1
|
Bellon M, Nicot C. HTLV-1 Tax Tug-of-War: Cellular Senescence and Death or Cellular Transformation. Pathogens 2024; 13:87. [PMID: 38276160 PMCID: PMC10820833 DOI: 10.3390/pathogens13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with a lymphoproliferative disease known as adult T cell leukemia/lymphoma (ATLL). HTLV-1 infection efficiently transforms human T cells in vivo and in vitro. The virus does not transduce a proto-oncogene, nor does it integrate into tumor-promoting genomic sites. Instead, HTLV-1 uses a random mutagenesis model, resulting in cellular transformation. Expression of the viral protein Tax is critical for the immortalization of infected cells by targeting specific cellular signaling pathways. However, Tax is highly immunogenic and represents the main target for the elimination of virally infected cells by host cytotoxic T cells (CTLs). In addition, Tax expression in naïve cells induces pro-apoptotic signals and has been associated with the induction of non-replicative cellular senescence. This review will explore these conundrums and discuss the mechanisms used by the Tax viral oncoprotein to influence life-and-death cellular decisions and affect HTLV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA;
| |
Collapse
|
2
|
Shafiei M, Mozhgani SH. Th17/IL-17 Axis in HTLV-1-Associated Myelopathy Tropical Spastic Paraparesis and Multiple Sclerosis: Novel Insights into the Immunity During HAMTSP. Mol Neurobiol 2023; 60:3839-3854. [PMID: 36947318 DOI: 10.1007/s12035-023-03303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Human T lymphotropic virus-associated myelopathy/tropical spastic paraparesis (HTLV/TSP), also known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and multiple sclerosis (MS) are chronic debilitating diseases of the central nervous system; although the etiology of which is different, similarities have been observed between these two demyelinating diseases, especially in clinical manifestation and immunopathogenesis. Exorbitant response of the immune system to the virus and neurons in CNS is the causative agent of HAM/TSP and MS, respectively. Helper T lymphocyte-17 cells (Th17s), a component of the immune system, which have a proven role in immunity and autoimmunity, mediate protection against bacterial/fungal infections. The role of these cells has been reviewed in several CNS diseases. A pivotal role for Th17s is presented in demyelination, even more axial than Th1s, during MS. The effect of Th17s is not well determined in HTLV-1-associated infections; however, the evidence that we have supplied in this review illustrates the attendance, also the role of Th17 cells during HAM/TSP. Furthermore, for better conception concerning the trace of these cells in HAM/TSP, a comparative characterization with MS, the resembling disease, has been applied here.
Collapse
Affiliation(s)
- Mohammadreza Shafiei
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Moliki JM, Nhundu TJ, Maritz L, Avenant C, Hapgood JP. Glucocorticoids and medroxyprogesterone acetate synergize with inflammatory stimuli to selectively upregulate CCL20 transcription. Mol Cell Endocrinol 2023; 563:111855. [PMID: 36646303 PMCID: PMC9892260 DOI: 10.1016/j.mce.2023.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The pro-inflammatory cytokine, chemokine (C-C motif) ligand 20 (CCL20), is emerging as a therapeutic target for immune-based therapies. Cooperative regulation of CCL20 by glucocorticoids and progestins used in endocrine therapy and pro-inflammatory mediators could modulate immune function and affect disease outcomes. We show that glucocorticoids as well as medroxyprogesterone acetate (MPA), the progestin widely used in injectable contraception in sub-Saharan Africa, cooperate with pro-inflammatory mediators to upregulate CCL20 protein and/or mRNA in human peripheral blood mononuclear cells (PBMCs) and human cervical cell lines. Changes in CCL20 mRNA levels were shown to be synergistic, as assessed by Chou analysis, cell- and gene-specific and to involve transcriptional regulation, with a requirement for a nuclear factor kappa B (NF-κB) site and glucocorticoid receptor (GR) involvement. The novel results suggest a mechanism whereby MPA, like glucocorticoids, may impact inflammation both systemically and in the genital tract in patients using MPA and/or glucocorticoid therapy.
Collapse
Affiliation(s)
- Johnson M Moliki
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Tawanda J Nhundu
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Leo Maritz
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|
4
|
XCL1, a serum biomarker in neurological diseases; HTLV-1-associated myelopathy and multiple sclerosis. Microb Pathog 2023; 174:105962. [PMID: 36572194 DOI: 10.1016/j.micpath.2022.105962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/14/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The XCL1-XCR1 axis has a potential role in the recruitment of immune cells to the site of inflammation. The present study aimed to examine the relation of XCL1 serum levels with Multiple sclerosis (MS) and HTLV-1-associated myelopathy (HAM), as chronic inflammatory diseases of the central nervous system (CNS). DNA was extracted to evaluate HTLV-1 proviral load (PVL) using real-time PCR. Serum levels of XCL1 was determined by using an ELISA assay. The serum level of XCL1 was significantly higher in patients with HAM than that of asymptomatic carriers (ACs) and healthy controls (HCs) (p < 0.001 and p < 0.0001, respectively) and was also higher in MS patients compared to HCs (p < 0.0001). Moreover, the concentration of XCL1 serum level was significantly different between the ACs and HCs group (p < 0.0001). In conclusion, increased expression of XCL1 might contribute to the migration of autoreactive T cells to the central nervous system and play a critical role in the development and pathogenesis of inflammatory neurological diseases including HAM and MS.
Collapse
|
5
|
Ashrafi F, Rahimzada M, Parandi M, Mirhosseini A, Mashkani B, Ahmadi Ghezeldasht S, Soltani A, Rafatpanah H, Mosavat A, Abdolrahim Rezaee S. Molecular insight into the study of adult T-cell leukemia/lymphoma (ATLL): Ten-year studies on HTLV-1 associated diseases in an endemic region. Gene 2022; 847:146885. [PMID: 36108787 DOI: 10.1016/j.gene.2022.146885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
The outcome of successful infection, including human T-cell leukemia virus type 1 (HTLV-1), is determined by the interactions between the host and the infectious agent. Ten years of work on HTLV-1-associated diseases in an endemic region of Iran have been critically compared in the present study. The outstanding findings of RNA-seq, system biology analysis, and gene expression measurements on adult T-cell leukemia/lymphoma (ATLL) and enzootic bovine leukosis(EBL) in our lab encouraged us to investigate the significant role of oncogenes in the ATLL malignancy. Most studies assessed such interactions by the proviral load (PVL), Tax, and HBZ regulatory proteins in HTLV-1 and the host's immunological and cell cycle factors. The current study is a comprehensive comparing view of our previously published and unpublished results investigating the HTLV-1-host interactions leading to the transformation of the infected cell. The main focus has been on the essential proteins implicated in the virus dissemination, cell survival, and proliferation of infected cells toward leukemia development and progression. Similar to its homolog BLV-AS-1-2 in EBL, the HTLV-1-HBZ is a pivotal factor in the maintenance and progression of the ATLL. In addition, the inappropriate activities of the PI3K/Akt pathway, BRCAs, and RAD51 in the DNA repair system, which are orchestrating many other immortalization pathways, might be the central factors in the manifestation of ATLL. HTLV-1-HBZ and the host PI3K/Akt pathway, BCAs, and RAD51 could be suggested as influential targets for the prognosis and proper therapy of ATLL.
Collapse
Affiliation(s)
- Fereshteh Ashrafi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masooma Rahimzada
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Parandi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mirhosseini
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and, Research (ACECR), Razavi Khorasan, Mashhad, Iran.
| | - Ararsh Soltani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran; HTLV-1 Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and, Research (ACECR), Razavi Khorasan, Mashhad, Iran.
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran; HTLV-1 Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Saber Cherif L, Diabasana Z, Perotin JM, Ancel J, Petit LMG, Devilliers MA, Bonnomet A, Lalun N, Delepine G, Maskos U, Gosset P, Polette M, Muggeo A, Guillard T, Deslée G, Dormoy V. The Nicotinic Receptor Polymorphism rs16969968 Is Associated with Airway Remodeling and Inflammatory Dysregulation in COPD Patients. Cells 2022; 11:cells11192937. [PMID: 36230899 PMCID: PMC9563397 DOI: 10.3390/cells11192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies unveiled the associations between the single nucleotide polymorphism rs16969968 of CHRNA5, encoding the nicotinic acetylcholine receptor alpha5 subunit (α5SNP), and nicotine addiction, cancer, and COPD independently. Here, we investigated α5SNP-induced epithelial remodeling and inflammatory response in human COPD airways. We included 26 α5SNP COPD patients and 18 wild-type α5 COPD patients in a multi-modal study. A comparative histologic analysis was performed on formalin-fixed paraffin-embedded lung tissues. Isolated airway epithelial cells from bronchial brushings were cultivated in the air-liquid interface. Broncho-alveolar fluids were collected to detect inflammatory mediators. Ciliogenesis was altered in α5SNP COPD bronchial and bronchiolar epithelia. Goblet cell hyperplasia was exacerbated in α5SNP small airways. The broncho-alveolar fluids of α5SNP COPD patients exhibited an increase in inflammatory mediators. The involvement of the rs16969968 polymorphism in airway epithelial remodeling and related inflammatory response in COPD prompts the development of innovative personalized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lynda Saber Cherif
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Zania Diabasana
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Jeanne-Marie Perotin
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département des Maladies Respiratoires, CHU de Reims, 51092 Reims, France
| | - Julien Ancel
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département des Maladies Respiratoires, CHU de Reims, 51092 Reims, France
| | - Laure M. G. Petit
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Maëva A. Devilliers
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Arnaud Bonnomet
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Plateforme d’Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Nathalie Lalun
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Gonzague Delepine
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département de Chirurgie Thoracique, CHU de Reims, 51092 Reims, France
| | - Uwe Maskos
- CNRS UMR 3571, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur de Paris, Université de Paris Cité, 75006 Paris, France
| | - Philippe Gosset
- CNRS UMR 9017, Inserm U1019, Institut Pasteur de Lille, Université de Lille, CHU de Lille, 59000 Lille, France
| | - Myriam Polette
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département de Biopathologie, CHU de Reims, 51092 Reims, France
| | - Anaëlle Muggeo
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Laboratoire de Bactériologie, Virologie, Hygiène Hospitalière, Parasitologie, Mycologie, CHU de Reims, 51092 Reims, France
| | - Thomas Guillard
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Laboratoire de Bactériologie, Virologie, Hygiène Hospitalière, Parasitologie, Mycologie, CHU de Reims, 51092 Reims, France
| | - Gaëtan Deslée
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département des Maladies Respiratoires, CHU de Reims, 51092 Reims, France
| | - Valérian Dormoy
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Correspondence: ; Tel.: +33-(0)3-10-73-62-28
| |
Collapse
|
7
|
D’Agostino DM, Raimondi V, Silic-Benussi M, Ciminale V. MiR-150 in HTLV-1-infection and T-cell transformation. Front Immunol 2022; 13:974088. [PMID: 36072598 PMCID: PMC9442802 DOI: 10.3389/fimmu.2022.974088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus-1 (HTLV-1) is a retrovirus that persistently infects CD4+ T-cells, and is the causative agent of adult T-cell leukemia/lymphoma (ATLL), tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM) and several inflammatory diseases. T-cell transformation by HTLV-1 is driven by multiple interactions between viral regulatory proteins and host cell pathways that govern cell proliferation and survival. Studies performed over the last decade have revealed alterations in the expression of many microRNAs in HTLV-1-infected cells and ATLL cells, and have identified several microRNA targets with roles in the viral life cycle and host cell turnover. This review centers on miR-150-5p, a microRNA whose expression is temporally regulated during lymphocyte development and altered in several hematological malignancies. The levels of miR-150-5p are reduced in many HTLV-1-transformed- and ATLL-derived cell lines. Experiments in these cell lines showed that downregulation of miR-150-5p results in activation of the transcription factor STAT1, which is a direct target of the miRNA. However, data on miR-150-5p levels in freshly isolated ATLL samples are suggestive of its upregulation compared to controls. These apparently puzzling findings highlight the need for more in-depth studies of the role of miR-150-5p in HTLV-1 infection and pathogenesis based on knowledge of miR-150-5p-target mRNA interactions and mechanisms regulating its function in normal leukocytes and hematologic neoplasms.
Collapse
Affiliation(s)
- Donna M. D’Agostino
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Istituto Oncologico Veneto (IOV)- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
- *Correspondence: Donna M. D’Agostino, ; Vincenzo Ciminale,
| | - Vittoria Raimondi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Micol Silic-Benussi
- Istituto Oncologico Veneto (IOV)- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Vincenzo Ciminale
- Istituto Oncologico Veneto (IOV)- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- *Correspondence: Donna M. D’Agostino, ; Vincenzo Ciminale,
| |
Collapse
|
8
|
Zargari R, Mahdifar M, Mohammadi A, Vahidi Z, Hassanshahi G, Rafatpanah H. The Role of Chemokines in the Pathogenesis of HTLV-1. Front Microbiol 2020; 11:421. [PMID: 32231656 PMCID: PMC7083101 DOI: 10.3389/fmicb.2020.00421] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a human retrovirus that is associated with two main diseases: HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma (ATL). Chemokines are highly specialized groups of cytokines that play important roles in organizing, trafficking, homing, and in the migration of immune cells to the bone marrow, lymphoid organs and sites of infection and inflammation. Aberrant expression or function of chemokines, or their receptors, has been linked to the protection against or susceptibility to specific infectious diseases, as well as increased the risk of autoimmune diseases and malignancy. Chemokines and their receptors participate in pathogenesis of HTLV-1 associated diseases from inflammation in the central nervous system (CNS) which occurs in cases of HAM/TSP to T cell immortalization and tissue infiltration observed in ATL patients. Chemokines represent viable effective prognostic biomarkers for HTLV-1-associated diseases which provide the early identification of high-risk, treatment possibilities and high-yielding clinical trials. This review focuses on the emerging roles of these molecules in the outcome of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Razieh Zargari
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zohreh Vahidi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Wunderlich CM, Ackermann PJ, Ostermann AL, Adams-Quack P, Vogt MC, Tran ML, Nikolajev A, Waisman A, Garbers C, Theurich S, Mauer J, Hövelmeyer N, Wunderlich FT. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat Commun 2018; 9:1646. [PMID: 29695802 PMCID: PMC5916940 DOI: 10.1038/s41467-018-03773-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/08/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers worldwide in which the vast majority of cases exhibit little genetic risk but are associated with a sedentary lifestyle and obesity. Although the mechanisms underlying CRC and colitis-associated colorectal cancer (CAC) remain unclear, we hypothesised that obesity-induced inflammation predisposes to CAC development. Here, we show that diet-induced obesity accelerates chemically-induced CAC in mice via increased inflammation and immune cell recruitment. Obesity-induced interleukin-6 (IL-6) shifts macrophage polarisation towards tumour-promoting macrophages that produce the chemokine CC-chemokine-ligand-20 (CCL-20) in the CAC microenvironment. CCL-20 promotes CAC progression by recruiting CC-chemokine-receptor-6 (CCR-6)-expressing B cells and γδ T cells via chemotaxis. Compromised cell recruitment as well as inhibition of B and γδ T cells protects against CAC progression. Collectively, our data reveal a function for IL-6 in the CAC microenvironment via lymphocyte recruitment through the CCL-20/CCR-6 axis, thereby implicating a potential therapeutic intervention for human patients. Inflammation can be induced by obesity, and has been linked with onset of colorectal cancer (CAC). Here the authors show in mouse models that obesity-induced interleukin-6 alters macrophage function to enhance CCL-20/CCR-6-mediated recruitment of B cells and γδ T cells, thereby promoting gut inflammation and CAC progression.
Collapse
Affiliation(s)
- Claudia M Wunderlich
- Max Planck Institute for Metabolism Research Cologne, Institute for Genetics, University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931, Cologne, Germany
| | - P Justus Ackermann
- Max Planck Institute for Metabolism Research Cologne, Institute for Genetics, University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931, Cologne, Germany
| | - Anna Lena Ostermann
- Max Planck Institute for Metabolism Research Cologne, Institute for Genetics, University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931, Cologne, Germany
| | - Petra Adams-Quack
- Institute for Molecular Medicine, University Hospital Mainz, 55131, Mainz, Germany
| | - Merly C Vogt
- Max Planck Institute for Metabolism Research Cologne, Institute for Genetics, University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931, Cologne, Germany
| | - My-Ly Tran
- Max Planck Institute for Metabolism Research Cologne, Institute for Genetics, University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931, Cologne, Germany
| | - Alexei Nikolajev
- Institute for Molecular Medicine, University Hospital Mainz, 55131, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Hospital Mainz, 55131, Mainz, Germany
| | - Christoph Garbers
- Department of Biochemistry, Kiel University, Medical Faculty, 24118, Kiel, Germany
| | - Sebastian Theurich
- Max Planck Institute for Metabolism Research Cologne, Institute for Genetics, University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931, Cologne, Germany
| | - Jan Mauer
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Hospital Mainz, 55131, Mainz, Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research Cologne, Institute for Genetics, University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931, Cologne, Germany.
| |
Collapse
|
10
|
Smith SM, Freeley M, Moynagh PN, Kelleher DP. Differential modulation of Helicobacter pylori lipopolysaccharide-mediated TLR2 signaling by individual Pellino proteins. Helicobacter 2017; 22. [PMID: 27302665 DOI: 10.1111/hel.12325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eradication rates for current H. pylori therapies have fallen in recent years, in line with the emergence of antibiotic resistant infections. The development of therapeutic alternatives to antibiotics, such as immunomodulatory therapy and vaccines, requires a more lucid understanding of host-pathogen interactions, including the relationships between the organism and the innate immune response. Pellino proteins are emerging as key regulators of immune signaling, including the Toll-like receptor pathways known to be regulated by H. pylori. The aim of this study was to characterize the role of Pellino proteins in the innate immune response to H. pylori lipopolysaccharide. MATERIALS AND METHODS Gain-of-function and loss-of-function approaches were utilized to elucidate the role of individual Pellino proteins in the Toll-like receptor 2-mediated response to H. pylori LPS by monitoring NF-ĸB activation and the induction of proinflammatory chemokines. Expression of Pellino family members was investigated in gastric epithelial cells and gastric tissue biopsy material. RESULTS Pellino1 and Pellino2 positively regulated Toll-like receptor 2-driven responses to H. pylori LPS, whereas Pellino3 exerted a negative modulatory role. Expression of Pellino1 was significantly higher than Pellino3 in gastric epithelial cells and gastric tissue. Furthermore, Pellino1 expression was further augmented in gastric epithelial cells in response to infection with H. pylori or stimulation with H. pylori LPS. CONCLUSIONS The combination of low Pellino3 levels together with high and inducible Pellino1 expression may be an important determinant of the degree of inflammation triggered upon Toll-like receptor 2 engagement by H. pylori and/or its components, contributing to H. pylori-associated pathogenesis by directing the incoming signal toward an NF-kB-mediated proinflammatory response.
Collapse
Affiliation(s)
- Sinéad M Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Michael Freeley
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Paul N Moynagh
- Institute of Immunology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Dermot P Kelleher
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Huynh J, Scholz GM, Aw J, Kwa MQ, Achuthan A, Hamilton JA, Reynolds EC. IRF6 Regulates the Expression of IL-36γ by Human Oral Epithelial Cells in Response to Porphyromonas gingivalis. THE JOURNAL OF IMMUNOLOGY 2016; 196:2230-8. [PMID: 26819203 DOI: 10.4049/jimmunol.1501263] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/21/2015] [Indexed: 01/13/2023]
Abstract
IFN regulatory factors (IRFs) help to shape the immune response to pathogens by imparting signaling specificity to individual TLRs. We recently demonstrated that IRF6 provides specificity to TLR2 signaling in oral epithelial cells. TLR2 plays an important role in eliciting inflammation to Porphyromonas gingivalis, a keystone pathogen in periodontitis. Therefore, we investigated a role for IRF6 in mediating the inflammatory cytokine response of oral epithelial cells to P. gingivalis. IRF6 expression was strongly upregulated when human oral epithelial cells were challenged with P. gingivalis. Moreover, gene silencing and gene promoter experiments indicated that IRF6 acts downstream of IL-1R-associated kinase 1 to stimulate the expression of the IL-1 family cytokine IL-36γ in response to P. gingivalis. IRF6 and IL-1R-associated kinase 1 also regulated the stimulation of IL-36γ expression by a TLR2 agonist. IL-36γ was shown to elicit inflammatory responses by human monocyte-derived dendritic cells and macrophages, including the expression of the neutrophil chemokines IL-8 and CXCL1, as well as the Th17 chemokine CCL20. IL-36γ similarly stimulated their expression by human oral epithelial cells. Significantly, the Th17 cytokine IL-17 not only stimulated the expression of important regulators of neutrophil recruitment and survival by oral epithelial cells, but IL-17 also stimulated them to express IL-36γ. Thus, our findings suggest that IRF6 is likely to promote inflammation to P. gingivalis through its regulation of IL-36γ.
Collapse
Affiliation(s)
- Jennifer Huynh
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Glen M Scholz
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Jiamin Aw
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Mei Qi Kwa
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; and Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; and
| |
Collapse
|
12
|
Salvianolic acid A suppresses CCL-20 expression in TNF-α-treated macrophages and ApoE-deficient mice. J Cardiovasc Pharmacol 2015; 64:318-25. [PMID: 24853487 DOI: 10.1097/fjc.0000000000000117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The CC chemokine ligand-20 (CCL-20)/macrophage inflammatory protein-3α has been seen as one of the most important chemokines and played a key role in atherogenesis, but the mechanism that underlies the regulation of CCL-20 has not been established clearly yet. The aim of this study was to investigate the influence of salvianolic acid A (SAA) on the expression of CCL-20 in macrophages and ApoE-deficient (ApoE) mice. METHODS The expression of CCL-20 was detected both at protein and messenger RNA levels in RAW264.7 cells. We validated the result in ApoE mice that were intraperitoneally injected with SAA. Phosphorylation of p38 mitogen-activated protein kinase was detected with Western blot, and inhibitor of p38 was used to investigate the mechanism of regulation of CCL-20. Hematoxylin and eosin and Oil-Red-O staining were used to evaluate the atherosclerotic lesions and lipid accumulation in ApoE mice. Immunohistochemical analysis was used to detect the expressions of CCL-20 and CCR6 in the atherosclerotic lesions. Immunofluorescent analysis was used to certify the origination of CCL-20. RESULTS Recombinant tumor necrosis factor-α (TNF-α) upregulated CCL-20 production in dose- and time-dependent manners in RAW264.7 cells. The activity of TNF-α-induced CCL-20 production seemed to be significantly suppressed by SAA. Using p38 mitogen-activated protein kinase inhibitor, we found that p38 mediated the effects of TNF-α- and SAA-induced CCL-20 expression changes. In addition, immunohistochemical analysis of aortic root of ApoE mice also demonstrated that the expressions of CCL-20 and CCR6 were both downregulated significantly with SAA treatment. Furthermore, treatment of SAA inhibited the progression of the atherosclerotic plaques and lipid accumulation. CONCLUSIONS These results demonstrate that TNF-α increased but SAA suppressed CCL-20 production significantly via a novel mechanism.
Collapse
|
13
|
Wu NL, Huang DY, Tsou HN, Lin YC, Lin WW. Syk Mediates IL−17-Induced CCL20 Expression by Targeting Act1-Dependent K63-Linked Ubiquitination of TRAF6. J Invest Dermatol 2015; 135:490-498. [DOI: 10.1038/jid.2014.383] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
|
14
|
Modulation of hepatitis C virus core DNA vaccine immune responses by co-immunization with CC-chemokine ligand 20 (CCL20) gene as immunoadjuvant. Mol Biol Rep 2014; 41:5943-52. [PMID: 24972567 DOI: 10.1007/s11033-014-3470-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 06/14/2014] [Indexed: 12/26/2022]
Abstract
Plasmid DNA vaccination is a promising vaccine platform for prevention and treatment of infectious disease. Enhancement of the DNA vaccine potency by co-inoculation of immunoadjuvant has been shown to be an effective strategy. Modulation of dendritic cells and T-cells locomotion and trafficking to prime an immune response is mediated by distinct chemokines. The recent study was designed to elucidate the adjuvant activity of plasmid expressing CC-chemokine ligand 20 (pCCL20) in co-inoculation with hepatitis C virus (HCV) core DNA vaccine immunization. pCCL20 was constructed and evaluated for its functional expression. Sub-cutaneous inoculation of pCCL20 with HCV core DNA vaccine was performed via electroporation in BALB/c mice on day 0 and 14 and a HCV core protein booster was applied on day 28. On week after final immunization, both humoral and cell-mediated immune responses were assessed by indirect ELISA for core specific antibodies, lymphocyte proliferation, cytokine ELISA/ELISpot and cytotoxic Grenzyme B (GrzB) release assays. Mice were co-immunized with pCCL20 developed higher levels of core specific IFN-γ/IL-4 ratio and IL-2 release, IFN-γ producing cells, lymphocyte proliferation and cytotoxic Grenzyme B release in both draining lymph nodes and spleen cells of immunized mice. The core-specific serum total IgG and IgG2a/IgG1 ratio were significantly higher when the pCCL20 was co-inoculated. These results suggest the potential of CCL20 chemokine as vaccine adjuvant to enhance Th1 mediated cellular and humoral immune responses in HCV core DNA immunization.
Collapse
|
15
|
Crispo M, Van Maele L, Tabareau J, Cayet D, Errea A, Ferreira AM, Rumbo M, Sirard JC. Transgenic mouse model harboring the transcriptional fusion ccl20-luciferase as a novel reporter of pro-inflammatory response. PLoS One 2013; 8:e78447. [PMID: 24265691 PMCID: PMC3827052 DOI: 10.1371/journal.pone.0078447] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/10/2013] [Indexed: 12/12/2022] Open
Abstract
The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.
Collapse
Affiliation(s)
- Martina Crispo
- Unidad de Animales Transgénicos y de Experimentación – Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Laurye Van Maele
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, F-59000 Lille, Region Nord-Pas de Calais, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59000 Lille, Region Nord-Pas de Calais France
- Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, Region Nord-Pas de Calais France
- Univ Lille Nord de France, F-59000 Lille, Region Nord-Pas de Calais, France
| | - Julien Tabareau
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, F-59000 Lille, Region Nord-Pas de Calais, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59000 Lille, Region Nord-Pas de Calais France
- Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, Region Nord-Pas de Calais France
- Univ Lille Nord de France, F-59000 Lille, Region Nord-Pas de Calais, France
| | - Delphine Cayet
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, F-59000 Lille, Region Nord-Pas de Calais, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59000 Lille, Region Nord-Pas de Calais France
- Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, Region Nord-Pas de Calais France
- Univ Lille Nord de France, F-59000 Lille, Region Nord-Pas de Calais, France
| | - Agustina Errea
- Laboratorio de Investigaciones del Sistema Inmune (LISIN) – National University of La Plata, Provincia de Buenos Aires, Argentina
| | - Ana María Ferreira
- Catedra de Inmunologia, Facultad de Ciencias/Facultad de Quimica, Universidad de la República, Montevideo, Uruguay
| | - Martin Rumbo
- Laboratorio de Investigaciones del Sistema Inmune (LISIN) – National University of La Plata, Provincia de Buenos Aires, Argentina
| | - Jean Claude Sirard
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, F-59000 Lille, Region Nord-Pas de Calais, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59000 Lille, Region Nord-Pas de Calais France
- Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, Region Nord-Pas de Calais France
- Univ Lille Nord de France, F-59000 Lille, Region Nord-Pas de Calais, France
- * E-mail:
| |
Collapse
|
16
|
Sperling T, Ołdak M, Walch-Rückheim B, Wickenhauser C, Doorbar J, Pfister H, Malejczyk M, Majewski S, Keates AC, Smola S. Human papillomavirus type 8 interferes with a novel C/EBPβ-mediated mechanism of keratinocyte CCL20 chemokine expression and Langerhans cell migration. PLoS Pathog 2012; 8:e1002833. [PMID: 22911498 PMCID: PMC3406103 DOI: 10.1371/journal.ppat.1002833] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 06/18/2012] [Indexed: 01/01/2023] Open
Abstract
Infection with genus beta human papillomaviruses (HPV) is implicated in the development of non-melanoma skin cancer. This was first evidenced for HPV5 and 8 in patients with epidermodysplasia verruciformis (EV), a genetic skin disease. So far, it has been unknown how these viruses overcome cutaneous immune control allowing their persistence in lesional epidermis of these patients. Here we demonstrate that Langerhans cells, essential for skin immunosurveillance, are strongly reduced in HPV8-positive lesional epidermis from EV patients. Interestingly, the same lesions were largely devoid of the important Langerhans cells chemoattractant protein CCL20. Applying bioinformatic tools, chromatin immunoprecipitation assays and functional studies we identified the differentiation-associated transcription factor CCAAT/enhancer binding protein β (C/EBPβ) as a critical regulator of CCL20 gene expression in normal human keratinocytes. The physiological relevance of this finding is supported by our in vivo studies showing that the expression patterns of CCL20 and nuclear C/EBPβ converge spatially in the most differentiated layers of human epidermis. Our analyses further identified C/EBPβ as a novel target of the HPV8 E7 oncoprotein, which co-localizes with C/EBPβ in the nucleus, co-precipitates with it and interferes with its binding to the CCL20 promoter in vivo. As a consequence, the HPV8 E7 but not E6 oncoprotein suppressed C/EBPβ-inducible and constitutive CCL20 gene expression as well as Langerhans cell migration. In conclusion, our study unraveled a novel molecular mechanism central to cutaneous host defense. Interference of the HPV8 E7 oncoprotein with this regulatory pathway allows the virus to disrupt the immune barrier, a major prerequisite for its epithelial persistence and procarcinogenic activity.
Collapse
Affiliation(s)
- Tanya Sperling
- Institute of Virology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Monika Ołdak
- Institute of Virology, Saarland University, Homburg/Saar, Germany
- Department of Histology and Embryology Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | | | - Claudia Wickenhauser
- Institute of Pathology, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Leipzig, Leipzig, Germany
| | - John Doorbar
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Herbert Pfister
- Institute of Virology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Magdalena Malejczyk
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Andrew C. Keates
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Sigrun Smola
- Institute of Virology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Virology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
17
|
Meares GP, Ma X, Qin H, Benveniste EN. Regulation of CCL20 expression in astrocytes by IL-6 and IL-17. Glia 2012; 60:771-81. [PMID: 22319003 DOI: 10.1002/glia.22307] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 01/13/2012] [Accepted: 01/21/2012] [Indexed: 12/22/2022]
Abstract
Astrocytes have an important role in the regulation of inflammation within the central nervous system (CNS). In neuroinflammatory conditions such as multiple sclerosis, numerous cytokines and chemokines are elevated including IL-6, IL-17, and CCL20. IL-17 enhances IL-6 signaling and subsequent IL-6 expression in astrocytes. CCL20 is a CC motif chemokine that functions as a chemoattractant to facilitate the recruitment of CCR6-expressing cells, including Th17 cells. In this study, we examined the role of IL-6 and IL-17 on CCL20 production in primary murine astrocytes. IL-6 in combination with the IL-6 soluble receptor (sIL-6R) stimulated CCL20 expression in part through STAT3 activation, whereas IL-17 alone had no effect. However, the combination of IL-6, sIL-6R, and IL-17 led to a robust increase in CCL20 production. IL-17 increased the activation-associated phosphorylation of NF-κB, and inhibition of the NF-κB pathway significantly inhibited the enhancement of CCL20 expression by IL-17. In addition, chromatin immunoprecipitation revealed that stimulation of primary astrocytes with IL-6 plus the sIL-6R induced STAT3 binding to the CCL20 promoter. Combined stimulation with IL-6, sIL-6R, and IL-17 increased the recruitment of phosphorylated NF-κB to the CCL20 promoter, increased binding of coactivators such as p300 and CBP, and enhanced H3 and H4 histone acetylation, consistent with a transcriptionally active gene. The astrocyte-produced CCL20 increased T cell migration as determined by transwell migration assay. Collectively, these results suggest that astrocytes, in response to IL-6, sIL-6R, and IL-17, may shift chemokine production to that favoring T cell recruitment to the CNS.
Collapse
Affiliation(s)
- Gordon P Meares
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
18
|
Khanjani S, Kandola MK, Lindstrom TM, Sooranna SR, Melchionda M, Lee YS, Terzidou V, Johnson MR, Bennett PR. NF-κB regulates a cassette of immune/inflammatory genes in human pregnant myometrium at term. J Cell Mol Med 2011; 15:809-24. [PMID: 20406326 PMCID: PMC3922669 DOI: 10.1111/j.1582-4934.2010.01069.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The onset of human labour resembles inflammation with increased synthesis of prostaglandins and cytokines. There is evidence from rodent models for an important role for nuclear factor-κB (NF-κB) activity in myometrium which both up-regulates contraction-associated proteins and antagonizes the relaxatory effects of progesterone. Here we show that in the human, although there are no differences in expression of NF-κB p65, or IκB-α between upper- or lower-segment myometrium or before or after labour, there is nuclear localization of serine-256-phospho-p65 and serine-536-phospho-p65 in both upper- and lower-segment myometrium both before and after the onset of labour at term. This shows that NF-κB is active in both upper and lower segment prior to the onset of labour at term. To identify the range of genes regulated by NF-κB we overexpressed p65 in myocytes in culture. This led to NF-κB activation identical to that seen following interleukin (IL)-1β stimulation, including phosphorylation and nuclear translocation of p65 and p50. cDNA microarray analysis showed that NF-κB increased expression of 38 genes principally related to immunity and inflammation. IL-1β stimulation also resulted in an increase in the expression of the same genes. Transfection with siRNA against p65 abolished the response to IL-1β proving a central role for NF-κB. We conclude that NF-κB is active in myocytes in both the upper and lower segment of the uterus prior to the onset of labour at term and principally regulates a group of immune/inflammation associated genes, demonstrating that myocytes can act as immune as well as contractile cells.
Collapse
Affiliation(s)
- Shirin Khanjani
- Parturition Research Group, Imperial College London, Institute of Reproductive and Developmental Biology, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
CCR6 as a mediator of immunity in the lung and gut. Exp Cell Res 2011; 317:613-9. [PMID: 21376174 DOI: 10.1016/j.yexcr.2010.12.018] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 12/11/2022]
Abstract
Chemokines are key mediators of leukocyte recruitment during pathogenic insult and also play a prominent role in homeostasis. While most chemokine receptors bind to multiple chemokines, CCR6 is unique in that this receptor is one of only a few that can bind only a single chemokine ligand, CCL20. CCR6 is an important receptor that is involved in regulating several aspects of mucosal immunity, including the ability to mediate the recruitment of immature dendritic cells (DCs) and mature DCs, and professional antigen presenting cells (APCs) to the sites of epithelial inflammation. Further, CCR6 mediates the homing of both CD4(+) T (T-helper; Th) cells and DCs to the gut mucosal lymphoid tissue. DCs, which are known to be essential immune cells in innate immunity and in the initiation of adaptive immunity, play a central role in initiating a primary immune response. Herein, we summarize the role of CCR6 in immune responses at epithelial and mucosal sites in both the lung and gut based on a review of the current literature.
Collapse
|
20
|
Smith SM, Moran AP, Duggan SP, Ahmed SE, Mohamed AS, Windle HJ, O'Neill LA, Kelleher DP. Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2462-2471. [PMID: 21220698 DOI: 10.4049/jimmunol.1000864] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori causes chronic gastritis, peptic ulcers, and gastric carcinoma. Gastric epithelial cells provide the first point of contact between H. pylori and the host. TLRs present on these cells recognize various microbial products, resulting in the initiation of innate immunity. Although previous reports investigated TLR signaling in response to intact H. pylori, the specific contribution of H. pylori LPS with regard to functional genomics and cell-signaling events has not been defined. This study set out to define downstream signaling components and altered gene expression triggered by H. pylori LPS and to investigate the role of the signaling protein tribbles 3 (TRIB3) during the TLR-mediated response to H. pylori LPS. Cotransfections using small interfering RNA and dominant-negative constructs demonstrated that H. pylori LPS functions as a classic TLR2 ligand by signaling through pathways involving the key TLR signaling components MyD88 adaptor-like, MyD88, IRAK1, IRAK4, TNFR-associated factor 6, IκB kinase β, and IκBα. Microarray analysis, real-time PCR, and ELISA revealed the induction of a discrete pattern of chemokines as a direct effect of LPS:TLR2 signaling. H. pylori infection was associated with decreased expression of TRIB3 in human gastric epithelial cell lines and tissue samples. Additionally, H. pylori decreased expression of C/EBP homologous protein and activating transcription factor 4, the transcription factors involved in the induction of TRIB3 expression. Furthermore, knockdown of TRIB3 and C/EBP homologous protein enhanced TLR2-mediated NF-κB activation and chemokine induction in response to H. pylori LPS. Thus, modulation of TRIB3 by H. pylori and/or its products may be an important mechanism during H. pylori-associated pathogenesis.
Collapse
Affiliation(s)
- Sinéad M Smith
- Department of Clinical Medicine, Trinity College Dublin, Dublin 8, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Varesio L, Battaglia F, Raggi F, Ledda B, Bosco MC. Macrophage-inflammatory protein-3α/CCL-20 is transcriptionally induced by the iron chelator desferrioxamine in human mononuclear phagocytes through nuclear factor (NF)-κB. Mol Immunol 2010; 47:685-93. [DOI: 10.1016/j.molimm.2009.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/23/2009] [Indexed: 01/24/2023]
|
22
|
Inhibition of the SDF-1alpha-CXCR4 axis by the CXCR4 antagonist AMD3100 suppresses the migration of cultured cells from ATL patients and murine lymphoblastoid cells from HTLV-I Tax transgenic mice. Blood 2009; 114:2961-8. [PMID: 19657116 DOI: 10.1182/blood-2008-11-189308] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a T-cell malignancy caused by human T lymphotropic virus type I, and presents as an aggressive leukemia with characteristic widespread leukemic cell infiltration into visceral organs and skin. The molecular mechanisms associated with leukemic cell infiltration are poorly understood. We have used mouse models of ATL to investigate the role of chemokines in this process. Transfer of splenic lymphomatous cells from transgenic to SCID mice reproduces a leukemia and lymphoma that is histologically identical to human disease. It could be shown that lymphomatous cells exhibit specific chemotactic activity in response to stromal cell-derived factor-1alpha (SDF-1alpha). Lymphomatous cells exhibited surface expression of CXCR4, the specific receptor of SDF-1alpha. AMD3100, a CXCR4 antagonist, was found to inhibit both SDF-1alpha-induced migration and phosphorylation of extracellular signal-related kinase 1/2. Investigation of cultured cells from human ATL patients revealed identical findings. Using the SCID mouse model, it could be demonstrated that AMD3100 inhibited infiltration of lymphomatous cells into liver and lung tissues in vivo. These results demonstrate the involvement of the SDF-1alpha/CXCR4 interaction as one mechanism of leukemic cell migration and this may provide a novel target as part of combination therapy for ATL.
Collapse
|
23
|
Induction of CCL20 production by Kaposi sarcoma-associated herpesvirus: role of viral FLICE inhibitory protein K13-induced NF-kappaB activation. Blood 2009; 113:5660-8. [PMID: 19324905 DOI: 10.1182/blood-2008-10-186403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent of Kaposi sarcoma (KS), an angioproliferative lesion characterized by dramatic angiogenesis and inflammatory infiltration. In this study, we report that expression of chemokine CCL20, a potent chemoattractant of dendritic cells and lymphocytes, is strongly induced in cultured cells either by KSHV infection or on ectopic expression of viral FLICE inhibitory protein K13. This induction is caused by transcriptional activation of CCL20 gene, which is mediated by binding of the p65, p50, and c-Rel subunits of the transcription factor nuclear factor-kappaB (NF-kappaB) to an atypical NF-kappaB-binding site present in the CCL20 gene promoter. The CCL20 gene induction is defective in K13 mutants that lack NF-kappaB activity, and can be blocked by specific genetic and pharmacologic inhibitors of the NF-kappaB pathway. CCR6, the specific receptor for CCL20, is also induced in cultured cells either by KSHV infection or on K13 expression. Finally, expression of CCL20 and CCR6 is increased in clinical samples of KS. These results suggest that KSHV and K13-mediated induction of CCL20 and CCR6 may contribute to the recruitment of dendritic cells and lymphocytes into the KS lesions, and to tumor growth and metastases.
Collapse
|
24
|
Jacobsen MLB, Rønn SG, Bruun C, Larsen CM, Eizirik DL, Mandrup-Poulsen T, Billestrup N. IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells. Diabetologia 2009; 52:281-8. [PMID: 19002429 DOI: 10.1007/s00125-008-1199-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS Chemokines recruit activated immune cells to sites of inflammation and are important mediators of insulitis. Activation of the pro-apoptotic receptor Fas leads to apoptosis-mediated death of the Fas-expressing cell. The pro-inflammatory cytokines IL-1beta and IFN-gamma regulate the transcription of genes encoding the Fas receptor and several chemokines. We have previously shown that suppressor of cytokine signalling (SOCS)-3 inhibits IL-1beta- and IFN-gamma-induced nitric oxide production in a beta cell line. The aim of this study was to investigate whether SOCS-3 can influence cytokine-induced Fas and chemokine expression in beta cells. METHODS Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas mRNA expression. The ability of SOCS-3 to influence the activity of cytokine-responsive Fas and Mcp-1 (also known as Ccl2) promoters was measured by reporter analysis. RESULTS IL-1beta induced a time-dependent increase in Mcp-1 and Mip-2 (also known as Cxcl2) mRNA expression after 6 h of stimulation in insulinoma (INS)-1 and neonatal rat islet cells. This induction was inhibited when Socs3 was expressed in the cells. In INS-1 cells, IL-1beta + IFN-gamma induced a tenfold and eightfold increase of Fas mRNA expression after 6 and 24 h, respectively. This induction was inhibited at both time-points when expression of Socs3 was induced. In promoter studies SOCS-3 significantly inhibited the cytokine-induced activity of Mcp-1 and Fas promoter constructs. CONCLUSIONS/INTERPRETATION SOCS-3 inhibits the expression of cytokine-induced chemokine and death-receptor Fas mRNA.
Collapse
Affiliation(s)
- M L B Jacobsen
- Steno Diabetes Centre, Niels Steensens Vej 6, NSK2.02, DK-2820 Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Teruya H, Tomita M, Senba M, Ishikawa C, Tamayose M, Miyazato A, Yara S, Tanaka Y, Iwakura Y, Fujita J, Mori N. Human T-cell leukemia virus type I infects human lung epithelial cells and induces gene expression of cytokines, chemokines and cell adhesion molecules. Retrovirology 2008; 5:86. [PMID: 18808681 PMCID: PMC2556696 DOI: 10.1186/1742-4690-5-86] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/22/2008] [Indexed: 11/23/2022] Open
Abstract
Background Human T-cell leukemia virus type I (HTLV-I) is associated with pulmonary diseases, characterized by bronchoalveolar lymphocytosis, which correlates with HTLV-I proviral DNA in carriers. HTLV-I Tax seems to be involved in the development of such pulmonary diseases through the local production of inflammatory cytokines and chemokines in T cells. However, little is known about induction of these genes by HTLV-I infection in lung epithelial cells. Results We tested infection of lung epithelial cells by HTLV-I by coculture studies in which A549 alveolar and NCI-H292 tracheal epithelial cell lines were cocultured with MT-2, an HTLV-I-infected T-cell line. Changes in the expression of several cellular genes were assessed by reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay and flow cytometry. Coculture with MT-2 cells resulted in infection of lung epithelial cells as confirmed by detection of proviral DNA, HTLV-I Tax expression and HTLV-I p19 in the latter cells. Infection was associated with induction of mRNA expression of various cytokines, chemokines and cell adhesion molecule. NF-κB and AP-1 were also activated in HTLV-I-infected lung epithelial cells. In vivo studies showed Tax protein in lung epithelial cells of mice bearing Tax and patients with HTLV-I-related pulmonary diseases. Conclusion Our results suggest that HTLV-I infects lung epithelial cells, with subsequent production of cytokines, chemokines and cell adhesion molecules through induction of NF-κB and AP-1. These changes can contribute to the clinical features of HTLV-I-related pulmonary diseases.
Collapse
Affiliation(s)
- Hiromitsu Teruya
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hieshima K, Nagakubo D, Nakayama T, Shirakawa AK, Jin Z, Yoshie O. Tax-inducible production of CC chemokine ligand 22 by human T cell leukemia virus type 1 (HTLV-1)-infected T cells promotes preferential transmission of HTLV-1 to CCR4-expressing CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:931-9. [PMID: 18178833 DOI: 10.4049/jimmunol.180.2.931] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adult T cell leukemia is a mature CD4+ T cell malignancy which predominantly expresses CCR4 and is etiologically associated with human T cell leukemia virus type 1 (HTLV-1). Because HTLV-1 transmission depends on close cell-cell contacts, HTLV-1-infected T cells may preferentially interact with CCR4+CD4+ T cells for efficient viral transmission. In terms of gene expression and protein secretion, we found a strong correlation between HTLV-1 Tax oncoprotein and CCL22, a CCR4 ligand, in HTLV-1-infected T cells. Transient Tax expression in an HTLV-1-negative T cell line activated the CCL22 promoter and induced CCL22. Additionally, tax gene knockdown by small interference RNA reduced CCL22 expression in the infected T cells. These findings indicate that CCL22 is a cellular target gene of Tax. In chemotaxis assays, the culture supernatants of HTLV-1-infected T cells selectively attracted CCR4+CD4+ T cells in PBMCs. This was blocked by pretreating the supernatants with anti-CCL22 Ab or PBMCs with a synthetic CCR4 antagonist. In coculture experiments, primary CCR4+CD4+ T cells significantly adhered to Tax-expressing cells. This adhesion was blocked by the CCR4 antagonist or pertussis toxin. Interestingly, CCR4 was redistributed to the contact region, and in some cases, this was accompanied by a polarized microtubule-organizing center, which is an indicator of virological synapse formation, in the infected T cells. Finally, anti-CCL22 Ab treatment also blocked HTLV-1 transmission to primary CD4+ T cells in coculture experiments with HTLV-1 producer cells. Thus, HTLV-1-infected T cells produce CCL22 through Tax and selectively interact with CCR4+CD4+ T cells, resulting in preferential transmission of HTLV-1 to CCR4+CD4+ T cells.
Collapse
Affiliation(s)
- Kunio Hieshima
- Department of Microbiology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Hamill N, Romero R, Gotsch F, Kusanovic JP, Edwin S, Erez O, Than NG, Mittal P, Espinoza J, Friel LA, Vaisbuch E, Mazaki-Tovi S, Hassan SS. Exodus-1 (CCL20): evidence for the participation of this chemokine in spontaneous labor at term, preterm labor, and intrauterine infection. J Perinat Med 2008; 36:217-27. [PMID: 18576931 PMCID: PMC3182481 DOI: 10.1515/jpm.2008.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM CCL20, also known as MIP-3 alpha, is a chemokine that participates in chemotaxis of immature dendritic cells, effector/memory T-cells, and B-lymphocytes. The objectives of this study were to determine whether CCL20 can be detected in amniotic fluid (AF) and if AF concentration of this chemokine changes with advancing gestational age, parturition (term and preterm), and intra-amniotic infection/inflammation (IAI). METHODS A cross-sectional study was conducted including the following groups: (1) mid-trimester of pregnancy (n=65); (2) term not in labor (TNL; n=22); (3) term in labor (TIL; n=47); (4) spontaneous preterm labor (PTL) who delivered at term (n=57); (5) spontaneous PTL without IAI who delivered preterm (n=71); and (6) spontaneous PTL with IAI (n=38). AF CCL20 concentrations were determined using ELISA. RESULTS (1) The median AF CCL20 concentration in TNL was higher than that of mid-trimester patients; (2) Women in spontaneous labor at term had a higher median AF concentration of CCL20 than patients at term not in labor; (3) Patients with spontaneous PTL and IAI had a significantly higher median AF concentration of CCL20 than those without IAI who delivered preterm and those who delivered at term. Moreover, women with spontaneous PTL without IAI who delivered preterm had a significantly higher median AF concentration than those with PTL who subsequently delivered at term. CONCLUSIONS (1) CCL20 is a physiologic constituent of AF and its concentration increases as term approaches; (2) spontaneous labor (term and preterm) in the absence of IAI is associated with increased bioavailability of AF CCL20 suggesting that an increase in CCL20 is part of the common pathway of human parturition; (3) patients with IAI had dramatic elevations in the AF CCL20 concentrations suggesting that this chemokine participates in the host response to infection or other stimuli associated with intra-amniotic infection.
Collapse
Affiliation(s)
- Neil Hamill
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Sam Edwin
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Jimmy Espinoza
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Lara A. Friel
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Edi Vaisbuch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, Michigan, USA
| |
Collapse
|
28
|
Battaglia F, Delfino S, Merello E, Puppo M, Piva R, Varesio L, Bosco MC. Hypoxia transcriptionally induces macrophage-inflammatory protein-3alpha/CCL-20 in primary human mononuclear phagocytes through nuclear factor (NF)-kappaB. J Leukoc Biol 2007; 83:648-62. [PMID: 18089854 DOI: 10.1189/jlb.0607349] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia, a condition of low oxygen tension, occurring in many pathological processes, modifies the mononuclear phagocyte transcriptional profile. Here, we demonstrate hypoxic up-regulation of the CCL20 chemokine in primary human monocytes (Mn) and macrophages. mRNA induction was paralleled by protein secretion and dependent on gene transcription activation. Functional studies of the CCL20 promoter using a series of 5'-deleted and mutated reporter constructs demonstrated the requirement for the NF-kappaB-binding site located at position -92/-82 for gene transactivation by hypoxia, as 1) transcription was abrogated by a 3-bp mutation of the NF-kappaB motif; 2) three copies of the wild-type NF-kappaB-binding site conferred hypoxia responsiveness to a minimal heterologous promoter; and 3) hypoxia increased specific NF-kappaB binding to this sequence. Furthermore, we provide evidence of the specific role of a single NF-kappaB family member, p50, in mediating CCL20 gene transcription in hypoxic Mn. p50 homodimers were the only detectable NF-kappaB complexes binding the cognate kappaB site on the CCL20 promoter upon hypoxia exposure, and NF-kappaBp50 knockdown by lentiviral-mediated short hairpin RNA interference resulted in complete binding inhibition. NF-kappaBp50 overexpression in transient cotransfection studies promoted CCL20 gene transactivation, which was abrogated by mutation of the -92/-82 kappaB site. Moreover, nuclear expression of the other NF-kappaB family members was inhibited in hypoxic Mn. In conclusion, this study characterizes a previously unrecognized role for hypoxia as a transcriptional inducer of CCL20 in human mononuclear phagocytes and highlights the importance of the NF-kappaB pathway in mediating this response, with potential implications for inflammatory disease and cancer pathogenesis.
Collapse
Affiliation(s)
- Florinda Battaglia
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Padiglione 2, Largo Gerolamo Gaslini 5, Genoa Quarto, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Tomimori K, Uema E, Teruya H, Ishikawa C, Okudaira T, Senba M, Yamamoto K, Matsuyama T, Kinjo F, Fujita J, Mori N. Helicobacter pylori induces CCL20 expression. Infect Immun 2007; 75:5223-32. [PMID: 17724069 PMCID: PMC2168315 DOI: 10.1128/iai.00731-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CCL20 attracts immature dendritic cells and memory T cells and plays a role on mucosal surfaces in inflammation. However, whether Helicobacter pylori infection induces CCL20 in human gastric epithelial cells remains to be determined. The aim of this study was to analyze the molecular mechanism of H. pylori-induced CCL20 expression. Expression of CCL20 mRNA was assessed by reverse transcription-PCR. Five normal and five H. pylori-infected gastric tissue samples were stained immunohistochemically for CCL20. A luciferase assay was used to monitor activation of the CCL20 gene promoter, and an electrophoretic mobility shift assay was used to explore the binding of transcription factors to this promoter. The CCL20 expression in epithelial cells of H. pylori-positive tissues was higher than that in H. pylori-negative tissues. H. pylori induced CCL20 expression in gastric epithelial cell lines, and the induction was dependent on an intact cag pathogenicity island. Activation of the CCL20 promoter by H. pylori occurred through the action of NF-kappaB. Transfection of IkappaB kinase and NF-kappaB-inducing kinase dominant negative mutants inhibited H. pylori-mediated activation of CCL20. Treatment with an inhibitor of Hsp90 suppressed H. pylori-induced CCL20 mRNA due to deactivation of NF-kappaB. Collectively, these results suggest that H. pylori activates NF-kappaB through an intracellular signaling pathway that involves IkappaB kinase and NF-kappaB-inducing kinase, leading to CCL20 gene transcription, and that Hsp90 is a crucial regulator of H. pylori-induced CCL20 expression, presumably contributing to the immune response in H. pylori.
Collapse
Affiliation(s)
- Koh Tomimori
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Choi SC, Choi EJ, Oh HM, Lee S, Lee JK, Lee MS, Shin YI, Choi SJ, Chae JR, Lee KM, Lee WJ, Park JS, Shin CY, Oh TY, Jun CD. DA-9601, a standardized extract of Artemisia asiatica, blocks TNF-α-induced IL-8 and CCL20 production by inhibiting p38 kinase and NF-κB pathways in human gastric epithelial cells. World J Gastroenterol 2006; 12:4850-8. [PMID: 16937467 PMCID: PMC4087619 DOI: 10.3748/wjg.v12.i30.4850] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether, or how, DA-9601, which is a new gastroprotective agent, inhibits TNF-α-induced inflammatory signals in gastric epithelial AGS cells.
METHODS: Cell viability was determined by MTT assay. IL-8 and CCL20 promoter activities were determined by a luciferease reporter gene assay. NF-κB-dependent transcriptional activity was determined by I-κBα degradation, NF-κB p65 nuclear translocation and a luciferase activity assay. IL-8 and CCL20 gene expression and protein secretion were determined by RT-PCR and an enzyme-linked immunosorbent assay (ELISA). Total and phosphorylated forms of mitogen-activated protein kinases (MAPKs) were determined by Western blot.
RESULTS: Treatment of AGS cells with DA-9601 reduced TNF-α-induced IL-8 and CCL20 promoter activities, as well as their gene expression and protein release. TNF-α also induced NF-κB-dependent transcriptional activity in AGS cells. In contrast, in cells treated with DA-9601, TNF-α-induced NF-κB activity was significantly blocked. Although all three MAP kinase family members were phosphorylated in response to TNF-α, a selective inhibitor of p38 kinase SB203580 only could inhibit both NF-κB-dependent transcriptional activity and IL-8 and CCL20 production, suggesting a potential link between p38 kinase and NF-κB-dependent pathways in AGS cells. Interestingly, DA-9601 also selectively inhibited p38 kinase phosphorylation induced by TNF-α.
CONCLUSION: DA-9601 blocked TNF-α-mediated inflammatory signals by potentially modulating the p38 kinase pathway and/or a signal leading to NF-κB-dependent pathways in gastric epithelial cells.
Collapse
Affiliation(s)
- Suck-Chei Choi
- Digestive Disease Research Institute, Wonkwang University School of Medicine, Chonbuk, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Okudaira T, Yamamoto K, Kawakami H, Uchihara JN, Tomita M, Masuda M, Matsuda T, Sairenji T, Iha H, Jeang KT, Matsuyama T, Takasu N, Mori N. Transactivation of CCL20 gene by Epstein-Barr virus latent membrane protein 1. Br J Haematol 2006; 132:293-302. [PMID: 16409294 DOI: 10.1111/j.1365-2141.2005.05877.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CCL20 is expected to play a crucial role in the initiation of immune responses and tumour growth. However, expression of CCL20 in Epstein-Barr virus (EBV)-associated diseases has not been studied. We examined the contribution of EBV infection and EBV-encoded latent membrane protein (LMP)-1 to CCL20 expression. EBV infection and LMP-1 induced CCL20 mRNA expression in the EBV-negative Burkitt lymphoma (BL) cell lines and the embryonic kidney cell line. Histone deacetylase inhibitor-stimulated endogenous LMP-1 also induced CCL20 expression in an EBV-positive BL cell line. Analysis of the CCL20 promoter showed that it was activated by LMP-1 C-terminal activation region (CTAR)-1 and CTAR-2. Co-expression of IkappaB alpha, IkappaB beta, IkappaB kinase (IKK)alpha, IKKbeta, IKKgamma, nuclear factor (NF)-kappaB-inducing kinase and tumour necrosis factor receptor-associated factor 2 dominant-negative constructs with LMP-1 inhibited the activation of the CCL20 promoter by LMP-1, suggesting that LMP-1 induces CCL20 via NF-kappaB signalling. The requirement for the NF-kappaB-binding site in the CCL20 promoter in LMP-1 responsiveness was established. Our results indicate that activation of the NF-kappaB pathway by LMP-1 is required for the activation of CCL20 expression.
Collapse
Affiliation(s)
- Taeko Okudaira
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Theodore S, Cass WA, Maragos WF. Involvement of cytokines in human immunodeficiency virus-1 protein Tat and methamphetamine interactions in the striatum. Exp Neurol 2006; 199:490-8. [PMID: 16510141 DOI: 10.1016/j.expneurol.2006.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/04/2006] [Accepted: 01/12/2006] [Indexed: 12/26/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection of the brain causes elevation in pro-inflammatory cytokines and inflammatory changes in the striatum. HIV-1-infected individuals who also abuse drugs including the psychostimulant methamphetamine (MA) develop more severe encephalitis and neuronal damage compared to HIV-1-infected patients who do not abuse drugs. In previous studies, we demonstrated that the HIV-1 protein Tat and MA interacted to cause enhanced loss of dopamine in the rat striatum via the destruction of dopaminergic terminals. Since both Tat and MA activate glia and induce cytokine production, we investigated the role of cytokines in the synergistic neurotoxicity induced by Tat and MA using cytokine arrays. Significant increases in monocyte chemotactic protein (MCP-1), interleukin-1 alpha (IL-1alpha) and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels were noted 4 h following Tat + MA treatment compared to saline, Tat or MA. MCP-1 and TIMP-1 levels remained elevated 16 h after Tat + MA compared to saline or MA but were not different from the Tat-treated group at this time point. Weak, but significant elevations in cytokine-induced neutrophil chemoattractant-3 (CINC-3), ciliary neurotrophic factor (CNTF) and macrophage inflammatory protein-3 alpha (MIP-3alpha) were also noted with Tat + MA. The interaction of Tat and MA was prevented in mice genetically deficient in MCP-1 with a consequent attenuation of Tat + MA neurotoxicity. Our findings suggest that HIV-1 infection with concurrent drug abuse might profoundly increase chemokine levels in the striatum resulting in enhanced damage to the dopaminergic system.
Collapse
Affiliation(s)
- Shaji Theodore
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
33
|
Guess JC, McCance DJ. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J Virol 2006; 79:14852-62. [PMID: 16282485 PMCID: PMC1287574 DOI: 10.1128/jvi.79.23.14852-14862.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection with high-risk human papillomavirus (HPV) types, particularly types 16 and 18, contributes to 90% of cervical cancer cases. HPV infects cutaneous or mucosal epithelium, tissue that is monitored for microbial infection or damage by Langerhans cells. In lesions produced by HPV type 16, there is a reduction in numbers of immune cells, especially Langerhans cells. Langerhans precursor cells selectively express CCR6, the receptor for macrophage inflammatory protein 3alpha (MIP-3alpha), and function as potent immune responders to inflamed epithelium and initiators of the innate immune response. It has been reported that E6 and E7 of high-risk HPVs interfere with immune mediators in order to suppress the recruitment of immune cells and antiviral activities of infected cells. Here we show that, following proinflammatory stimulus, HPV-16 E6 and E7 inhibit MIP-3alpha transcription, resulting in suppression of the migration of immature Langerhans precursor-like cells. Interestingly, the E6 and E7 proteins from the low-risk HPV types also inhibited MIP-3alpha transcription. These results suggest that one mechanism by which HPV-infected cells suppress the immune response may be through the inhibition of a vital alert signal, thus contributing to the persistence of HPV infection.
Collapse
Affiliation(s)
- Jennifer C Guess
- Department of Microbiology and Immunology, University of Rochester, New York 14642, USA
| | | |
Collapse
|
34
|
Inoue Y, Saito T, Endo M, Haruta C, Nakai T, Moritomo T, Nakanishi T. Molecular cloning and preliminary expression analysis of banded dogfish (Triakis scyllia) CC chemokine cDNAs by use of suppression subtractive hybridization. Immunogenetics 2004; 56:722-34. [PMID: 15592825 DOI: 10.1007/s00251-004-0730-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 10/04/2004] [Indexed: 10/26/2022]
Abstract
Suppression subtractive hybridization was carried out by using cDNAs of peripheral white blood cells (PWBCs) of banded dogfish (Triakis scyllia) after phorbol 12-myristate 13-acetate (PMA) stimulation. The Trsc-SCYA107, MIP3alpha1 and MIP3alpha2 clones contained an open reading frame encoding 97, 99 and 97 amino acids, respectively. Comparison of the deduced amino acids showed that the banded dogfish MIP3alpha1 and MIP3alpha2 sequences shared 42.3% and 40.0% identity with human SCYA20, respectively, while the Trsc-SCYA107 sequence shared 50.6, 44.2 and 42.0% identity with the catshark (Scyliorhinus canicula) Scca-SCYA107, rainbow trout (Oncorhynchus mykiss) CK4A and CK4B, respectively. The genomic sequences of banded dogfish Trsc-SCYA107, MIP3alpha1 and MIP3alpha2 contain four exons and three introns, and MIP3alpha1 and MIP3alpha2 shared the same intron/exon organization with that of human. The MIP3alpha1 and MIP3alpha2 genes of lipopolysaccharide (LPS)-unstimulated banded dogfish were expressed in gill, kidney and liver, while Trsc-SCYA107 mRNA was detected in various tissues except for brain. However, the constitutive expression of MIP3alpha2 gene was much lower than the Trsc-SCYA107 and MIP3alpha1 genes. RT-PCR analysis of the Trsc-SCYA107 expression in tissues of LPS-stimulated fish showed enhanced expression at 24 h poststimulation in the gill, heart, leydig, spleen and testes, while the expression of MIP3alpha1 and MIP3alpha2 was not influenced by LPS-stimulation in vivo. Furthermore, a relative increase in the expression of the Trsc-SCYA107 and MIP3alpha2 genes in PWBCs was observed at 1-12 h poststimulation with PMA and LPS, with maximal expression observed at 3 h, while MIP3alpha1 expression was observed at 3-12 h poststimulation only with PMA.
Collapse
Affiliation(s)
- Yuuki Inoue
- Laboratory of Fish Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
CCL20, alternatively named liver and activation-regulated chemokine (LARC), macrophage inflammatory protein-3alpha (MIP-3alpha) or Exodus-1, is the only chemokine known to interact with CC chemokine receptor 6 (CCR6), a property shared with the antimicrobial beta-defensins. The ligand-receptor pair CCL20-CCR6 is responsible for the chemoattraction of immature dendritic cells (DC), effector/memory T-cells and B-cells and plays a role at skin and mucosal surfaces under homeostatic and inflammatory conditions, as well as in pathology, including cancer and rheumatoid arthritis. In this review, the discovery, the gene and protein structure, the in vitro biological activities, the cell and inducer specific expression and the tissue distribution of CCL20 and CCR6 are discussed.
Collapse
Affiliation(s)
- Evemie Schutyser
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
36
|
Kwon JH, Keates S, Simeonidis S, Grall F, Libermann TA, Keates AC. ESE-1, an enterocyte-specific Ets transcription factor, regulates MIP-3alpha gene expression in Caco-2 human colonic epithelial cells. J Biol Chem 2003; 278:875-84. [PMID: 12414801 DOI: 10.1074/jbc.m208241200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that colonic epithelial cells are a major site of MIP-3alpha production in human colon and that enterocyte MIP-3alpha protein levels are elevated in inflammatory bowel disease. The aim of this study was to determine the molecular mechanisms regulating MIP-3alpha gene transcription in Caco-2 intestinal epithelial cells. We show that a kappaB element at nucleotides -82 to -93 of the MIP-3alpha promoter binds p50/p65 NF-kappaB heterodimers and is a major regulator of basal and interleukin-1beta (IL-1beta)-mediated gene activation. Scanning mutagenesis of the MIP-3alpha 5'-flanking region also identified two additional binding elements: Site X (nucleotides -63 to -69) and Site Y (nucleotides -143 to -154). Site X (CGCCTTC) bound Sp1 and regulated basal MIP-3alpha gene transcription. Overexpression of Sp1 increased basal luciferase activity, whereas, substitutions in the Sp1 element significantly reduced reporter activity. In contrast, Site Y (AAGCAGGAAGTT) regulated both basal and cytokine-induced gene activation and bound the Ets nuclear factor ESE-1. Substitutions in the Site Y element markedly reduced inducible MIP-3alpha reporter activity. Conversely, overexpression of ESE-1 significantly up-regulated MIP-3alpha luciferase levels. Taken together, our findings demonstrate that co-ordinate activation and binding of ESE-1, Sp1, and NF-kappaB to the MIP-3alpha promoter is required for maximal gene expression by cytokine-stimulated Caco-2 human intestinal epithelial cells.
Collapse
Affiliation(s)
- John H Kwon
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
37
|
Scapini P, Crepaldi L, Pinardi C, Calzetti F, Cassatella MA. CCL20/macrophage inflammatory protein-3alpha production in LPS-stimulated neutrophils is enhanced by the chemoattractant formyl-methionyl-leucyl-phenylalanine and IFN-gamma through independent mechanisms. Eur J Immunol 2002; 32:3515-24. [PMID: 12442334 DOI: 10.1002/1521-4141(200212)32:12<3515::aid-immu3515>3.0.co;2-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have recently demonstrated that polymorphonuclear neutrophils (PMN), when cultured with LPS or TNF-alpha, have the capacity to release CCL20, a chemokine primarily chemotactic for immature dendritic cells and specific lymphocyte subsets. Here, we report that the chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP), as well as the immunoregulatory cytokine IFN-gamma, can significantly up-modulate the production of neutrophil-derived CCL20 through entirely unrelated mechanisms. We found that fMLP dramatically up-regulates CCL20 mRNA expression and synthesis in neutrophils stimulated with LPS for 2-3 h, and that its effect takes place through CCL20 mRNA stabilization. In contrast, IFN-gamma potentiates CCL20 gene expression and production only after 21 h of LPS treatment, its effect being mediated by endogenous TNF-alpha in an autocrine fashion, as revealed using neutralizing anti-TNF-alpha antibodies added to IFN-gamma plus LPS-treated PMN. Finally, we demonstrate that activation of p38 mitogen-activated protein kinase (MAPK) plays an important role in mediating the production of CCL20 induced by LPS (with or without IFN-gamma), whereas activation of p42/44 extracellular signal-regulated kinases (ERK) is involved in the enhancing effect of fMLP. Taken together, these findings identify novel biological actions exerted by fMLP and IFN-gamma, potentially involved in the orchestration of inflammatory and immune responses within epithelial and mucosal tissue.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | | | | | | | | |
Collapse
|