1
|
Thomas OG, Olsson T. Mimicking the brain: Epstein-Barr virus and foreign agents as drivers of neuroimmune attack in multiple sclerosis. Front Immunol 2023; 14:1304281. [PMID: 38022632 PMCID: PMC10655090 DOI: 10.3389/fimmu.2023.1304281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
T cells have an essential role in adaptive immunity against pathogens and cancer, but failure of thymic tolerance mechanisms can instead lead to escape of T cells with the ability to attack host tissues. Multiple sclerosis (MS) occurs when structures such as myelin and neurons in the central nervous system (CNS) are the target of autoreactive immune responses, resulting in lesions in the brain and spinal cord which cause varied and episodic neurological deficits. A role for autoreactive T cell and antibody responses in MS is likely, and mounting evidence implicates Epstein-Barr virus (EBV) in disease mechanisms. In this review we discuss antigen specificity of T cells involved in development and progression of MS. We examine the current evidence that these T cells can target multiple antigens such as those from pathogens including EBV and briefly describe other mechanisms through which viruses could affect disease. Unravelling the complexity of the autoantigen T cell repertoire is essential for understanding key events in the development and progression of MS, with wider implications for development of future therapies.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Molecular characterization of hypoxanthine guanine phosphoribosyltransferase mutant T cells in human blood: The concept of surrogate selection for immunologically relevant cells. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108414. [PMID: 35690417 PMCID: PMC9188651 DOI: 10.1016/j.mrrev.2022.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Somatic cell gene mutations arise in vivo due to replication errors during DNA synthesis occurring spontaneously during normal DNA synthesis or as a result of replication on a DNA template damaged by endogenous or exogenous mutagens. In principle, changes in the frequencies of mutant cells in vivo in humans reflect changes in exposures to exogenous or endogenous DNA damaging insults, other factors being equal. It is becoming increasingly evident however, that somatic mutations in humans have a far greater range of interpretations. For example, mutations in lymphocytes provide invaluable probes for in vivo cellular and molecular processes, providing identification of clonal amplifications of these cells in autoimmune and infectious diseases, transplantation recipients, paroxysmal nocturnal hemoglobinuria (PNH), and cancer. The assay for mutations of the X-chromosomal hypoxanthine guanine phosphoribosyltransferase (HPRT) gene has gained popular acceptance for this purpose since viable mutant cells can be recovered for molecular and other analyses. Although the major application of the HPRT T cell assay remains human population monitoring, the enrichment of activated T cells in the mutant fraction in individuals with ongoing immunological processes has demonstrated the utility of surrogate selection, a method that uses somatic mutation as a surrogate marker for the in vivo T cell proliferation that underlies immunological processes to investigate clinical disorders with immunological features. Studies encompassing a wide range of clinical conditions are reviewed. Despite the historical importance of the HPRT mutation system in validating surrogate selection, there are now additional mutational and other methods for identifying immunologically active T cells. These methods are reviewed and provide insights for strategies to extend surrogate selection in future studies.
Collapse
|
3
|
Abstract
Glatiramer acetate is a mixture of synthetic peptides that are cross-reactive with MBP. The antigen-based therapy induces a shift to an anti-inflammatory Th2 bias and is used in the treatment of relapsing-remitting multiple sclerosis. Like other peptide antigens, GA induces an antibody response in all patients. In contrast to biologically active agents, such as the recombinant interferon beta drugs, GA is a peptide antigen that lacks intrinsic biological activity. In vitro and in vivo data have shown that GA-reactive antibodies are not neutralizing. Antibodies do not alter the principal immunological effects of GA, including binding to MHC Class II molecules, activation and proliferation of GA-reactive T cells, and the release of anti-inflammatory Th2 cytokines. Higher antibody titres do not appear to be associated with a deterioration in clinical endpoints, such as relapse rate, EDSS progression or the occurrence of side effects in MS patients treated with GA. The presence of GA-reactive antibodies may promote remyelination and enhance the immunological and clinical effects of GA, indicating that they may be part of GA's mechanism of action. Multiple Sclerosis 2007; 13: S28—S35. http://msj.sagepub.com
Collapse
|
4
|
Riedhammer C, Weissert R. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple Sclerosis and Other Autoimmune Diseases. Front Immunol 2015; 6:322. [PMID: 26136751 PMCID: PMC4470263 DOI: 10.3389/fimmu.2015.00322] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
Antigen presentation is in the center of the immune system, both in host defense against pathogens, but also when the system is unbalanced and autoimmune diseases like multiple sclerosis (MS) develop. It is not just by chance that a major histocompatibility complex gene is the major genetic susceptibility locus in MS; a feature that MS shares with other autoimmune diseases. The exact etiology of the disease, however, has not been fully understood yet. T cells are regarded as the major players in the disease, but most probably a complex interplay of altered central and peripheral tolerance mechanisms, T-cell and B-cell functions, characteristics of putative autoantigens, and a possible interference of environmental factors like microorganisms are at work. In this review, new data on all these different aspects of antigen presentation and their role in MS will be discussed, probable autoantigens will be summarized, and comparisons to other autoimmune diseases will be drawn.
Collapse
Affiliation(s)
- Christine Riedhammer
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| | - Robert Weissert
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
5
|
Autoimmune T-cell reactivity to myelin proteolipids and glycolipids in multiple sclerosis. Mult Scler Int 2013; 2013:151427. [PMID: 24312732 PMCID: PMC3839122 DOI: 10.1155/2013/151427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022] Open
Abstract
Central nervous system (CNS) myelin, the likely major target of autoimmune attack in multiple sclerosis (MS), contains a number of unique components that are potential targets of the attack. Two classes of molecules that are greatly enriched in CNS myelin compared to other parts of the body are certain types of proteolipids and glycolipids. Due to the hydrophobic nature of both of these classes of molecules, they present challenges for use in immunological assays and have therefore been somewhat neglected in studies of T-cell reactivity in MS compared to more soluble molecules such as the myelin basic proteins and the extracellular domain of myelin oligodendrocyte glycoprotein. This review firstly looks at the makeup of CNS myelin, with an emphasis on proteolipids and glycolipids. Next, a retrospective of what is known of T-cell reactivity directed against proteolipids and glycolipids in patients with MS is presented, and the implications of the findings are discussed. Finally, this review considers the question of what would be required to prove a definite role for autoreactivity against proteolipids and glycolipids in the pathogenesis of MS.
Collapse
|
6
|
Casiraghi C, Horwitz MS. Epstein–Barr virus and autoimmunity: the role of a latent viral infection in multiple sclerosis and systemic lupus erythematosus pathogenesis. Future Virol 2013. [DOI: 10.2217/fvl.12.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) and systemic lupus erythematosus (SLE) are both chronic autoimmune diseases with unknown etiology. To date, EBV is the most closely implicated infectious agent to be associated with both MS and SLE. Epidemiological findings show a strong correlation between EBV infection and the risk of developing these diseases. The type and magnitude of both EBV-specific antibodies and T-cell responses produced by MS or SLE patients are dysregulated when compared with healthy cohorts. Despite all these findings, it is still not clear if and how EBV triggers autoimmunity. EBV infects and establishes latency mainly in B cells, but it can also infect other cell types and indirectly influence the activation status of the immune system by stimulating the production of proinflammatory mediators. This could play a role in both MS and SLE pathogenesis. In this review we will summarize recent literature that links EBV infection to SLE and MS, and discuss possible new mechanisms that explain how EBV drives autoimmunity.
Collapse
Affiliation(s)
- Costanza Casiraghi
- Department of Microbiology & Immunology, The University British Columbia, Vancouver, British Columbia, Canada
| | - Marc S Horwitz
- Department of Microbiology & Immunology, The University British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Massilamany C, Asojo OA, Gangaplara A, Steffen D, Reddy J. Identification of a second mimicry epitope from Acanthamoeba castellanii that induces CNS autoimmunity by generating cross-reactive T cells for MBP 89-101 in SJL mice. Int Immunol 2011; 23:729-39. [PMID: 22058327 DOI: 10.1093/intimm/dxr084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We had previously reported that Acanthamoeba castellanii (ACA) contains a mimicry epitope for proteolipid protein 139-151 capable of inducing central nervous system (CNS) autoimmunity in SJL/J mice. We now present evidence that ACA also contains a mimicry epitope for myelin basic protein (MBP) 89-101, a derivative from amoebic nicotinamide adenine dinucleotide dehydrogenase subunit 2 (NAD). The epitope, NAD 108-120, contains a discontinuous stretch of six amino acids in the core region (VVFFKNIILIGFL) sharing 46% identity with MBP 89-101 (VHFFKNIVTPRTP; identical residues are underlined). SJL mice immunized with NAD 108-120 develop encephalomyelitis similar to the disease induced by the cognate peptide. We demonstrate that NAD 108-120 induces T cells that cross-react with MBP 89-101; the antigen-sensitized T cells, which produce predominantly T helper (T(h)) 1 and T(h)17 cytokines, transfer disease in naive SJL recipients reminiscent of the disease induced with MBP 89-101. This is the first report to demonstrate that a solitary microbe can induce CNS autoimmunity by generating cross-reactive T cells for multiple myelin antigens.
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | | | | | | |
Collapse
|
8
|
Chiarini M, Sottini A, Ghidini C, Zanotti C, Serana F, Rottoli M, Zaffaroni M, Bergamaschi R, Cordioli C, Capra R, Imberti L. Renewal of the T-cell compartment in multiple sclerosis patients treated with glatiramer acetate. Mult Scler 2009; 16:218-27. [PMID: 20007428 DOI: 10.1177/1352458509355460] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The immunomodulating activity of glatiramer acetate on T-cells of multiple sclerosis patients has only been partially clarified. The objective of this work was to investigate whether glatiramer acetate modifies thymic release of newly produced T-cells and the peripheral composition of the T-cell repertoire. T-cell receptor excision circles, (thymic) naive (CD4(+)CD45RA(+)CCR7(+)CD31(+)) T helper cells, and central (CD4(+)CD45RA(-)CCR7(+)) and effector (CD4(+)CD45RA(-)CCR7(-)) memory T-cells were evaluated in 89 untreated patients, 84 patients treated for at least 1 year, and 31 patients beginning treatment at the time of inclusion in the study and then followed-up for 12 months; controls were 81 healthy donors. The T-cell repertoire was analysed in selected samples. The percentage of (thymic)naive T helper cells was diminished in untreated patients, but rose to control values in treated subjects; a decrease in central memory T-cells was also observed in treated patients. Follow-up patients could be divided into two subgroups, one showing unmodified (thymic)naive T helper cells and T-cell diversity, the other in which the increased release of new T-cells was accompanied by modifications of the T-cell repertoire. Glatiramer acetate modifies the peripheral T-cell pool by activating a thymopoietic pathway of T-cell release that leads to a different setting of T-cell diversity and, likely, to a dilution of autoreactive T-cells.
Collapse
Affiliation(s)
- M Chiarini
- Laboratorio di Biotecnologie, Diagnostics Department, Spedali Civili di Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lipid autoreactivity in multiple sclerosis. Med Hypotheses 2009; 74:433-42. [PMID: 19932569 DOI: 10.1016/j.mehy.2009.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/08/2009] [Indexed: 01/20/2023]
Abstract
Lipids comprise over 70% of the myelin sheath but have been largely underinvestigated as autoantigens in multiple sclerosis (MS). This paper cites evidence for the involvement of lipid autoreactivity in MS and details how self lipid cross-reactivity may also contribute to the development of type 1 diabetes and autoimmune thyroid disorders (both of which have been associated with MS). A further analysis of myelin chemistry suggests several mechanisms by which infection may contribute to etiology and trigger lipid autoreactivity via molecular mimicry. This analysis may aid the development of new therapies for autoimmune diseases.
Collapse
|
10
|
Huizinga R, Hintzen RQ, Assink K, van Meurs M, Amor S. T-cell responses to neurofilament light protein are part of the normal immune repertoire. Int Immunol 2009; 21:433-41. [PMID: 19240089 DOI: 10.1093/intimm/dxp011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system in which axonal damage and degeneration contribute significantly to the progressive irreversible neurological disability. Similar to pathogenic myelin autoimmunity, autoimmune responses to neuronal antigens may contribute to axonal damage and irreversible disability in MS. Auto-antibodies to the axonal cytoskeletal protein neurofilament light (NF-L) are associated with cerebral atrophy in MS and we have recently reported that NF-L autoimmunity is pathogenic in mice. However, the T-cell response to NF-L in MS patients has not been examined. Here, we identify and characterize T-cell proliferative responses to NF-L as compared with myelin oligodendrocyte glycoprotein (MOG) in MS patients and healthy controls. Using a carboxyfluorescein succinimidyl ester dilution assay, we show that while responses to MOG are dominated by CD3(+)CD4(+) T cells, responses to NF-L were observed in both CD3(+)CD4(+) and CD3(+)CD8(+) T-cell populations. Both MOG- and NF-L-reactive cells expressed CD45RO(+), indicative of a memory phenotype. Moreover, in contrast to MOG stimulation which predominantly induced IFN-gamma, both T(h)1- and T(h)2-type T-cell responses to NF-L were observed as indicated by the induction of IFN-gamma, tumor necrosis factor-alpha as well as IL-4. The finding of T-cell responses to NF-L in MS patients may reflect transient activation of pathogenic potential but their presence also in healthy controls indicates that these cells are part of the normal immune repertoire.
Collapse
Affiliation(s)
- Ruth Huizinga
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Greer JM, Pender MP. Myelin proteolipid protein: An effective autoantigen and target of autoimmunity in multiple sclerosis. J Autoimmun 2008; 31:281-7. [DOI: 10.1016/j.jaut.2008.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Matsumoto Y, Park IK, Hiraki K, Ohtani S, Kohyama K. Role of pathogenic T cells and autoantibodies in relapse and progression of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in LEW.1AV1 rats. Immunology 2008; 128:e250-61. [PMID: 19175799 DOI: 10.1111/j.1365-2567.2008.02955.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence suggests that T cells and autoantibodies reactive with myelin oligodendrocyte glycoprotein (MOG) play a critical role in the pathogenesis of multiple sclerosis (MS). In the present study, we have tried to elucidate the pathomechanisms of development and progression of the disease by analysing T cells and autoantibodies in MOG-induced rat experimental autoimmune encephalomyelitis (EAE), which exhibits various clinical subtypes mimicking MS. Analysis using overlapping peptides revealed that encephalitogenic epitopes resided in peptide 7 (P7, residue 91-108) and P8 (residue 103-125) of MOG. Immunization with MOGP7 and MOGP8 induced relapsing-remitting or secondary progressive EAE. T cells taken from MOG-immunized and MOGP7-immunized rats responded to MOG and MOGP7 and sera from MOG-immunized rats reacted to MOG and MOGP1. Significant epitope spreading was not observed at either T-cell or antibody levels. Interestingly, sera from MOGP7-immunized rats with clinical signs did not react to MOG and MOG peptides throughout the observation period, suggesting that disease development and relapse in MOGP7-induced EAE occur without autoantibodies. However, MOGP7 immunization with adoptive transfer of anti-MOG antibodies aggravated the clinical course of EAE only slightly. Analysis of antibodies against conformational epitope (cme) suggests that anti-MOG(cme) may play a role in the pathogenicity of anti-MOG antibodies. Collectively, these findings demonstrated that relapse of a certain type of MOG-induced EAE occurs without autoantibodies but that autoantibodies may play a role in disease progression. Relapses and the progression of MS-mimicking EAE are differently immunoregulated so immunotherapy should be designed appropriately on the basis of precise information.
Collapse
Affiliation(s)
- Yoh Matsumoto
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
13
|
Penitente R, Nicolò C, Van den Elzen P, Di Sante G, Agrati C, Aloisi F, Sercarz EE, Ria F. Administration of PLP139–151 Primes T Cells Distinct from Those Spontaneously Responsive In Vitro to This Antigen. THE JOURNAL OF IMMUNOLOGY 2008; 180:6611-22. [DOI: 10.4049/jimmunol.180.10.6611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Abstract
During the last few years, the concept of multiple sclerosis (MS) as a pure inflammatory disease mediated by myelin reactive T cells has been challenged. Neither the specificity nor the mechanisms triggering or perpetuating the immune response are understood. Genetic studies have so far not identified therapeutic targets outside the HLA complex, but epidemiological and immunological studies have suggested putative pathogenetic factors which may be important in therapy or prevention, including the Epstein-Barr virus and vitamin D. Advances in the treatment of MS have been reached by manipulating the immune response where the pathogenesis of MS intersects experimental autoimmune encephalomyelitis, most recently by blocking T-cell migration through the blood-brain barrier. Antigen-specific approaches are effective in experimental models driven by a focused immune response against defined autoantigens, but MS may not fit into this concept. Novel candidate autoantigens which are not constitutively expressed in the brain, such as protein alpha-B crystallin or IgG V-region idiotopes, as well as evidence of pathogenetic heterogeneity and complexity, suggest that treating MS by tolerizing the immune system against an universal MS antigen may be a fata morgana. Further characterization of MS subtypes may lead to individualized treatment. However, shared immunological features, such as intrathecal production of oligoclonal IgG, suggest that potential therapeutic targets may be shared by most MS patients.
Collapse
Affiliation(s)
- T Holmøy
- Institute of Immunology, Faculty of Medicine, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
15
|
Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. J Neuroimmunol 2007; 188:146-58. [PMID: 17628700 DOI: 10.1016/j.jneuroim.2007.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 05/21/2007] [Accepted: 05/31/2007] [Indexed: 11/28/2022]
Abstract
The present study was aimed at confirming the presence of GluR3 on T lymphocytes and to assess the effect of glutamate on proliferative responses to myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) and chemotactic migration to CXCL12/stromal cell-derived factor-1, RANTES, and MIP-1alpha in 15 control subjects and 20 relapsing-remitting multiple sclerosis (MS) patients (10 in a stable clinical phase and 10 during relapse). T lymphocytes of control subjects and MS patients express both mRNA and protein of GluR3 receptors, as shown by RT-PCR and immunoblot analyses. An up-regulation was evident during relapse and in patients with neuroradiological evidence of disease activity. Glutamate and AMPA at concentrations of 10 nM to 10 muM were able to enhance T lymphocyte proliferation to MBP and MOG and the chemotactic migration of T cells both in controls and MS patients. In the latter group, significantly higher proliferation values in response to glutamate were found in patients assessed during relapse and in those with gadolinium (Gd)+ enhancing lesions on MRI. Glutamate concentrations above 10 muM appeared to be inhibitory on MBP and MOG-specific T-lymphocyte proliferation as well as chemotactic response in both patients and controls. Higher GluR3 expression and higher activating effect of glutamate on T cells of MS patients during relapses and with evidence of disease activity on MRI suggests the involvement of glutamate-mediated mechanisms in the T-cell detrimental effects. In MS patients, glutamate within physiological ranges in the cerebrospinal fluid and brain extracellular space might enhance myelin antigen-specific proliferation and chemotactic migration via activation of AMPA receptors, which can be relevant for myelin and neuronal damage in MS. Excess glutamate levels seem to induce an inhibitory effect on lymphocyte function, and therefore the detrimental effect of this excitatory amino acid in this case could be attributed to a direct toxicity on glial and neuronal cells.
Collapse
|
16
|
Zang YCQ, Li S, Rivera VM, Hong J, Robinson RR, Breitbach WT, Killian J, Zhang JZ. Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2004; 172:5120-7. [PMID: 15067096 DOI: 10.4049/jimmunol.172.8.5120] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoreactive T cells of CD4 and CD8 subsets recognizing myelin basic protein (MBP), a candidate myelin autoantigen, are thought to contribute to and play distinct roles in the pathogenesis of multiple sclerosis (MS). In this study we identified four MBP-derived peptides that had high binding affinity to HLA-A2 and HLA-A24 and characterized the CD8(+) T cell responses and their functional properties in patients with MS. There were significantly increased CD8(+) T cell responses to 9-mer MBP peptides, in particular MBP(111-119) and MBP(87-95) peptides that had high binding affinity to HLA-A2, in patients with MS compared with healthy individuals. The resulting CD8(+) T cell lines were of the Th1 phenotype, producing TNF-alpha and IFN-gamma and belonged to a CD45RA(-)/CD45RO(+) memory T cell subset. Further characterization indicated that the CD8(+) T cell lines obtained were stained with MHC class I tetramer (HLA-A2/MBP(111-119)) and exhibited specific cytotoxicity toward autologous target cells pulsed with MBP-derived peptides in the context of MHC class I molecules. These cytotoxic CD8(+) T cell lines derived from MS patients recognized endogenously processed MBP and lysed COS cells transfected with genes encoding MBP and HLA-A2. These findings support the potential role of CD8(+) CTLs recognizing MBP in the injury of oligodendrocytes expressing both MHC class I molecules and MBP.
Collapse
Affiliation(s)
- Ying C Q Zang
- Multiple Sclerosis Research Unit, Department of Neurology and Baylor Multiple Sclerosis Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hong J, Zang YCQ, Li S, Rivera VM, Zhang JZ. Ex vivo
detection of myelin basic protein-reactive T cells in multiple sclerosis and controls using specific TCR oligonucleotide probes. Eur J Immunol 2004; 34:870-881. [PMID: 14991617 DOI: 10.1002/eji.200324790] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T cell reactivity to candidate myelin autoantigens, such as myelin basic protein (MBP), may play an important role in the pathogenesis of multiple sclerosis (MS). Although MBP-reactive T cells have been found to undergo in vivo activation in patients with MS, their true precursor frequency in MS is unknown as current frequency analysis is commonly based on the T cell functional responses to MBP. In this study, we developed a TCR sequence-based ex vivo detection system using colony hybridization with oligonucleotide probes specific for CDR3 of selected T cell clones for the analysis of true T cell precursor frequency in PBMC. The results revealed that the precursor frequency of five independent T cell clones recognizing the immunodominant MBP(83-99) region was found to be in the range of 1.6 x 10(-4) in total T cells in three HLA-DR2 patients with MS compared to that of 0.25 x 10(-4) in HLA-DR2 healthy individuals. The observed frequency of MBP(83-99)-reactive T cells in MS patients was considerably higher than those measured in parallel by cell culture-based analysis (2.3 x 10(-6)) or by enzyme-linked immunospot assay (3.9 x 10(-5)) in the same peripheral blood mononuclear cell specimens. Furthermore, the study showed that MBP(83-99)-reactive T cells detected ex vivo belonged to CD45RA+, CD25+ and CD95- T cell subsets as evidenced by preferential expression of specific TCR transcripts in these cell fractions.
Collapse
Affiliation(s)
- Jian Hong
- Department of Neurology and Baylor-Methodist Multiple Sclerosis Center, Baylor College of Medicine, Houston, USA
- Joint Immunology Laboratory of Health Science Center and Shanghai Institute of Immunology, Shanghai Institutes of Biological Sciences - Shanghai Second Medical University, Shanghai, China
| | - Ying C Q Zang
- Department of Neurology and Baylor-Methodist Multiple Sclerosis Center, Baylor College of Medicine, Houston, USA
- Joint Immunology Laboratory of Health Science Center and Shanghai Institute of Immunology, Shanghai Institutes of Biological Sciences - Shanghai Second Medical University, Shanghai, China
| | - Sufang Li
- Department of Neurology and Baylor-Methodist Multiple Sclerosis Center, Baylor College of Medicine, Houston, USA
| | - Victor M Rivera
- Department of Neurology and Baylor-Methodist Multiple Sclerosis Center, Baylor College of Medicine, Houston, USA
| | - Jingwu Z Zhang
- Department of Neurology and Baylor-Methodist Multiple Sclerosis Center, Baylor College of Medicine, Houston, USA
- Joint Immunology Laboratory of Health Science Center and Shanghai Institute of Immunology, Shanghai Institutes of Biological Sciences - Shanghai Second Medical University, Shanghai, China
- Immunology Division, E-Institutes of Shanghai Universities, Shanghai, China
| |
Collapse
|
18
|
Tejada-Simon MV, Zang YCQ, Hong J, Rivera VM, Zhang JZ. Cross-reactivity with myelin basic protein and human herpesvirus-6 in multiple sclerosis. Ann Neurol 2003; 53:189-97. [PMID: 12557285 DOI: 10.1002/ana.10425] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Viral infections are though to play an important role in the pathogenesis of multiple sclerosis (MS) potentially through molecular mimicry. An identical sequence was found in both myelin basic protein (MBP, residues 96-102), a candidate autoantigen for MS, and human herpesvirus-6 (HHV-6 U24, residues 4-10) that is a suspected viral agent associated with MS. In this study, we showed that greater than 50% of T cells recognizing MBP(93-105) cross-reacted with and could be activated by a synthetic peptide corresponding to residues 1 to 13 of HHV-6 U24 in MS patients. The estimated precursor frequency of these cross-reactive T cells recognizing both peptides, MBP(93-105) and HHV-6 (U24)(1-13), was significantly elevated in MS patients compared with that in healthy controls. These cross-reactive CD4+ T cells represented the same Th1 phenotype as that of monospecific T cells recognizing MBP(93-105). There were increased antibody titers for both peptide HHV-6 (U24)(1-13) and peptide MBP(93-105) in the same patients with MS compared with those in healthy controls, suggesting B-cell sensitization to the antigens in MS patients. The study provides important evidence in the understanding of the potential role of HHV-6 infection/reactivation in the activation of autoimmune reactivity to MBP and its implication in the pathogenesis of MS.
Collapse
Affiliation(s)
- Maria V Tejada-Simon
- Multiple Sclerosis Research Unit, Department of Neurology and Baylor Multiple Sclerosis Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
19
|
Tejada-Simon MV, Hong J, Rivera VM, Zhang JZ. Skewed autoantibody reactivity to the extracellular domain of myelin oligodendrocyte glycoprotein in multiple sclerosis. Immunology 2002; 107:403-10. [PMID: 12460184 PMCID: PMC1782818 DOI: 10.1046/j.1365-2567.2002.01533.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Revised: 08/29/2002] [Accepted: 09/04/2002] [Indexed: 11/20/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is found to induce both autoreactive T-cell and antibody responses associated with demyelinating pathology and is implicated in the pathogenesis of multiple sclerosis (MS). In this study, we addressed the potential association of anti-MOG immune responses with MS by examining, comparatively, both the T-cell and antibody responses to recombinant MOG fragments in MS patients and healthy subjects. T cells recognizing MOG were detected in MS patients as well as in healthy subjects, and their precursor frequency in the blood was not increased in patients with MS. MOG-reactive T cells isolated from both MS patients and healthy subjects exhibited a similar cytokine profile, producing interleukin (IL)-4, IL-10 and tumour necrosis factor (TNF), but not interferon-gamma (IFN-gamma), and recognized predominantly the extracellular (residues 1-60) and the transmembrane/cytoplasmic (residues 154-218) domains of MOG. In contrast, anti-MOG antibodies derived from MS patients displayed a skewed reactivity pattern, even though the occurrence and titres of serum anti-MOG antibodies were only slightly elevated in MS patients. MS-derived autoantibodies were predominantly directed at the 1-60 region of MOG, while naturally occurring anti-MOG antibodies derived from healthy individuals reacted selectively to the 154-218 domain. These differences were statistically significant. The findings of this study are consistent with the presence of anti-MOG antibodies within demyelinating lesions of MS and their role in the induction of demyelinating pathology in animal models. The study has important implications in the understanding of the autoimmune processes in MS.
Collapse
Affiliation(s)
- Maria V Tejada-Simon
- Multiple Sclerosis Research Unit, Baylor-Methodist Multiple Sclerosis Center and Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
20
|
Tejada-Simon MV, Zang YCQ, Hong J, Rivera VM, Killian JM, Zhang JZ. Detection of viral DNA and immune responses to the human herpesvirus 6 101-kilodalton virion protein in patients with multiple sclerosis and in controls. J Virol 2002; 76:6147-54. [PMID: 12021348 PMCID: PMC136216 DOI: 10.1128/jvi.76.12.6147-6154.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Accepted: 03/19/2002] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6 (HHV-6), a latent lymphotropic and neurotropic virus, has been suspected as an etiologic agent in multiple sclerosis (MS). The study was undertaken to correlate virologic evidence for HHV-6 activity with the state of host immunity to HHV-6 in MS patients and control subjects. The study revealed that cell-free DNA of HHV-6 was detected more frequently in both serum and cerebrospinal fluid of MS patients than in those of control subjects. T cells recognizing the recombinant 101-kDa protein (101K) corresponding to the major immunoreactive region unique to HHV-6 occurred at significantly lower precursor frequency in MS patients than in control subjects. The resulting HHV-6-specific T-cell lines obtained from MS patients exhibited skewed cytokine profiles characterized by the inability to produce interleukin-4 (IL-4) and IL-10. The decreased T-cell responses to HHV-6 and the altered cytokine profile were consistent with significantly declined serum immunoglobulin G (IgG) titers for HHV-6 of MS patients compared to those of control subjects. In contrast, elevated serum IgM titers for HHV-6 were detected in the majority of MS patients, which may reflect frequent exposure of B cells to HHV-6. The findings suggest that the decreased immune responses to HHV-6 may be responsible for ineffective clearance of HHV-6 in MS patients.
Collapse
Affiliation(s)
- Maria V Tejada-Simon
- Multiple Sclerosis Research Unit, Department of Neurology and Baylor-Methodist Multiple Sclerosis Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
21
|
Traggiai E, Biagioli T, Rosati E, Ballerini C, Mazzanti B, Ben Nun A, Massacesi L, Vergelli M. IL-7-enhanced T-cell response to myelin proteins in multiple sclerosis. J Neuroimmunol 2001; 121:111-9. [PMID: 11730947 DOI: 10.1016/s0165-5728(01)00433-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we investigated the in vitro proliferative response of peripheral blood T lymphocytes from MS patients and controls to MBP and MOG either in the absence or in the presence of the conditioning factor IL-7. In the absence of IL-7, T-cell reactivity to MOG and MBP was similar in MS patients and controls even if an increased MBP response was found in a subgroup of patients with active disease. In the presence of IL-7, increased T-cell reactivity to MBP was observed in MS patients suggesting that their MBP-specific T cells are in a different functional state.
Collapse
Affiliation(s)
- E Traggiai
- Department Neurological and Psychiatric Sciences, Viale Pieraccini 6, 50134, Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Clerici M, Saresella M, Trabattoni D, Speciale L, Fossati S, Ruzzante S, Cavaretta R, Filippi M, Caputo D, Ferrante P. Single-cell analysis of cytokine production shows different immune profiles in multiple sclerosis patients with active or quiescent disease. J Neuroimmunol 2001; 121:88-101. [PMID: 11730945 DOI: 10.1016/s0165-5728(01)00431-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peripheral blood mononuclear cells of multiple sclerosis (MS) patients were stimulated with myelin basic protein (MBP) together with anti-CD28 monoclonal antibody and staphylococcal enterotoxin B to optimize cytokine production by antigen-specific cells. Type 1 (IL-2, IL-12, IFNgamma) and pro-inflammatory (TNFalpha, IL-1beta, IL-6) cytokines were augmented in CD4+, CD8+, and CD14+ cells of acute MS patients and of patients undergoing disease reactivation. These cytokines were reduced in IFNbeta-treated and in stable MS patients; type 2 cytokines (IL-4, IL-10) were increased in these patients. Similar immune profiles are seen in MS patients in whom remission is naturally or pharmacologically (IFNbeta) achieved. Cytokine alterations are particularly evident in CD14+ cells, underlying their critical role in the modulation of the immune response.
Collapse
Affiliation(s)
- M Clerici
- Cattedra di Immunologia, Università degli Studi di Milano, DISP LITA Vialba, Via G.B. Grassi, 74, 20157, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vergelli M, Mazzanti B, Traggiai E, Biagioli T, Ballerini C, Parigi A, Konse A, Pellicanò G, Massacesi L. Short-term evolution of autoreactive T cell repertoire in multiple sclerosis. J Neurosci Res 2001; 66:517-24. [PMID: 11746371 DOI: 10.1002/jnr.1243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
T cells reactive to self-antigens are present in the peripheral blood of patients with autoimmune diseases as well as in healthy subjects. Although T cell-response to the self-myelin antigen myelin basic protein (MBP) has been widely investigated in multiple sclerosis (MS) patients, very little is known about the evolution over time of this response and its correlation with the disease activity. In recent years magnetic resonance imaging (MRI) techniques have provided new tools for following the inflammatory activity in the central nervous system (CNS) of MS patients. In the present study the T cell response to MBP was longitudinally investigated in terms of frequency, epitope specificity, and cytokine production profile in four patients with relapsing-remitting MS enrolled in a gadolinium-enhanced MRI serial study. In spite of different profiles of inflammatory activity within the CNS, all the patients examined showed major changes in their reactivity to MBP during the follow-up period in terms of both frequency and epitope specificity. Episodic expansions of MBP-specific T cell populations were observed in each patient, and overall they did not correlate with disease activity. In these patients the expansions: 1) occurred in the context of a steady level of disease activity, 2) correlated with a burst of CNS inflammation, 3) followed the appearance of a new active lesion, and 4) were observed even in the absence of detectable signs of CNS inflammation during the entire follow-up period. These results suggest that the evolution over time of the T cell response to a self-antigen such as MBP is more complex than previously expected. The short-term repertoire dynamics of autoreactive T cells in MS underscore the importance of longitudinal studies for evaluating autoreactivity to myelin antigens and probably to any self-antigen in other autoimmune diseases.
Collapse
Affiliation(s)
- M Vergelli
- Department of Neurology and Psychiatry, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tejada-Simon MV, Hong J, Rivera VM, Zhang JZ. Reactivity pattern and cytokine profile of T cells primed by myelin peptides in multiple sclerosis and healthy individuals. Eur J Immunol 2001; 31:907-17. [PMID: 11241296 DOI: 10.1002/1521-4141(200103)31:3<907::aid-immu907>3.0.co;2-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoreactive T cells specific for candidate myelin antigens, including myelin basic protein (MBP) and proteolipid protein (PLP), are thought to play an important role in the pathogenesis of multiple sclerosis (MS). Myelin-reactive T cells primed in vivo by myelin breakdown products or microbial cross-reactive antigens during the disease processes may exhibit a reactivity pattern and cytokine profile different from those in the normal T cell repertoire. In this study, we examined the precursor frequency, the reactivity pattern and cytokine profile of myelin-reactive T cells that were primed in vitro with overlapping peptides of MBP and PLP in patients with MS and healthy individuals. The results revealed that T cells specific for peptides of MBP and PLP occurred at a relatively higher precursor frequency in patients with MS than that in healthy individuals. We identified a number of dominant T cell epitopes within MBP and PLP, some of which were not previously detected using whole myelin antigens as the primary stimuli. Some residues represented common immunodominant regions that were detected in both MS patients and healthy controls while others were associated only with MS. MBP-reactive T cell lines generally exhibited a Th0-like cytokine profile. There was significantly increased Th1 cytokine production (i. e. TNF and IFN-gamma) among MS-derived T cell lines. PLP-reactive T cell lines had a distinct cytokine profile, producing predominantly TNF-alpha and little or not IFN-gamma and IL-4. The findings have important implications in the understanding of the role of myelin-reactive T cells in MS.
Collapse
Affiliation(s)
- M V Tejada-Simon
- Multiple Sclerosis Research Laboratory, Baylor-Methodist Multiple Sclerosis Center and Department of Neurology, Baylor College of Medicine, Houston, USA
| | | | | | | |
Collapse
|