1
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Cagigi A, Yu M, Österberg B, Svensson J, Falck-Jones S, Vangeti S, Åhlberg E, Azizmohammadi L, Warnqvist A, Falck-Jones R, Gubisch PC, Ödemis M, Ghafoor F, Eisele M, Lenart K, Bell M, Johansson N, Albert J, Sälde J, Pettie DD, Murphy MP, Carter L, King NP, Ols S, Normark J, Ahlm C, Forsell MN, Färnert A, Loré K, Smed-Sörensen A. Airway antibodies emerge according to COVID-19 severity and wane rapidly but reappear after SARS-CoV-2 vaccination. JCI Insight 2021; 6:e151463. [PMID: 34665783 PMCID: PMC8663786 DOI: 10.1172/jci.insight.151463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Understanding the presence and durability of antibodies against SARS-CoV-2 in the airways is required to provide insights into the ability of individuals to neutralize the virus locally and prevent viral spread. Here, we longitudinally assessed both systemic and airway immune responses upon SARS-CoV-2 infection in a clinically well-characterized cohort of 147 infected individuals representing the full spectrum of COVID-19 severity, from asymptomatic infection to fatal disease. In addition, we evaluated how SARS-CoV-2 vaccination influenced the antibody responses in a subset of these individuals during convalescence as compared with naive individuals. Not only systemic but also airway antibody responses correlated with the degree of COVID-19 disease severity. However, although systemic IgG levels were durable for up to 8 months, airway IgG and IgA declined significantly within 3 months. After vaccination, there was an increase in both systemic and airway antibodies, in particular IgG, often exceeding the levels found during acute disease. In contrast, naive individuals showed low airway antibodies after vaccination. In the former COVID-19 patients, airway antibody levels were significantly elevated after the boost vaccination, highlighting the importance of prime and boost vaccinations for previously infected individuals to obtain optimal mucosal protection.
Collapse
Affiliation(s)
- Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Svensson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Åhlberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lida Azizmohammadi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Warnqvist
- Unit of Biostatistics, Institute of Environmental Medicine, and
| | - Ryan Falck-Jones
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Pia C. Gubisch
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mert Ödemis
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Farangies Ghafoor
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mona Eisele
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Max Bell
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska University Laboratory, and
| | - Jörgen Sälde
- Närakut SLSO, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Deleah D. Pettie
- Department of Biochemistry and
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Michael P. Murphy
- Department of Biochemistry and
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Lauren Carter
- Department of Biochemistry and
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Neil P. King
- Department of Biochemistry and
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Normark
- Section of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Section of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Mattias N. Forsell
- Section of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Francica JR, Flynn BJ, Foulds KE, Noe AT, Werner AP, Moore IN, Gagne M, Johnston TS, Tucker C, Davis RL, Flach B, O'Connell S, Andrew SF, Lamb E, Flebbe DR, Nurmukhambetova ST, Donaldson MM, Todd JPM, Zhu AL, Atyeo C, Fischinger S, Gorman MJ, Shin S, Edara VV, Floyd K, Lai L, Boyoglu-Barnum S, Van De Wetering R, Tylor A, McCarthy E, Lecouturier V, Ruiz S, Berry C, Tibbitts T, Andersen H, Cook A, Dodson A, Pessaint L, Van Ry A, Koutsoukos M, Gutzeit C, Teng IT, Zhou T, Li D, Haynes BF, Kwong PD, McDermott A, Lewis MG, Fu TM, Chicz R, van der Most R, Corbett KS, Suthar MS, Alter G, Roederer M, Sullivan NJ, Douek DC, Graham BS, Casimiro D, Seder RA. Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Sci Transl Med 2021; 13:scitranslmed.abi4547. [PMID: 34315825 PMCID: PMC9266840 DOI: 10.1126/scitranslmed.abi4547] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Protein subunit–based vaccines have been used extensively for protection against viral infections. Here, Francica et al. tested a protein subunit vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The authors vaccinated nonhuman primates with soluble prefusion-stabilized spike trimers (preS dTM) plus the adjuvant AS03, an oil-in-water emulsion. The authors found that preS dTM plus AS03 induced robust antibody and cellular immune responses that protected nonhuman primates from disease when challenged with SARS-CoV-2. This rapid protection, with increases in antibodies specific to spike protein observable as soon as 2 days after infection, provides evidence of a critical anamnestic antibody response. Antibodies elicited by preS dTM vaccination are protective against SARS-CoV-2 in nonhuman primates. Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike protein trimers (preS dTM) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHPs). Binding and functional neutralization assays and systems serology revealed that the vaccinated NHP developed AS03-dependent multifunctional humoral responses that targeted distinct domains of the spike protein and bound to a variety of Fc receptors mediating immune cell effector functions in vitro. The neutralizing 50% inhibitory concentration titers for pseudovirus and live SARS-CoV-2 were higher than titers for a panel of human convalescent serum samples. NHPs were challenged intranasally and intratracheally with a high dose (3 × 106 plaque forming units) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days after challenge, vaccinated NHPs showed rapid control of viral replication in both the upper and lower airways. Vaccinated NHPs also had increased spike protein–specific immunoglobulin G (IgG) antibody responses in the lung as early as 2 days after challenge. Moreover, passive transfer of vaccine-induced IgG to hamsters mediated protection from subsequent SARS-CoV-2 challenge. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine were sufficient to mediate protection against SARS-CoV-2 in NHPs and that rapid anamnestic antibody responses in the lung may be a key mechanism for protection.
Collapse
Affiliation(s)
- Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Amy T Noe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Anne P Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian N Moore
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Courtney Tucker
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Rachel L Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Britta Flach
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sarah O'Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Saule T Nurmukhambetova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mitzi M Donaldson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alex Lee Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.,Ph.D. program in Immunology and Virology, University of Duisburg-Essen, Essen, Germany
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.,Ph.D. program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02138, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.,Ph.D. program in Immunology and Virology, University of Duisburg-Essen, Essen, Germany
| | - Matthew J Gorman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sally Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Venkata Viswanadh Edara
- Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University, Department of Pediatrics, Atlanta, GA, 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Katharine Floyd
- Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University, Department of Pediatrics, Atlanta, GA, 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Lilin Lai
- Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University, Department of Pediatrics, Atlanta, GA, 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Renee Van De Wetering
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alida Tylor
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | | | | | | | | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University, Durham, NC 27708, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27708, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | | - Tong Ming Fu
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Roman Chicz
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, USA
| | | | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mehul S Suthar
- Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University, Department of Pediatrics, Atlanta, GA, 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
4
|
Sendai Virus-Vectored Vaccines That Express Envelope Glycoproteins of Respiratory Viruses. Viruses 2021; 13:v13061023. [PMID: 34072332 PMCID: PMC8230104 DOI: 10.3390/v13061023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), and human parainfluenza viruses (HPIVs) are leading causes of respiratory disease in young children, the elderly, and individuals of all ages with immunosuppression. Vaccination strategies against these pneumoviruses and paramyxoviruses are vast in number, yet no licensed vaccines are available. Here, we review development of Sendai virus (SeV), a versatile pediatric vaccine that can (a) serve as a Jennerian vaccine against HPIV1, (b) serve as a recombinant vaccine against HRSV, HPIV2, HPIV3, and HMPV, (c) accommodate foreign genes for viral glycoproteins in multiple intergenic positions, (d) induce durable, mucosal, B-cell, and T-cell immune responses without enhanced immunopathology, (e) protect cotton rats, African green monkeys, and chimpanzees from infection, and (f) be formulated into a vaccine cocktail. Clinical phase I safety trials of SeV have been completed in adults and 3–6-year-old children. Clinical testing of SeVRSV, an HRSV fusion (F) glycoprotein gene recombinant, has also been completed in adults. Positive results from these studies, and collaborative efforts with the National Institutes of Health and the Serum Institute of India assist advanced development of SeV-based vaccines. Prospects are now good for vaccine successes in infants and consequent protection against serious viral disease.
Collapse
|
5
|
Chen X, Kang Y, Luo J, Pang K, Xu X, Wu J, Li X, Jin S. Next-Generation Sequencing Reveals the Progression of COVID-19. Front Cell Infect Microbiol 2021; 11:632490. [PMID: 33777844 PMCID: PMC7991797 DOI: 10.3389/fcimb.2021.632490] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus SARS-CoV-2 (causing the disease COVID-19) has caused a highly transmissible and ongoing pandemic worldwide. Due to its rapid development, next-generation sequencing plays vital roles in many aspects. Here, we summarize the current knowledge on the origin and human transmission of SARS-CoV-2 based on NGS analysis. The ACE2 expression levels in various human tissues and relevant cells were compared to provide insights into the mechanism of SAS-CoV-2 infection. Gut microbiota dysbiosis observed by metagenome sequencing and the immunogenetics of COVID-19 patients according to single-cell sequencing analysis were also highlighted. Overall, the application of these sequencing techniques could be meaningful for finding novel intermediate SARS-CoV-2 hosts to block interspecies transmission. This information will further benefit SARS-CoV-2 diagnostic development and new therapeutic target discovery. The extensive application of NGS will provide powerful support for our fight against future public health emergencies.
Collapse
Affiliation(s)
- Xiaomin Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yutong Kang
- Wenzhou Key Laboratory of Sanitary Microbiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Luo
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Pang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xin Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Francica JR, Flynn BJ, Foulds KE, Noe AT, Werner AP, Moore IN, Gagne M, Johnston TS, Tucker C, Davis RL, Flach B, O’Connell S, Andrew SF, Lamb E, Flebbe DR, Nurmukhambetova ST, Donaldson MM, Todd JPM, Zhu AL, Atyeo C, Fischinger S, Gorman MJ, Shin S, Edara VV, Floyd K, Lai L, Tylor A, McCarthy E, Lecouturier V, Ruiz S, Berry C, Tibbitts T, Andersen H, Cook A, Dodson A, Pessaint L, Ry AV, Koutsoukos M, Gutzeit C, Teng IT, Zhou T, Li D, Haynes BF, Kwong PD, McDermott A, Lewis MG, Fu TM, Chicz R, van der Most R, Corbett KS, Suthar MS, Alter G, Roederer M, Sullivan NJ, Douek DC, Graham BS, Casimiro D, Seder RA. Vaccination with SARS-CoV-2 Spike Protein and AS03 Adjuvant Induces Rapid Anamnestic Antibodies in the Lung and Protects Against Virus Challenge in Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.02.433390. [PMID: 33688652 PMCID: PMC7941623 DOI: 10.1101/2021.03.02.433390] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike trimers (preS dTM) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHP). Binding and functional neutralization assays and systems serology revealed that NHP developed AS03-dependent multi-functional humoral responses that targeted multiple spike domains and bound to a variety of antibody FC receptors mediating effector functions in vitro. Pseudovirus and live virus neutralizing IC50 titers were on average greater than 1000 and significantly higher than a panel of human convalescent sera. NHP were challenged intranasally and intratracheally with a high dose (3×106 PFU) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days post-challenge, vaccinated NHP showed rapid control of viral replication in both the upper and lower airways. Notably, vaccinated NHP also had increased spike-specific IgG antibody responses in the lung as early as 2 days post challenge. Moreover, vaccine-induced IgG mediated protection from SARS-CoV-2 challenge following passive transfer to hamsters. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine are sufficient to mediate protection against SARS-CoV-2 and support the evaluation of this vaccine in human clinical trials.
Collapse
Affiliation(s)
- Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J. Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy T. Noe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne P. Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian N. Moore
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Timothy S. Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Courtney Tucker
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel L. Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Britta Flach
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F. Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R. Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Saule T. Nurmukhambetova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mitzi M. Donaldson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul M. Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Lee Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- PhD program in Immunology and Virology, University of Duisburg-Essen, Essen, Germany
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- PhD program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- PhD program in Immunology and Virology, University of Duisburg-Essen, Essen, Germany
| | - Matthew J Gorman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sally Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Venkata Viswanadh Edara
- Centers for Childhood Infections and Vaccines; Children’s Healthcare of Atlanta and Emory University, Department of Pediatrics, Atlanta, GA, 30329, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Katharine Floyd
- Centers for Childhood Infections and Vaccines; Children’s Healthcare of Atlanta and Emory University, Department of Pediatrics, Atlanta, GA, 30329, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Lilin Lai
- Centers for Childhood Infections and Vaccines; Children’s Healthcare of Atlanta and Emory University, Department of Pediatrics, Atlanta, GA, 30329, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Alida Tylor
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University, Durham, NC 27708, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27708, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Tong Ming Fu
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Roman Chicz
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, USA
| | | | - Kizzmekia S. Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehul S. Suthar
- Centers for Childhood Infections and Vaccines; Children’s Healthcare of Atlanta and Emory University, Department of Pediatrics, Atlanta, GA, 30329, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Hurwitz JL. B Cells, Viruses, and the SARS-CoV-2/COVID-19 Pandemic of 2020. Viral Immunol 2020; 33:251-252. [PMID: 32348715 DOI: 10.1089/vim.2020.0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Magadan S, Jouneau L, Boudinot P, Salinas I. Nasal Vaccination Drives Modifications of Nasal and Systemic Antibody Repertoires in Rainbow Trout. THE JOURNAL OF IMMUNOLOGY 2019; 203:1480-1492. [PMID: 31413108 DOI: 10.4049/jimmunol.1900157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Bony fish represent the most basal vertebrate branch with a dedicated mucosal immune system, which comprises immunologically heterogeneous microenvironments armed with innate and adaptive components. In rainbow trout (Oncorhynchus mykiss), a nasopharynx-associated lymphoid tissue (NALT) was recently described as a diffuse network of myeloid and lymphoid cells located in the olfactory organ of fish. Several studies have demonstrated high levels of protection conferred by nasal vaccines against viral and bacterial pathogens; however, the mechanisms underlying the observed protection are not well understood. We applied 5'RACE and a deep sequencing-based approach to investigate the clonal structure of the systemic and mucosal rainbow trout B cell repertoire. The analysis of Ig repertoire in control trout suggests different structures of IgM and IgT spleen and NALT repertoires, with restricted repertoire diversity in NALT. Nasal and injection vaccination with a bacterial vaccine revealed unique dynamics of IgM and IgT repertoires at systemic and mucosal sites and the remarkable ability of nasal vaccines to induce spleen Ig responses. Our findings provide an important immunological basis for the effectiveness of nasal vaccination in fish and other vertebrate animals and will help the design of future nasal vaccination strategies.
Collapse
Affiliation(s)
- Susana Magadan
- Center of Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131.,Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Vigo, 36310 Pontevedra, Spain; and
| | - Luc Jouneau
- Virologie et Immunologie Moleculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas Cedex, France
| | - Pierre Boudinot
- Virologie et Immunologie Moleculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas Cedex, France
| | - Irene Salinas
- Center of Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131;
| |
Collapse
|
9
|
Sealy RE, Jones BG, Surman SL, Penkert RR, Pelletier S, Neale G, Hurwitz JL. Will Attention by Vaccine Developers to the Host's Nuclear Hormone Levels and Immunocompetence Improve Vaccine Success? Vaccines (Basel) 2019; 7:vaccines7010026. [PMID: 30818795 PMCID: PMC6466149 DOI: 10.3390/vaccines7010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 01/18/2023] Open
Abstract
Despite extraordinary advances in fields of immunology and infectious diseases, vaccine development remains a challenge. The development of a respiratory syncytial virus vaccine, for example, has spanned more than 50 years of research with studies of more than 100 vaccine candidates. Dozens of attractive vaccine products have entered clinical trials, but none have completed the path to licensing. Human immunodeficiency virus vaccine development has proven equally difficult, as there is no licensed product after more than 30 years of pre-clinical and clinical research. Here, we examine vaccine development with attention to the host. We discuss how nuclear hormones, including vitamins and sex hormones, can influence responses to vaccines. We show how nuclear hormones interact with regulatory elements of immunoglobulin gene loci and how the deletion of estrogen response elements from gene enhancers will alter patterns of antibody isotype expression. Based on these findings, and findings that nuclear hormone levels are often insufficient or deficient among individuals in both developed and developing countries, we suggest that failed vaccine studies may in some cases reflect weaknesses of the host rather than the product. We encourage analyses of nuclear hormone levels and immunocompetence among study participants in clinical trials to ensure the success of future vaccine programs.
Collapse
Affiliation(s)
- Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Rhiannon R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Geoff Neale
- The Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
10
|
Brady RC, Jackson LA, Frey SE, Shane AL, Walter EB, Swamy GK, Schlaudecker EP, Szefer E, Wolff M, McNeal MM, Bernstein DI, Steinhoff MC. Randomized trial comparing the safety and antibody responses to live attenuated versus inactivated influenza vaccine when administered to breastfeeding women. Vaccine 2018; 36:4663-4671. [PMID: 29961606 PMCID: PMC8785652 DOI: 10.1016/j.vaccine.2018.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are both licensed for administration to nursing mothers. Little is known about the potential for transmission of LAIV viruses from the mother to the infant and the comparative breast milk antibody responses to LAIV and IIV. METHODS We performed a randomized, double-blind study comparing the immunogenicity of LAIV to IIV when administered to nursing mothers. The safety of LAIV to IIV in women and their infants was also compared. Women received LAIV + intramuscular placebo, or IIV + intranasal placebo on Day 0. Breast milk and nasal swabs (from women and infants) were collected on Days 0, 2, and 8 for detection of LAIV. Breast milk and serum antibody responses were measured at Days 0 and 28. The primary hypothesis was that LAIV would provide superior induction of breast milk IgA responses to influenza as compared to IIV when administered to nursing mothers. RESULTS Breast milk IgG, breast milk IgA (H1N1 only), serum hemagglutination inhibition (HAI), and serum IgG responses were significantly higher following administration of IIV compared to LAIV. Receipt of either LAIV or IIV was safe in women and their infants. One (1%) LAIV recipient transmitted vaccine virus to her infant who remained well. No influenza virus was detected in breast milk. CONCLUSIONS Breast milk and serum antibody responses were higher for IIV compared to LAIV. LAIV and IIV were safe for nursing women but there was one (1%) possible transmission of LAIV to an infant. This study suggests that IIV may be the preferred vaccine for nursing mothers.
Collapse
MESH Headings
- Administration, Intranasal
- Adolescent
- Adult
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Antibody Formation
- Breast Feeding
- Double-Blind Method
- Female
- Humans
- Immunoglobulin A/analysis
- Immunoglobulin G/analysis
- Immunoglobulin G/blood
- Infant
- Infant, Newborn
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/immunology
- Injections, Intramuscular
- Male
- Middle Aged
- Milk, Human/immunology
- Orthomyxoviridae/immunology
- Placebos/administration & dosage
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Young Adult
Collapse
Affiliation(s)
- Rebecca C Brady
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | | - Mark Wolff
- The EMMES Corporation, Rockville, MD, USA
| | | | | | - Mark C Steinhoff
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
11
|
CD4 + T cells support establishment of RSV-specific IgG and IgA antibody secreting cells in the upper and lower murine respiratory tract following RSV infection. Vaccine 2017; 35:2617-2621. [PMID: 28410812 DOI: 10.1016/j.vaccine.2017.03.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
Abstract
The RSV vaccine field suffered a major set-back when children were vaccinated with a formalin-inactivated RSV vaccine (FI-RSV). Unexpectedly, the vaccinated children fared worse than unvaccinated children when they were naturally infected with RSV. Mouse models were then developed that implicated the CD4+ T helper cell population as a contributor to adverse events. Today, the T cell is viewed with much caution in the RSV field, and its induction by vaccination is sometimes discouraged. Here we re-emphasize the beneficial role of the CD4+ T cell. Experiments were performed with RSV-infected nude mice that received CD4+ T cells by adoptive transfer. Data demonstrated that CD4+ T cells were necessary for the induction of mucosal and systemic RSV-specific antibodies, for the establishment of RSV-specific IgG and IgA antibody secreting cells in the upper and lower respiratory tract, and for RSV clearance.
Collapse
|
12
|
Reber AJ, Kim JH, Coleman LA, Spencer SM, Chung JR, Chen J, Gargiullo P, Sundaram ME, Belongia EA, Shay DK, Katz JM, Sambhara S. Seasonal Influenza Vaccination of Children Induces Humoral and Cell-Mediated Immunity Beyond the Current Season: Cross-reactivity With Past and Future Strains. J Infect Dis 2016; 214:1477-1486. [PMID: 27571905 PMCID: PMC5731644 DOI: 10.1093/infdis/jiw380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/11/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Influenza viruses gradually accumulate point mutations, reducing the effectiveness of prior immune protection. METHODS Children aged 9-14 years received 2010-2011 trivalent inactivated influenza vaccine (TIV). Vaccination history, hemagglutination-inhibition (HI) titers, and cell-mediated immune responses were assessed to investigate the cross-reactivity with past and future influenza virus strains. RESULTS 2010-2011 TIV induced significant T-cell responses and HI titers of ≥160, with a fold-rise of ≥4 and titers of ≥100 maintained for >7 months in the majority of children. Pre-existing memory B cells in these children differentiated quickly to antibody-secreting cells to the new vaccine antigens. Children vaccinated in the previous year maintained high HI titers well into 2010, demonstrating elevated HI titers against A/Perth/16/2009, the future (in 2010-2011) H3N2 component. Prior vaccination enhanced CD8+ T-cell responses to A/Perth/16/2009. Children vaccinated with the prior 2009-2010 seasonal vaccine also demonstrated higher preexisting levels of interferon γ-secreting CD4+CD69+ T cells to 2009 pandemic influenza A(H1N1). Children previously vaccinated with 2009-2010 seasonal influenza vaccine also showed greater expansion of tumor necrosis factor α-secreting CD8+CD69+ T cells to 2009 pandemic influenza A(H1N1) upon vaccination in the 2010-2011 season than those who were not previously vaccinated. CONCLUSIONS Seasonal influenza viruses continuously drift, which allows them to circumvent protective immunity, but conserved epitopes provide immunological cross-reactivity in children through either vaccination directly or through prime/boost in the prior influenza season.
Collapse
Affiliation(s)
- Adrian J Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jin Hyang Kim
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Sarah M Spencer
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessie R Chung
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jufu Chen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Paul Gargiullo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - David K Shay
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
13
|
Sealy RE, Surman SL, Vogel P, Hurwitz JL. Antibody-secreting cells in respiratory tract tissues in the absence of eosinophils as supportive partners. Int Immunol 2016; 28:559-564. [PMID: 27432280 DOI: 10.1093/intimm/dxw035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
Antibody-secreting cells (ASCs) in respiratory tract tissues provide a first line of defense against invading pathogens. These cells often secrete IgA that is efficiently transcytosed across epithelial barriers into the airway lumen where pathogens can be blocked at their point of entry. Previous literature has reported that in the bone marrow, eosinophils are required for the maintenance of ASCs, and that eosinophils co-localize with ASCs as nearest neighbors. To determine if these rules similarly apply to the maintenance of ASCs in respiratory tract tissues, we evaluated virus-specific responses 1 month and 4 months following an intranasal virus infection of eosinophil-null (∆dblGATA-1) mice. Results showed that ASCs were fractionally reduced, but were nonetheless observed in respiratory tract tissues in the absence of eosinophils. Virus-specific antibodies were similarly observed in the airways of eosinophil-deficient mice. Respiratory tract ASCs were also present in mice lacking neutrophils (Mcl1∆M). The staining of tissue sections from the upper respiratory tract of wild-type mice following viral infections demonstrated that virus-specific ASCs were most frequently situated adjacent to epithelial cells rather than eosinophils or neutrophils. Taken together, these data emphasize that rules for cell maintenance are not absolute and that ASCs can survive in the respiratory tract without eosinophils or neutrophils as their nearest neighbors.
Collapse
Affiliation(s)
| | | | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases and .,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Madison Avenue, Memphis, TN 38163, USA
| |
Collapse
|
14
|
Relationships among dissemination of primary parainfluenza virus infection in the respiratory tract, mucosal and peripheral immune responses, and protection from reinfection: a noninvasive bioluminescence-imaging study. J Virol 2015; 89:3568-83. [PMID: 25589649 DOI: 10.1128/jvi.03581-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory paramyxoviruses such as respiratory syncytial virus (RSV) and human parainfluenza virus type 1 (HPIV1) to HPIV4 infect virtually all children by the age of 2 to 5 years, leading to partial but incomplete protection from reinfection. Here, we used luciferase-expressing reporter Sendai viruses (the murine counterpart of HPIV1) to noninvasively measure primary infection, immune responses, and protection from reinfection by either a lethal challenge or natural transmission in living mice. Both nonattenuated and attenuated reporter Sendai viruses were used, and three inoculation strategies were employed: intramuscular (i.m.), intranasal (i.n.) at a low dose and low volume, and i.n. at a high dose and high volume. High-dose, high-volume i.n. inoculation resulted in the highest levels of antibody responses and protection from reinfection. Low-dose, low-volume i.n. inoculation afforded complete protection from contact transmission and protection from morbidity, mortality, and viral growth during lethal challenge. i.m. inoculation was inferior to i.n. inoculation at inducing antibody responses and protection from challenge. For individual mice and across groups, the levels of serum binding and neutralizing antibody responses correlated with primary infection and protection from reinfection in the lungs. Contact transmission, the predominant mode of parainfluenza virus transmission, was modeled accurately by direct i.n. inoculation of Sendai virus at a low dose and low volume and was completely preventable by i.n. vaccination of an attenuated virus at a low dose and low volume. The data highlight differences in infection and protection from challenge in the upper versus lower respiratory tract and bear upon live attenuated vaccine development. IMPORTANCE There are currently no licensed vaccines against HPIVs and human RSV (HRSV), important respiratory pathogens of infants and children. Natural infection leads to partial but incomplete protective immunity, resulting in subsequent reinfections even in the absence of antigenic drift. Here, we used noninvasive bioluminescence imaging in a mouse model to dissect relationships among (i) the mode of inoculation, (ii) the dynamics of primary infection, (iii) consequent immune responses, and (iv) protection from high-dose, high-volume lethal challenge and contact transmission, which we find here to be similar to that of a mild low-dose, low-volume upper respiratory tract (URT)-biased infection. Our studies demonstrate the superiority of i.n. versus i.m. vaccination in protection against both lethal challenge and contact transmission. In addition to providing correlates of protection that will assist respiratory virus vaccine development, these studies extend the development of an increasingly used technique for the study of viral infection and immunity, noninvasive bioluminescence imaging.
Collapse
|
15
|
Broadly neutralizing anti-influenza virus antibodies: enhancement of neutralizing potency in polyclonal mixtures and IgA backbones. J Virol 2015; 89:3610-8. [PMID: 25589655 DOI: 10.1128/jvi.03099-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Current influenza virus vaccines rely upon the accurate prediction of circulating virus strains months in advance of the actual influenza season in order to allow time for vaccine manufacture. Unfortunately, mismatches occur frequently, and even when perfect matches are achieved, suboptimal vaccine efficacy leaves several high-risk populations vulnerable to infection. However, the recent discovery of broadly neutralizing antibodies that target the hemagglutinin (HA) stalk domain has renewed hope that the development of "universal" influenza virus vaccines may be within reach. Here, we examine the functions of influenza A virus hemagglutinin stalk-binding antibodies in an endogenous setting, i.e., as polyclonal preparations isolated from human sera. Relative to monoclonal antibodies that bind to the HA head domain, the neutralization potency of monoclonal stalk-binding antibodies was vastly inferior in vitro but was enhanced by several orders of magnitude in the polyclonal context. Furthermore, we demonstrated a surprising enhancement in IgA-mediated HA stalk neutralization relative to that achieved by antibodies of IgG isotypes. Mechanistically, this could be explained in two ways. Identical variable regions consistently neutralized virus more potently when in an IgA backbone compared to an IgG backbone. In addition, HA-specific memory B cells isolated from human peripheral blood were more likely to be stalk specific when secreting antibodies of IgA isotypes compared to those secreting IgG. Taken together, our data provide strong evidence that HA stalk-binding antibodies perform optimally when in a polyclonal context and that the targeted elicitation of HA stalk-specific IgA should be an important consideration during "universal" influenza virus vaccine design. IMPORTANCE Influenza viruses remain one of the most worrisome global public health threats due to their capacity to cause pandemics. While seasonal vaccines fail to protect against the emergence of pandemic strains, a new class of broadly neutralizing antibodies has been recently discovered and may be the key to developing a "universal" influenza virus vaccine. While much has been learned about the biology of these antibodies, most studies have focused only on monoclonal antibodies of IgG subtypes. However, the study of monoclonal antibodies often fails to capture the complexity of antibody functions that occur during natural polyclonal responses. Here, we provide the first detailed analyses of the biological activity of these antibodies in polyclonal contexts, comparing both IgG and IgA isotypes isolated from human donors. The striking differences observed in the functional properties of broadly neutralizing antibodies in polyclonal contexts will be essential for guiding design of "universal" influenza virus vaccines and therapeutics.
Collapse
|
16
|
Abstract
The respiratory tract is served by a variety of lymphoid tissues, including the tonsils, adenoids, nasal-associated lymphoid tissue (NALT), and bronchus-associated lymphoid tissue (BALT), as well as the lymph nodes that drain the upper and lower respiratory tract. Each of these tissues uses unique mechanisms to acquire antigens and respond to pathogens in the local environment and supports immune responses that are tailored to protect those locations. This chapter will review the important features of NALT and BALT and define how these tissues contribute to immunity in the upper and lower respiratory tract, respectively.
Collapse
|
17
|
Bordin AI, Pillai SD, Brake C, Bagley KB, Bourquin JR, Coleman M, Oliveira FN, Mwangi W, McMurray DN, Love CC, Felippe MJB, Cohen ND. Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals. PLoS One 2014; 9:e105367. [PMID: 25153708 PMCID: PMC4143214 DOI: 10.1371/journal.pone.0105367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam) inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi). No evidence of adverse effects was noted among vaccinated foals.
Collapse
Affiliation(s)
- Angela I. Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Suresh D. Pillai
- National Center for Electron Beam Research and Departments of Poultry Science and Nutrition and Food Science, Texas A&M University, College Station, Texas, United States of America
| | - Courtney Brake
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kaytee B. Bagley
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica R. Bourquin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michelle Coleman
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | | | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - David N. McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M University, College Station, Texas, United States of America
| | - Charles C. Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Maria Julia B. Felippe
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Noah D. Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Randall TD, Mebius RE. The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol 2014; 7:455-66. [PMID: 24569801 DOI: 10.1038/mi.2014.11] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
Mucosal surfaces are constantly exposed to environmental antigens, colonized by commensal organisms and used by pathogens as points of entry. As a result, the immune system has devoted the bulk of its resources to mucosal sites to maintain symbiosis with commensal organisms, prevent pathogen entry, and avoid unnecessary inflammatory responses to innocuous antigens. These functions are facilitated by a variety of mucosal lymphoid organs that develop during embryogenesis in the absence of microbial stimulation as well as ectopic lymphoid tissues that develop in adults following microbial exposure or inflammation. Each of these lymphoid organs samples antigens from different mucosal sites and contributes to immune homeostasis, commensal containment, and immunity to pathogens. Here we discuss the mechanisms, mostly based on mouse studies, that control the development of mucosal lymphoid organs and how the various lymphoid tissues cooperate to maintain the integrity of the mucosal barrier.
Collapse
Affiliation(s)
- T D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham Alabama, USA
| | - R E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Surman SL, Jones BG, Sealy RE, Rudraraju R, Hurwitz JL. Oral retinyl palmitate or retinoic acid corrects mucosal IgA responses toward an intranasal influenza virus vaccine in vitamin A deficient mice. Vaccine 2014; 32:2521-4. [PMID: 24657715 DOI: 10.1016/j.vaccine.2014.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/14/2014] [Accepted: 03/05/2014] [Indexed: 02/07/2023]
Abstract
Vitamin A deficiency (VAD) is a leading cause of pediatric morbidity and mortality due to infectious diseases. Recent pre-clinical studies have revealed that VAD impairs mucosal IgA-producing antibody forming cell (AFC) responses toward a paramyxovirus vaccine in the upper respiratory tract (URT), thus impeding a first line of defense at the pathogen's point-of-entry. The studies described here tested the hypothesis that VAD may also impair immune responses after FluMist vaccinations. Results show that (i) IgA-producing antibody forming cells (AFCs) are significantly reduced following FluMist vaccination in VAD mice, and (ii) oral doses of either retinyl palmitate or retinoic acid administered on days 0, 3, and 7 relative to vaccination rescue the response. Data encourage the conduct of clinical studies to determine if there are FluMist vaccine weaknesses in human VAD populations and to test corrective supplementation strategies. Improvements in vaccine efficacy may ultimately reduce the morbidity and mortality caused by influenza virus worldwide.
Collapse
Affiliation(s)
- S L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - B G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - R E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - R Rudraraju
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - J L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
20
|
Li W, Feng Y, Kuang Y, Zeng W, Yang Y, Li H, Jiang Z, Li M. Construction of eukaryotic expression vector with mBD1-mBD3 fusion genes and exploring its activity against influenza A virus. Viruses 2014; 6:1237-52. [PMID: 24632574 PMCID: PMC3970148 DOI: 10.3390/v6031237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 12/29/2022] Open
Abstract
Influenza (flu) pandemics have exhibited a great threat to human health throughout history. With the emergence of drug-resistant strains of influenza A virus (IAV), it is necessary to look for new agents for treatment and transmission prevention of the flu. Defensins are small (2–6 kDa) cationic peptides known for their broad-spectrum antimicrobial activity. Beta-defensins (β-defensins) are mainly produced by barrier epithelial cells and play an important role in attacking microbe invasion by epithelium. In this study, we focused on the anti-influenza A virus activity of mouse β-defensin 1 (mBD1) and β defensin-3 (mBD3) by synthesizing their fusion peptide with standard recombinant methods. The eukaryotic expression vectors pcDNA3.1(+)/mBD1-mBD3 were constructed successfully by overlap-PCR and transfected into Madin-Darby canine kidney (MDCK) cells. The MDCK cells transfected by pcDNA3.1(+)/mBD1-mBD3 were obtained by G418 screening, and the mBD1-mBD3 stable expression pattern was confirmed in MDCK cells by RT-PCR and immunofluorescence assay. The acquired stable transfected MDCK cells were infected with IAV (A/PR/8/34, H1N1, 0.1 MOI) subsequently and the virus titers in cell culture supernatants were analyzed by TCID50 72 h later. The TCID50 titer of the experimental group was clearly lower than that of the control group (p < 0.001). Furthermore, BALB/C mice were injected with liposome-encapsulated pcDNA3.1(+)/mBD1-mBD3 through muscle and then challenged with the A/PR/8/34 virus. Results showed the survival rate of 100% and lung index inhibitory rate of 32.6% in pcDNA3.1(+)/mBD1-mBD3group; the TCID50 titer of lung homogenates was clearly lower than that of the control group (p < 0.001). This study demonstrates that mBD1-mBD3 expressed by the recombinant plasmid pcDNA3.1(+)/mBD1-mBD3 could inhibit influenza A virus replication both in vitro and in vivo. These observations suggested that the recombinant mBD1-mBD3 might be developed into an agent for influenza prevention and treatment.
Collapse
Affiliation(s)
- Wanyi Li
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yan Feng
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yu Kuang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Wei Zeng
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yuan Yang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Hong Li
- West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhonghua Jiang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Mingyuan Li
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Falkeborn T, Bråve A, Larsson M, Åkerlind B, Schröder U, Hinkula J. Endocine™, N3OA and N3OASq; three mucosal adjuvants that enhance the immune response to nasal influenza vaccination. PLoS One 2013; 8:e70527. [PMID: 23950951 PMCID: PMC3738562 DOI: 10.1371/journal.pone.0070527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/19/2013] [Indexed: 12/27/2022] Open
Abstract
Annual outbreaks of seasonal influenza are controlled or prevented through vaccination in many countries. The seasonal vaccines used are either inactivated, currently administered parenterally, or live-attenuated given intranasally. In this study three mucosal adjuvants were examined for the influence on the humoral (mucosal and systemic) and cellular influenza A-specific immune responses induced by a nasally administered vaccine. We investigated in detail how the anionic Endocine™ and the cationic adjuvants N3OA and N3OASq mixed with a split inactivated influenza vaccine induced influenza A-specific immune responses as compared to the vaccine alone after intranasal immunization. The study showed that nasal administration of a split virus vaccine together with Endocine™ or N3OA induced significantly higher humoral and cell-mediated immune responses than the non-adjuvanted vaccine. N3OASq only significantly increased the cell-mediated immune response. Furthermore, nasal administration of the influenza vaccine in combination with any of the adjuvants; Endocine™, N3OA or N3OASq, significantly enhanced the mucosal immunity against influenza HA protein. Thus the addition of these mucosal adjuvants leads to enhanced immunity in the most relevant tissues, the upper respiratory tract and the systemic circulation. Nasal influenza vaccination with an inactivated split vaccine can therefore provide an important mucosal immune response, which is often low or absent after traditional parenteral vaccination.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Female
- Humans
- Immunity, Cellular
- Immunity, Mucosal
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/blood
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Tina Falkeborn
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Andreas Bråve
- Swedish Institute for Communicable Disease Control (SMI), Stockholm, Sweden
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Britt Åkerlind
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ulf Schröder
- Eurocine Vaccines AB, Karolinska Science Park, Solna, Sweden
| | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Eurocine Vaccines AB, Karolinska Science Park, Solna, Sweden
- * E-mail:
| |
Collapse
|
22
|
Bordin AI, Suchodolski JS, Markel ME, Weaver KB, Steiner JM, Dowd SE, Pillai S, Cohen ND. Effects of administration of live or inactivated virulent Rhodococccus equi and age on the fecal microbiome of neonatal foals. PLoS One 2013; 8:e66640. [PMID: 23785508 PMCID: PMC3681940 DOI: 10.1371/journal.pone.0066640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/08/2013] [Indexed: 01/30/2023] Open
Abstract
Background Rhodococcus equi is an important pathogen of foals. Enteral administration of live, virulent R. equi during early life has been documented to protect against subsequent intrabronchial challenge with R. equi, indicating that enteral mucosal immunization may be protective. Evidence exists that mucosal immune responses develop against both live and inactivated micro-organisms. The extent to which live or inactivated R. equi might alter the intestinal microbiome of foals is unknown. This is an important question because the intestinal microbiome of neonates of other species is known to change over time and to influence host development. To our knowledge, changes in the intestinal microbiome of foals during early life have not been reported. Thus, the purpose of this study was to determine whether age (during the first month of life) or administration of either live virulent R. equi (at a dose reported to protect foals against subsequent intrabronchial challenge, viz., 1×1010 colony forming units [CFU]) or inactivated virulent R. equi (at higher doses, viz., 2×1010 and 1×1011 [CFU]) altered the fecal microbiome of foals. Methodology/Principal Findings Fecal swab samples from 42 healthy foals after vaccination with low-dose inactivated R. equi (n = 9), high-dose inactivated R. equi (n = 10), live R. equi (n = 6), control with cholera toxin B (CTB, n = 9), and control without CTB (n = 8) were evaluated by 454-pyrosequencing of the 16S rRNA gene and by qPCR. No impact of treatment was observed among vaccinated foals; however, marked and significant differences in microbial communities and diversity were observed between foals at 30 days of age relative to 2 days of age. Conclusions The results suggest age-related changes in the fecal microbial population of healthy foals do occur, however, mucosal vaccination does not result in major changes of the fecal microbiome in foals.
Collapse
Affiliation(s)
- Angela I. Bordin
- Equine Infectious Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Melissa E. Markel
- Gastrointestinal Laboratory, Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kaytee B. Weaver
- Equine Infectious Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Scot E. Dowd
- Molecular Research DNA Laboratory, Shallowater, Texas, United States of America
| | - Suresh Pillai
- National Center for Electron Beam Research and Department of Poultry Science, Texas A&M University, College Station, Texas, United States of America
| | - Noah D. Cohen
- Equine Infectious Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|