1
|
Mohamad-Ramshan R, Sakhtemani R, Butt Y, Lawrence M, Bhagwat A. Nucleotide level mapping of uracils in murine heavy chain switch regions shows correlation between uracilation and positions of switch junctions created during class-switch recombination. NAR MOLECULAR MEDICINE 2025; 2:ugaf003. [PMID: 40083807 PMCID: PMC11897869 DOI: 10.1093/narmme/ugaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Introduction of uracils in specific regions within immunoglobulin genes by the activation-induced deaminase (AID) promotes mutations and double-strand breaks (DSBs). Although uracils are repaired through multiple DNA repair pathways, previous work has used mutations or DSBs as proxies for uracils and not mapped the uracils directly. We mapped uracils in the Ig heavy chain gene, Igh, in a murine cell line, CH12F3, undergoing class-switch recombination (CSR) using the uracil pull-down and sequencing technique. These cells undergo IgM-to-IgA switch upon expression of AID but do not undergo somatic hypermutation. We mapped uracils in cells defective in uracil repair and show that AID introduces high levels of uracils only in parts of switch-mu and switch-alpha regions and not in constant regions, the Igh variable region or the light chain genes. Furthermore, the peaks of uracilation match the previously determined distribution of switch junctions, which are representative of DSBs that cause isotype switching. This work confirms that AID creates uracils in both DNA strands and shows that there is a direct correlation between uracil creation and DSBs in the relevant switch regions. We evaluate proposed mechanisms of CSR in light of these findings and show that mapping uracils provides a fresh perspective on CSR.
Collapse
Affiliation(s)
| | - Ramin Sakhtemani
- Massachusetts General Hospital Krantz Family Center for Cancer Research, Boston, MA 02129, United States
| | - Yasha Butt
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Michael S Lawrence
- Massachusetts General Hospital Krantz Family Center for Cancer Research, Boston, MA 02129, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
2
|
Hao Q, Li J, Yeap LS. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2344-2353. [PMID: 39048716 DOI: 10.1007/s11427-024-2615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Antibody diversification is essential for an effective immune response, with somatic hypermutation (SHM) serving as a key molecular process in this adaptation. Activation-induced cytidine deaminase (AID) initiates SHM by inducing DNA lesions, which are ultimately resolved into point mutations, as well as small insertions and deletions (indels). These mutational outcomes contribute to antibody affinity maturation. The mechanisms responsible for generating point mutations and indels involve the base excision repair (BER) and mismatch repair (MMR) pathways, which are well coordinated to maintain genomic integrity while allowing for beneficial mutations to occur. In this regard, translesion synthesis (TLS) polymerases contribute to the diversity of mutational outcomes in antibody genes by enabling the bypass of DNA lesions. This review summarizes our current understanding of the distinct molecular mechanisms that generate point mutations and indels during SHM. Understanding these mechanisms is critical for elucidating the development of broadly neutralizing antibodies (bnAbs) and autoantibodies, and has implications for vaccine design and therapeutics.
Collapse
Affiliation(s)
- Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinfeng Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Schrader CE, Williams T, Pechhold K, Linehan EK, Tsuchimoto D, Nakabeppu Y. APE2 Promotes AID-Dependent Somatic Hypermutation in Primary B Cell Cultures That Is Suppressed by APE1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1804-1814. [PMID: 37074207 PMCID: PMC10234595 DOI: 10.4049/jimmunol.2100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
Somatic hypermutation (SHM) is necessary for Ab diversification and involves error-prone DNA repair of activation-induced cytidine deaminase-induced lesions in germinal center (GC) B cells but can also cause genomic instability. GC B cells express low levels of the DNA repair protein apurinic/apyrimidinic (AP) endonuclease (APE)1 and high levels of its homolog APE2. Reduced SHM in APE2-deficient mice suggests that APE2 promotes SHM, but these GC B cells also exhibit reduced proliferation that could impact mutation frequency. In this study, we test the hypothesis that APE2 promotes and APE1 suppresses SHM. We show how APE1/APE2 expression changes in primary murine spleen B cells during activation, impacting both SHM and class-switch recombination (CSR). High levels of both APE1 and APE2 early after activation promote CSR. However, after 2 d, APE1 levels decrease steadily with each cell division, even with repeated stimulation, whereas APE2 levels increase with each stimulation. When GC-level APE1/APE2 expression was engineered by reducing APE1 genetically (apex1+/-) and overexpressing APE2, bona fide activation-induced cytidine deaminase-dependent VDJH4 intron SHM became detectable in primary B cell cultures. The C terminus of APE2 that interacts with proliferating cell nuclear Ag promotes SHM and CSR, although its ATR-Chk1-interacting Zf-GRF domain is not required. However, APE2 does not increase mutations unless APE1 is reduced. Although APE1 promotes CSR, it suppresses SHM, suggesting that downregulation of APE1 in the GC is required for SHM. Genome-wide expression data compare GC and cultured B cells and new models depict how APE1 and APE2 expression and protein interactions change during B cell activation and affect the balance between accurate and error-prone repair during CSR and SHM.
Collapse
Affiliation(s)
- Carol E. Schrader
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Travis Williams
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Klaus Pechhold
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Erin K. Linehan
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Daisuke Tsuchimoto
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Hao Q, Zhan C, Lian C, Luo S, Cao W, Wang B, Xie X, Ye X, Gui T, Voena C, Pighi C, Wang Y, Tian Y, Wang X, Dai P, Cai Y, Liu X, Ouyang S, Sun S, Hu Q, Liu J, Ye Y, Zhao J, Lu A, Wang JY, Huang C, Su B, Meng FL, Chiarle R, Pan-Hammarström Q, Yeap LS. DNA repair mechanisms that promote insertion-deletion events during immunoglobulin gene diversification. Sci Immunol 2023; 8:eade1167. [PMID: 36961908 PMCID: PMC10351598 DOI: 10.1126/sciimmunol.ade1167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.
Collapse
Affiliation(s)
- Qian Hao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chuanzong Zhan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chaoyang Lian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Simin Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenyi Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Binbin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xia Xie
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
- Present address: Kindstar Global Precision Medicine Institute, Wuhan, China and Kindstar Biotech, Wuhan, China
| | - Tuantuan Gui
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
| | - Chiara Pighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Yanyan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Ying Tian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Yanni Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaojing Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Shengqun Ouyang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Shiqi Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Qianwen Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Departments of Endocrinology and Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
| | - Leng-Siew Yeap
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
5
|
McMahon A, Zhao J, Yan S. APE2: catalytic function and synthetic lethality draw attention as a cancer therapy target. NAR Cancer 2023; 5:zcad006. [PMID: 36755963 PMCID: PMC9900424 DOI: 10.1093/narcan/zcad006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
AP endonuclease 2 (APE2, APEX2 or APN2) is an emerging critical protein involved in genome and epigenome integrity. Whereas its catalytic function as a nuclease in DNA repair is widely accepted, recent studies have elucidated the function and mechanism of APE2 in the immune response and DNA damage response. Several genome-wide screens have identified APE2 as a synthetic lethal target for deficiencies of BRCA1, BRCA2 or TDP1 in cancer cells. Due to its overexpression in several cancer types, APE2 is proposed as an oncogene and could serve as prognostic marker of overall survival of cancer treatment. However, it remains to be discovered whether and how APE2 catalytic function and synthetic lethality can be modulated and manipulated as a cancer therapy target. In this review, we provide a current understanding of alterations and expression of APE2 in cancer, the function of APE2 in the immune response, and mechanisms of APE2 in ATR/Chk1 DNA damage response. We also summarize the role of APE2 in DNA repair pathways in the removal of heterogenous and complexed 3'-termini and MMEJ. Finally, we provide an updated perspective on how APE2 may be targeted for cancer therapy and future directions of APE2 studies in cancer biology.
Collapse
Affiliation(s)
- Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
6
|
Wu L, Shukla V, Yadavalli AD, Dinesh RK, Xu D, Rao A, Schatz DG. HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Genes Dev 2022; 36:433-450. [PMID: 35450882 PMCID: PMC9067407 DOI: 10.1101/gad.349438.122] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 01/07/2023]
Abstract
Somatic hypermutation (SHM) produces point mutations in immunoglobulin (Ig) genes in B cells when uracils created by the activation-induced deaminase are processed in a mutagenic manner by enzymes of the base excision repair (BER) and mismatch repair (MMR) pathways. Such uracil processing creates DNA strand breaks and is susceptible to the generation of deleterious deletions. Here, we demonstrate that the DNA repair factor HMCES strongly suppresses deletions without significantly affecting other parameters of SHM in mouse and human B cells, thereby facilitating the production of antigen-specific antibodies. The deletion-prone repair pathway suppressed by HMCES operates downstream from the uracil glycosylase UNG and is mediated by the combined action of BER factor APE2 and MMR factors MSH2, MSH6, and EXO1. HMCES's ability to shield against deletions during SHM requires its capacity to form covalent cross-links with abasic sites, in sharp contrast to its DNA end-joining role in class switch recombination but analogous to its genome-stabilizing role during DNA replication. Our findings lead to a novel model for the protection of Ig gene integrity during SHM in which abasic site cross-linking by HMCES intercedes at a critical juncture during processing of vulnerable gapped DNA intermediates by BER and MMR enzymes.
Collapse
Affiliation(s)
- Lizhen Wu
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Vipul Shukla
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | | | - Ravi K Dinesh
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Dijin Xu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, California 92037, USA
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
- Consortium for Regenerative Medicine, La Jolla, California 92037, USA
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
7
|
Corinaldesi C, Holmes AB, Shen Q, Grunstein E, Pasqualucci L, Dalla-Favera R, Basso K. Tracking Immunoglobulin Repertoire and Transcriptomic Changes in Germinal Center B Cells by Single-Cell Analysis. Front Immunol 2022; 12:818758. [PMID: 35095922 PMCID: PMC8789751 DOI: 10.3389/fimmu.2021.818758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
Abstract
In response to T-cell-dependent antigens, mature B cells in the secondary lymphoid organs are stimulated to form germinal centers (GCs), which are histological structures deputed to antibody affinity maturation, a process associated with immunoglobulin gene editing by somatic hypermutation (SHM) and class switch recombination (CSR). GC B cells are heterogeneous and transition across multiple stages before being eliminated by apoptosis or committing to post-GC differentiation as memory B cells or plasma cells. In order to explore the dynamics of SHM and CSR during the GC reaction, we identified GC subpopulations by single-cell (sc) transcriptomics and analyzed the load of immunoglobulin variable (V) region mutations as well as the isotype class distribution in each subpopulation. The results showed that the large majority of GC B cells display a quantitatively similar mutational load in the V regions and analogous IGH isotype class distribution, except for the precursors of memory B cells (PreM) and plasma cells (PBL). PreM showed a bimodal pattern with about half of the cells displaying high V region germline identity and enrichment for unswitched IGH, while the rest of the cells carried a mutational load similar to the bulk of GC B cells and showed a switched isotype. PBL displayed a bias toward expression of IGHG and higher V region germline identity compared to the bulk of GC B cells. Genes implicated in SHM and CSR were significantly induced in specific GC subpopulations, consistent with the occurrence of SHM in dark zone cells and suggesting that CSR can occur within the GC.
Collapse
Affiliation(s)
| | - Antony B. Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
| | - Eli Grunstein
- Department of Otolaringology Head and Neck Surgery, Columbia University, New York, NY, United States
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Genetics and Development, Columbia University, New York, NY, United States
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
8
|
Hossain MA, Lin Y, Driscoll G, Li J, McMahon A, Matos J, Zhao H, Tsuchimoto D, Nakabeppu Y, Zhao J, Yan S. APE2 Is a General Regulator of the ATR-Chk1 DNA Damage Response Pathway to Maintain Genome Integrity in Pancreatic Cancer Cells. Front Cell Dev Biol 2021; 9:738502. [PMID: 34796173 PMCID: PMC8593216 DOI: 10.3389/fcell.2021.738502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
The maintenance of genome integrity and fidelity is vital for the proper function and survival of all organisms. Recent studies have revealed that APE2 is required to activate an ATR-Chk1 DNA damage response (DDR) pathway in response to oxidative stress and a defined DNA single-strand break (SSB) in Xenopus laevis egg extracts. However, it remains unclear whether APE2 is a general regulator of the DDR pathway in mammalian cells. Here, we provide evidence using human pancreatic cancer cells that APE2 is essential for ATR DDR pathway activation in response to different stressful conditions including oxidative stress, DNA replication stress, and DNA double-strand breaks. Fluorescence microscopy analysis shows that APE2-knockdown (KD) leads to enhanced γH2AX foci and increased micronuclei formation. In addition, we identified a small molecule compound Celastrol as an APE2 inhibitor that specifically compromises the binding of APE2 but not RPA to ssDNA and 3′-5′ exonuclease activity of APE2 but not APE1. The impairment of ATR-Chk1 DDR pathway by Celastrol in Xenopus egg extracts and human pancreatic cancer cells highlights the physiological significance of Celastrol in the regulation of APE2 functionalities in genome integrity. Notably, cell viability assays demonstrate that APE2-KD or Celastrol sensitizes pancreatic cancer cells to chemotherapy drugs. Overall, we propose APE2 as a general regulator for the DDR pathway in genome integrity maintenance.
Collapse
Affiliation(s)
- Md Akram Hossain
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Garrett Driscoll
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Jia Li
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Joshua Matos
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Haichao Zhao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
9
|
Lin Y, McMahon A, Driscoll G, Bullock S, Zhao J, Yan S. Function and molecular mechanisms of APE2 in genome and epigenome integrity. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108347. [PMID: 34083046 DOI: 10.1016/j.mrrev.2020.108347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
APE2 is a rising vital player in the maintenance of genome and epigenome integrity. In the past several years, a series of studies have shown the critical roles and functions of APE2. We seek to provide the first comprehensive review on several aspects of APE2 in genome and epigenome integrity. We first summarize the distinct functional domains or motifs within APE2 including EEP (endonuclease/exonuclease/phosphatase) domain, PIP box and Zf-GRF motifs from eight species (i.e., Homo sapiens, Mus musculus, Xenopus laevis, Ciona intestinalis, Arabidopsis thaliana, Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Trypanosoma cruzi). Then we analyze various APE2 nuclease activities and associated DNA substrates, including AP endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-5' exonuclease activities. We also examine several APE2 interaction proteins, including PCNA, Chk1, APE1, Myh1, and homologous recombination (HR) factors such as Rad51, Rad52, BRCA1, BRCA2, and BARD1. Furthermore, we provide insights into the roles of APE2 in various DNA repair pathways (base excision repair, single-strand break repair, and double-strand break repair), DNA damage response (DDR) pathways (ATR-Chk1 and p53-dependent), immunoglobulin class switch recombination and somatic hypermutation, as well as active DNA demethylation. Lastly, we summarize critical functions of APE2 in growth, development, and diseases. In this review, we provide the first comprehensive perspective which dissects all aspects of the multiple-function protein APE2 in genome and epigenome integrity.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Garrett Driscoll
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Sharon Bullock
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States.
| |
Collapse
|
10
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Roco JA, Mesin L, Binder SC, Nefzger C, Gonzalez-Figueroa P, Canete PF, Ellyard J, Shen Q, Robert PA, Cappello J, Vohra H, Zhang Y, Nowosad CR, Schiepers A, Corcoran LM, Toellner KM, Polo JM, Meyer-Hermann M, Victora GD, Vinuesa CG. Class-Switch Recombination Occurs Infrequently in Germinal Centers. Immunity 2019; 51:337-350.e7. [PMID: 31375460 DOI: 10.1016/j.immuni.2019.07.001] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023]
Abstract
Class-switch recombination (CSR) is a DNA recombination process that replaces the immunoglobulin (Ig) constant region for the isotype that can best protect against the pathogen. Dysregulation of CSR can cause self-reactive BCRs and B cell lymphomas; understanding the timing and location of CSR is therefore important. Although CSR commences upon T cell priming, it is generally considered a hallmark of germinal centers (GCs). Here, we have used multiple approaches to show that CSR is triggered prior to differentiation into GC B cells or plasmablasts and is greatly diminished in GCs. Despite finding a small percentage of GC B cells expressing germline transcripts, phylogenetic trees of GC BCRs from secondary lymphoid organs revealed that the vast majority of CSR events occurred prior to the onset of somatic hypermutation. As such, we have demonstrated the existence of IgM-dominated GCs, which are unlikely to occur under the assumption of ongoing switching.
Collapse
Affiliation(s)
- Jonathan A Roco
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, 10065, USA
| | - Sebastian C Binder
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany
| | - Christian Nefzger
- Department of Anatomy and Developmental Biology and Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton VIC 3800, Australia
| | - Paula Gonzalez-Figueroa
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Pablo F Canete
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Julia Ellyard
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Qian Shen
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany
| | - Jean Cappello
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Harpreet Vohra
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Carla R Nowosad
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, 10065, USA
| | - Arien Schiepers
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, 10065, USA
| | - Lynn M Corcoran
- Molecular Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Jose M Polo
- Department of Anatomy and Developmental Biology and Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton VIC 3800, Australia
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, 10065, USA
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia; China-Australia Centre for Personalised Immunology, Department of Rheumatology, Shanghai Renji Hospital, Shanghai JiaoTong University, Shanghai, China.
| |
Collapse
|
12
|
Pilzecker B, Jacobs H. Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front Immunol 2019; 10:438. [PMID: 30915081 PMCID: PMC6423074 DOI: 10.3389/fimmu.2019.00438] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
13
|
Zanotti KJ, Maul RW, Yang W, Gearhart PJ. DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1573-1581. [PMID: 30665938 PMCID: PMC6382588 DOI: 10.4049/jimmunol.1801183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Antibody diversity is initiated by activation-induced deaminase (AID), which deaminates cytosine to uracil in DNA. Uracils in the Ig gene loci can be recognized by uracil DNA glycosylase (UNG) or mutS homologs 2 and 6 (MSH2-MSH6) proteins, and then processed into DNA breaks. Breaks in switch regions of the H chain locus cause isotype switching and have been extensively characterized as staggered and blunt double-strand breaks. However, breaks in V regions that arise during somatic hypermutation are poorly understood. In this study, we characterize AID-dependent break formation in JH introns from mouse germinal center B cells. We used a ligation-mediated PCR assay to detect single-strand breaks and double-strand breaks that were either staggered or blunt. In contrast to switch regions, V regions contained predominantly single-strand breaks, which peaked 10 d after immunization. We then examined the pathways used to generate these breaks in UNG- and MSH6-deficient mice. Surprisingly, both DNA repair pathways contributed substantially to break formation, and in the absence of both UNG and MSH6, the frequency of breaks was severely reduced. When the breaks were sequenced and mapped, they were widely distributed over a 1000-bp intron region downstream of JH3 and JH4 exons and were unexpectedly located at all 4 nt. These data suggest that during DNA repair, nicks are generated at distal sites from the original deaminated cytosine, and these repair intermediates could generate both faithful and mutagenic repair. During mutagenesis, single-strand breaks would allow entry for low-fidelity DNA polymerases to generate somatic hypermutation.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
14
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Zanotti KJ, Gearhart PJ. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst) 2016; 38:110-116. [PMID: 26719140 PMCID: PMC4740194 DOI: 10.1016/j.dnarep.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/30/2015] [Indexed: 10/25/2022]
Abstract
The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine to uracil in DNA to create a U:G mismatch. During somatic hypermutation, the MutSα complex binds to the mismatch, and the error-prone DNA polymerase η generates mutations at A and T bases. During class switch recombination, both MutSα and MutLα complexes bind to the mismatch, resulting in double-strand break formation and end-joining. This review is centered on the mechanisms of how the MMR pathway is commandeered by B cells to generate antibody diversity.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
16
|
Fontes FL, Pinheiro DML, Oliveira AHSD, Oliveira RKDM, Lajus TBP, Agnez-Lima LF. Role of DNA repair in host immune response and inflammation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:246-57. [PMID: 25795123 DOI: 10.1016/j.mrrev.2014.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/28/2022]
Abstract
In recent years, the understanding of how DNA repair contributes to the development of innate and acquired immunity has emerged. The DNA damage incurred during the inflammatory response triggers the activation of DNA repair pathways, which are required for host-cell survival. Here, we reviewed current understanding of the mechanism by which DNA repair contributes to protection against the oxidized DNA damage generated during infectious and inflammatory diseases and its involvement in innate and adaptive immunity. We discussed the functional role of DNA repair enzymes in the immune activation and the relevance of these processes to: transcriptional regulation of cytokines and other genes involved in the inflammatory response; V(D)J recombination; class-switch recombination (CSR); and somatic hypermutation (SHM). These three last processes of DNA damage repair are required for effective humoral adaptive immunity, creating genetic diversity in developing T and B cells. Furthermore, viral replication is also dependent on host DNA repair mechanisms. Therefore, the elucidation of the pathways of DNA damage and its repair that activate innate and adaptive immunity will be important for a better understanding of the immune and inflammatory disorders and developing new therapeutic interventions for treatment of these diseases and for improving their outcome.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Daniele Maria Lopes Pinheiro
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | | | - Tirzah Braz Petta Lajus
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil; Liga Contra o Cancer, Natal, RN, Brazil.
| | | |
Collapse
|
17
|
APE1 is dispensable for S-region cleavage but required for its repair in class switch recombination. Proc Natl Acad Sci U S A 2014; 111:17242-7. [PMID: 25404348 DOI: 10.1073/pnas.1420221111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for antibody diversification, namely somatic hypermutation (SHM) and class switch recombination (CSR). The deficiency of apurinic/apyrimidinic endonuclease 1 (Ape1) in CH12F3-2A B cells reduces CSR to ∼20% of wild-type cells, whereas the effect of APE1 loss on SHM has not been examined. Here we show that, although APE1's endonuclease activity is important for CSR, it is dispensable for SHM as well as IgH/c-myc translocation. Importantly, APE1 deficiency did not show any defect in AID-induced S-region break formation, but blocked both the recruitment of repair protein Ku80 to the S region and the synapse formation between Sμ and Sα. Knockdown of end-processing factors such as meiotic recombination 11 homolog (MRE11) and carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) further reduced the remaining CSR in Ape1-null CH12F3-2A cells. Together, our results show that APE1 is dispensable for SHM and AID-induced DNA breaks and may function as a DNA end-processing enzyme to facilitate the joining of broken ends during CSR.
Collapse
|
18
|
Guikema JEJ, Linehan EK, Esa N, Tsuchimoto D, Nakabeppu Y, Woodland RT, Schrader CE. Apurinic/apyrimidinic endonuclease 2 regulates the expansion of germinal centers by protecting against activation-induced cytidine deaminase-independent DNA damage in B cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:931-9. [PMID: 24935922 DOI: 10.4049/jimmunol.1400002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Activation-induced cytidine deaminase (AID) initiates a process generating DNA mutations and breaks in germinal center (GC) B cells that are necessary for somatic hypermutation and class-switch recombination. GC B cells can "tolerate" DNA damage while rapidly proliferating because of partial suppression of the DNA damage response by BCL6. In this study, we develop a model to study the response of mouse GC B cells to endogenous DNA damage. We show that the base excision repair protein apurinic/apyrimidinic endonuclease (APE) 2 protects activated B cells from oxidative damage in vitro. APE2-deficient mice have smaller GCs and reduced Ab responses compared with wild-type mice. DNA double-strand breaks are increased in the rapidly dividing GC centroblasts of APE2-deficient mice, which activate a p53-independent cell cycle checkpoint and a p53-dependent apoptotic response. Proliferative and/or oxidative damage and AID-dependent damage are additive stresses that correlate inversely with GC size in wild-type, AID-, and APE2-deficient mice. Excessive double-strand breaks lead to decreased expression of BCL6, which would enable DNA repair pathways but limit GC cell numbers. These results describe a nonredundant role for APE2 in the protection of GC cells from AID-independent damage, and although GC cells uniquely tolerate DNA damage, we find that the DNA damage response can still regulate GC size through pathways that involve p53 and BCL6.
Collapse
Affiliation(s)
- Jeroen E J Guikema
- Department of Molecular and Physiological Systems, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655; Department of Pathology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands; and
| | - Erin K Linehan
- Department of Molecular and Physiological Systems, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655
| | - Nada Esa
- Department of Molecular and Physiological Systems, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655
| | - Daisuke Tsuchimoto
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Robert T Woodland
- Department of Molecular and Physiological Systems, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655
| | - Carol E Schrader
- Department of Molecular and Physiological Systems, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655;
| |
Collapse
|
19
|
Differential expression of APE1 and APE2 in germinal centers promotes error-prone repair and A:T mutations during somatic hypermutation. Proc Natl Acad Sci U S A 2014; 111:9217-22. [PMID: 24927551 DOI: 10.1073/pnas.1405590111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Somatic hypermutation (SHM) of antibody variable region genes is initiated in germinal center B cells during an immune response by activation-induced cytidine deaminase (AID), which converts cytosines to uracils. During accurate repair in nonmutating cells, uracil is excised by uracil DNA glycosylase (UNG), leaving abasic sites that are incised by AP endonuclease (APE) to create single-strand breaks, and the correct nucleotide is reinserted by DNA polymerase β. During SHM, for unknown reasons, repair is error prone. There are two APE homologs in mammals and, surprisingly, APE1, in contrast to its high expression in both resting and in vitro-activated splenic B cells, is expressed at very low levels in mouse germinal center B cells where SHM occurs, and APE1 haploinsufficiency has very little effect on SHM. In contrast, the less efficient homolog, APE2, is highly expressed and contributes not only to the frequency of mutations, but also to the generation of mutations at A:T base pair (bp), insertions, and deletions. In the absence of both UNG and APE2, mutations at A:T bp are dramatically reduced. Single-strand breaks generated by APE2 could provide entry points for exonuclease recruited by the mismatch repair proteins Msh2-Msh6, and the known association of APE2 with proliferating cell nuclear antigen could recruit translesion polymerases to create mutations at AID-induced lesions and also at A:T bp. Our data provide new insight into error-prone repair of AID-induced lesions, which we propose is facilitated by down-regulation of APE1 and up-regulation of APE2 expression in germinal center B cells.
Collapse
|
20
|
Chen Z, Wang JH. Generation and repair of AID-initiated DNA lesions in B lymphocytes. Front Med 2014; 8:201-16. [PMID: 24748462 PMCID: PMC4039616 DOI: 10.1007/s11684-014-0324-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/30/2013] [Indexed: 01/12/2023]
Abstract
Activation-induced deaminase (AID) initiates the secondary antibody diversification process in B lymphocytes. In mammalian B cells, this process includes somatic hypermutation (SHM) and class switch recombination (CSR), both of which require AID. AID induces U:G mismatch lesions in DNA that are subsequently converted into point mutations or DNA double stranded breaks during SHM/CSR. In a physiological context, AID targets immunoglobulin (Ig) loci to mediate SHM/CSR. However, recent studies reveal genome-wide access of AID to numerous non-Ig loci. Thus, AID poses a threat to the genome of B cells if AID-initiated DNA lesions cannot be properly repaired. In this review, we focus on the molecular mechanisms that regulate the specificity of AID targeting and the repair pathways responsible for processing AID-initiated DNA lesions.
Collapse
Affiliation(s)
- Zhangguo Chen
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus and National Jewish Health, Denver, CO 80206
| | - Jing H. Wang
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus and National Jewish Health, Denver, CO 80206
| |
Collapse
|
21
|
C-terminal region of activation-induced cytidine deaminase (AID) is required for efficient class switch recombination and gene conversion. Proc Natl Acad Sci U S A 2014; 111:2253-8. [PMID: 24469810 DOI: 10.1073/pnas.1324057111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) introduces single-strand breaks (SSBs) to initiate class switch recombination (CSR), gene conversion (GC), and somatic hypermutation (SHM). CSR is mediated by double-strand breaks (DSBs) at donor and acceptor switch (S) regions, followed by pairing of DSB ends in two S regions and their joining. Because AID mutations at its C-terminal region drastically impair CSR but retain its DNA cleavage and SHM activity, the C-terminal region of AID likely is required for the recombination step after the DNA cleavage. To test this hypothesis, we analyzed the recombination junctions generated by AID C-terminal mutants and found that 0- to 3-bp microhomology junctions are relatively less abundant, possibly reflecting the defects of the classical nonhomologous end joining (C-NHEJ). Consistently, the accumulation of C-NHEJ factors such as Ku80 and XRCC4 was decreased at the cleaved S region. In contrast, an SSB-binding protein, poly (ADP)-ribose polymerase1, was recruited more abundantly, suggesting a defect in conversion from SSB to DSB. In addition, recruitment of critical DNA synapse factors such as 53BP1, DNA PKcs, and UNG at the S region was reduced during CSR. Furthermore, the chromosome conformation capture assay revealed that DNA synapse formation is impaired drastically in the AID C-terminal mutants. Interestingly, these mutants showed relative reduction in GC compared with SHM in chicken DT40 cells. Collectively, our data indicate that the C-terminal region of AID is required for efficient generation of DSB in CSR and GC and thus for the subsequent pairing of cleaved DNA ends during recombination in CSR.
Collapse
|
22
|
Erratum to: The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res 2013. [DOI: 10.1007/s12026-013-8432-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Wang JH. The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res 2013; 55:287-97. [PMID: 22956489 DOI: 10.1007/s12026-012-8369-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than a decade ago, activation-induced deaminase (AID) was identified as the initiator for somatic hypermutation (SHM) and class switch recombination (CSR). Since then, tremendous progress has been achieved toward elucidating how AID functions. AID targets the highly repetitive switch regions of the immunoglobulin heavy chain (IgH) locus to induce DNA double-strand breaks (DSBs), which can be rejoined, leading to switch of constant regions of antibody. When targeting to variable region exons of IgH and IgL loci, AID predominantly induces point mutations, termed SHM, resulting in increased affinity of antibody for antigen. While SHM and CSR enhance antibody diversity, AID-initiated DSBs and mutations may predispose B cells to carcinogenesis. This review focuses on the mechanisms that provide the specificity of AID targeting to Ig loci and the role of AID in genomic instability.
Collapse
Affiliation(s)
- Jing H Wang
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
24
|
Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol Cell Biol 2013; 33:1468-73. [PMID: 23382073 DOI: 10.1128/mcb.00026-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID) that catalyzes numerous DNA cytosine deaminations within switch regions. The resulting uracils are processed by uracil base excision and/or mismatch repair enzymes that ultimately generate switch region DNA double-strand breaks (DSBs). Uracil glycosylase 2 (UNG2) is required for CSR, most likely by removing uracils to generate abasic sites. Although it is presumed that the apurinic/apyrimidinic endonuclease 1 (APE1) generates DNA strand incisions (a prerequisite for CSR) at these abasic sites, a direct test of the requirement for APE1 in CSR has been difficult because of the embryonic lethality of APE1 ablation in mice. Here, we report the successful deletion of the APE1 gene in a mouse B cell line (CH12F3) capable of robust CSR in vitro. In contrast to the general assumption that APE1 is essential for cellular viability, deletion of APE1 in CH12F3 cells has no apparent effect on cell viability or growth. Moreover, CSR in APE1-null CH12F3 cells is drastically reduced, providing direct evidence for an essential role for APE1 in switch region cleavage and CSR. Finally, deletion of AP endonuclease 2 (APE2) has no effect on CSR in either APE1-proficient or -deficient cells.
Collapse
|
25
|
Abstract
The mechanisms by which B cells somatically engineer their genomes to generate the vast diversity of antibodies required to challenge the nearly infinite number of antigens that immune systems encounter are of tremendous clinical and academic interest. The DNA cytidine deaminase activation-induced deaminase (AID) catalyzes two of these mechanisms: class switch recombination (CSR) and somatic hypermutation (SHM). Recent discoveries indicate a significant promiscuous targeting of this B-cell mutator enzyme genome-wide. Here we discuss the various regulatory elements that control AID activity and prevent AID from inducing genomic instability and thereby initiating oncogenesis.
Collapse
Affiliation(s)
- Celia Keim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
26
|
Richter K, Burch L, Chao F, Henke D, Jiang C, Daly J, Zhao ML, Kissling G, Diaz M. Altered pattern of immunoglobulin hypermutation in mice deficient in Slip-GC protein. J Biol Chem 2012; 287:31856-65. [PMID: 22833677 DOI: 10.1074/jbc.m112.340661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently identified a novel germinal center GTPase, SLIP-GC, that localizes to replication factories in B cells and that, when reduced, induces DNA breaks in lymphoma B cell lines in an activation-induced deaminase (AID)-dependent manner. Herein, we generated mice deficient in SLIP-GC and examined the impact of SLIP-GC deficiency in immunoglobulin hypermutation and class switch recombination, both AID-dependent mechanisms. SLIP-GC-deficient mice experienced a substantial increase in mutations at G:C base pairs at the region downstream of JH4 in the immunoglobulin heavy chain locus. This change was reflected in the overall mutation frequency, and it was associated with an increase in transitions from G:C base pairs, a hallmark of AID-mediated deamination during replication. In addition, G:C transitions at non-immunoglobulin loci also increased in these mice. Given the intracellular localization of SLIP-GC to sites of replicating DNA, these results suggest that SLIP-GC protects replicating DNA from AID-mediated deamination of cytosines in both strands.
Collapse
Affiliation(s)
- Kathleen Richter
- Somatic Hypermutation Group, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Daly J, Bebenek K, Watt DL, Richter K, Jiang C, Zhao ML, Ray M, McGregor WG, Kunkel TA, Diaz M. Altered Ig hypermutation pattern and frequency in complementary mouse models of DNA polymerase ζ activity. THE JOURNAL OF IMMUNOLOGY 2012; 188:5528-37. [PMID: 22547703 DOI: 10.4049/jimmunol.1102629] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To test the hypothesis that DNA polymerase ζ participates in Ig hypermutation, we generated two mouse models of Pol ζ function: a B cell-specific conditional knockout and a knock-in strain with a Pol ζ mutagenesis-enhancing mutation. Pol ζ-deficient B cells had a reduction in mutation frequency at Ig loci in the spleen and in Peyer's patches, whereas knock-in mice with a mutagenic Pol ζ displayed a marked increase in mutation frequency in Peyer's patches, revealing a pattern that was similar to mutations in yeast strains with a homologous mutation in the gene encoding the catalytic subunit of Pol ζ. Combined, these data are best explained by a direct role for DNA polymerase ζ in Ig hypermutation.
Collapse
Affiliation(s)
- Janssen Daly
- Somatic Hypermutation Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Honjo T, Kobayashi M, Begum N, Kotani A, Sabouri S, Nagaoka H. The AID dilemma: infection, or cancer? Adv Cancer Res 2012; 113:1-44. [PMID: 22429851 DOI: 10.1016/b978-0-12-394280-7.00001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AID's ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.
Collapse
|
29
|
Maul RW, Saribasak H, Martomo SA, McClure RL, Yang W, Vaisman A, Gramlich HS, Schatz DG, Woodgate R, Wilson DM, Gearhart PJ. Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nat Immunol 2011; 12:70-6. [PMID: 21151102 PMCID: PMC3653439 DOI: 10.1038/ni.1970] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/12/2010] [Indexed: 11/09/2022]
Abstract
Activation-induced deaminase (AID) initiates diversity of immunoglobulin genes through deamination of cytosine to uracil. Two opposing models have been proposed for the deamination of DNA or RNA by AID. Although most data support DNA deamination, there is no physical evidence of uracil residues in immunoglobulin genes. Here we demonstrate their presence by determining the sensitivity of DNA to digestion with uracil DNA glycosylase (UNG) and abasic endonuclease. Using several methods of detection, we identified uracil residues in the variable and switch regions. Uracil residues were generated within 24 h of B cell stimulation, were present on both DNA strands and were found to replace mainly cytosine bases. Our data provide direct evidence for the model that AID functions by deaminating cytosine residues in DNA.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guikema JEJ, Stavnezer J, Schrader CE. The role of Apex2 in class-switch recombination of immunoglobulin genes. Int Immunol 2010; 22:213; author reply 213-4. [PMID: 20185435 DOI: 10.1093/intimm/dxq003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Sabouri Z, Okazaki IM, Shinkura R, Begum N, Nagaoka H, Honjo T. Author's reply: Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. Int Immunol 2010. [DOI: 10.1093/intimm/dxq002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Abstract
In response to an assault by foreign organisms, peripheral B cells can change their antibody affinity and isotype by somatically mutating their genomic DNA. The ability of a cell to modify its DNA is exceptional in light of the potential consequences of genetic alterations to cause human disease and cancer. Thus, as expected, this mechanism of antibody diversity is tightly regulated and coordinated through one protein, activation-induced deaminase (AID). AID produces diversity by converting cytosine to uracil within the immunoglobulin loci. The deoxyuracil residue is mutagenic when paired with deoxyguanosine, since it mimics thymidine during DNA replication. Additionally, B cells can manipulate the DNA repair pathways so that deoxyuracils are not faithfully repaired. Therefore, an intricate balance exists which is regulated at multiple stages to promote mutation of immunoglobulin genes, while retaining integrity of the rest of the genome. Here we discuss and summarize the current understanding of how AID functions to cause somatic hypermutation.
Collapse
Affiliation(s)
- Robert W. Maul
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Patricia J. Gearhart
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
33
|
Stavnezer J, Björkman A, Du L, Cagigi A, Pan-Hammarström Q. Mapping of Switch Recombination Junctions, a Tool for Studying DNA Repair Pathways during Immunoglobulin Class Switching. Adv Immunol 2010; 108:45-109. [DOI: 10.1016/b978-0-12-380995-7.00003-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination. Proc Natl Acad Sci U S A 2009; 106:22375-80. [PMID: 20018730 DOI: 10.1073/pnas.0911879106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.
Collapse
|