1
|
Savvidis S, Ragazzini R, de Rafael VC, Hutchinson JC, Massimi L, Vittoria FA, Campinoti S, Partridge T, Ogunbiyi OK, Atzeni A, Sebire NJ, De Coppi P, Mittone A, Bravin A, Bonfanti P, Olivo A. Advanced three-dimensional X-ray imaging unravels structural development of the human thymus compartments. COMMUNICATIONS MEDICINE 2024; 4:204. [PMID: 39438572 PMCID: PMC11496816 DOI: 10.1038/s43856-024-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The thymus, responsible for T cell-mediated adaptive immune system, has a structural and functional complexity that is not yet fully understood. Until now, thymic anatomy has been studied using histological thin sections or confocal microscopy 3D reconstruction, necessarily for limited volumes. METHODS We used Phase Contrast X-Ray Computed Tomography to address the lack of whole-organ volumetric information on the microarchitecture of its structural components. We scanned 15 human thymi (9 foetal and 6 postnatal) with synchrotron radiation, and repeated scans using a conventional laboratory x-ray system. We used histology, immunofluorescence and flow cytometry to validate the x-ray findings. RESULTS Application to human thymi at pre- and post-natal stages allowed reliable tracking and quantification of the evolution of parameters such as size and distribution of Hassall's Bodies and medulla-to-cortex ratio, whose changes reflect adaptation of thymic activity. We show that Hassall's bodies can occupy 25% of the medulla volume, indicating they should be considered a third thymic compartment with possible implications on their role. Moreover, we demonstrate compatible results can be obtained with standard laboratory-based x-ray equipment, making this research tool accessible to a wider community. CONCLUSIONS Our study allows overcoming the resolution and/or volumetric limitations of existing approaches for the study of thymic disfunction in congenital and acquired disorders affecting the adaptive immune system.
Collapse
Affiliation(s)
- Savvas Savvidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, NW3 2PP, UK
| | - Valeria Conde de Rafael
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, NW3 2PP, UK
| | - J Ciaran Hutchinson
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Fabio A Vittoria
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- ENEA - Radiation Protection Institute, Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - Sara Campinoti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, NW3 2PP, UK
- The Roger Williams Institute of Hepatology, 111 Coldharbour Lane, SE5 9NT, London, UK
| | - Tom Partridge
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Olumide K Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Alessia Atzeni
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Neil J Sebire
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital NHS Trust, London, UK
| | - Alberto Mittone
- European Synchrotron Radiation Facility, Grenoble, 38043, France
- Advanced Photon Source, Argonne National Labs, Lemont, IL, USA
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, 38043, France
- Dept. of Physics "G. Occhialini", University Milano Bicocca, Milano, Italy
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, NW3 2PP, UK.
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Li Y, Wang X, Wu Q, Liu F, Yang L, Gong B, Zhang K, Ma Y, Li Y. miR-152-3p Represses the Proliferation of the Thymic Epithelial Cells by Targeting Smad2. Genes (Basel) 2022; 13:genes13040576. [PMID: 35456382 PMCID: PMC9028272 DOI: 10.3390/genes13040576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) control the proliferation of thymic epithelial cells (TECs) for thymic involution. Previous studies have shown that expression levels of miR-152-3p were significantly increased in the thymus and TECs during the involution of the mouse thymus. However, the possible function and potential molecular mechanism of miR-152-3p remains unclear. This study identified that the overexpression of miR-152-3p can inhibit, while the inhibition of miR-152-3p can promote, the proliferation of murine medullary thymic epithelial cell line 1 (MTEC1) cells. Moreover, miR-152-3p expression was quantitatively analyzed to negatively regulate Smad2, and the Smad2 gene was found to be a direct target of miR-152-3p, using the luciferase reporter assay. Importantly, silencing Smad2 was found to block the G1 phase of cells and inhibit the cell cycle, which was consistent with the overexpression of miR-152-3p. Furthermore, co-transfection studies of siRNA–Smad2 (siSmad2) and the miR-152-3p mimic further established that miR-152-3p inhibited the proliferation of MTEC1 cells by targeting Smad2 and reducing the expression of Smad2. Taken together, this study proved miR-152-3p to be an important molecule that regulates the proliferation of TECs and therefore provides a new reference for delaying thymus involution and thymus regeneration.
Collapse
|
3
|
Al-Suhaimi EA, Aljafary MA, Alkhulaifi FM, Aldossary HA, Alshammari T, AL-Qaaneh A, Aldahhan R, Alkhalifah Z, Gaymalov ZZ, Shehzad A, Homeida AM. Thymus Gland: A Double Edge Sword for Coronaviruses. Vaccines (Basel) 2021; 9:1119. [PMID: 34696231 PMCID: PMC8539924 DOI: 10.3390/vaccines9101119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
The thymus is the main lymphoid organ that regulates the immune and endocrine systems by controlling thymic cell proliferation and differentiation. The gland is a primary lymphoid organ responsible for generating mature T cells into CD4+ or CD8+ single-positive (SP) T cells, contributing to cellular immunity. Regarding humoral immunity, the thymic plasma cells almost exclusively secrete IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Deformity in the thymus can lead to inflammatory diseases. Hassall's corpuscles' epithelial lining produces thymic stromal lymphopoietin, which induces differentiation of CDs thymocytes into regulatory T cells within the thymus medulla. Thymic B lymphocytes produce immunoglobulins and immunoregulating hormones, including thymosin. Modulation in T cell and naive T cells decrement due to thymus deformity induce alteration in the secretion of various inflammatory factors, resulting in multiple diseases. Influenza virus activates thymic CD4+ CD8+ thymocytes and a large amount of IFNγ. IFNs limit virus spread, enhance macrophages' phagocytosis, and promote the natural killer cell restriction activity against infected cells. Th2 lymphocytes-produced cytokine IL-4 can bind to antiviral INFγ, decreasing the cell susceptibility and downregulating viral receptors. COVID-19 epitopes (S, M, and N proteins) with ≥90% identity to the SARS-CoV sequence have been predicted. These epitopes trigger immunity for antibodies production. Boosting the immune system by improving thymus function can be a therapeutic strategy for preventing virus-related diseases. This review aims to summarize the endocrine-immunoregulatory functions of the thymus and the underlying mechanisms in the prevention of COVID-19.
Collapse
Affiliation(s)
- Ebtesam A. Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Meneerah A. Aljafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Fadwa M. Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Hanan A. Aldossary
- Epidemic Diseases Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; or
| | - Thamer Alshammari
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Ayman AL-Qaaneh
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
- Clinical Pharmacy Services Division, Pharmacy Services Department, Johns Hopkins Aramco Healthcare (JHAH), Dhahran 31311, Saudi Arabia
| | - Razan Aldahhan
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Zahra Alkhalifah
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Zagit Z. Gaymalov
- Earlystage OÜ, Lasnamäe Linnaosa, Sepapaja tn 6, Harju Maakond, 15551 Tallinn, Estonia;
| | - Adeeb Shehzad
- Clinical Pharmacy Research Department, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdelgadir M. Homeida
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| |
Collapse
|
4
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
5
|
Wang X, Li Y, Gong B, Zhang K, Ma Y, Li Y. miR-199b-5p enhances the proliferation of medullary thymic epithelial cells via regulating Wnt signaling by targeting Fzd6. Acta Biochim Biophys Sin (Shanghai) 2021; 53:36-45. [PMID: 33313638 DOI: 10.1093/abbs/gmaa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 11/14/2022] Open
Abstract
Thymic epithelial cells (TECs) are essential regulators of T-cell development and selection. miRNAs play critical roles in regulating TEC proliferation during the process of thymic aging. Our previous studies revealed that miR-199b-5p was upregulated in TECs from 1- to 3-month-old mice. But its function and potential mechanism are not clear. We hypothesized that miR-199b-5p may play an important role in age-related thymus involution via targeting some genes. To confirm it, the murine thymic epithelial cell line 1 (MTEC1) cells were used. Our results showed that overexpression of miR-199b-5p can enhance MTEC1 cell proliferation. On the contrary, repression of miR-199b-5p can inhibit MTEC1 cell proliferation. Meanwhile, it was confirmed that frizzled receptor 6 (Fzd6) is the direct target gene of miR-199b-5p. Furthermore, overexpression of miR-199b-5p can upregulate the expressions of β-catenin, Tcf7, Wnt4, and C-myc to activate Wnt signaling and cell cycle signaling. Silence of Fzd6 and co-transfection with siFzd6 and miR-199b-5p mimic/inhibitor confirmed that the biological function of miR-199b-5p is indeed by targeting Fzd6 in medullary TECs. Overall, miR-199b-5p is an important regulator in medullary TEC proliferation through targeting Fzd6 to activate Wnt signaling and cell cycle signaling. Our data indicate that miR-199b-5p may block the process of thymic aging and be a potential therapeutic target for thymus involution.
Collapse
Affiliation(s)
| | | | - Bishuang Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kaizhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Cosway EJ, James KD, Lucas B, Anderson G, White AJ. The thymus medulla and its control of αβT cell development. Semin Immunopathol 2020; 43:15-27. [PMID: 33306154 PMCID: PMC7925449 DOI: 10.1007/s00281-020-00830-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
αβT cells are an essential component of effective immune responses. The heterogeneity that lies within them includes subsets that express diverse self-MHC-restricted αβT cell receptors, which can be further subdivided into CD4+ helper, CD8+ cytotoxic, and Foxp3+ regulatory T cells. In addition, αβT cells also include invariant natural killer T cells that are very limited in αβT cell receptor repertoire diversity and recognise non-polymorphic CD1d molecules that present lipid antigens. Importantly, all αβT cell sublineages are dependent upon the thymus as a shared site of their development. Ongoing research has examined how the thymus balances the intrathymic production of multiple αβT cell subsets to ensure correct formation and functioning of the peripheral immune system. Experiments in both wild-type and genetically modified mice have been essential in revealing complex cellular and molecular mechanisms that regulate thymus function. In particular, studies have demonstrated the diverse and critical role that the thymus medulla plays in shaping the peripheral T cell pool. In this review, we summarise current knowledge on functional properties of the thymus medulla that enable the thymus to support the production of diverse αβT cell types.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Andrea J White
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
7
|
García-Ceca J, Montero-Herradón S, Zapata AG. Intrathymic Selection and Defects in the Thymic Epithelial Cell Development. Cells 2020; 9:cells9102226. [PMID: 33023072 PMCID: PMC7601110 DOI: 10.3390/cells9102226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Intimate interactions between thymic epithelial cells (TECs) and thymocytes (T) have been repeatedly reported as essential for performing intrathymic T-cell education. Nevertheless, it has been described that animals exhibiting defects in these interactions were capable of a proper positive and negative T-cell selection. In the current review, we first examined distinct types of TECs and their possible role in the immune surveillance. However, EphB-deficient thymi that exhibit profound thymic epithelial (TE) alterations do not exhibit important immunological defects. Eph and their ligands, the ephrins, are implicated in cell attachment/detachment and govern, therefore, TEC–T interactions. On this basis, we hypothesized that a few normal TE areas could be enough for a proper phenotypical and functional maturation of T lymphocytes. Then, we evaluated in vivo how many TECs would be necessary for supporting a normal T-cell differentiation, concluding that a significantly low number of TEC are still capable of supporting normal T lymphocyte maturation, whereas with fewer numbers, T-cell maturation is not possible.
Collapse
Affiliation(s)
- Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Correspondence: ; Tel.: +34-91-394-4979
| |
Collapse
|
8
|
Gong B, Wang X, Li B, Li Y, Lu R, Zhang K, Li B, Ma Y, Li Y. miR-205-5p inhibits thymic epithelial cell proliferation via FA2H-TFAP2A feedback regulation in age-associated thymus involution. Mol Immunol 2020; 122:173-185. [PMID: 32371259 DOI: 10.1016/j.molimm.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/02/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
Thymic epithelial cells (TECs) are essential regulators of T cell development and selection. microRNAs (miRNAs) play critical roles in regulating TECs proliferation during thymus involution. miR-205-5p is highly expressed in TECs and increases with age. However, the function and potential mechanism of miR-205-5p in TECs are not clear. miRNA expression was profiled using TECs from male and female mice at 1 and 3 months old. A total of 325 differentially expressed miRNAs (DEMs) were detected at different ages in two sexes. 24 of the DEMs had the same trend between males and females. Among them, miR-205-5p had the highest fold change. Our results showed that the expression of miR-205-5p was dramatically increased in TECs from 1 to 9 months old mice. miR-205-5p mimic inhibited TECs proliferation. Moreover, we confirmed that Fa2h was the direct target gene of miR-205-5p and FA2H was significantly decreased in TECs with increased expression of miR-205-5p. Silencing of Fa2h inhibited TECs proliferation. Furthermore, we found that the expression of Tfap2a could be promoted by FA2H and that TFAP2A could interact with miR-205-5p in TECs. Overall, miR-205-5p is an important regulator of TECs proliferation and regulates age-associated thymus involution via the miR-205-5p-FA2H-TFAP2A feedback regulatory circuit. miR-205-5p might act as a potential biomarker in TECs for age-related thymus involution.
Collapse
Affiliation(s)
- Bishuang Gong
- College of Veterinary Medicine, South China Agricultural University, China
| | - Xintong Wang
- College of Veterinary Medicine, South China Agricultural University, China
| | - Boning Li
- the Department of Cardiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, China
| | - Rui Lu
- College of Veterinary Medicine, South China Agricultural University, China
| | - Kaizhao Zhang
- College of Veterinary Medicine, South China Agricultural University, China
| | - Bingxin Li
- College of Veterinary Medicine, South China Agricultural University, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, China.
| |
Collapse
|
9
|
Chen R, Wang K, Feng Z, Zhang MY, Wu J, Geng JJ, Chen ZN. CD147 deficiency in T cells prevents thymic involution by inhibiting the EMT process in TECs in the presence of TGFβ. Cell Mol Immunol 2020; 18:171-181. [PMID: 31900457 PMCID: PMC7853129 DOI: 10.1038/s41423-019-0353-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Thymic involution during aging is a major cause of decreased T-cell production and reduced immunity. Here, we show that the loss of CD147 on T cells prevents thymic senescence, resulting in slowed shrinkage of the thymus with age and increased production of naive T cells. This phenotype is the result of slowing of the epithelial–mesenchymal transition (EMT) process in thymic epithelial cells (TECs), which eventually leads to reduced adipocyte accumulation. In an in vitro coculture system, we found that TGFβ is an important factor in the EMT process in TECs and that it can reduce the expression of E-cadherin through p-Smad2/FoxC2 signaling. Moreover, CD147 on T cells can accelerate the decline in E-cadherin expression by interacting with Annexin A2 on TECs. In the presence of TGFβ, Annexin A2 and E-cadherin colocalize on TECs. However, CD147 on T cells competitively binds to Annexin A2 on TECs, leading to the isolation of E-cadherin. Then, the isolated E-cadherin is easily phosphorylated by phosphorylated Src kinase, the phosphorylation of which was induced by TGFβ, and finally, p-E-cadherin is degraded. Thus, in the thymus, the interaction between T cells and TECs contributes to thymic involution with age. In this study, we illuminate the mechanism underlying the triggering of the EMT process in TECs and show that inhibiting TGFβ and/or CD147 may serve as a strategy to hinder age-related thymic involution.
Collapse
Affiliation(s)
- Ruo Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong, China.,National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Zhuan Feng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Ming-Yang Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China.
| | - Zhi-Nan Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong, China. .,National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China.
| |
Collapse
|
10
|
Abstract
The generation of a functional T cell repertoire in the thymus is mainly orchestrated by thymic epithelial cells (TECs), which provide developing T cells with cues for their navigation, proliferation, differentiation and survival. The TEC compartment has been segregated historically into two major populations of medullary TECs and cortical TECs, which differ in their anatomical localization, molecular characteristics and functional roles. However, recent studies have shown that TECs are highly heterogeneous and comprise multiple subpopulations with distinct molecular and functional characteristics, including tuft cell-like or corneocyte-like phenotypes. Here, we review the most recent advances in our understanding of TEC heterogeneity from a molecular, functional and developmental perspective. In particular, we highlight the key insights that were recently provided by single-cell genomic technologies and in vivo fate mapping and discuss them in the context of previously published data.
Collapse
|
11
|
Wang J, Sekai M, Matsui T, Fujii Y, Matsumoto M, Takeuchi O, Minato N, Hamazaki Y. Hassall’s corpuscles with cellular-senescence features maintain IFNα production through neutrophils and pDC activation in the thymus. Int Immunol 2018; 31:127-139. [PMID: 30534943 PMCID: PMC9271218 DOI: 10.1093/intimm/dxy073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/17/2018] [Indexed: 11/14/2022] Open
Abstract
Hassall’s corpuscles (HCs) are composed of cornifying, terminally differentiated medullary thymic epithelial cells (mTECs) that are developed under the control of Aire. Here, we demonstrated that HC-mTECs show features of cellular senescence and produce inflammatory cytokines and chemokines including CXCL5, thereby recruiting and activating neutrophils to produce IL-23 in the thymic medulla. We further indicated that thymic plasmacytoid dendritic cells (pDCs) expressing IL-23 receptors constitutively produced Ifna, which plays a role in single positive (SP) cell maturation, in an Il23a-dependent manner. Neutrophil depletion with anti-Ly6G antibody injection resulted in a significant decrease of Ifna expression in the thymic pDCs, suggesting that thymic neutrophil activation underlies the Ifna expression in thymic pDCs in steady state conditions. A New Zealand White mouse strain showing HC hyperplasia exhibited greater numbers and activation of thymic neutrophils and pDCs than B6 mice, whereas Aire-deficient B6 mice with defective HC development and SP thymocyte maturation showed significantly compromised numbers and activation of these cells. These results collectively suggested that HC-mTECs with cell-senescence features initiate a unique cell activation cascade including neutrophils and pDCs leading to the constitutive IFNα expression required for SP T-cell maturation in the thymic medulla.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Yosuke Fujii
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
12
|
Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR, Wang H, Rattay K, Khan IS, Metzger TC, Pollack JL, Fries AC, Lwin WW, Wigton EJ, Parent AV, Kyewski B, Erle DJ, Hogquist KA, Steinmetz LM, Locksley RM, Anderson MS. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 2018; 559:627-631. [PMID: 30022164 PMCID: PMC6062473 DOI: 10.1038/s41586-018-0345-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
The thymus is responsible for generating a diverse yet self-tolerant pool of T cells1. Although the thymic medulla consists mostly of developing and mature AIRE+ epithelial cells, recent evidence has suggested that there is far greater heterogeneity among medullary thymic epithelial cells than was previously thought2. Here we describe in detail an epithelial subset that is remarkably similar to peripheral tuft cells that are found at mucosal barriers3. Similar to the periphery, thymic tuft cells express the canonical taste transduction pathway and IL-25. However, they are unique in their spatial association with cornified aggregates, ability to present antigens and expression of a broad diversity of taste receptors. Some thymic tuft cells pass through an Aire-expressing stage and depend on a known AIRE-binding partner, HIPK2, for their development. Notably, the taste chemosensory protein TRPM5 is required for their thymic function through which they support the development and polarization of thymic invariant natural killer T cells and act to establish a medullary microenvironment that is enriched in the type 2 cytokine, IL-4. These findings indicate that there is a compartmentalized medullary environment in which differentiation of a minor and highly specialized epithelial subset has a non-redundant role in shaping thymic function.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Irina Proekt
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jakob von Moltke
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kristen L Wells
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aparna R Rajpurkar
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Haiguang Wang
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin Rattay
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Immunology, Harvard Medical School, Boston, MA, USA
| | - Imran S Khan
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Todd C Metzger
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Bristol-Myers Squibb, Sunnyvale, CA, USA
| | - Joshua L Pollack
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Pionyr Immunotherapeutics, San Francisco, CA, USA
| | - Adam C Fries
- Biological Imaging Development Center and Department of Pathology, University of California, San Francisco, CA, USA
| | - Wint W Lwin
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Eric J Wigton
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey V Parent
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Bruno Kyewski
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David J Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kristin A Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lars M Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Takamura S. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells. Front Immunol 2018; 9:1214. [PMID: 29904388 PMCID: PMC5990602 DOI: 10.3389/fimmu.2018.01214] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in the lymphoid and non-lymphoid organs without recirculation through the blood. These important cells occupy and utilize unique anatomical and physiological niches that are distinct from those for other memory T cell populations, such as central memory T cells in the secondary lymphoid organs and effector memory T cells that circulate through the tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where they are optimally positioned to act as sentinels to trigger antigen-specific protection against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such as below the basement membrane, and cluster in lymphoid structures designed to optimize interactions with antigen-presenting cells upon reinfection. A key feature of TRM populations is their ability to be maintained in barrier tissues for prolonged periods of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the long-term maintenance of TRM cells in different microenvironments is dependent on multiple tissue-specific survival cues, although the specific details are poorly understood. However, not all TRM persist over the long term. Recently, we identified a new spatial niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM cells in this particular tissue. Clearly, a better understanding of the niche-dependent maintenance of TRM cells will be important for the development of vaccines designed to promote barrier immunity. In this review, we discuss recent advances in our understanding of the properties and nature of tissue-specific niches that maintain TRM cells in different tissues.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
14
|
Zhang K, Tan X, Li Y, Liang G, Ning Z, Ma Y, Li Y. Transcriptional profiling analysis of Zearalenone-induced inhibition proliferation on mouse thymic epithelial cell line 1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:135-141. [PMID: 29425844 DOI: 10.1016/j.ecoenv.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
Zearalenone (ZEA) was a mycotoxin biosynthesized by a variety of Fusarium fungi via a polypeptide pathway. ZEA has significant toxic reaction on immune cells. Thymic epithelial cells (TECs) as a crucial constituent of thymic stroma can provide unique microenvironment for thymocyte maturation, but the mechanism of ZEA affecting the TECs is poorly understood. The basic data about gene expression differences for the ZEA on thymic epithelial cell line 1 (MTEC1) will help us to elucidate this mechanism. Here, cell viability and proliferation assay and transcriptome sequencing on MTEC1 treated with ZEA were performed. 4188 differentially expressed genes (DEGs) between ZEA treated and control groups were identified, confirmed and analyzed. Our results showed that 10-50μg/ml ZEA significantly inhibited MTEC1 proliferation and arrested cell cycle at G2/M phase. Gene ontology and KEGG pathway analysis revealed that Chemokine, JAK-STAT and Toll-like receptor signaling pathway, were involved in the cell cycle pathway. 16 key genes involved in the cell cycle processes were validated and the results suggested that Mitotic catastrophe (MC) may take part in ZEA inhibition of METC1 cell proliferation. These data highlighted the importance of cell cycle pathway in MTEC1 treated with ZEA, and will contribute to get the molecular mechanisms of ZEA inhibition of MTEC1 cell proliferation.
Collapse
Affiliation(s)
- Kaizhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Tan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guan Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Tan J, Wang Y, Zhang N, Zhu X. Induction of epithelial to mesenchymal transition (EMT) and inhibition on adipogenesis: Two different sides of the same coin? Feasible roles and mechanisms of transforming growth factor β1 (TGF-β1) in age-related thymic involution. Cell Biol Int 2016; 40:842-6. [PMID: 27189906 DOI: 10.1002/cbin.10625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/08/2016] [Accepted: 05/14/2016] [Indexed: 12/16/2022]
Abstract
Age-related thymic involution is characterized by a loss of thymic epithelial cells (TECs) and a concomitant increase in adipocytes, but the mechanisms involved in thymic adipogenesis are still not clear. Transforming growth factor β1 (TGF-β1) is a pleiotropic cytokine that has been reported to be up-regulated with age in thymic stromal cells in both human and mouse. However, the exact role of TGF-β1 in age-related thymic involution remains to be further elucidated. On the basis of previous findings, we propose a novel hypothesis that TGF-β1 functions a dual role in age-related thymic involution. On one hand, up-regulation of TGF-β1 promotes epithelial to mesenchymal transition (EMT) process in TECs via activating forkhead box protein C2 (FoxC2). On the other hand, TGF-β1 inhibits the transdifferentiation of EMT-derived mesenchymal cells to adipocytes in the thymus. If confirmed, our hypothesis will not only provide further evidence supporting that the transdifferentiation of TECs into pre-adipocytes represents a source of thymic adiposity during age-related thymic involution, but also uncover a unique role of TGF-β1 in the transdifferentiation of TECs into pre-adipocytes. Collectively, the inhibition of TGF-β1 may serve as a strategy to hinder age-related thymic involution or even to restore thymic function in the elderly.
Collapse
Affiliation(s)
- Jianxin Tan
- Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yajun Wang
- Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Nannan Zhang
- Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Nerve Function, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xike Zhu
- Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
16
|
Valančiūtė A, Mozuraitė R, Balnytė I, Didžiapetrienė J, Matusevičius P, Stakišaitis D. Sodium valproate effect on the structure of rat glandule thymus: Gender-related differences. ACTA ACUST UNITED AC 2015; 67:399-406. [DOI: 10.1016/j.etp.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/03/2015] [Accepted: 04/12/2015] [Indexed: 12/30/2022]
|
17
|
Roberts N, Horsley V. Developing stratified epithelia: lessons from the epidermis and thymus. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:389-402. [PMID: 25176390 PMCID: PMC4283209 DOI: 10.1002/wdev.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
Stratified squamous epithelial cells are found in a number of organs, including the skin epidermis and the thymus. The progenitor cells of the developing epidermis form a multi-layered epithelium and appendages, like the hair follicle, to generate an essential barrier to protect against water loss and invasion of foreign pathogens. In contrast, the thymic epithelium forms a three-dimensional mesh of keratinocytes that are essential for positive and negative selection of self-restricted T cells. While these distinct stratified epithelial tissues derive from distinct embryonic germ layers, both tissues instruct immunity, and the epithelial differentiation programs and molecular mechanisms that control their development are remarkably similar. In this review, we aim to highlight some of the similarities between the thymus and the skin epidermis and its appendages during developmental specification.
Collapse
Affiliation(s)
- Natalie Roberts
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Valerie Horsley
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|