study was to assess the efficacy of outdoor residual spraying (ORS) for malaria vector-control in this region. A cluster randomized controlled trial was conducted between July 2018 and April 2019 in twelve villages in Karen (Kayin) state, Myanmar. Villages were randomly assigned to receive either a single round of ORS with a capsule suspension of lambda-cyhalothrin for two days in October or no intervention (six villages per group). The primary endpoint was the biting rate of malaria mosquitoes assessed with human-landing catch and cow-baited trap collection methods, and was analyzed with a Bayesian multi-level model. In the intervention villages, the proportion of households located within the sprayed area ranged between 42 and 100% and the application rate ranged between 63 and 559 g of active ingredient per hectare. At baseline, the median of Anopheles biting rate estimates in the twelve villages was 2 bites per person per night (inter-quartile range [IQR] 0–5, range 0–48) indoors, 6 bites per person per night (IQR 2–16, range 0–342) outdoors and 206 bites per cow per night (IQR 83–380, range 19–1149) in the cow-baited trap. In intention-to-treat analysis, it was estimated that ORS reduced biting rate by 72% (95% confidence interval [CI] 63–79) from Month 0 to Month 3 and by 79% (95% CI 62–88) from Month 4 to Month 6, considering control villages as the reference. In conclusion, ORS rapidly reduces the biting rates of malaria mosquitoes in a Southeast Asian setting where the vectors bite mostly outdoors and at a time when people are not protected by mosquito bed nets.
Collapse
Affiliation(s)
- Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Thithiworada Kulabkeeree
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Warat Haohankhunnatham
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aritsara Inta
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Monthicha Phanaphadungtham
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Florian Girond
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- Institut de Recherche pour le Développement, UMR 228 Espace-Dev (IRD, UA, UG, UM, UR), Phnom Penh, Cambodia
| | - Vincent Herbreteau
- Institut de Recherche pour le Développement, UMR 228 Espace-Dev (IRD, UA, UG, UM, UR), Phnom Penh, Cambodia
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Nana RRD, Bayengue SSB, Mogtomo MLK, Ngane ARN, Singh V. Anti-folate quintuple mutations in Plasmodium falciparum asymptomatic infections in Yaoundé, Cameroon. Parasitol Int 2022; 92:102657. [PMID: 36038059 DOI: 10.1016/j.parint.2022.102657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/07/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
A major challenge in the fight to effectively control malaria is the emergence of resistant parasite to drugs used in therapy as well as for chemoprevention. In this study, single nucleotide polymorphisms (SNPs) associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP), one of the partner drugs in artemisinin-based therapies (ACTs) were studied in asymptomatic P. falciparum isolates from Cameroon. Dried Blood spots were collected from children with asymptomatic malaria enrolled during a household survey. The P. falciparum dihydrofolate reductase (Pfdhfr), dihydropteroate synthase (Pfdhps) and Kelch 13 genes were amplified and point mutations in these gene sequences were analyzed by sequencing. Among a total of 234 samples collected, 51 showed parasitaemia after microscopic examination of which 47 were P. falciparum mono-infections. Molecular analysis revealed 97.3% of mutant alleles at codons 51I, 59R and 108 N in Pfdhfr gene. In Pfdhps gene the most common mutation was 437G (83.3%); followed by 436A (47.6%) and 436F (28.6%). The association of mutations in the two genes (dhfr + dhps) showed 11 different haplotypes including three sextuple mutants (IRNI + AGKGA, IRNI + AAKGS, IRNI + AGKAS) and one septuple mutant (IRNI + AGKGS). For K13 gene no SNPs were seen in the studied asymptomatic malaria samples. The findings revealed presence of SP-resistant alleles in asymptomatic infected individuals with presence of sextuples and septuple SNPs. This emphasizes that regular profiling of antimalarial drugs resistance markers in such population is essential for malaria control and elimination programmes.
Collapse
Affiliation(s)
- Rodrigue Roman Dongang Nana
- Institute of Medical Research and Medicinal Plants studies, PO Box 13033, Yaoundé, Cameroon; ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi 110077, India
| | | | | | - Anne Rosalie Ngono Ngane
- Department of Biochemistry, Faculty of Science, University of Douala, PO Box 24157, Douala, Cameroon
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi 110077, India.
| |
Collapse
|
20
|
Egger JR, Han KT, Fang H, Zhou XN, Hlaing TM, Thant M, Han ZY, Wang XX, Hong T, Platt A, Simmons R, Thane TK, Meng M, Hogue J, Markwalter CF, Thi A, Htay T, Thein ZW, Paing AK, Tun ZM, Oo SM, Aung PP, Nyunt MM, Plowe CV. Temporal Dynamics of Subclinical Malaria in Different Transmission Zones of Myanmar. Am J Trop Med Hyg 2022; 107:tpmd220027. [PMID: 35895341 PMCID: PMC9490656 DOI: 10.4269/ajtmh.22-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Countries in the Greater Mekong Subregion have committed to eliminate Plasmodium falciparum malaria by 2025. Subclinical malaria infections that can be detected by highly sensitive polymerase chain reaction (PCR) testing in asymptomatic individuals represent a potential impediment to this goal, although the extent to which these low-density infections contribute to transmission is unclear. To understand the temporal dynamics of subclinical malaria in this setting, a cohort of 2,705 participants from three epidemiologically distinct regions of Myanmar was screened for subclinical P. falciparum and P. vivax infection using ultrasensitive PCR (usPCR). Standard rapid diagnostic tests (RDTs) for P. falciparum were also performed. Individuals who tested positive for malaria by usPCR were followed for up to 12 weeks. Regression analysis was performed to estimate whether the baseline prevalence of infection and the count of repeated positive tests were associated with demographic, behavioral, and clinical factors. At enrollment, the prevalence of subclinical malaria infection measured by usPCR was 7.7% (1.5% P. falciparum monoinfection, 0.3% mixed P. falciparum and P. vivax, and 6.0% P. vivax monoinfection), while P. falciparum prevalence measured by RDT was just 0.2%. Prevalence varied by geography and was higher among older people and in those with outdoor exposure and travel. No difference was observed in either the prevalence or count of subclinical infection by time of year, indicating that even in low-endemicity areas, a reservoir of subclinical infection persists year-round. If low-density infections are shown to represent a significant source of transmission, identification of high-risk groups and locations may aid elimination efforts.
Collapse
Affiliation(s)
- Joseph R. Egger
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Kay T. Han
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Huang Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Xiao Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Tin M. Hlaing
- Defense Services Medical Research Center, Nay Pyi Taw, Myanmar
| | - Myo Thant
- Defense Services Medical Research Center, Nay Pyi Taw, Myanmar
| | - Zay Y. Han
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Xiao X. Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Tu Hong
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Alyssa Platt
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | | | - Thynn K. Thane
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Manfred Meng
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Joyce Hogue
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | | | - Aung Thi
- National Malaria Control Program, Myanmar Ministry of Health and Sports, Nay Pyi Taw, Myanmar
| | - Thura Htay
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Zaw W. Thein
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Aye K. Paing
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Zin M. Tun
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Swai M. Oo
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Poe P. Aung
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Myaing M. Nyunt
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Christopher V. Plowe
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Huwe T, Kibria MG, Johora FT, Phru CS, Jahan N, Hossain MS, Khan WA, Price RN, Ley B, Alam MS, Koepfli C. Heterogeneity in prevalence of subclinical Plasmodium falciparum and Plasmodium vivax infections but no parasite genomic clustering in the Chittagong Hill Tracts, Bangladesh. Malar J 2022; 21:218. [PMID: 35836171 PMCID: PMC9281141 DOI: 10.1186/s12936-022-04236-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Malaria remains endemic in Bangladesh, with the majority of cases occurring in forested, mountainous region in the Chittagong Hill Tracts (CHT). This area is home to Bengali and diverse groups of indigenous people (Pahari) residing largely in mono-ethnic villages. METHODS 1002 individuals of the 9 most prominent Pahari and the Bengali population were randomly selected and screened by RDT and qPCR. Parasites were genotyped by msp2 and deep sequencing of 5 amplicons (ama1-D3, cpmp, cpp, csp, and msp7) for Plasmodium falciparum (n = 20), and by microsatellite (MS) typing of ten loci and amplicon sequencing of msp1 for Plasmodium vivax (n = 21). Population structure was analysed using STRUCTURE software. Identity-by-state (IBS) was calculated as a measure of parasite relatedness and used to generate relatedness networks. RESULTS The prevalence of P. falciparum and P. vivax infection was 0.7% by RDT (P. falciparum 6/1002; P. vivax 0/1002, mixed: 1/1002) and 4% by qPCR (P. falciparum 21/1002; P. vivax 16/1002, mixed: 5/1002). Infections were highly clustered, with 64% (27/42) of infections occurring in only two Pahari groups, the Khumi and Mro. Diversity was high; expected heterozygosity was 0.93 for P. falciparum and 0.81 for P. vivax. 85.7% (18/21) of P. vivax and 25% (5/20) of P. falciparum infections were polyclonal. No population structure was evident for either species, suggesting high transmission and gene flow among Pahari groups. CONCLUSIONS High subclinical infection prevalence and genetic diversity mirror ongoing transmission. Control activities should be specifically directed to Pahari groups at greatest risk.
Collapse
Affiliation(s)
- Tiffany Huwe
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
- Georgia State University, Atlanta, GA, USA
| | - Ching Swe Phru
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Nusrat Jahan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Mohammad Sharif Hossain
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia.
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh.
| | - Cristian Koepfli
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA.
| |
Collapse
|
22
|
Lyimo BM, Popkin-Hall ZR, Giesbrecht DJ, Mandara CI, Madebe RA, Bakari C, Pereus D, Seth MD, Ngamba RM, Mbwambo RB, MacInnis B, Mbwambo D, Garimo I, Chacky F, Aaron S, Lusasi A, Molteni F, Njau R, Cunningham JA, Lazaro S, Mohamed A, Juliano JJ, Bailey J, Ishengoma DS. Potential Opportunities and Challenges of Deploying Next Generation Sequencing and CRISPR-Cas Systems to Support Diagnostics and Surveillance Towards Malaria Control and Elimination in Africa. Front Cell Infect Microbiol 2022; 12:757844. [PMID: 35909968 PMCID: PMC9326448 DOI: 10.3389/fcimb.2022.757844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Recent developments in molecular biology and genomics have revolutionized biology and medicine mainly in the developed world. The application of next generation sequencing (NGS) and CRISPR-Cas tools is now poised to support endemic countries in the detection, monitoring and control of endemic diseases and future epidemics, as well as with emerging and re-emerging pathogens. Most low and middle income countries (LMICs) with the highest burden of infectious diseases still largely lack the capacity to generate and perform bioinformatic analysis of genomic data. These countries have also not deployed tools based on CRISPR-Cas technologies. For LMICs including Tanzania, it is critical to focus not only on the process of generation and analysis of data generated using such tools, but also on the utilization of the findings for policy and decision making. Here we discuss the promise and challenges of NGS and CRISPR-Cas in the context of malaria as Africa moves towards malaria elimination. These innovative tools are urgently needed to strengthen the current diagnostic and surveillance systems. We discuss ongoing efforts to deploy these tools for malaria detection and molecular surveillance highlighting potential opportunities presented by these innovative technologies as well as challenges in adopting them. Their deployment will also offer an opportunity to broadly build in-country capacity in pathogen genomics and bioinformatics, and to effectively engage with multiple stakeholders as well as policy makers, overcoming current workforce and infrastructure challenges. Overall, these ongoing initiatives will build the malaria molecular surveillance capacity of African researchers and their institutions, and allow them to generate genomics data and perform bioinformatics analysis in-country in order to provide critical information that will be used for real-time policy and decision-making to support malaria elimination on the continent.
Collapse
Affiliation(s)
- Beatus M. Lyimo
- National Institute for Medical Research, Dar es Salaam, Tanzania
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | | | - David J. Giesbrecht
- Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, RI, United States
| | | | - Rashid A. Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Catherine Bakari
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Dativa Pereus
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Misago D. Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Ruth B. Mbwambo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Bronwyn MacInnis
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute, Boston, MA, United States
| | | | - Issa Garimo
- National Malaria Control Programme, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Dodoma, Tanzania
| | | | | | | | - Ritha Njau
- World Health Organization, Country Office, Dar es Salaam, Tanzania
| | - Jane A. Cunningham
- Global Malaria Programme, World Health Organization, Headquarters, Geneva, Switzerland
| | - Samwel Lazaro
- National Malaria Control Programme, Dodoma, Tanzania
| | - Ally Mohamed
- National Malaria Control Programme, Dodoma, Tanzania
| | - Jonathan J. Juliano
- School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey A. Bailey
- Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, RI, United States
| | - Deus S. Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
24
|
Loeffel M, Ross A. The relative impact of interventions on sympatric Plasmodium vivax and Plasmodium falciparum malaria: A systematic review. PLoS Negl Trop Dis 2022; 16:e0010541. [PMID: 35767578 PMCID: PMC9242512 DOI: 10.1371/journal.pntd.0010541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In areas with both Plasmodium vivax and Plasmodium falciparum malaria, interventions can reduce the burden of both species but the impact may vary due to their different biology. Knowing the expected relative impact on the two species over time for vector- and drug-based interventions, and the factors affecting this, could help plan and evaluate intervention strategies. METHODS For three interventions (treated bed nets (ITN), mass drug administration (MDA) and indoor residual spraying (IRS)), we identified studies providing information on the proportion of clinical illness and patent infections attributed to P. vivax over time using a literature search. The change in the proportion of malaria attributed to P. vivax up to two years since implementation was estimated using logistic regression accounting for clustering with random effects. Potential factors (intervention type, coverage, relapse pattern, transmission intensity, seasonality, initial proportion of P. vivax and round of intervention) were assessed. RESULTS In total there were 55 studies found that led to 72 series of time-points for clinical case data and 69 series for patent infection data. The main reason of study exclusion was insufficient information on interventions. There was considerable variation in the proportion of malaria attributed to P. vivax over time by study and location for all of the interventions. Overall, there was an increase apart from MDA in the short-term. The potential factors could not be ruled in or out. Although not consistently significant, coverage, transmission intensity and relapse pattern are possible factors that explain some of the variation found. CONCLUSION While there are reports of an increase in the proportion of malaria due to P. vivax following interventions in the long-term, there was substantial variation for the shorter time-scales considered in this study (up to 24 months for IRS and ITN, and up to six months for MDA). The large variability points to the need for the monitoring of both species after an intervention. Studies should report intervention timing and characteristics to allow inclusion in systematic reviews.
Collapse
Affiliation(s)
- Melanie Loeffel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Gumbo A, Topazian HM, Mwanza A, Mitchell CL, Puerto-Meredith S, Njiko R, Kayange M, Mwalilino D, Mvula B, Tegha G, Mvalo T, Hoffman I, Juliano JJ. Occurrence and Distribution of Nonfalciparum Malaria Parasite Species Among Adolescents and Adults in Malawi. J Infect Dis 2022; 225:257-268. [PMID: 34244739 PMCID: PMC8763954 DOI: 10.1093/infdis/jiab353] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Plasmodium falciparum malaria dominates throughout sub-Saharan Africa, but the prevalence of Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax increasingly contribute to infection in countries that control malaria using P. falciparum-specific diagnostic and treatment strategies. METHODS We performed quantitative polymerase chain reaction (qPCR) on 2987 dried blood spots from the 2015-2016 Malawi Demographic and Health Survey to identify presence and distribution of nonfalciparum infection. Bivariate models were used to determine species-specific associations with demographic and environmental risk factors. RESULTS Nonfalciparum infections had broad spatial distributions. Weighted prevalence was 0.025 (SE, 0.004) for P. malariae, 0.097 (SE, 0.008) for P. ovale spp., and 0.001 (SE, 0.0005) for P. vivax. Most infections (85.6%) had low-density parasitemias ≤ 10 parasites/µL, and 66.7% of P. malariae, 34.6% of P. ovale spp., and 40.0% of P. vivax infections were coinfected with P. falciparum. Risk factors for P. malariae were like those known for P. falciparum; however, there were few risk factors recognized for P. ovale spp. and P. vivax, perhaps due to the potential for relapsing episodes. CONCLUSIONS The prevalence of any nonfalciparum infection was 11.7%, with infections distributed across Malawi. Continued monitoring of Plasmodium spp. becomes critical as nonfalciparum infections become important sources of ongoing transmission.
Collapse
Affiliation(s)
- Austin Gumbo
- National Malaria Control Programme, Malawi Ministry of Health, Lilongwe, Malawi
| | - Hillary M Topazian
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexis Mwanza
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cedar L Mitchell
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sydney Puerto-Meredith
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ruth Njiko
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Michael Kayange
- National Malaria Control Programme, Malawi Ministry of Health, Lilongwe, Malawi
| | - David Mwalilino
- National HIV Reference Laboratory, Malawi Ministry of Health, Lilongwe, Malawi
| | - Bernard Mvula
- National HIV Reference Laboratory, Malawi Ministry of Health, Lilongwe, Malawi
| | - Gerald Tegha
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Tisungane Mvalo
- University of North Carolina Project-Malawi, Lilongwe, Malawi
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Irving Hoffman
- University of North Carolina Project-Malawi, Lilongwe, Malawi
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jonathan J Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
26
|
White NJ, Watson JA, Baird JK. Methaemoglobinaemia and the radical curative efficacy of 8-aminoquinoline antimalarials. Br J Clin Pharmacol 2022; 88:2657-2664. [PMID: 34997616 PMCID: PMC7612727 DOI: 10.1111/bcp.15219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/18/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022] Open
Abstract
Methaemoglobin results from the oxidation of ferrous to ferric iron in the centre of the haem moeity of haemoglobin. The production of dose-dependent methaemoglobinaemia by 8-aminoquinoline antimalarial drugs appears to be associated with, but is not directly linked to, therapeutic efficacy against latent Plasmodium vivax and P. ovale malarias (radical cure). Iatrogenic methaemoglobinaemia may be a useful pharmacodynamic measure in 8-aminoquinoline drug and dose optimization.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James A Watson
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - J Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
27
|
Bantuchai S, Imad H, Nguitragool W. Plasmodium vivax gametocytes and transmission. Parasitol Int 2021; 87:102497. [PMID: 34748969 DOI: 10.1016/j.parint.2021.102497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/14/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.
Collapse
Affiliation(s)
- Sirasate Bantuchai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Hisham Imad
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
28
|
Antibody signatures of asymptomatic Plasmodium falciparum malaria infections measured from dried blood spots. Malar J 2021; 20:378. [PMID: 34556121 PMCID: PMC8461960 DOI: 10.1186/s12936-021-03915-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Screening malaria-specific antibody responses on protein microarrays can help identify immune factors that mediate protection against malaria infection, disease, and transmission, as well as markers of past exposure to both malaria parasites and mosquito vectors. Most malaria protein microarray work has used serum as the sample matrix, requiring prompt laboratory processing and a continuous cold chain, thus limiting applications in remote locations. Dried blood spots (DBS) pose minimal biohazard, do not require immediate laboratory processing, and are stable at room temperature for transport, making them potentially superior alternatives to serum. The goals of this study were to assess the viability of DBS as a source for antibody profiling and to use DBS to identify serological signatures of low-density Plasmodium falciparum infections in malaria-endemic regions of Myanmar. METHODS Matched DBS and serum samples from a cross-sectional study in Ingapu Township, Myanmar were probed on protein microarrays populated with P. falciparum antigen fragments. Signal and trends in both sample matrices were compared. A case-control study was then performed using banked DBS samples from malaria-endemic regions of Myanmar, and a regularized logistic regression model was used to identify antibody signatures of ultrasensitive PCR-positive P. falciparum infections. RESULTS Approximately 30% of serum IgG activity was recovered from DBS. Despite this loss of antibody activity, antigen and population trends were well-matched between the two sample matrices. Responses to 18 protein fragments were associated with the odds of asymptomatic P. falciparum infection, albeit with modest diagnostic characteristics (sensitivity 58%, specificity 85%, negative predictive value 88%, and positive predictive value 52%). CONCLUSIONS Malaria-specific antibody responses can be reliably detected, quantified, and analysed from DBS, opening the door to serological studies in populations where serum collection, transport, and storage would otherwise be impossible. While test characteristics of antibody signatures were insufficient for individual diagnosis, serological testing may be useful for identifying exposure to asymptomatic, low-density malaria infections, particularly if sero-surveillance strategies target individuals with low previous exposure as sentinels for population exposure.
Collapse
|
29
|
Maude RJ, Tripura R, Ean M, Sokha M, Peto TJ, Callery JJ, Imwong M, Vongpromek R, Tarning J, Mukaka M, Waithira N, Soviet O, von Seidlein L, Sovannaroth S. Study protocol: an open-label individually randomised controlled trial to assess the efficacy of artemether-lumefantrine prophylaxis for malaria among forest goers in Cambodia. BMJ Open 2021; 11:e045900. [PMID: 34233975 PMCID: PMC8264911 DOI: 10.1136/bmjopen-2020-045900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION In the Greater Mekong Subregion, adults are at highest risk for malaria. The most relevant disease vectors bite during daytime and outdoors which makes forest work a high-risk activity for malaria. The absence of effective vector control strategies and limited periods of exposure during forest visits suggest that chemoprophylaxis could be an appropriate strategy to protect forest goers against malaria. METHODS AND ANALYSIS The protocol describes an open-label randomised controlled trial of artemether-lumefantrine (AL) versus multivitamin as prophylaxis against malaria among forest goers aged 16-65 years in rural northeast Cambodia. The primary objective is to compare the efficacy of the artemisinin combination therapy AL versus a multivitamin preparation as defined by the 28-day PCR parasite positivity rate and incidence of confirmed clinical malaria of any species. The sample size is 2200 patient-episodes of duration 1 month in each arm. The duration of follow-up and prophylaxis for each participant is 1, 2 or 3 consecutive 28-day periods, followed by a further 28 days of post-exposure prophylaxis, depending on whether they continue to visit the forest. Analysis will be done both by intention to treat and per protocol. ETHICS AND DISSEMINATION All participants will provide written, informed consent. Ethical approval was obtained from the Oxford Tropical Research Ethics Committee and the Cambodia National Ethics Committee for Health Research. Results will be disseminated by peer-reviewed open access publication together with open data. TRIAL REGISTRATION NUMBER NCT04041973; Pre-result.
Collapse
Affiliation(s)
- Richard James Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- The Open University, Milton Keynes, UK
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mom Ean
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Meas Sokha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thomas Julian Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James John Callery
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Asia-Pacific Regional Centre, WorldWide Antimalarial Resistance Network, Bangkok, Thailand
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Naomi Waithira
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oung Soviet
- Provincial Health Department, Stung Treng, Cambodia
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Siv Sovannaroth
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| |
Collapse
|
30
|
O'Flaherty K, Oo WH, Zaloumis SG, Cutts JC, Aung KZ, Thein MM, Drew DR, Razook Z, Barry AE, Parischa N, Zaw NN, Thu HK, Thi A, Htay WYM, Soe AP, Simpson JA, Beeson JG, Agius PA, Fowkes FJI. Community-based molecular and serological surveillance of subclinical malaria in Myanmar. BMC Med 2021; 19:121. [PMID: 34044836 PMCID: PMC8161608 DOI: 10.1186/s12916-021-01993-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In the Greater Mekong Subregion (GMS), current malaria surveillance strategies rely on a network of village health volunteers (VHVs) reporting the results of rapid diagnostic tests (RDTs), known to miss many asymptomatic infections. Integration of more sensitive diagnostic molecular and serological measures into the VHV network may improve surveillance of residual malaria transmission in hard-to-reach areas in the region and inform targeted interventions and elimination responses. However, data on residual malaria transmission that would be captured by these measures in the VHV-led testing and treatment surveillance network in the GMS is unknown. METHODS A total of 114 VHVs were trained to collect dried blood spots from villagers undergoing routine RDTs as part of VHV-led active and passive case detection from April 2015 to June 2016. Samples were subjected to molecular testing (quantitative polymerase chain reaction [qPCR]) to determine Plasmodium falciparum and P. vivax infection and serological testing (against P. falciparum and P. vivax antigens) to determine exposure to P. falciparum and P. vivax. RESULTS Over 15 months, 114 VHVs performed 32,194 RDTs and collected samples for molecular (n = 13,157) and serological (n = 14,128) testing. The prevalence of molecular-detectable P. falciparum and P. vivax infection was 3.2% compared to the 0.16% prevalence of Plasmodium spp. by RDT, highlighting the large burden of infections undetected by standard surveillance. Peaks in anti-P. falciparum, but not P. vivax, merozoite IgG seroprevalence coincided with seasonal P. falciparum transmission peaks, even in those with no molecularly detectable parasites. At the individual level, antibody seropositivity was associated with reduced odds of contemporaneous P. falciparum (OR for PfCSP 0.51 [95%CI 0.35, 0.76], p = 0.001, PfAMA1 0.70 [95%CI 0.52, 0.93], p = 0.01, and PfMSP2 0.81 [95%CI 0.61, 1.08], p = 0.15), but not P. vivax infection (OR PvAMA1 1.02 [95%CI 0.73, 1.43], p = 0.89) indicating a potential role of immunity in protection against molecular-detectable P. falciparum parasitaemia. CONCLUSIONS We demonstrated that integration and implementation of sample collection for molecular and serological surveillance into networks of VHV servicing hard-to-reach populations in the GMS is feasible, can capture significant levels of ongoing undetected seasonal malaria transmission and has the potential to supplement current routine RDT testing. Improving malaria surveillance by advancing the integration of molecular and serological techniques, through centralised testing approaches or novel point-of-contact tests, will advance progress, and tracking, towards malaria elimination goals in the GMS.
Collapse
Affiliation(s)
- Katherine O'Flaherty
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Win Han Oo
- Burnet Institute Myanmar, Yangon, Myanmar
| | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Julia C Cutts
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | | | | | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Zahra Razook
- School of Medicine, Deakin University, Geelong, Australia
| | - Alyssa E Barry
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia.,School of Medicine, Deakin University, Geelong, Australia
| | - Naanki Parischa
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | | - Aung Thi
- Department of Public Health, Myanmar Ministry of Health, Nay Pyi Taw, Myanmar
| | | | | | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Microbiology and Central Clinical School, Monash University, Melbourne, Australia
| | - Paul A Agius
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Judith Lumley Centre, La Trobe University, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia. .,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia. .,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia. .,Department of Infectious Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
31
|
White NJ. Anti-malarial drug effects on parasite dynamics in vivax malaria. Malar J 2021; 20:161. [PMID: 33743731 PMCID: PMC7981980 DOI: 10.1186/s12936-021-03700-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Relapses of Plasmodium vivax malaria are prevented by 8-aminoquinolines. If hypnozoites survive, then the subsequent blood stage infections in early relapses (< 2 months) are suppressed by the slowly eliminated anti-malarial drugs used to treat the blood stage infection (chloroquine, artemisinin combination treatments), but they are not usually eliminated. The 8-aminoquinolines have significant blood stage activity which contributes to therapeutic responses. The latent interval from primary infection to early relapse depends on the number of activatable hypnozoites, the dose of anti-malarial, its pharmacokinetic properties, the level of resistance (minimum inhibitory concentration) and immunity. The dose-response relationship for radical curative efficacy of primaquine and tafenoquine is steep over the total dose range from 1.5 to 5 mg base/kg which may explain the poor efficacy of tafenoquine at the currently recommended dose.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Quantitative PCR in soil-transmitted helminth epidemiology and control programs: Toward a universal standard. PLoS Negl Trop Dis 2021; 15:e0009134. [PMID: 33661910 PMCID: PMC7932098 DOI: 10.1371/journal.pntd.0009134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
33
|
Aung PL, Soe MT, Oo TL, Khin A, Thi A, Zhao Y, Cao Y, Cui L, Kyaw MP, Parker DM. Predictors of malaria rapid diagnostic test positivity in a high burden area of Paletwa Township, Chin State in Western Myanmar. Infect Dis Poverty 2021; 10:6. [PMID: 33431057 PMCID: PMC7802189 DOI: 10.1186/s40249-020-00787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/16/2020] [Indexed: 12/05/2022] Open
Abstract
Background Despite major reductions in malaria burden across Myanmar, clusters of the disease continue to persist in specific subregions. This study aimed to assess the predictors of test positivity among people living in Paletwa Township of Chin State, an area of persistently high malaria burden. Methods Four villages with the highest malaria incidence from Paletwa Township were purposively selected. The characteristics of 1045 subjects seeking malaria diagnosis from the four assigned village health volunteers from January to December, 2018 were retrospectively analyzed. Their household conditions and surroundings were also recorded using a checklist. Descriptive statistics and logistic regression models were applied to investigate potential associations between individual and household characteristics and malaria diagnosis. Results In 2017, the Paletwa township presented 20.9% positivity and an annual parasite index of 46.9 cases per 1000 people. Plasmodium falciparum was the predominant species and accounted for more than 80.0% of all infections. Among 1045 people presenting at a clinic with malaria symptoms, 31.1% were diagnosed with malaria. Predictors for test positivity included living in a hut [adjusted odds ratios (a OR): 2.3, 95% confidence intervals (CI): 1.2–4.6], owning farm animals (aOR: 1.7, 95% CI: 1.1–3.6), using non-septic type of toilets (aOR: 1.9, 95% CI: 1.1–8.4), presenting with fever (aOR: 1.9, 95% CI: 1.1–3.0), having a malaria episode within the last year (aOR: 2.9, 95% CI: 1.4–5.8), traveling outside the village in the previous 14 days (aOR: 4.5, 95% CI: 1.5–13.4), and not using bed nets (a OR: 3.4, 95% CI: 2.3–5.1). There were no statistically significant differences by age or gender in this present analysis. Conclusions The results from this study, including a high proportion of P. falciparum infections, little difference in age, sex, or occupation, suggest that malaria is a major burden for these study villages. Targeted health education campaigns should be introduced to strengthen synchronous diagnosis-seeking behaviors, tighten treatment adherence, receiving a diagnosis after traveling to endemic regions, and using bed nets properly. We suggest increased surveillance, early diagnosis, and treatment efforts to control the disease and then to consider the local elimination.![]()
Collapse
Affiliation(s)
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Thit Lwin Oo
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Aung Khin
- Myanmar Health Assistant Association, Yangon, Myanmar
| | - Aung Thi
- Department of Public Health, Ministry of Health and Sports, NayPyiTaw, Myanmar
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | | | - Daniel M Parker
- Department of Population Health and Disease Prevention, Department of Epidemiology, University of California, Irvine, USA.
| |
Collapse
|
34
|
Imwong M, Dhorda M, Myo Tun K, Thu AM, Phyo AP, Proux S, Suwannasin K, Kunasol C, Srisutham S, Duanguppama J, Vongpromek R, Promnarate C, Saejeng A, Khantikul N, Sugaram R, Thanapongpichat S, Sawangjaroen N, Sutawong K, Han KT, Htut Y, Linn K, Win AA, Hlaing TM, van der Pluijm RW, Mayxay M, Pongvongsa T, Phommasone K, Tripura R, Peto TJ, von Seidlein L, Nguon C, Lek D, Chan XHS, Rekol H, Leang R, Huch C, Kwiatkowski DP, Miotto O, Ashley EA, Kyaw MP, Pukrittayakamee S, Day NPJ, Dondorp AM, Smithuis FM, Nosten FH, White NJ. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. THE LANCET. INFECTIOUS DISEASES 2020; 20:1470-1480. [PMID: 32679084 PMCID: PMC7689289 DOI: 10.1016/s1473-3099(20)30228-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Greater Mekong subregion is a recurrent source of antimalarial drug resistance in Plasmodium falciparum malaria. This study aimed to characterise the extent and spread of resistance across this entire region between 2007 and 2018. METHODS P falciparum isolates from Myanmar, Thailand, Laos, and Cambodia were obtained from clinical trials and epidemiological studies done between Jan 1, 2007, and Dec 31, 2018, and were genotyped for molecular markers (pfkelch, pfcrt, pfplasmepsin2, and pfmdr1) of antimalarial drug resistance. Genetic relatedness was assessed using microsatellite and single nucleotide polymorphism typing of flanking sequences around target genes. FINDINGS 10 632 isolates were genotyped. A single long pfkelch Cys580Tyr haplotype (from -50 kb to +31·5 kb) conferring artemisinin resistance (PfPailin) now dominates across the eastern Greater Mekong subregion. Piperaquine resistance associated with pfplasmepsin2 gene amplification and mutations in pfcrt downstream of the Lys76Thr chloroquine resistance locus has also developed. On the Thailand-Myanmar border a different pfkelch Cys580Tyr lineage rose to high frequencies before it was eliminated. Elsewhere in Myanmar the Cys580Tyr allele remains widespread at low allele frequencies. Meanwhile a single artemisinin-resistant pfkelch Phe446Ile haplotype has spread across Myanmar. Despite intense use of dihydroartemisinin-piperaquine in Kayin state, eastern Myanmar, both in treatment and mass drug administrations, no selection of piperaquine resistance markers was observed. pfmdr1 amplification, a marker of resistance to mefloquine, remains at low prevalence across the entire region. INTERPRETATION Artemisinin resistance in P falciparum is now prevalent across the Greater Mekong subregion. In the eastern Greater Mekong subregion a multidrug resistant P falciparum lineage (PfPailin) dominates. In Myanmar a long pfkelch Phe446Ile haplotype has spread widely but, by contrast with the eastern Greater Mekong subregion, there is no indication of artemisinin combination therapy (ACT) partner drug resistance from genotyping known markers, and no evidence of spread of ACT resistant P falciparum from the east to the west. There is still a window of opportunity to prevent global spread of ACT resistance. FUNDING Thailand Science Research and Innovation, Initiative 5%, Expertise France, Wellcome Trust.
Collapse
Affiliation(s)
- Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Worldwide Antimalarial Resistance Network, Bangkok, Thailand
| | - Kyaw Myo Tun
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kanokon Suwannasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chanon Kunasol
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suttipat Srisutham
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jureeporn Duanguppama
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Aungkana Saejeng
- Bureau of Vector-borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Rungniran Sugaram
- Bureau of Vector-borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Nongyao Sawangjaroen
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kreepol Sutawong
- Buntharik Hospital, Amphoe Buntharik, Ubon Ratchathani, Thailand
| | - Kay Thwe Han
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Ye Htut
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Khin Linn
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Aye Aye Win
- Department of Tropical and Infectious Diseases, University of Medicine 1, Yangon, Myanmar
| | - Tin M Hlaing
- Defence Services Medical Research Centre, Naypyitaw, Myanmar
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mayfong Mayxay
- Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Laos; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Health Department, Phonsavangnuea village, Kaysone-Phomvihan district, Savannakhet, Laos
| | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chea Nguon
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Dysoley Lek
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Xin Hui S Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Huy Rekol
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Cheah Huch
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK; Medical Research Council Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Wellcome Sanger Institute, Hinxton, UK; Medical Research Council Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Myat Phone Kyaw
- Department of Medical Research, Myanmar Health Network Organization, Yangon, Myanmar
| | - Sasithon Pukrittayakamee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frank M Smithuis
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Medical Action Myanmar, Yangon, Myanmar
| | - Francois H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Impact of outdoor residual spraying on the biting rate of malaria vectors: A pilot study in four villages in Kayin state, Myanmar. PLoS One 2020; 15:e0240598. [PMID: 33119645 PMCID: PMC7595390 DOI: 10.1371/journal.pone.0240598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022] Open
Abstract
Outdoor and early mosquito biters challenge the efficacy of bed-nets and indoor residual spraying on the Thailand-Myanmar border. Outdoor residual spraying is proposed for the control of exophilic mosquito species. The objective of this study was to assess the impact of outdoor residual spraying on the biting rate of malaria vectors in Kayin state, Myanmar. Outdoor residual spraying using lambda-cyhalothrin was carried out in two villages in December 2016 (beginning of the dry season) and two villages were used as a control. Malaria mosquitoes were captured at baseline and monthly for four months after the intervention using human-landing catch and cow-baited trap collection methods. The impact of outdoor residual spraying on human-biting rate was estimated with propensity score adjusted generalized linear mixed-effect regressions. At baseline, mean indoor and outdoor human-biting rate estimates ranged between 2.12 and 29.16 bites /person /night, and between 0.20 and 1.72 bites /person /night in the intervention and control villages respectively. Using model output, we estimated that human-biting rate was reduced by 91% (95%CI = 88–96, P <0.0001) immediately after outdoor residual spraying. Human-biting rate remained low in all sprayed villages for 3 months after the intervention. Malaria vector populations rose at month 4 in the intervention villages but not in the controls. This coincided with the expected end of insecticide mist residual effects, thereby suggesting that residual effects are important determinants of intervention outcome. We conclude that outdoor residual spraying with a capsule suspension of lambda-cyhalothrin rapidly reduced the biting rate malaria vectors in this area where pyrethroid resistance has been documented.
Collapse
|
36
|
Stepniewska K, Humphreys GS, Gonçalves BP, Craig E, Gosling R, Guerin PJ, Price RN, Barnes KI, Raman J, Smit MR, D’Alessandro U, Stone WJR, Bjorkman A, Samuels AM, Arroyo-Arroyo MI, Bastiaens GJH, Brown JM, Dicko A, El-Sayed BB, Elzaki SEG, Eziefula AC, Kariuki S, Kwambai TK, Maestre AE, Martensson A, Mosha D, Mwaiswelo RO, Ngasala BE, Okebe J, Roh ME, Sawa P, Tiono AB, Chen I, Drakeley CJ, Bousema T. Efficacy of Single-Dose Primaquine With Artemisinin Combination Therapy on Plasmodium falciparum Gametocytes and Transmission: An Individual Patient Meta-Analysis. J Infect Dis 2020; 225:1215-1226. [PMID: 32778875 PMCID: PMC8974839 DOI: 10.1093/infdis/jiaa498] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/06/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Since the World Health Organization recommended single low-dose (0.25 mg/kg) primaquine (PQ) in combination with artemisinin-based combination therapies (ACTs) in areas of low transmission or artemisinin-resistant Plasmodium falciparum, several single-site studies have been conducted to assess efficacy. METHODS An individual patient meta-analysis to assess gametocytocidal and transmission-blocking efficacy of PQ in combination with different ACTs was conducted. Random effects logistic regression was used to quantify PQ effect on (1) gametocyte carriage in the first 2 weeks post treatment; and (2) the probability of infecting at least 1 mosquito or of a mosquito becoming infected. RESULTS In 2574 participants from 14 studies, PQ reduced PCR-determined gametocyte carriage on days 7 and 14, most apparently in patients presenting with gametocytemia on day 0 (odds ratio [OR], 0.22; 95% confidence interval [CI], .17-.28 and OR, 0.12; 95% CI, .08-.16, respectively). Rate of decline in gametocyte carriage was faster when PQ was combined with artemether-lumefantrine (AL) compared to dihydroartemisinin-piperaquine (DP) (P = .010 for day 7). Addition of 0.25 mg/kg PQ was associated with near complete prevention of transmission to mosquitoes. CONCLUSIONS Transmission blocking is achieved with 0.25 mg/kg PQ. Gametocyte persistence and infectivity are lower when PQ is combined with AL compared to DP.
Collapse
Affiliation(s)
- Kasia Stepniewska
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom,Kasia Stepniewska, PhD, WorldWide Antimalarial Resistance Network (WWARN), Centre for Tropical Medicine and Global Health, Churchill Hospital, CCVTM, University of Oxford, Old Road, Oxford OX3 7LE, UK
| | - Georgina S Humphreys
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom,Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elaine Craig
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom
| | - Roly Gosling
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA,Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom
| | - Ric N Price
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Norther Territory, Australia,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Karen I Barnes
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,University of Cape Town/Medical Research Council Collaborating Centre for Optimising Antimalarial Therapy, University of Cape Town, Cape Town, South Africa,Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jaishree Raman
- University of Cape Town/Medical Research Council Collaborating Centre for Optimising Antimalarial Therapy, University of Cape Town, Cape Town, South Africa,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa,Wits Research Institute for Malaria, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Menno R Smit
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Umberto D’Alessandro
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will J R Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anders Bjorkman
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aaron M Samuels
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA,Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Maria I Arroyo-Arroyo
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Guido J H Bastiaens
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands,Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Joelle M Brown
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Badria B El-Sayed
- Tropical Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Salah-Eldin G Elzaki
- Tropical Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Alice C Eziefula
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Titus K Kwambai
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom,Kenya Medical Research Institute, Kisian, Kenya
| | - Amanda E Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Andreas Martensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Dominic Mosha
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania,Africa Academy for Public Health, Dar es Salaam, Tanzania
| | - Richard O Mwaiswelo
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Billy E Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Joseph Okebe
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michelle E Roh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA,Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Patrick Sawa
- Human Health Division, International Centre for Insect Physiology and Ecology, Mbita Point, Kenya
| | - Alfred B Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Ingrid Chen
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Chris J Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands,Correspondence: Teun Bousema, PhD, Department of Medical Microbiology, Radboud Institute for Health Science, Radboudumc, PO Box 9101, 6500 HB Nijmegen, The Netherlands ()
| |
Collapse
|
37
|
Kendall EA. When infections don't reflect infectiousness: interpreting contact investigation data with care. Clin Infect Dis 2020; 73:e3456-e3458. [PMID: 32770232 PMCID: PMC7454347 DOI: 10.1093/cid/ciaa1144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emily A Kendall
- Division of Infectious Diseases and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Agius PA, Cutts JC, Han Oo W, Thi A, O'Flaherty K, Zayar Aung K, Kyaw Thu H, Poe Aung P, Mon Thein M, Nyi Zaw N, Yan Min Htay W, Paing Soe A, Razook Z, Barry AE, Htike W, Devine A, Simpson JA, Crabb BS, Beeson JG, Pasricha N, Fowkes FJI. Evaluation of the effectiveness of topical repellent distributed by village health volunteer networks against Plasmodium spp. infection in Myanmar: A stepped-wedge cluster randomised trial. PLoS Med 2020; 17:e1003177. [PMID: 32817632 PMCID: PMC7444540 DOI: 10.1371/journal.pmed.1003177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The World Health Organization has yet to endorse deployment of topical repellents for malaria prevention as part of public health campaigns. We aimed to quantify the effectiveness of repellent distributed by the village health volunteer (VHV) network in the Greater Mekong Subregion (GMS) in reducing malaria in order to advance regional malaria elimination. METHODS AND FINDINGS Between April 2015 and June 2016, a 15-month stepped-wedge cluster randomised trial was conducted in 116 villages in Myanmar (stepped monthly in blocks) to test the effectiveness of 12% N,N-diethylbenzamide w/w cream distributed by VHVs, on Plasmodium spp. infection. The median age of participants was 18 years, approximately half were female, and the majority were either village residents (46%) or forest dwellers (40%). No adverse events were reported during the study. Generalised linear mixed modelling estimated the effect of repellent on infection detected by rapid diagnostic test (RDT) (primary outcome) and polymerase chain reaction (PCR) (secondary outcome). Overall Plasmodium infection detected by RDT was low (0.16%; 50/32,194), but infection detected by PCR was higher (3%; 419/13,157). There was no significant protection against RDT-detectable infection (adjusted odds ratio [AOR] = 0.25, 95% CI 0.004-15.2, p = 0.512). In Plasmodium-species-specific analyses, repellent protected against PCR-detectable P. falciparum (adjusted relative risk ratio [ARRR] = 0.67, 95% CI 0.47-0.95, p = 0.026), but not P. vivax infection (ARRR = 1.41, 95% CI 0.80-2.47, p = 0.233). Repellent effects were similar when delayed effects were modelled, across risk groups, and regardless of village-level and temporal heterogeneity in malaria prevalence. The incremental cost-effectiveness ratio was US$256 per PCR-detectable infection averted. Study limitations were a lower than expected Plasmodium spp. infection rate and potential geographic dilution of the intervention. CONCLUSIONS In this study, we observed apparent protection against new infections associated with the large-scale distribution of repellent by VHVs. Incorporation of repellent into national strategies, particularly in areas where bed nets are less effective, may contribute to the interruption of malaria transmission. Further studies are warranted across different transmission settings and populations, from the GMS and beyond, to inform WHO public health policy on the deployment of topical repellents for malaria prevention. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry (ACTRN12616001434482).
Collapse
Affiliation(s)
- Paul A Agius
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Julia C Cutts
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar
| | - Win Han Oo
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar
| | - Aung Thi
- Department of Public Health, Myanmar Ministry of Health and Sports, Nay Pyi Taw, Myanmar
| | - Katherine O'Flaherty
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Htin Kyaw Thu
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar
| | - Poe Poe Aung
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar
| | - Myat Mon Thein
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar
| | - Nyi Nyi Zaw
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar
| | | | - Aung Paing Soe
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar
| | - Zahra Razook
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Alyssa E Barry
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Global Health Division, Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Win Htike
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar
| | - Angela Devine
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia.,Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | - James G Beeson
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Freya J I Fowkes
- Burnet Institute, Victoria, Australia, and Yangon, Myanmar.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Srisutham S, Suwannasin K, Mathema VB, Sriprawat K, Smithuis FM, Nosten F, White NJ, Dondorp AM, Imwong M. Utility of Plasmodium falciparum DNA from rapid diagnostic test kits for molecular analysis and whole genome amplification. Malar J 2020; 19:193. [PMID: 32460780 PMCID: PMC7251736 DOI: 10.1186/s12936-020-03259-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Rapid diagnostic tests (RDTs) have become the most common diagnostic tool for detection of Plasmodium falciparum malaria, in particular in remote areas. RDT blood spots provide a source of parasite DNA for molecular analysis. In this study, the utility of RDTs for molecular analysis and the performance of different methods for whole genome amplification were investigated. Methods Positive P. falciparum RDTs were collected from Kayin, Myanmar from August 2014 to January 2016. The RDT samples were stored for 6 months, 9 months, 20 months, 21 months, and 32 months before DNA extraction and subsequent molecular analysis of P. falciparum kelch 13 (pfkelch13) mutations, P. falciparum multidrug resistance 1 (pfmdr1), and P. falciparum plasmepsin 2 (pfplasmepsin2) gene amplification. In addition, performance of four whole genome amplification (WGA) kits were compared, including REPLI-g®, MALBACTM, PicoPLEX®, and GenomePlex®, for which DNA quantity and quality were compared between original DNA and post-WGA products. Results The proportion of successful amplification of the different molecular markers was similar between blood spots analysed from RDTs stored for 6, 9, 20, 21, or 32 months. Successful amplification was dependent on the molecular markers fragment length (p value < 0.05): 18% for a 1245 bp fragment of pfkelch13, 71% for 364 bp of pfkelch13, 81% for 87 bp of pfmdr1, 81% for 108 bp of pfplasmepsin2. Comparison of the four WGA assay kits showed that REPLI-g®, MALBACTM, and PicoPLEX® increased the quantity of DNA 60 to 750-fold, whereas the ratio of parasite DNA amplification over human DNA was most favourable for MALBAC®. Sequencing results of pfkelch13, P. falciparum chloroquine resistance transporter (pfcrt), P. falciparum dihydrofolate reductase (pfdhfr) and six microsatellite markers assessed from the post-WGA product was the same as from the original DNA. Conclusions Blood spots from RDTs are a good source for molecular analysis of P. falciparum, even after storage up to 32 months. WGA of RDT-derived parasite DNA reliably increase DNA quantity with sufficient quality for molecular analysis of resistance markers.
Collapse
Affiliation(s)
- Suttipat Srisutham
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanokon Suwannasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vivek Bhakta Mathema
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Frank M Smithuis
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Medical Action Myanmar, Yangon, Myanmar
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Shimizu S, Chotirat S, Dokkulab N, Hongchad I, Khowsroy K, Kiattibutr K, Maneechai N, Manopwisedjaroen K, Petchvijit P, Phumchuea K, Rachaphaew N, Sripoorote P, Suansomjit C, Thongyod W, Khamsiriwatchara A, Lawpoolsri S, Hanboonkunupakarn B, Sattabongkot J, Nguitragool W. Malaria cross-sectional surveys identified asymptomatic infections of Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi in Surat Thani, a southern province of Thailand. Int J Infect Dis 2020; 96:445-451. [PMID: 32407902 DOI: 10.1016/j.ijid.2020.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Malaria cross-sectional surveys are rarely conducted in very low transmission settings. This study aimed to determine the prevalence and risk factors of Plasmodium infection in a near-elimination setting in southern Thailand. METHODS Two cross-sectional surveys were conducted in areas of active transmission in the Surat Thani province of Thailand in January and May 2019. PCR was used to detect Plasmodium infection. RESULTS The prevalence of Plasmodium blood infection was 0.45% and 0.61% in January and May 2019, respectively. The major parasite species was Plasmodium falciparum in January and Plasmodium vivax in May. Unexpectedly, Plasmodium knowlesi infections were also detected. Most infections, including those of Plasmodium knowlesi, were asymptomatic. Being male and staying outdoors at night-time were the only significant identified risk factors. Of people infected in January 28.0% were positive in May for the same parasite species, suggesting persistent asymptomatic infections. CONCLUSIONS Despite the very low incidence rate in Surat Thani, most malaria infections were asymptomatic. Outdoor mosquito biting at night-time is likely an important mode of malaria transmission. Unexpectedly, asymptomatic Plasmodium knowlesi infection was found, confirming previous reports of such infection in mainland Southeast Asia.
Collapse
Affiliation(s)
- Shoichi Shimizu
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sadudee Chotirat
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nichakan Dokkulab
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Isarachai Hongchad
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kessuda Khowsroy
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kirakorn Kiattibutr
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nongnuj Maneechai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Pattamaporn Petchvijit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanit Phumchuea
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nattawan Rachaphaew
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piyarat Sripoorote
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chayanut Suansomjit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Waraporn Thongyod
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Amnat Khamsiriwatchara
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine & Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
41
|
Li D, Yu C, Guo J, Wang Y, Zhao Y, Wang L, Soe MT, Feng H, Kyaw MP, Sattabongkot J, Jiang L, Cui L, Zhu X, Cao Y. Plasmodium vivax HAP2/GCS1 gene exhibits limited genetic diversity among parasite isolates from the Greater Mekong Subregion. Parasit Vectors 2020; 13:175. [PMID: 32264948 PMCID: PMC7137254 DOI: 10.1186/s13071-020-04050-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/28/2020] [Indexed: 12/02/2022] Open
Abstract
Background Antigens expressed in sexual stages of the malaria parasites are targets of transmission-blocking vaccines (TBVs). HAP2/GCS1, a TBV candidate, is critical for fertilization in Plasmodium. Here, the genetic diversity of PvHAP2 was studied in Plasmodium vivax parasite populations from the Greater Mekong Subregion (GMS). Methods Plasmodium vivax clinical isolates were collected in clinics from the China-Myanmar border region (135 samples), western Thailand (41 samples) and western Myanmar (51 samples). Near full-length Pvhap2 (nucleotides 13–2574) was amplified and sequenced from these isolates. Molecular evolution studies were conducted to evaluate the genetic diversity, selection and population differentiation. Results Sequencing of the pvhap2 gene for a total of 227 samples from the three P. vivax populations revealed limited genetic diversity of this gene in the GMS (π = 0.00036 ± 0.00003), with the highest π value observed in Myanmar (0.00053 ± 0.00009). Y133S was the dominant mutation in the China-Myanmar border (99.26%), Myanmar (100%) and Thailand (95.12%). Results of all neutrality tests were negative for all the three populations, suggesting the possible action of purifying selection. Codon-based tests identified specific codons which are under purifying or positive selections. Wright’s fixation index showed low to moderate genetic differentiation of P. vivax populations in the GMS, with FST ranging from 0.04077 to 0.24833, whereas high levels of genetic differentiation were detected between the China-Myanmar border and Iran populations (FST = 0.60266), and between Thailand and Iran populations (FST = 0.44161). A total of 20 haplotypes were identified, with H2 being the abundant haplotype in China-Myanmar border, Myanmar and Thailand populations. Epitope mapping prediction of Pvhap2 antigen showed that high-score B-cell epitopes are located in the S307-G324, L429-P453 and V623-D637 regions. The E317K and D637N mutations located within S307-G324 and V623-D637 epitopes slightly reduced the predicted score for potential epitopes. Conclusions The present study showed a very low level of genetic diversity of pvhap2 gene among P. vivax populations in the Greater Mekong Subregion. The relative conservation of pvhap2 supports further evaluation of a Pvhap2-based TBV.![]()
Collapse
Affiliation(s)
- Danni Li
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Chunyun Yu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji School of Medicine, Shanghai, People's Republic of China
| | - Yazhou Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Hui Feng
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
42
|
Abstract
Malaria is a vector-borne disease that involves multiple parasite species in a variety of ecological settings. However, the parasite species causing the disease, the prevalence of subclinical infections, the emergence of drug resistance, the scale-up of interventions, and the ecological factors affecting malaria transmission, among others, are aspects that vary across areas where malaria is endemic. Such complexities have propelled the study of parasite genetic diversity patterns in the context of epidemiologic investigations. Importantly, molecular studies indicate that the time and spatial distribution of malaria cases reflect epidemiologic processes that cannot be fully understood without characterizing the evolutionary forces shaping parasite population genetic patterns. Although broad in scope, this review in the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology highlights the need for understanding population genetic concepts when interpreting parasite molecular data. First, we discuss malaria complexity in terms of the parasite species involved. Second, we describe how molecular data are changing our understanding of malaria incidence and infectiousness. Third, we compare different approaches to generate parasite genetic information in the context of epidemiologically relevant questions related to malaria control. Finally, we describe a few Plasmodium genomic studies as evidence of how these approaches will provide new insights into the malaria disease dynamics. *This article is part of a curated collection.
Collapse
|
43
|
Phommasone K, van Leth F, Peto TJ, Landier J, Nguyen TN, Tripura R, Pongvongsa T, Lwin KM, Kajeechiwa L, Thwin MM, Parker DM, Wiladphaingern J, Nosten S, Proux S, Nguon C, Davoeung C, Rekol H, Adhikari B, Promnarate C, Chotivanich K, Hanboonkunupakarn B, Jittmala P, Cheah PY, Dhorda M, Imwong M, Mukaka M, Peerawaranun P, Pukrittayakamee S, Newton PN, Thwaites GE, Day NPJ, Mayxay M, Hien TT, Nosten FH, Cobelens F, Dondorp AM, White NJ, von Seidlein L. Mass drug administrations with dihydroartemisinin-piperaquine and single low dose primaquine to eliminate Plasmodium falciparum have only a transient impact on Plasmodium vivax: Findings from randomised controlled trials. PLoS One 2020; 15:e0228190. [PMID: 32023293 PMCID: PMC7001954 DOI: 10.1371/journal.pone.0228190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/08/2020] [Indexed: 11/30/2022] Open
Abstract
Background Mass administrations of antimalarial drugs (MDA) have reduced the incidence and prevalence of P. falciparum infections in a trial in the Greater Mekong Subregion. Here we assess the impact of the MDA on P. vivax infections. Methods Between May 2013 and July 2017, four villages in each Myanmar, Vietnam, Cambodia and Lao PDR were selected based on high prevalence of P. falciparum infections. Eight of the 16 villages were randomly assigned to receive MDA consisting of three-monthly rounds of three-day courses of dihydroartemisinin-piperaquine and, except in Cambodia, a single low-dose of primaquine. Cross-sectional surveys were conducted at quarterly intervals to detect Plasmodium infections using ultrasensitive qPCR. The difference in the cumulative incidence between the groups was assessed through a discrete time survival approach, the difference in prevalence through a difference-in-difference analysis, and the difference in the number of participants with a recurrence of P. vivax infection through a mixed-effect logistic regression. Results 3,790 (86%) residents in the intervention villages participated in at least one MDA round, of whom 2,520 (57%) participated in three rounds. The prevalence of P. vivax infections fell from 9.31% to 0.89% at month 3 but rebounded by six months to 5.81%. There was no evidence that the intervention reduced the cumulative incidence of P.vivax infections (95% confidence interval [CI] Odds ratio (OR): 0.29 to 1.36). Similarly, there was no evidence of MDA related reduction in the number of participants with at least one recurrent infection (OR: 0.34; 95% CI: 0.08 to 1.42). Conclusion MDA with schizontocidal drugs had a lasting effect on P. falciparum infections but only a transient effect on the prevalence of P. vivax infections. Radical cure with an 8-aminoquinoline will be needed for the rapid elimination of vivax malaria.
Collapse
Affiliation(s)
- Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Department of Global Health, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Institute for Global Health & Development, Amsterdam, Netherlands
| | - Frank van Leth
- Department of Global Health, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Institute for Global Health & Development, Amsterdam, Netherlands
| | - Thomas J. Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Institut de Recherche pour le Développement (IRD), Institut national de la santé et de la recherche médical (INSERM), Aix-Marseille Université · SESSTIM, Marseille, France
| | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Oversea Programme, Ho Chi Minh City, Vietnam
| | - Rupam Tripura
- Department of Global Health, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Health Department, Savannakhet Province, Lao People’s Demographic Republic
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - May Myo Thwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Daniel M. Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Department of Population Health and Disease Prevention, University of California, Irvine, California, United States of America
| | - Jacher Wiladphaingern
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Suphak Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Chea Nguon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - Huy Rekol
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Bipin Adhikari
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Cholrawee Promnarate
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Worldwide Antimalarial Resistance Network (WWARN) Asia Regional Centre, Mahidol University, Bangkok, Thailand
| | - Kesinee Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Podjanee Jittmala
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Worldwide Antimalarial Resistance Network (WWARN) Asia Regional Centre, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Guy E. Thwaites
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- Oxford University Clinical Research Unit, Wellcome Trust Major Oversea Programme, Ho Chi Minh City, Vietnam
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao People’s Demographic Republic
| | - Tran Tinh Hien
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- Oxford University Clinical Research Unit, Wellcome Trust Major Oversea Programme, Ho Chi Minh City, Vietnam
| | - Francois H. Nosten
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Frank Cobelens
- Department of Global Health, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Institute for Global Health & Development, Amsterdam, Netherlands
| | - Arjen M. Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Phommasone K, van Leth F, Imwong M, Henriques G, Pongvongsa T, Adhikari B, Peto TJ, Promnarate C, Dhorda M, Sirithiranont P, Mukaka M, Peerawaranun P, Day NPJ, Cobelens F, Dondorp AM, Newton PN, White NJ, von Seidlein L, Mayxay M. The use of ultrasensitive quantitative-PCR to assess the impact of primaquine on asymptomatic relapse of Plasmodium vivax infections: a randomized, controlled trial in Lao PDR. Malar J 2020; 19:4. [PMID: 31900172 PMCID: PMC6942400 DOI: 10.1186/s12936-019-3091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/25/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trials to assess the efficacy of the radical cure of Plasmodium vivax malaria with 8-aminoquinolines require that most post-treatment relapses are identified, but there is no consensus on the optimal duration of follow-up in either symptomatic or asymptomatic vivax malaria. The efficacy of a 14-day course of primaquine on the cumulative incidence of recurrent asymptomatic P. vivax infections detected by ultrasensitive quantitative PCR (uPCR) as a primary endpoint was assessed. METHODS A randomized, placebo-controlled, single-blind trial was conducted in four villages of the Lao PDR during 2016-2018 nested in a larger project evaluating mass drug administrations (MDA) with dihydroartemisinin-piperaquine (DP) and a single low-dose primaquine to clear Plasmodium falciparum infections. In the nested sub-study, eligible participants with mono- or mixed P. vivax infections detected by uPCR were randomized to receive either 14 days of primaquine (0.5 mg/kg/day) or placebo during the last round of MDA (round 3) through directly observed therapy. Participants were checked monthly for 12 months for parasitaemia using uPCR. The primary outcome was cumulative incidence of participants with at least one recurrent episode of P. vivax infection. RESULTS 20 G6PD-normal participants were randomized in each arm. 5 (29%) of 20 participants in the placebo arm experienced asymptomatic, recurrent P. vivax infections, resulting in a cumulative incidence at month 12 of 29%. None of the 20 participants in the intervention arm had recurrent infections (p = 0.047 Fisher's exact test). Participants with recurrent P. vivax infections were found to be parasitaemic for between one and five sequential monthly tests. The median time to recurrence of P. vivax parasitaemia was 178 days (range 62-243 days). CONCLUSIONS A 14-day course of primaquine in addition to a DP-MDA was safe, well-tolerated, and prevented recurrent asymptomatic P. vivax infections. Long follow-up for up to 12 months is required to capture all recurrences following the treatment of asymptomatic vivax infection. To eliminate all malarias in settings where P. vivax is endemic, a full-course of an 8-aminoquinolines should be added to MDA to eliminate all malarias. Trial registration This study was registered with ClinicalTrials.gov under NCT02802813 on 16th June 2016. https://clinicaltrials.gov/ct2/show/NCT02802813.
Collapse
Affiliation(s)
- Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Department of Global Health, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health & Development, Amsterdam, The Netherlands
| | - Frank van Leth
- Department of Global Health, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health & Development, Amsterdam, The Netherlands
| | - Mallika Imwong
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gisela Henriques
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Health Department, Savannakhet, Savannakhet Province, Lao PDR
| | - Bipin Adhikari
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Mehul Dhorda
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- WWARN Asia Regional Centre, Mahidol University, Bangkok, Thailand
| | | | - Mavuto Mukaka
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Nicholas P J Day
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frank Cobelens
- Department of Global Health, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health & Development, Amsterdam, The Netherlands
| | - Arjen M Dondorp
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR
| |
Collapse
|
45
|
Nsanzabana C. Strengthening Surveillance Systems for Malaria Elimination by Integrating Molecular and Genomic Data. Trop Med Infect Dis 2019; 4:E139. [PMID: 31816974 PMCID: PMC6958499 DOI: 10.3390/tropicalmed4040139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Unprecedented efforts in malaria control over the last 15 years have led to a substantial decrease in both morbidity and mortality in most endemic settings. However, these progresses have stalled over recent years, and resurgence may cause dramatic impact on both morbidity and mortality. Nevertheless, elimination efforts are currently going on with the objective of reducing malaria morbidity and mortality by 90% and malaria elimination in at least 35 countries by 2030. Strengthening surveillance systems is of paramount importance to reach those targets, and the integration of molecular and genomic techniques into routine surveillance could substantially improve the quality and robustness of data. Techniques such as polymerase chain reaction (PCR) and quantitative PCR (qPCR) are increasingly available in malaria endemic countries, whereas others such as sequencing are already available in a few laboratories. However, sequencing, especially next-generation sequencing (NGS), requires sophisticated infrastructure with adequate computing power and highly trained personnel for data analysis that require substantial investment. Different techniques will be required for different applications, and cost-effective planning must ensure the appropriate use of available resources. The development of national and sub-regional reference laboratories could help in minimizing the resources required in terms of equipment and trained staff. Concerted efforts from different stakeholders at national, sub-regional, and global level are needed to develop the required framework to establish and maintain these reference laboratories.
Collapse
Affiliation(s)
- Christian Nsanzabana
- Department of Medicine, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; ; Tel.: +41-61-284-82-52
- University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| |
Collapse
|
46
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
47
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [PMID: 31206035 PMCID: PMC6544137 DOI: 10.12688/wellcomeopenres.14761.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border.
Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors.
Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of
Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for
P. falciparum and
P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for
P. falciparum and
P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
Affiliation(s)
- Victor Chaumeau
- Centre Hospitalier Universitaire de Montpellier, Montpellier, 34295, France.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Bénédicte Fustec
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Saw Nay Hsel
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Céline Montazeau
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Saw Naw Nyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Selma Metaane
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Prapan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Phabele Phatharakokordbun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Nittipha Kwansomboon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Dominique Cerqueira
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | | | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| |
Collapse
|
48
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [DOI: 10.12688/wellcomeopenres.14761.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
49
|
Slater HC, Ross A, Felger I, Hofmann NE, Robinson L, Cook J, Gonçalves BP, Björkman A, Ouedraogo AL, Morris U, Msellem M, Koepfli C, Mueller I, Tadesse F, Gadisa E, Das S, Domingo G, Kapulu M, Midega J, Owusu-Agyei S, Nabet C, Piarroux R, Doumbo O, Doumbo SN, Koram K, Lucchi N, Udhayakumar V, Mosha J, Tiono A, Chandramohan D, Gosling R, Mwingira F, Sauerwein R, Paul R, Riley EM, White NJ, Nosten F, Imwong M, Bousema T, Drakeley C, Okell LC. The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density. Nat Commun 2019; 10:1433. [PMID: 30926893 PMCID: PMC6440965 DOI: 10.1038/s41467-019-09441-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings. The role of subpatent infections for malaria transmission and elimination is unclear. Here, Slater et al. analyse several malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections.
Collapse
Affiliation(s)
- Hannah C Slater
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK.
| | - Amanda Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Ingrid Felger
- University of Basel, Basel, 4001, Switzerland.,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland
| | - Natalie E Hofmann
- University of Basel, Basel, 4001, Switzerland.,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland
| | - Leanne Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea.,Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia.,Medical Biology, University of Melbourne, Melbourne, 3010, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, 3004, VIC, Australia
| | - Jackie Cook
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Andre Lin Ouedraogo
- Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208, Burkina Faso.,Institute for Disease Modeling, Intellectual Ventures, Bellevue, 98005, Washington, USA
| | - Ulrika Morris
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Mwinyi Msellem
- Department of Training and Research, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Melbourne, 3052, Victoria, Australia.,Department of Biological Sciences, University of Notre Dame, Indiana, 46556, USA
| | - Ivo Mueller
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, 75015, France.,Medical Biology, University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Fitsum Tadesse
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Smita Das
- Diagnostics Program, PATH, Seattle, Washington, 98121, United States of America
| | - Gonzalo Domingo
- Diagnostics Program, PATH, Seattle, Washington, 98121, United States of America
| | - Melissa Kapulu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya, Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Janet Midega
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya, Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Seth Owusu-Agyei
- Institute of Health, University of Health and Allied Sciences, Hohoe, PMB 31, Ghana
| | - Cécile Nabet
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP- HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, 75646, France
| | - Renaud Piarroux
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP- HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, 75646, France
| | - Ogobara Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Safiatou Niare Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Kwadwo Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Naomi Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, 30030, GA, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, 30030, GA, United States of America
| | - Jacklin Mosha
- National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Alfred Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208, Burkina Faso
| | - Daniel Chandramohan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, 94158, CA, United States
| | - Felista Mwingira
- Biological Sciences Department, Dar es Salaam University College of Education, P. O. Box 2329, Dar es Salaam, Tanzania
| | - Robert Sauerwein
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands
| | - Richard Paul
- Institut Pasteur de Dakar, Laboratoire d'Entomologie Médicale, Dakar, Senegal
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
50
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [DOI: 10.12688/wellcomeopenres.14761.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|