1
|
Nakashima A, Yamamoto I, Kobayashi A, Kimura K, Yaginuma T, Nishio S, Kato K, Kawai R, Horino T, Ohkido I, Yokoo T. Active vitamin D analog and SARS-CoV-2 IgG after BNT162b2 vaccination in patients with hemodialysis. Ther Apher Dial 2024; 28:599-607. [PMID: 38504452 DOI: 10.1111/1744-9987.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Vaccination is the effective strategy for coronavirus disease 2019 (COVID-19). However, few studies have investigated the association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin (Ig)G and vitamin D. METHODS This study aimed to investigate the association between SARS-CoV-2 IgG and active vitamin D analogs in hemodialysis patients. Blood samples were collected four times: before vaccination and 30, 60, and 90 days after vaccination, BNT162b2 (Pfizer©). RESULTS A total of 418 patients were enrolled. The mean age was 71.1 ± 12 years. Almost two thirds of the patients were prescribed active vitamin D analogs. The distribution of SARS-CoV-2 IgG before vaccination was 235 (93-454) AU/mL. After multiple regression analyses, active vitamin D analog use was found to be associated with higher SARS-CoV-2 IgG levels from prevaccination to 90 days postvaccination. CONCLUSION This study demonstrated an association between higher SARS-CoV-2 IgG and active vitamin D analog use in hemodialysis patients. CLINICAL TRIAL REGISTRATION The study information was registered in the UMIN-CTR (UMIN 000046906).
Collapse
Affiliation(s)
- Akio Nakashima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Izumi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Arisa Kobayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | - Kazuhiko Kato
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rena Kawai
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsuya Horino
- Department of Infectious Diseases and Infection Control, The Jikei University School of Medicine, Tokyo, Japan
| | - Ichiro Ohkido
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Shinnakasu R, Sakakibara S, Yamamoto H, Wang PH, Moriyama S, Sax N, Ono C, Yamanaka A, Adachi Y, Onodera T, Sato T, Shinkai M, Suzuki R, Matsuura Y, Hashii N, Takahashi Y, Inoue T, Yamashita K, Kurosaki T. Glycan engineering of the SARS-CoV-2 receptor-binding domain elicits cross-neutralizing antibodies for SARS-related viruses. J Exp Med 2021; 218:e20211003. [PMID: 34623376 PMCID: PMC8641255 DOI: 10.1084/jem.20211003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.
Collapse
Affiliation(s)
- Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiromi Yamamoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Po-hung Wang
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Saya Moriyama
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | | | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Atsushi Yamanaka
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yu Adachi
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | - Taishi Onodera
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | | | | | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshimasa Takahashi
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, Research Center for Allergy and Immunology, RIKEN, Yokohama, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Ishihara S, Sato T, Sugioka R, Miwa R, Saito H, Sato R, Fukuyama H, Nakajima A, Sawai S, Kotani A, Katagiri K. Rap1 Is Essential for B-Cell Locomotion, Germinal Center Formation and Normal B-1a Cell Population. Front Immunol 2021; 12:624419. [PMID: 34140948 PMCID: PMC8203927 DOI: 10.3389/fimmu.2021.624419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Integrin regulation by Rap1 is indispensable for lymphocyte recirculation. In mice having B-cell-specific Rap1a/b double knockouts (DKO), the number of B cells in lymph nodes decreased to approximately 4% of that of control mice, and B cells were present in the spleen and blood. Upon the immunization with NP-CGG, DKO mice demonstrated the defective GC formation in the spleen, and the reduced NP-specific antibody production. In vitro, Rap1 deficiency impaired the movement of activated B cells along the gradients of chemoattractants known to be critical for their localization in the follicles. Furthermore, B-1a cells were almost completely absent in the peritoneal cavity, spleen and blood of adult DKO mice, and the number of B-cell progenitor/precursor (B-p) were reduced in neonatal and fetal livers. However, DKO B-ps normally proliferated, and differentiated into IgM+ cells in the presence of IL-7. CXCL12-dependent migration of B-ps on the VCAM-1 was severely impaired by Rap1 deficiency. Immunostaining study of fetal livers revealed defects in the co-localization of DKO B-ps and IL-7-producing stromal cells. This study proposes that the profound effects of Rap1-deficiency on humoral responses and B-1a cell generation may be due to or in part caused by impairments of the chemoattractant-dependent positioning and the contact with stromal cells.
Collapse
Affiliation(s)
- Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Tsuyoshi Sato
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Risa Sugioka
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Ryota Miwa
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Haruka Saito
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Ryota Sato
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Hidehiro Fukuyama
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Akihiko Nakajima
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Ai Kotani
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Isehara, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| |
Collapse
|
4
|
Highlights from International Immunology in 2020. Int Immunol 2020. [DOI: 10.1093/intimm/dxaa075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Thymic Stromal Lymphopoietin Is Implicated in the Pathogenesis of Bullous Pemphigoid by Dendritic Cells. J Immunol Res 2020; 2020:4594630. [PMID: 33029540 PMCID: PMC7532392 DOI: 10.1155/2020/4594630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives Both thymic stromal lymphopoietin (TSLP) and dendritic cells (DCs) are involved in many autoimmune diseases, but the potential roles of TSLP and DCs in bullous pemphigoid (BP) have not been clarified. We sought to explore the contributions of TSLP and DCs in patients with BP. Methods TSLP levels in sera and blister fluids were measured by enzyme-linked immunosorbent assay. The TSLP expression in the BP lesional skin was detected by immunohistochemical staining. Infiltration of DCs, marked by DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), and its relationship with TSLP and TSLP receptors was evaluated by immunofluorescence staining. Results We found that TSLP levels in sera and in blister fluids of patients with BP were higher compared to the control groups. In patients with BP, TSLP levels in sera correlated with TSLP levels in blisters. The expression of TSLP in the BP lesional skin was higher compared to the healthy controls' skin. Greater numbers of TSLP-positive cells were observed in the epidermis of patients with BP compared to the healthy controls. Greater numbers of DC-SIGN-positive cells were present in the BP lesional skin compared to the skin of controls. The expression of TSLP was highly upregulated in DC-SIGN-positive cells, and most DC-SIGN-positive cells expressed TSLP receptors. Conclusions We conclude that TSLP may activate DC-SIGN-positive DCs directly, which may be involved in the pathogenesis of BP.
Collapse
|
6
|
Fukuyama H, Shinnakasu R, Kurosaki T. Influenza vaccination strategies targeting the hemagglutinin stem region. Immunol Rev 2020; 296:132-141. [PMID: 32542739 PMCID: PMC7323124 DOI: 10.1111/imr.12887] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Influenza is one of the best examples of highly mutable viruses that are able to escape immune surveillance. Indeed, in response to influenza seasonal infection or vaccination, the majority of the induced antibodies are strain‐specific. Current vaccine against the seasonal strains with the strategy of surveillance‐prediction‐vaccine does not cover an unmet virus strain leading to pandemic. Recently, antibodies targeting conserved epitopes on the hemagglutinin (HA) protein have been identified, albeit rarely, and they often showed broad protection. These antibody discoveries have brought the feasibility to develop a universal vaccine. Most of these antibodies bind the HA stem domain and accumulate in the memory B cell compartment. Broadly reactive stem‐biased memory responses were induced by infection with antigenically divergent influenza strains and were able to eradicate these viruses, together indicating the importance of generating memory B cells expressing high‐quality anti‐stem antibodies. Here, we emphasize recent progress in our understanding of how such memory B cells can be generated and discuss how these advances may be relevant to the quest for a universal influenza vaccine.
Collapse
Affiliation(s)
- Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Cellular Systems Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,INSERM EST, Strasbourg Cedex 2, France
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|