1
|
Huo R, Yang Y, Huo X, Meng D, Huang R, Yang Y, Lin J, Huang Y, Zhu X, Wei C, Huang X. Potential of resveratrol in the treatment of systemic lupus erythematosus (Review). Mol Med Rep 2024; 30:182. [PMID: 39155862 PMCID: PMC11350626 DOI: 10.3892/mmr.2024.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi‑system chronic autoimmune disease with a complex occurrence and development process, associated with immune disorders, uncertain prognosis, and treatment modalities which vary by patient and disease activity. At present, the clinical treatment of SLE mainly focuses on hormones and immunosuppressants. In recent years, the research on new treatment strategies for SLE has been booming, and strong preclinical results and clinical research have promoted the development of numerous drugs (such as rituximab and orencia), but numerous of these drugs have failed to achieve effectiveness in clinical trials, and there are some adverse reactions. Recent evidence suggests that resveratrol (RSV) has the effect of ameliorating immune disorders by inhibiting overactivation of immune cells. In the present review, advances in research on the protective effects and potential mechanisms of RSV against SLE are summarized and the potential potency of RSV and its use as a promising therapeutic option for the treatment of SLE are highlighted.
Collapse
Affiliation(s)
- Rongxiu Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yanting Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xiaocong Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Danli Meng
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Rongjun Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yijia Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xia Zhu
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Chengcheng Wei
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xinxiang Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| |
Collapse
|
2
|
Wang H, Chen N, Jian F, Zhang Z, Tai H, Pan H. Amyotrophic lateral sclerosis and myasthenia gravis overlaps syndrome: a series of case report. Neurol Sci 2024; 45:3549-3553. [PMID: 38403672 DOI: 10.1007/s10072-024-07369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Affiliation(s)
- Hengheng Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Na Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Fan Jian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China.
| |
Collapse
|
3
|
Mao Z, Nie Q, Xue Z, Li Z. Coexistence of Parkinson's disease and myasthenia gravis: A case report and literature review. Exp Ther Med 2024; 28:282. [PMID: 38800046 PMCID: PMC11117104 DOI: 10.3892/etm.2024.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
The coexistence of Parkinson's disease (PD) and myasthenia gravis (MG) is rare. When similar symptoms of both diseases overlap, it is challenging to make a concomitant diagnosis of PD and MG. The present study describes the case of a patient with concomitant PD and MG. In addition, a systematic literature review was conducted by searching PubMed and Embase for reports on all patients with concomitant PD and MG, which were then grouped and compared according to different preexisting diseases. Finally, a total of 47 cases of concomitant PD and MG (35 men; 12 women), including the present case, were analyzed. The median age of the patients at first diagnosis was 66.59±9.91 years. The interval between the two diseases varied from 2 months to 22 years. Based on the sequential occurrence of these two diseases, the patients were categorized into three groups: The prePD-MG (30 cases), preMG-PD (12 cases), and coPD-MG (5 cases) groups. In the prePD-MG group, the onset age of MG was older and head drop was more common. In the preMG-PD group, the patients were more likely to have comorbid immune diseases.
Collapse
Affiliation(s)
- Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qing Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
4
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
6
|
Rogers ML, Schultz DW, Karnaros V, Shepheard SR. Urinary biomarkers for amyotrophic lateral sclerosis: candidates, opportunities and considerations. Brain Commun 2023; 5:fcad287. [PMID: 37946793 PMCID: PMC10631861 DOI: 10.1093/braincomms/fcad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Amyotrophic lateral sclerosis is a relentless neurodegenerative disease that is mostly fatal within 3-5 years and is diagnosed on evidence of progressive upper and lower motor neuron degeneration. Around 15% of those with amyotrophic lateral sclerosis also have frontotemporal degeneration, and gene mutations account for ∼10%. Amyotrophic lateral sclerosis is a variable heterogeneous disease, and it is becoming increasingly clear that numerous different disease processes culminate in the final degeneration of motor neurons. There is a profound need to clearly articulate and measure pathological process that occurs. Such information is needed to tailor treatments to individuals with amyotrophic lateral sclerosis according to an individual's pathological fingerprint. For new candidate therapies, there is also a need for methods to select patients according to expected treatment outcomes and measure the success, or not, of treatments. Biomarkers are essential tools to fulfil these needs, and urine is a rich source for candidate biofluid biomarkers. This review will describe promising candidate urinary biomarkers of amyotrophic lateral sclerosis and other possible urinary candidates in future areas of investigation as well as the limitations of urinary biomarkers.
Collapse
Affiliation(s)
- Mary-Louise Rogers
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - David W Schultz
- Neurology Department and MND Clinic, Flinders Medical Centre, Adelaide 5042, South Australia, Australia
| | - Vassilios Karnaros
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - Stephanie R Shepheard
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| |
Collapse
|
7
|
Chi B, Öztürk MM, Paraggio CL, Leonard CE, Sanita ME, Dastpak M, O’Connell JD, Coady JA, Zhang J, Gygi SP, Lopez-Gonzalez R, Yin S, Reed R. Causal ALS genes impact the MHC class II antigen presentation pathway. Proc Natl Acad Sci U S A 2023; 120:e2305756120. [PMID: 37722062 PMCID: PMC10523463 DOI: 10.1073/pnas.2305756120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023] Open
Abstract
Mutations in RNA/DNA-binding proteins cause amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain unclear. Here, we report that a set of ALS-associated proteins, namely FUS, EWSR1, TAF15, and MATR3, impact the expression of genes encoding the major histocompatibility complex II (MHC II) antigen presentation pathway. Both subunits of the MHC II heterodimer, HLA-DR, are down-regulated in ALS gene knockouts/knockdown in HeLa and human microglial cells, due to loss of the MHC II transcription factor CIITA. Importantly, hematopoietic progenitor cells (HPCs) derived from human embryonic stem cells bearing the FUSR495X mutation and HPCs derived from C9ORF72 ALS patient induced pluripotent stem cells also exhibit disrupted MHC II expression. Given that HPCs give rise to numerous immune cells, our data raise the possibility that loss of the MHC II pathway results in global failure of the immune system to protect motor neurons from damage that leads to ALS.
Collapse
Affiliation(s)
- Binkai Chi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Muhammet M. Öztürk
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Christina L. Paraggio
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Claudia E. Leonard
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Maria E. Sanita
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Mahtab Dastpak
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jeremy D. O’Connell
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jordan A. Coady
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jiuchun Zhang
- Harvard Medical School Cell Biology Initiative for Genome Editing and Neurodegeneration, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Steven P. Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Rodrigo Lopez-Gonzalez
- Department of Neurosciences Lerner Research Institute, Cleveland Clinic, Cleveland, OH44196
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Robin Reed
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
8
|
Sanchez-Tejerina D, Llaurado A, Sotoca J, Lopez-Diego V, Vidal Taboada JM, Salvado M, Juntas-Morales R. Biofluid Biomarkers in the Prognosis of Amyotrophic Lateral Sclerosis: Recent Developments and Therapeutic Applications. Cells 2023; 12:cells12081180. [PMID: 37190090 DOI: 10.3390/cells12081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons for which effective therapies are lacking. One of the most explored areas of research in ALS is the discovery and validation of biomarkers that can be applied to clinical practice and incorporated into the development of innovative therapies. The study of biomarkers requires an adequate theoretical and operational framework, highlighting the "fit-for-purpose" concept and distinguishing different types of biomarkers based on common terminology. In this review, we aim to discuss the current status of fluid-based prognostic and predictive biomarkers in ALS, with particular emphasis on those that are the most promising ones for clinical trial design and routine clinical practice. Neurofilaments in cerebrospinal fluid and blood are the main prognostic and pharmacodynamic biomarkers. Furthermore, several candidates exist covering various pathological aspects of the disease, such as immune, metabolic and muscle damage markers. Urine has been studied less often and should be explored for its possible advantages. New advances in the knowledge of cryptic exons introduce the possibility of discovering new biomarkers. Collaborative efforts, prospective studies and standardized procedures are needed to validate candidate biomarkers. A combined biomarkers panel can provide a more detailed disease status.
Collapse
Affiliation(s)
- Daniel Sanchez-Tejerina
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Arnau Llaurado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Veronica Lopez-Diego
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Jose M Vidal Taboada
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Maria Salvado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Raul Juntas-Morales
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| |
Collapse
|
9
|
Afroz T, Chevalier E, Audrain M, Dumayne C, Ziehm T, Moser R, Egesipe AL, Mottier L, Ratnam M, Neumann M, Havas D, Ollier R, Piorkowska K, Chauhan M, Silva AB, Thapa S, Stöhr J, Bavdek A, Eligert V, Adolfsson O, Nelson PT, Porta S, Lee VMY, Pfeifer A, Kosco-Vilbois M, Seredenina T. Immunotherapy targeting the C-terminal domain of TDP-43 decreases neuropathology and confers neuroprotection in mouse models of ALS/FTD. Neurobiol Dis 2023; 179:106050. [PMID: 36809847 DOI: 10.1016/j.nbd.2023.106050] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function. Thus, using both in vitro mechanistic studies in conjunction with the rNLS8 and CamKIIa inoculation mouse models of TDP-43 proteinopathy, we identified the key targeting domain in TDP-43 to accomplish these therapeutic objectives. Targeting the C-terminal domain of TDP-43 but not the RNA recognition motifs (RRM) reduces TDP-43 pathology and avoids neuronal loss in vivo. We demonstrate that this rescue is dependent on Fc receptor-mediated immune complex uptake by microglia. Furthermore, monoclonal antibody (mAb) treatment enhances phagocytic capacity of ALS patient-derived microglia, providing a mechanism to restore the compromised phagocytic function in ALS and FTD patients. Importantly, these beneficial effects are achieved while preserving physiological TDP-43 activity. Our findings demonstrate that a mAb targeting the C-terminal domain of TDP-43 limits pathology and neurotoxicity, enabling clearance of misfolded TDP-43 through microglia engagement, and supporting the clinical strategy to target TDP-43 by immunotherapy. SIGNIFICANCE STATEMENT: TDP-43 pathology is associated with various devastating neurodegenerative disorders with high unmet medical needs such as frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Thus, safely and effectively targeting pathological TDP-43 represents a key paradigm for biotechnical research as currently there is little in clinical development. After years of research, we have determined that targeting the C-terminal domain of TDP-43 rescues multiple patho-mechanisms involved in disease progression in two animal models of FTD/ALS. In parallel, importantly, our studies establish that this approach does not alter the physiological functions of this ubiquitously expressed and indispensable protein. Together, our findings substantially contribute to the understanding of TDP-43 pathobiology and support the prioritization for clinical testing of immunotherapy approaches targeting TDP-43.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Manuela Neumann
- Department of Neuropathology, University of Tübingen, Tübingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | - Sílvia Porta
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
10
|
Wintz K, Post J, Langen KJ, Willbold D, Willuweit A, Kutzsche J. Oral Treatment with d-RD2RD2 Impedes Early Disease Mechanisms in SOD1*G93A Transgenic Mice but Does Not Prolong Survival. Biomedicines 2023; 11:biomedicines11040995. [PMID: 37189613 DOI: 10.3390/biomedicines11040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons, thus, progressing to complete muscle loss until the patient dies from respiratory arrest. The disease is not curable, and patients die approximately 2-5 years after diagnosis. Studying the underlying disease mechanisms to get access to new treatment options is, therefore, essential for patients' benefit. However, so far, only three drugs that alleviate the symptoms have been approved by the U.S. Food and Drug Administration (FDA). A new drug candidate for the treatment of ALS is the all-d-enantiomeric peptide RD2RD2. In this study, we investigated the therapeutic effect of RD2RD2 in two setups. First, we analyzed disease progression and survival in 7 week-old B6.Cg-Tg(SOD1*G93A)1Gur/J mice. Second, we confirmed the result of the survival analysis in the B6SJL-Tg(SOD1*G93A)1Gur/J mouse line. Shortly before disease onset, the mice were treated daily with an oral dose of 50 mg/kg body weight. Treatment with RD2RD2 led to a delayed disease onset and reduced motor phenotype as shown using the SHIRPA test, the splay reflex test, and the pole test, but did not affect survival. In conclusion, RD2RD2 has the ability to delay the onset of symptoms.
Collapse
Affiliation(s)
- Katharina Wintz
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Julia Post
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Department of Nuclear Medicine, RWTH Aachen University, 52062 Aachen, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Janine Kutzsche
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
11
|
Alessenko AV, Gutner UA, Shupik MA. Involvement of Lipids in the Pathogenesis of Amyotrophic Lateral Sclerosis. Life (Basel) 2023; 13:life13020510. [PMID: 36836867 PMCID: PMC9966871 DOI: 10.3390/life13020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons. To study its underlying mechanisms, a variety of models are currently used at the cellular level and in animals with mutations in multiple ALS associated genes, including SOD1, C9ORF72, TDP-43, and FUS. Key mechanisms involved in the disease include excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammatory, and immune reactions. In addition, significant metabolism alterations of various lipids classes, including phospholipids, fatty acids, sphingolipids, and others have been increasingly recognized. Recently, the mechanisms of programmed cell death (apoptosis), which may be responsible for the degeneration of motor neurons observed in the disease, have been intensively studied. In this context, sphingolipids, which are the most important sources of secondary messengers transmitting signals for cell proliferation, differentiation, and apoptosis, are gaining increasing attention in the context of ALS pathogenesis given their role in the development of neuroinflammatory and immune responses. This review describes changes in lipids content and activity of enzymes involved in their metabolism in ALS, both summarizing current evidence from animal models and clinical studies and discussing the potential of new drugs among modulators of lipid metabolism enzymes.
Collapse
|
12
|
Yildiz O, Schroth J, Tree T, Turner MR, Shaw PJ, Henson SM, Malaspina A. Senescent-like Blood Lymphocytes and Disease Progression in Amyotrophic Lateral Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200042. [PMID: 36323511 PMCID: PMC9673751 DOI: 10.1212/nxi.0000000000200042] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/22/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Aging is known to exacerbate neuroinflammation, and in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), an older age is associated with a worse prognosis. We have previously shown the activation of cell senescence pathways in the proteome of peripheral blood mononuclear cells and the increase of proinflammatory cytokines in blood from individuals living with ALS. In this single-center, retrospective study, we investigated the expression of senescent-like blood mononuclear cells in ALS. METHODS We first applied multidimensional cytometry by time-of-flight (CyTOF) to study the senescent immunophenotype of blood mononuclear cells from 21 patients with ALS and 10 healthy controls (HCs). We then used targeted flow cytometry (FC) to investigate frequencies of senescent blood lymphocytes in 40 patients with ALS and 20 HCs. Longitudinal analysis included 2 additional time points in 17 patients with ALS. Frequencies of senescent-like lymphocytes were analyzed in relation to survival. RESULTS Unsupervised clustering of CyTOF data showed higher frequencies of senescent CD4+CD27-CD57+ T cells in patients with ALS compared with those in HCs (p = 0.0017, false discovery (FDR)-adjusted p = 0.029). Moderate to strong negative correlations were identified between CD4 T central memory-cell frequencies and survival (R = -061, p = 0.01; FDR-adjusted p < 0.1) and between CD95 CD8 cells and ALS functional rating scale revised at baseline (R = -0.72, p = 0.001; FDR-adjusted p < 0.1).Targeted FC analysis showed higher memory T regulatory cells (p = 0.0052) and memory CD8+ T cell (M-Tc; p = 0.0006) in bulbar ALS (A-B) compared with those in limb ALS (A-L), while late memory B cells (LM-B) were also elevated in A-B and fast-progressing ALS (p = 0.0059). Higher M-Tc levels separated A-B from A-L (AUC: 0.887; p < 0.0001). A linear regression model with prespecified clinical independent variables and neurofilament light chain plasma concentration showed that higher frequencies of LM-B predicted a shorter survival (hazard ratio: 1.094, CI: 1.026-1.167; p = 0.006). DISCUSSION Our data suggest that a systemic elevation of senescent and late memory T and B lymphocytes is a feature of faster progressing ALS and of ALS individuals with bulbar involvement. Lymphocyte senescence and their memory state may be central to the immune dysregulation known to drive disease progression in ALS and a target for biomarkers and therapeutics discovery.
Collapse
Affiliation(s)
- Ozlem Yildiz
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Johannes Schroth
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Timothy Tree
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Martin R Turner
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Pamela J Shaw
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Sian M Henson
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Andrea Malaspina
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK.
| |
Collapse
|
13
|
Logan A, Nagy Z, Barnes NM, Belli A, Di Pietro V, Tavazzi B, Lazzarino G, Lazzarino G, Bruce L, Persson LI. A phase II open label clinical study of the safety, tolerability and efficacy of ILB® for Amyotrophic Lateral Sclerosis. PLoS One 2022; 17:e0267183. [PMID: 35613082 PMCID: PMC9132272 DOI: 10.1371/journal.pone.0267183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is an invariably lethal progressive disease, causing degeneration of neurons and muscle. No current treatment halts or reverses disease advance. This single arm, open label, clinical trial in patients with ALS investigated the safety and tolerability of a novel modified low molecular weight dextran sulphate (LMW-DS, named ILB®) previously proven safe for use in healthy volunteers and shown to exert potent neurotrophic effects in pre-clinical studies. Secondary endpoints relate to efficacy and exploratory biomarkers. Methods Thirteen patients with ALS were treated with 5 weekly subcutaneous injections of ILB®. Safety and efficacy outcome measures were recorded weekly during treatment and at regular intervals for a further 70 days. Functional and laboratory biomarkers were assessed before, during and after treatment. Results No deaths, serious adverse events or participant withdrawals occurred during or after ILB® treatment and no significant drug-related changes in blood safety markers were evident, demonstrating safety and tolerability of the drug in this cohort of patients with ALS. The PK of ILB® in patients with ALS was similar to that seen in healthy controls. The ILB® injection elicited a transient elevation of plasma Hepatocyte Growth Factor, a neurotrophic and myogenic growth factor. Following the ILB® injections patients reported increased vitality, decreased spasticity and increased mobility. The ALSFRS-R rating improved from 36.31 ± 6.66 to 38.77 ± 6.44 and the Norris rating also improved from 70.61 ± 13.91 to 77.85 ± 14.24 by Day 36. The improvement of functions was associated with a decrease in muscle atrophy biomarkers. These therapeutic benefits decreased 3–4 weeks after the last dosage. Conclusions This pilot clinical study demonstrates safety and tolerability of ILB® in patients with ALS. The exploratory biomarker and functional measures must be cautiously interpreted but suggest clinical benefit and have a bearing on the mechanism of action of ILB®. The results support the drug’s potential as the first disease modifying treatment for patients with ALS. Trial registration EudraCT 2017-005065-47.
Collapse
Affiliation(s)
- Ann Logan
- Axolotl Consulting Ltd, Droitwich, United Kingdom
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Zsuzsanna Nagy
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas M. Barnes
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Belli
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barbara Tavazzi
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Giacomo Lazzarino
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | | | - Lennart I. Persson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Li JY, Sun XH, Shen DC, Yang XZ, Liu MS, Cui LY. Clinical characteristics and prognosis of amyotrophic lateral sclerosis with autoimmune diseases. PLoS One 2022; 17:e0266529. [PMID: 35390090 PMCID: PMC8989203 DOI: 10.1371/journal.pone.0266529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/22/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction The occurrence of autoimmune diseases (AIDs) in amyotrophic lateral sclerosis (ALS) patients is widely reported, but little is known about the associated clinical phenotype. This study aims to evaluate the clinical features and prognosis of ALS patients with AID. Methods This retrospective study was based on the ALS Registry dataset of Peking Union Medical College Hospital from 2013 to 2020. Clinical features and inflammatory biomarkers at registration were compared between ALS patients with coexisting AIDs and those without (controls). The medical records of immunotherapy were also collected. The Kaplan–Meier method and Cox proportional hazard model were used to study the survival of ALS patients. Results There are 26 (1.6%) ALS patients with AIDs in our database. The ALS patients with AIDs had older ages at onset and poorer respiratory function than controls (p<0.05). After propensity score matching by sex, onset age, and disease duration, the difference in respiratory function remained significant between groups. We found no differences in overall survival between ALS patients with and without AIDs before and after matching (p = 0.836; p = 0.395). Older age at onset, rapid disease progression, and lower erythrocyte sedimentation rate (ESR) were associated with shorter survival (p<0.05). Among ALS patients with AIDs, 8 (30.8%) had a history of immunotherapy and showed slightly prolonged survival compared with those without immunotherapy, but the results did not reach statistical significance (p = 0.355). Conclusions Patients with coexisting ALS and AIDs had older onset age and poorer respiratory function but similar overall survival than those with pure ALS.
Collapse
Affiliation(s)
- Jin-Yue Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiao-Han Sun
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Dong-chao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xun-Zhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ming-Sheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Chavda V, Patel C, Modh D, Ertas YN, Sonak SS, Munshi NK, Anand K, Soni A, Pandey S. Therapeutic Approaches to Amyotrophic Lateral Sclerosis from the Lab to the Clinic. Curr Drug Metab 2022; 23:200-222. [PMID: 35272595 DOI: 10.2174/1389200223666220310113110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a terminal neuro-degenerative disorder that is clinically recognized as a gradual degeneration of the upper and lower motor neurons, with an average duration of 3 to 5 years from initiation of symptoms to death. The mechanisms underlying the pathogenesis and progression of the disease are multifactorial. Therefore, to find effective treatments, it is necessary to understand this heterogeneity underlying the progression of ALS. Recent developments in gene therapy have opened a new avenue to treat this condition, especially for the characterized genetic types. Gene therapy methods have been studied in a variety of pre-clinical settings and clinical trials, and they may be a promising path for developing an effective and safe ALS cure. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. The use and incorporation of high-throughput "omics" methods has radically transformed our thought about ALS, strengthening our understanding of the disease's dynamic molecular architecture, differentiating distinct patient subtypes, and creating a reasonable basis for the identification of biomarkers and novel individualised treatments. Future clinical and laboratory trials would also focus on the diverse relationships between metabolism and ALS to address the issue of whether targeting deficient metabolism in ALS is an effective way to change disease progression. In this review, we focus on the detailed pathogenesis of ALS and highlight principal genes, i.e., SOD1, TDP-43, C9orf72, and FUS, targeted therapeutic approaches of ALS. An attempt is made to provide up-to-date information on clinical outcomes, including various biomarkers which are thought to be important players in early ALS detection.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutic, L M College of Pharmacy, Ahmedabad - 380009 (India)
| | - Chirag Patel
- Department of Pharmacology, L M College of Pharmacy, Ahmedabad - 380009 (India)
| | - Dharti Modh
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering at Erciyes University, Kayseri, Turkey
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Shreya S Sonak
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Nafisa K Munshi
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Krishna Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein 9300, South Africa
| | - Arun Soni
- Department of Pharmacology, SSR College of Pharmacy, Silvassa, Dadra and Nagar Haveli - 396230(India)
| | - Sonal Pandey
- Research and Development, Meril Diagnostic Pvt. Ltd, Vapi - 396191 (India)
| |
Collapse
|
16
|
Biomarkers in Human Peripheral Blood Mononuclear Cells: The State of the Art in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23052580. [PMID: 35269723 PMCID: PMC8910056 DOI: 10.3390/ijms23052580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients’ stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.
Collapse
|
17
|
Shepheard SR, Karnaros V, Benyamin B, Schultz DW, Dubowsky M, Wuu J, Tim C, Malaspina A, Benatar M, Rogers ML. Urinary neopterin: a novel biomarker of disease progression in amyotrophic lateral sclerosis. Eur J Neurol 2021; 29:990-999. [PMID: 34967083 DOI: 10.1111/ene.15237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND To evaluate urinary neopterin, a marker of pro-inflammatory state, as a potential biomarker of disease prognosis and progression in amyotrophic lateral sclerosis (ALS); and to compare its utility to urinary neurotrophin receptor p75 extracellular domain (p75ECD ). METHODS Observational study including 21 healthy controls and 46 people with ALS, 29 of whom were sampled longitudinally. Neopterin and p75ECD were measured using enzyme-linked immunoassays. Baseline and longitudinal changes in clinical measures, neopterin and urinary p75ECD were examined, and prognostic utility explored by survival analysis. RESULTS At baseline, urinary neopterin was higher in ALS compared to controls (181.7 ± 78.9 μmol/mol creatinine vs 120.4 ± 60.8 μmol/mol creatinine, p= 0.002, Welch's t-test) and correlated with ALSFRS-R (r= -0.36, p= 0.01). Combining previously published urinary p75ECD results from 22 ALS patients with a further 24 ALS patients, baseline urinary p75ECD was also higher compared to healthy controls (6.0 ± 2.7 vs 3.2 ± 1.0 ng/mg creatinine p<0.0001) and correlated with ALSFRS-R (r= -0.36, p= 0.01). Urinary neopterin and p75ECD correlated with each other at baseline (r= 0.38, p= 0.009). In longitudinal analysis, urinary neopterin increased on average (±SE) by 6.8 ± 1.1 μmol/mol creatinine per month (p<0.0001) and p75ECD by 0.19 ± 0.02 ng/mg creatinine per month (p<0.0001) from diagnosis in 29 ALS patients. CONCLUSION Urinary neopterin holds promise as marker of disease progression in ALS and is worthy of future evaluation for its potential to predict response to anti-inflammatory therapies.
Collapse
Affiliation(s)
- Stephanie R Shepheard
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Vassilios Karnaros
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health & Allied Health and Human Performance Unit, University of South, Australia
| | - David W Schultz
- Neurology Department and MND Clinic, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Megan Dubowsky
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Joanne Wuu
- Dept. of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Chataway Tim
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Andrea Malaspina
- Motor Neuron Disease Centre, Neuromuscular Department, UCL Queen Square Institute of Neurology
| | - Michael Benatar
- Dept. of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mary-Louise Rogers
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Zhang K, He K, Xu J, Nie L, Li S, Liu J, Long D, Dai Z, Yang X. Manganese exposure causes movement deficit and changes in the protein profile of the external globus pallidus in Sprague Dawley rats. Toxicol Ind Health 2021; 37:715-726. [PMID: 34706592 DOI: 10.1177/07482337211022223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Manganese (Mn) is required for normal brain development and function. Excess Mn may trigger a parkinsonian movement disorder but the underlying mechanisms are incompletely understood. We explored changes in the brain proteomic profile and movement behavior of adult Sprague Dawley (SD) rats systemically treated with or without 1.0 mg/mL MnCl2 for 3 months. Mn treatment significantly increased the concentration of protein-bound Mn in the external globus pallidus (GP), as demonstrated by inductively coupled plasma mass spectrometry. Behavioral study showed that Mn treatment induced movement deficits, especially of skilled movement. Proteome analysis by two-dimensional fluorescence difference gel electrophoresis coupled with mass spectrometry revealed 13 differentially expressed proteins in the GP of Mn-treated versus Mn-untreated SD rats. The differentially expressed proteins were mostly involved in glycolysis, metabolic pathways, and response to hypoxia. Selected pathway class analysis of differentially expressed GP proteins, which included phosphoglycerate mutase 1 (PGAM1), primarily identified enrichment in glycolytic process and innate immune response. In conclusion, perturbation of brain energy production and innate immune response, in which PGAM1 has key roles, may contribute to the movement disorder associated with Mn neurotoxicity.
Collapse
Affiliation(s)
- Kaiqin Zhang
- School of Public Health, University of South China, Hunan Hengyang, China.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jia Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dingxin Long
- School of Public Health, University of South China, Hunan Hengyang, China
| | - Zhongliang Dai
- The department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
19
|
Amor S, Nutma E, Marzin M, Puentes F. Imaging immunological processes from blood to brain in amyotrophic lateral sclerosis. Clin Exp Immunol 2021; 206:301-313. [PMID: 34510431 PMCID: PMC8561688 DOI: 10.1111/cei.13660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Manuel Marzin
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
Alessenko AV, Gutner UA, Nebogatikov VO, Shupik MA, Ustyugov AA. [The role of sphingolipids in pathogenesis of amyotrophic lateral sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:131-140. [PMID: 34481449 DOI: 10.17116/jnevro2021121081131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by selective degeneration of motor neurons of the spinal cord and motor cortex and brain stem. The key features of the course of this disease are excitotoxicity, oxidative stress, mitochondrial dysfunction, neuro-inflammatory and immune reactions. Recently, the mechanisms of programmed cell death (apoptosis), which may be responsible for the degeneration of motor neurons in this disease, have been intensively studied. In this regard, sphingolipids, which are the most important sources of secondary messengers that transmit cell proliferation, differentiation and apoptosis signals, and are involved in the development of neuroinflammatory and immune responses, are of particular interest in the context of ALS pathogenesis. The review provides information from domestic and foreign authors on the involvement of various sphingolipids (sphingomyelins, ceramides, sphingosine, sphinganin, sphingosine-1-phosphate, galactosylceramides, glucosylceramides, gangliosides) in the development of pro-inflammatory reactions and apoptosis of motor neurons in ALS. The authors discuss the prospects of using new drugs that control the metabolism of sphingolipids for the treatment of ALS.
Collapse
Affiliation(s)
| | - U A Gutner
- Institute of Biochemical Physic, Moscow, Russia
| | - V O Nebogatikov
- Institute of Physiologically Active Compounds, Chernogolovka, Russia
| | - M A Shupik
- Institute of Biochemical Physic, Moscow, Russia
| | - A A Ustyugov
- Institute of Physiologically Active Compounds, Chernogolovka, Russia
| |
Collapse
|
21
|
Wei QQ, Hou YB, Zhang LY, Ou RW, Cao B, Chen YP, Shang HF. Neutrophil-to-lymphocyte ratio in sporadic amyotrophic lateral sclerosis. Neural Regen Res 2021; 17:875-880. [PMID: 34472488 PMCID: PMC8530123 DOI: 10.4103/1673-5374.322476] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is considered a robust prognostic biomarker for predicting patient survival outcomes in many diseases. However, it remains unclear whether it can be used as a biomarker for amyotrophic lateral sclerosis (ALS). To correlate NLR with disease progression and survival in sporadic ALS, 1030 patients with ALS between January 2012 and December 2018 were included in this study. These patients were assigned into three groups according to their NLR values: Group 1 (NLR < 2, n = 544 [52.8%]), Group 2 (NLR = 2-3, n = 314 [30.5%]), and Group 3 (NLR > 3, n = 172 [16.7%]). All patients were followed up until April 2020. Patients in Group 3 had a significantly older onset age, a lower score on the Revised ALS Functional Rating Scale, and rapidly progressing disease conditions. Furthermore, faster disease progression rates were associated with higher NLR values (odds ratio = 1.211, 95% confidence interval [CI]: 1.090-1.346, P < 0.001) after adjusting for other risk factors. Compared with Groups 1 and 2, the survival time in Group 3 was significantly shorter (log-rank P = 0.002). The NLR value was considered an independent parameter for the prediction of survival in ALS patients after normalizing for all other potential parameters (hazard ratio [HR] = 1.079, 95% CI: 1.016-1.146, P = 0.014). The effects on ALS survival remained significant when adjusted for treatment (HR = 1.074, 95% CI: 1.012-1.141, Ptrend = 0.019) or when considering the stratified NLR value (HR = 1.115, 95% CI: 1.009-1.232, Ptrend = 0.033). Thus, the NLR may help to predict the rate of disease progression and survival in patients with sporadic ALS. The study was approved by the Institutional Ethics Committee of West China Hospital of Sichuan University, China (approval No. 2015 (236)) on December 23, 2015.
Collapse
Affiliation(s)
- Qian-Qian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan-Bing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ling-Yu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ru-Wei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yong-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui-Fang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
22
|
De Marchi F, Munitic I, Amedei A, Berry JD, Feldman EL, Aronica E, Nardo G, Van Weehaeghe D, Niccolai E, Prtenjaca N, Sakowski SA, Bendotti C, Mazzini L. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci Biobehav Rev 2021; 127:958-978. [PMID: 34153344 PMCID: PMC8428677 DOI: 10.1016/j.neubiorev.2021.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Nikolina Prtenjaca
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy.
| |
Collapse
|
23
|
Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants (Basel) 2021; 10:antiox10071012. [PMID: 34202494 PMCID: PMC8300638 DOI: 10.3390/antiox10071012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with the progressive loss of motor neurons, leading to a fatal paralysis. According to whether there is a family history of ALS, ALS can be roughly divided into two types: familial and sporadic. Despite decades of research, the pathogenesis of ALS is still unelucidated. To this end, we review the recent progress of ALS pathogenesis, biomarkers, and treatment strategies, mainly discuss the roles of immune disorders, redox imbalance, autophagy dysfunction, and disordered iron homeostasis in the pathogenesis of ALS, and introduce the effects of RNA binding proteins, ALS-related genes, and non-coding RNA as biomarkers on ALS. In addition, we also mention other ALS biomarkers such as serum uric acid (UA), cardiolipin (CL), chitotriosidase (CHIT1), and neurofilament light chain (NFL). Finally, we discuss the drug therapy, gene therapy, immunotherapy, and stem cell-exosomal therapy for ALS, attempting to find new therapeutic targets and strategies. A challenge is to study the various mechanisms of ALS as a syndrome. Biomarkers that have been widely explored are indispensable for the diagnosis, treatment, and prevention of ALS. Moreover, the development of new genes and targets is an urgent task in this field.
Collapse
|
24
|
Shandilya A, Mehan S. Dysregulation of IGF-1/GLP-1 signaling in the progression of ALS: potential target activators and influences on neurological dysfunctions. Neurol Sci 2021; 42:3145-3166. [PMID: 34018075 DOI: 10.1007/s10072-021-05328-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
The prominent causes for motor neuron diseases like ALS are demyelination, immune dysregulation, and neuroinflammation. Numerous research studies indicate that the downregulation of IGF-1 and GLP-1 signaling pathways plays a significant role in the progression of ALS pathogenesis and other neurological disorders. In the current review, we discussed the dysregulation of IGF-1/GLP-1 signaling in neurodegenerative manifestations of ALS like a genetic anomaly, oligodendrocyte degradation, demyelination, glial overactivation, immune deregulation, and neuroexcitation. In addition, the current review reveals the IGF-1 and GLP-1 activators based on the premise that the restoration of abnormal IGF-1/GLP-1 signaling could result in neuroprotection and neurotrophic effects for the clinical-pathological presentation of ALS and other brain diseases. Thus, the potential benefits of IGF-1/GLP-1 signal upregulation in the development of disease-modifying therapeutic strategies may prevent ALS and associated neurocomplications.
Collapse
Affiliation(s)
- Ambika Shandilya
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
25
|
Xie Y, Luo X, He H, Tang M. Novel Insight Into the Role of Immune Dysregulation in Amyotrophic Lateral Sclerosis Based on Bioinformatic Analysis. Front Neurosci 2021; 15:657465. [PMID: 33994932 PMCID: PMC8119763 DOI: 10.3389/fnins.2021.657465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. The causative pathogenic mechanisms in ALS remain unclear, limiting the development of treatment strategies. Neuroinflammation and immune dysregulation were involved in the disease onset and progression of several neurodegenerative disorders, including ALS. In this study, we carried out a bioinformatic analysis using publicly available datasets from Gene Expression Omnibus (GEO) to investigate the role of immune cells and genes alterations in ALS. Single-sample gene set enrichment analysis revealed that the infiltration of multiple types of immune cells, including macrophages, type-1/17 T helper cells, and activated CD4 + /CD8 + T cells, was higher in ALS patients than in controls. Weighted gene correlation network analysis identified immune genes associated with ALS. The Gene Ontology analysis revealed that receptor and cytokine activities were the most highly enriched terms. Pathway analysis showed that these genes were enriched not only in immune-related pathways, such as cytokine-cytokine receptor interaction, but also in PI3K-AKT and MAPK signaling pathways. Nineteen immune-related genes (C3AR1, CCR1, CCR5, CD86, CYBB, FCGR2B, FCGR3A, HCK, ITGB2, PTPRC, TLR1, TLR2, TLR7, TLR8, TYROBP, VCAM1, CD14, CTSS, and FCER1G) were identified as hub genes based on least absolute shrinkage and selection operator analysis. This gene signature could differentiate ALS patients from non-neurological controls (p < 0.001) and predict disease occurrence (AUC = 0.829 in training set; AUC = 0.862 in test set). In conclusion, our study provides potential biomarkers of ALS for disease diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ximei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Tang
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Modification of Glial Cell Activation through Dendritic Cell Vaccination: Promises for Treatment of Neurodegenerative Diseases. J Mol Neurosci 2021; 71:1410-1424. [PMID: 33713321 DOI: 10.1007/s12031-021-01818-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Accumulation of misfolded tau, amyloid β (Aβ), and alpha-synuclein (α-syn) proteins is the fundamental contributor to many neurodegenerative diseases, namely Parkinson's (PD) and AD. Such protein aggregations trigger activation of immune mechanisms in neuronal and glial, mainly M1-type microglia cells, leading to release of pro-inflammatory mediators, and subsequent neuronal dysfunction and apoptosis. Despite the described neurotoxic features for glial cells, recruitment of peripheral leukocytes to the brain and their conversion to neuroprotective M2-type microglia can mitigate neurodegeneration by clearing extracellular protein accumulations or residues. Based on these observations, it was speculated that Dendritic cell (DC)-based vaccination, by making use of DCs as natural adjuvants, could be used for treatment of neurodegenerative disorders. DCs potentiated by disease-specific antigens can also enhance T helper 2 (Th2)-specific immune response and by production of specific antibodies contribute to clearance of intracellular aggregations, as well as enhancing regulatory T cell response. Thus, enhancement of immune response by DC vaccine therapy can potentially augment glial polarization into the neuroprotective phenotype, enhance antibody production, and at the same time balance neuronal cells' repair, renewal, and protection. The characteristic feature of this method of treatment is to maintain the equilibrium in the immune response rather than targeting a single mediator in the disease and their application in other neurodegenerative diseases should be addressed. However, the safety of these methods should be investigated by clinical trials.
Collapse
|
27
|
Murdock BJ, Goutman SA, Boss J, Kim S, Feldman EL. Amyotrophic Lateral Sclerosis Survival Associates With Neutrophils in a Sex-specific Manner. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/2/e953. [PMID: 33531377 PMCID: PMC8057067 DOI: 10.1212/nxi.0000000000000953] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Objective To determine whether neutrophils contribute to amyotrophic lateral sclerosis
(ALS) progression, we tested the association of baseline neutrophil count on
ALS survival, whether the effect was sex specific, and whether neutrophils
accumulate in the spinal cord. Methods A prospective cohort study was conducted between June 22, 2011, and October
30, 2019. Blood leukocytes were isolated from ALS participants and
neutrophil levels assessed by flow cytometry. Participant survival outcomes
were analyzed by groups (<2 × 106, 2–4 ×
106, and >4 × 106 neutrophils/mL) with
adjustments for relevant ALS covariates and by sex. Neutrophil levels were
assessed from CNS tissue from a subset of participants. Results A total of 269 participants with ALS within 2 years of an ALS diagnosis were
included. Participants with baseline neutrophil counts over 4 ×
106/mL had a 2.1 times higher mortality rate than those with
a neutrophil count lower than 2 × 106/mL (95% CI:
1.3–3.5, p = 0.004) when adjusting for age,
sex, and other covariates. This effect was more pronounced in females, with
a hazard ratio of 3.8 (95% CI: 1.8–8.2, p =
0.001) in the >4 × 106/mL vs <2 ×
106/mL group. Furthermore, ALS participants (n = 8) had
increased neutrophils in cervical (p = 0.049) and
thoracic (p = 0.022) spinal cord segments compared
with control participants (n = 8). Conclusions Higher neutrophil counts early in ALS associate with a shorter survival in
female participants. Furthermore, neutrophils accumulate in ALS spinal cord
supporting a pathophysiologic correlate. These data justify the
consideration of immunity and sex for personalized therapeutic development
in ALS. Classification of Evidence This study provides Class III evidence that in female participants with ALS,
higher baseline neutrophil counts are associated with shorter survival.
Collapse
Affiliation(s)
- Benjamin J Murdock
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| | - Stephen A Goutman
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor.
| | - Jonathan Boss
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| | - Sehee Kim
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| | - Eva L Feldman
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| |
Collapse
|
28
|
Combination of serum and CSF neurofilament-light and neuroinflammatory biomarkers to evaluate ALS. Sci Rep 2021; 11:703. [PMID: 33436881 PMCID: PMC7803734 DOI: 10.1038/s41598-020-80370-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
This monocentric prospective study of patient suffering from Amyotrophic lateral sclerosis (ALS) aims to evaluate the prognosis and diagnostic potential of both Neurofilament-Light (Nf-L) and neuroinflammatory biomarkers in serum and CSF. Candidate markers levels were measured using multiplex method in serum of 60 ALS patients, 94 healthy controls of 43 patients suffering from Inflammatory Peripheral Neuropathies (IPN). A comparative CSF analysis was performed for 20 ALS and 17 IPN patients. Among the altered biomarkers, CSF Nf-L level remains the best marker of ALS severity, while serum levels correlate strongly with disease progression. The combination of Nf-L and ICAM-1 concentrations in the CSF and IFN-γ concentration in the serum differentiate ALS patients from IPN patients with improved sensibility and specificity relative to individual biomarkers. A cutoff value of 0.49 for the fitted values of these 3 biomarkers discriminate ALS from IPN patients with a specificity of 100% (78.20–100%) and a sensibility of 85.71% (57.19–98.22%) with an AUC of 0.99 ± 0.01. The measure of Nf-L and neuroinflammatory biomarkers in CSF and serum can be useful biomarkers panel in the differential diagnosis of ALS.
Collapse
|
29
|
Nielsen AK, Folke J, Owczarek S, Svenstrup K, Winge K, Pakkenberg B, Aznar S, Brudek T. TDP-43-specific Autoantibody Decline in Patients With Amyotrophic Lateral Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/2/e937. [PMID: 33361387 PMCID: PMC7768943 DOI: 10.1212/nxi.0000000000000937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We hypothesize alterations in the quality and quantity of anti-43-kDa TAR DNA-binding protein (TDP-43) naturally occurring autoantibodies (NAbs) in patients with amyotrophic lateral sclerosis (ALS); therefore, we assessed relative binding properties of anti-TDP-43 NAbs composite in plasma from patients with ALS in comparison with healthy individuals. METHODS ELISA competition assay was used to explore the apparent avidity/affinity of anti-TDP-43 NAbs in plasma from 51 normal controls and 30 patients with ALS. Furthermore, the relative levels of anti-TDP-43 NAbs within the immunoglobulin (Ig) classes of IgG (isotype IgG1-4) and IgMs were measured using classical indirect ELISA. The occurring results were hereafter correlated with the measures of disease duration and disease progression. RESULTS High-avidity/affinity anti-TDP-43 NAbs levels were significantly reduced in plasma samples from patients with ALS. In addition, a significant decrease in relative levels of anti-TDP-43 IgG3 and IgM NAbs and a significant increase in anti-TDP-43 IgG4 NAbs were observed in ALS plasma vs controls. Furthermore, a decrease in global IgM and an increase in IgG4 levels were observed in ALS. These aberrations of humoral immunity correlated with disease duration, but did not correlate with ALS Functional Rating Scale-Revised scores. CONCLUSIONS Our results may suggest TDP-43-specific immune aberrations in patients with ALS. The skewed immune profiles observed in patients with ALS could indicate a deficiency in the clearance capacity and/or blocking of TDP-43 transmission and propagation. The decrease in levels of high affinity/avidity anti-TDP-43 NAbs and IgMs correlates with disease progression and may be disease predictors.
Collapse
Affiliation(s)
- Anne Kallehauge Nielsen
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Jonas Folke
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Sylwia Owczarek
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kirsten Svenstrup
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kristian Winge
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Bente Pakkenberg
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Susana Aznar
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Tomasz Brudek
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark.
| |
Collapse
|
30
|
A Novel HGF/SF Receptor (MET) Agonist Transiently Delays the Disease Progression in an Amyotrophic Lateral Sclerosis Mouse Model by Promoting Neuronal Survival and Dampening the Immune Dysregulation. Int J Mol Sci 2020; 21:ijms21228542. [PMID: 33198383 PMCID: PMC7696450 DOI: 10.3390/ijms21228542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment. The Hepatocyte Growth Factor/Scatter Factor (HGF/SF), through its receptor MET, is one of the most potent survival-promoting factors for motor neurons (MN) and is known as a modulator of immune cell function. We recently developed a novel recombinant MET agonist optimized for therapy, designated K1K1. K1K1 was ten times more potent than HGF/SF in preventing MN loss in an in vitro model of ALS. Treatments with K1K1 delayed the onset of muscular impairment and reduced MN loss and skeletal muscle denervation of superoxide dismutase 1 G93A (SOD1G93A) mice. This effect was associated with increased levels of phospho-extracellular signal-related kinase (pERK) in the spinal cord and sciatic nerves and the activation of non-myelinating Schwann cells. Moreover, reduced activated microglia and astroglia, lower T cells infiltration and increased interleukin 4 (IL4) levels were found in the lumbar spinal cord of K1K1 treated mice. K1K1 treatment also prevented the infiltration of T cells in skeletal muscle of SOD1G93A mice. All these protective effects were lost on long-term treatment suggesting a mechanism of drug tolerance. These data provide a rational justification for further exploring the long-term loss of K1K1 efficacy in the perspective of providing a potential treatment for ALS.
Collapse
|
31
|
Santos-Lasaosa S, López-Bravo A, Garcés-Redondo M, Atienza-Ayala S, Larrodé-Pellicer P. Amyotrophic lateral sclerosis and myasthenia gravis overlap syndrome: 3 new cases. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2019.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
32
|
Esclerosis lateral amiotrófica y miastenia gravis (síndrome overlap): presentación de 3 nuevos casos. Neurologia 2020; 35:595-597. [DOI: 10.1016/j.nrl.2019.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 11/22/2022] Open
|
33
|
Tissue microarray (TMA) use in post mortem neuropathology. J Neurosci Methods 2020; 347:108963. [PMID: 33007345 DOI: 10.1016/j.jneumeth.2020.108963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tissue microarrays (TMAs), where each block (and thus section) contains multiple tissue cores from multiple blocks potentially allow more efficient use of tissue, reagents and time in neuropathology. NEW METHOD The relationship between data from TMA cores and whole sections was investigated using 'virtual' TMA cores. This involved quantitative assessments of microglial pathology in white matter lesions and motor neuron disease, alongside qualitative TDP-43 inclusion status in motor neuron disease cases. Following this, a protocol was developed for TMA construction. RESULTS For microglial pathology we found good concordance between virtual cores and whole sections for volume density using one 1.75 mm core (equivalent to a 2 mm core after accounting for peripheral tissue loss). More sophisticated microglial cell size and measures required two cores. Qualitative results of pTDP-43 pathology showed use of one 1.75 mm core gave a 100 % sensitivity and specificity within grey matter, and 88.3 % sensitivity and 100 % specificity within white matter. A method of producing the TMAs was suitable for immunohistochemistry both manually and by autostainer, with the minimal core loss from the microscope slide. COMPARISON WITH EXISTING METHODS TMAs have been used infrequently in post mortem neuropathology research. However, we believe TMAs give comparable tissue assessment results and can be constructed, sectioned and stained with relative ease. CONCLUSIONS We found TMAs could be used to assess both quantitative (microglial pathology) and qualitative pathology (TDP-43 proteinopathy) with greatly reduced quantities of tissue, time and reagents. These could be used for further work to improve data acquisition efficiency.
Collapse
|
34
|
Béland LC, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, Kriz J, Munitic I. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun 2020; 2:fcaa124. [PMID: 33134918 PMCID: PMC7585698 DOI: 10.1093/braincomms/fcaa124] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Despite wide genetic, environmental and clinical heterogeneity in amyotrophic lateral sclerosis, a rapidly fatal neurodegenerative disease targeting motoneurons, neuroinflammation is a common finding. It is marked by local glial activation, T cell infiltration and systemic immune system activation. The immune system has a prominent role in the pathogenesis of various chronic diseases, hence some of them, including some types of cancer, are successfully targeted by immunotherapeutic approaches. However, various anti-inflammatory or immunosuppressive therapies in amyotrophic lateral sclerosis have failed. This prompted increased scrutiny over the immune-mediated processes underlying amyotrophic lateral sclerosis. Perhaps the biggest conundrum is that amyotrophic lateral sclerosis pathogenesis exhibits features of three otherwise distinct immune dysfunctions-excessive inflammation, autoimmunity and inefficient immune responses. Epidemiological and genome-wide association studies show only minimal overlap between amyotrophic lateral sclerosis and autoimmune diseases, so excessive inflammation is usually thought to be secondary to protein aggregation, mitochondrial damage or other stresses. In contrast, several recently characterized amyotrophic lateral sclerosis-linked mutations, including those in TBK1, OPTN, CYLD and C9orf72, could lead to inefficient immune responses and/or damage pile-up, suggesting that an innate immunodeficiency may also be a trigger and/or modifier of this disease. In such cases, non-selective immunosuppression would further restrict neuroprotective immune responses. Here we discuss multiple layers of immune-mediated neuroprotection and neurotoxicity in amyotrophic lateral sclerosis. Particular focus is placed on individual patient mutations that directly or indirectly affect the immune system, and the mechanisms by which these mutations influence disease progression. The topic of immunity in amyotrophic lateral sclerosis is timely and relevant, because it is one of the few common and potentially malleable denominators in this heterogenous disease. Importantly, amyotrophic lateral sclerosis progression has recently been intricately linked to patient T cell and monocyte profiles, as well as polymorphisms in cytokine and chemokine receptors. For this reason, precise patient stratification based on immunophenotyping will be crucial for efficient therapies.
Collapse
Affiliation(s)
| | - Andrea Markovinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Ervina Bilic
- Department of Neurology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Letizia Mazzini
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, Quebec G1J 2G3, Canada
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
35
|
Mészáros Á, Molnár K, Nógrádi B, Hernádi Z, Nyúl-Tóth Á, Wilhelm I, Krizbai IA. Neurovascular Inflammaging in Health and Disease. Cells 2020; 9:cells9071614. [PMID: 32635451 PMCID: PMC7407516 DOI: 10.3390/cells9071614] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is characterized by a chronic low-grade sterile inflammation dubbed as inflammaging, which in part originates from accumulating cellular debris. These, acting as danger signals with many intrinsic factors such as cytokines, are sensed by a network of pattern recognition receptors and other cognate receptors, leading to the activation of inflammasomes. Due to the inflammasome activity-dependent increase in the levels of pro-inflammatory interleukins (IL-1β, IL-18), inflammation is initiated, resulting in tissue injury in various organs, the brain and the spinal cord included. Similarly, in age-related diseases of the central nervous system (CNS), inflammasome activation is a prominent moment, in which cells of the neurovascular unit occupy a significant position. In this review, we discuss the inflammatory changes in normal aging and summarize the current knowledge on the role of inflammasomes and contributing mechanisms in common CNS diseases, namely Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and stroke, all of which occur more frequently with aging.
Collapse
Affiliation(s)
- Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Doctoral School of Biology, University of Szeged, 6726 Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Theoretical Medicine Doctoral School, University of Szeged, 6720 Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Zsófia Hernádi
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310414 Arad, Romania
- Correspondence: ; Tel.: +36-62-599-794
| |
Collapse
|
36
|
Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, Grosskreutz J, Kuźma-Kozakiewicz M, Petri S, Stubbendorf B, Szacka K, Uysal H, de Carvalho M. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:428. [PMID: 32528241 PMCID: PMC7264408 DOI: 10.3389/fnins.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
It may seem useless to propose preventive measures for a disease without established pathogenesis and successful therapy, such as amyotrophic lateral sclerosis (ALS). However, we will show that ALS shares essential molecular mechanisms with aging and that established anti-aging strategies, such as healthy diet or individually adjusted exercise, may be successfully applied to ameliorate the condition of ALS patients. These strategies might be applied for prevention if persons at ALS risk could be identified early enough. Recent research advances indicate that this may happen soon.
Collapse
Affiliation(s)
- B Kuraszkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - H Goszczyńska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - T Podsiadły-Marczykowska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - M Piotrkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - P Andersen
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - M Gromicho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J Grosskreutz
- Department of Neurology, University Hospital Jena, Jena, Germany.,Jena Centre for Healthy Aging, University Hospital Jena, Jena, Germany
| | | | - S Petri
- Clinic for Neurology, Hannover Medical School, Hanover, Germany
| | - B Stubbendorf
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - K Szacka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - H Uysal
- Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - M de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
37
|
The Role of Osteopontin in Amyotrophic Lateral Sclerosis: A Systematic Review. ARCHIVES OF NEUROSCIENCE 2020. [DOI: 10.5812/ans.94205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Context: Osteopontin (OPN) is a matrix phosphoprotein expressed by a variety of tissues and cells, including the immune system and the nervous system. Previous studies have shown that OPN may have a role in neurodegenerative diseases, including multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. Objectives: The present study aimed to systematically review studies investigating the role of OPN in amyotrophic lateral sclerosis (ALS) patients or the disease animal model. Evidence Acquisition: We searched the Cochrane Library, PubMed, Web of Science, and Scopus to find relevant articles published up to January 20, 2019. Both human and animal model studies of ALS were considered. Results: A total of nine articles (four human studies and five animal model studies) were included. Two of the human studies reported that the CSF levels of OPN were higher among ALS patients compared to controls. The other two human studies found that OPN levels in cortical neurons did not differ significantly between ALS cases and the non-neurological control group. One of the studies found that the expression level of OPN in astrocytes was similar between ALS patients and the control group, but the level of microglial OPN significantly increased in ALS cases. Four of the animal model studies reported that the expression of OPN mRNA in spinal cord microglia significantly increased during the disease progression. The remaining animal model study found that OPN was selectively expressed by fast fatigue-resistant and slow motor neurons (MNs), which are resistant to ALS, and that the OPN expression was low among fast-fatigable MNs. Conclusions: Prompt microglial activation is a hallmark pathology of ALS, and OPN is among the most widely expressed proteins by these activated glial cells. Therefore, OPN might have a role in ALS pathogenesis. The existing evidence is not sufficient to justify whether OPN has a neurotoxic or neuroprotective role in ALS. We encourage researchers to investigate the role of OPN in ALS pathogenesis more extensively.
Collapse
|
38
|
Insights into the Therapeutic Potential of Glucocorticoid Receptor Modulators for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21062137. [PMID: 32244957 PMCID: PMC7139912 DOI: 10.3390/ijms21062137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic–pituitary–adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine–threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.
Collapse
|
39
|
Wang YH, Lv HN, Cui QH, Tu PF, Jiang Y, Zeng KW. Isosibiricin inhibits microglial activation by targeting the dopamine D1/D2 receptor-dependent NLRP3/caspase-1 inflammasome pathway. Acta Pharmacol Sin 2020; 41:173-180. [PMID: 31506572 PMCID: PMC7471458 DOI: 10.1038/s41401-019-0296-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Microglia-mediated neuroinflammation is a crucial risk factor for neurological disorders. Recently, dopamine receptors have been found to be involved in multiple immunopathological processes and considered as valuable therapeutic targets for inflammation-associated neurologic diseases. In this study we investigated the anti-neuroinflammation effect of isosibiricin, a natural coumarin compound isolated from medicinal plant Murraya exotica. We showed that isosibiricin (10-50 μM) dose-dependently inhibited lipopolysaccharide (LPS)-induced BV-2 microglia activation, evidenced by the decreased expression of inflammatory mediators, including nitrite oxide (NO), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and interleukin-18 (IL-18). By using transcriptomics coupled with bioinformatics analysis, we revealed that isosibiricin treatment mainly affect dopamine receptor signalling pathway. We further demonstrated that isosibiricin upregulated the expression of dopamine D1/2 receptors in LPS-treated BV-2 cells, resulting in inhibitory effect on nucleotide binding domain-like receptor protein 3 (NLRP3)/caspase-1 inflammasome pathway. Treatment with dopamine D1/2 receptor antagonists SCH 23390 (1 μM) or sultopride (1 μM) could reverse the inhibitory effects of isosibiricin on NLRP3 expression as well as the cleavages of caspase-1 and IL-1β. Collectively, this study demonstrates a promising therapeutic strategy for neuroinflammation by targeting dopamine D1/2 receptors.
Collapse
Affiliation(s)
- Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hai-Ning Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qing-Hua Cui
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
40
|
Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv Ther 2020; 37:113-139. [PMID: 31782132 PMCID: PMC6979458 DOI: 10.1007/s12325-019-01148-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/21/2022]
Abstract
Introduction Neurodegeneration is the term describing the death of neurons both in the central nervous system and periphery. When affecting the central nervous system, it is responsible for diseases like Alzheimer’s disease, Parkinson’s disease, Huntington’s disorders, amyotrophic lateral sclerosis, and other less frequent pathologies. There are several common pathophysiological elements that are shared in the neurodegenerative diseases. The common denominators are oxidative stress (OS) and inflammatory responses. Unluckily, these conditions are difficult to treat. Because of the burden caused by the progression of these diseases and the simultaneous lack of efficacious treatment, therapeutic approaches that could target the interception of development of the neurodegeneration are being widely investigated. This review aims to highlight the most recent proposed novelties, as most of the previous approaches have failed. Therefore, older approaches may currently be used by healthcare professionals and are not being presented. Methods This review was based on an electronic search of existing literature, using PubMed as primary source for important review articles, and important randomized clinical trials, published in the last 5 years. Reference lists from the most recent reviews, as well as additional sources of primary literature and references cited by relevant articles, were used. Results Eighteen natural pharmaceutical substances and 24 extracted or recombinant products, and artificial agents that can be used against OS, inflammation, and neurodegeneration were identified. After presenting the most common neurodegenerative diseases and mentioning some of the basic mechanisms that lead to neuronal loss, this paper presents up to date information that could encourage the development of better therapeutic strategies. Conclusions This review shares the new potential pharmaceutical and not pharmaceutical options that have been recently introduced regarding OS and inflammatory responses in neurodegenerative diseases.
Collapse
|
41
|
Białkowska J, Mroczkowska D, Huflejt ME, Wojtkiewicz J, Siwek T, Barczewska M, Maksymowicz W. COMPLEX TREATMENT OF AMYOTROPHIC LATERAL SCLEROSIS PATIENT. Acta Clin Croat 2019; 58:757-766. [PMID: 32595261 PMCID: PMC7314291 DOI: 10.20471/acc.2019.58.04.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive and fatal degenerative neuromuscular disease with few if any treatment options and physical rehabilitation addressing specific deficits is the most frequent form of therapy. Patients also suffer from depression and increased anxiety. Our purpose was to assess the neurorehabilitation effectiveness in a patient with amyotrophic lateral sclerosis who underwent stem cell transplantation but refused physiotherapy due to depression. Disease progression was followed using the revised Amyotrophic Lateral Sclerosis Functional Rating Scale bimonthly for six months pre- and then post-stem cell transplantation. Psychological traits were assessed using six standardized tests. Quantitative electroencephalogram diagnostics was performed before the first and after the last neurofeedback session, and sessions were conducted on a 3-times-a-week basis. The physiotherapy protocol included proprioceptive neuromuscular facilitation, electrical modalities unit applied to the lumbar spine area, and breathing, relaxation and walking exercises, among others. Increased motivation and marked decrease in the pain level was associated with the patient's willingness to complete physiotherapy, which resulted in improvements in most neuromuscular deficits and in increased respiratory capacity. During the 12 post-rehabilitation months, progression of the disease decelerated, and a positive behavioral change was noted. The study suggested that neurofeedback could be used as a neurorehabilitation component of the personalized complex rehabilitation protocol in patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Dorota Mroczkowska
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Margaret E Huflejt
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz Siwek
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Monika Barczewska
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Wojciech Maksymowicz
- 1Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 2Clinical University Hospital, Olsztyn, Poland; 3Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland; 4Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
42
|
Meyer M, Kruse MS, Garay L, Lima A, Roig P, Hunt H, Belanoff J, de Kloet ER, Deniselle MCG, De Nicola AF. Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Res 2019; 1727:146551. [PMID: 31726042 DOI: 10.1016/j.brainres.2019.146551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
Abstract
The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS). Wobbler mice also show high levels of corticosterone in blood, adrenals and brain plus adrenal hypertrophy, suggesting that chronically elevated glucocorticoids prime spinal cord neuroinflammation. Therefore, we analyzed if treatment of Wobbler mice with the glucocorticoid receptor (GR) antagonist CORT113176 mitigated the mentioned abnormalities. 30 mg/kg CORT113176 given daily for 3 weeks reduced motoneuron vacuolation, decreased astro and microgliosis, lowered the inflammatory mediators high mobility group box 1 protein (HMGB1), toll-like receptor 4, myeloid differentiation primary response 88 (MyD88), p50 subunit of nuclear factor kappa B (NFκB), tumor necrosis factor (TNF) receptor, and interleukin 18 (IL18) compared to untreated Wobblers. CORT113176 increased the survival signal pAKT (serine-threonine kinase) and decreased the death signal phosphorylated Junk-N-terminal kinase (pJNK), symptomatic of antiapoptosis. There was a moderate positive effect on glutamine synthase and astrocyte glutamate transporters, suggesting decreased glutamate excitotoxicity. In this pre-clinical study, Wobblers receiving CORT113176 showed enhanced resistance to fatigue in the rota rod test and lower forelimb atrophy at weeks 2-3. Therefore, long-term treatment with CORT113176 attenuated degeneration and inflammation, increased motor performance and decreased paw deformity. Antagonism of the GR may be of potential therapeutic value for neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Sol Kruse
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura Garay
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Analia Lima
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Hazel Hunt
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - Joseph Belanoff
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - E Ronald de Kloet
- Division of Endocrinology, Dept. of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maria Claudia Gonzalez Deniselle
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina.
| |
Collapse
|
43
|
Nutma E, Willison H, Martino G, Amor S. Neuroimmunology - the past, present and future. Clin Exp Immunol 2019; 197:278-293. [PMID: 30768789 PMCID: PMC6693969 DOI: 10.1111/cei.13279] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Neuroimmunology as a separate discipline has its roots in the fields of neurology, neuroscience and immunology. Early studies of the brain by Golgi and Cajal, the detailed clinical and neuropathology studies of Charcot and Thompson's seminal paper on graft acceptance in the central nervous system, kindled a now rapidly expanding research area, with the aim of understanding pathological mechanisms of inflammatory components of neurological disorders. While neuroimmunologists originally focused on classical neuroinflammatory disorders, such as multiple sclerosis and infections, there is strong evidence to suggest that the immune response contributes to genetic white matter disorders, epilepsy, neurodegenerative diseases, neuropsychiatric disorders, peripheral nervous system and neuro-oncological conditions, as well as ageing. Technological advances have greatly aided our knowledge of how the immune system influences the nervous system during development and ageing, and how such responses contribute to disease as well as regeneration and repair. Here, we highlight historical aspects and milestones in the field of neuroimmunology and discuss the paradigm shifts that have helped provide novel insights into disease mechanisms. We propose future perspectives including molecular biological studies and experimental models that may have the potential to push many areas of neuroimmunology. Such an understanding of neuroimmunology will open up new avenues for therapeutic approaches to manipulate neuroinflammation.
Collapse
Affiliation(s)
- E. Nutma
- Department of PathologyAmsterdam UMC, VUmc siteAmsterdamthe Netherlands
| | - H. Willison
- University of Glasgow, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesGlasgowUK
| | - G. Martino
- Neuroimmunology Unit, Division of NeuroscienceInstitute of Experimental Neurology (INSpe), San Raffaele Scientific Institute and Vita‐Salute San Raffaele UniversityMilanItaly
| | - S. Amor
- Department of PathologyAmsterdam UMC, VUmc siteAmsterdamthe Netherlands
- Centre for Neuroscience and TraumaThe Blizard Institute, Barts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
44
|
Dede HÖ, Şırın NG, Kocasoy-Orhan E, Idrısoğlu HA, Baslo MB. Electrophysiological Findings of Subclinical Lower Motor Neuron Involvement in Degenerative Upper Motor Neuron Diseases. ACTA ACUST UNITED AC 2019; 57:228-233. [PMID: 32952426 DOI: 10.29399/npa.23387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
Abstract
Introduction The present study is an examination of possible subclinical involvement of lower motor neuron (LMN) in patients with primary lateral sclerosis (PLS) and hereditary spastic paraparesis (HSP) electrophysiologically. Methods Nine PLS patients and 5 HSP patients were prospectively analyzed. Jitter measurement with concentric needle electrode (25 mm, 30 G) (CN-jitter) recorded from right extensor digitorum muscle during voluntary contraction with 1 kHz high-pass frequency filter set. European Myelopathy Score (EMS) was used to evaluate disability. The relationship between disability score and jitter values was investigated. Results HSP patients had suffered from the disease for longer period of time (p<0.001). Mean jitter values of patients with PLS and HSP were 26.5±12.1 µs and 30.8±34.8 µs, and the number of individual high jitters (>43 microseconds) observed in the PLS and HSP groups was 16/180 and 9/100, respectively without a significant intergroup difference. The ratio of patients with an abnormal jitter study were higher in HSP group (60%) compared to PLS (22%) (p<0.05). Potential pairs with blocking were present in HSP group (7 of 100 potential pairs) but not seen in PLS patients. EMS values were significantly lower in patients having potential pairs with high jitter and blocking compared to those without high jitter and blocking. Conclusion The present study has demonstrated that early signs of LMN dysfunction can be detected electrophysiologically by CN-jitter in patients with UMN involvement. These electrophysiological findings in these patients with longer disease duration and lower clinical scores may be explained by spreading of the disease to LMNs or transsynaptic degeneration and its contribution in disease progression.
Collapse
Affiliation(s)
- Hava Özlem Dede
- Department of Clinic Neurophysiology, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| | - Nermin Görkem Şırın
- Department of Clinic Neurophysiology, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| | - Elif Kocasoy-Orhan
- Department of Clinic Neurophysiology, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| | - Halil Atilla Idrısoğlu
- Department of Clinic Neurophysiology, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| | - Mehmet Barış Baslo
- Department of Clinic Neurophysiology, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
45
|
Swindell WR, Kruse CPS, List EO, Berryman DE, Kopchick JJ. ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. J Transl Med 2019; 17:170. [PMID: 31118040 PMCID: PMC6530130 DOI: 10.1186/s12967-019-1909-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a debilitating disease with few treatment options. Progress towards new therapies requires validated disease biomarkers, but there is no consensus on which fluid-based measures are most informative. METHODS This study analyzed microarray data derived from blood samples of patients with ALS (n = 396), ALS mimic diseases (n = 75), and healthy controls (n = 645). Goals were to provide in-depth analysis of differentially expressed genes (DEGs), characterize patient-to-patient heterogeneity, and identify candidate biomarkers. RESULTS We identified 752 ALS-increased and 764 ALS-decreased DEGs (FDR < 0.10 with > 10% expression change). Gene expression shifts in ALS blood broadly resembled acute high altitude stress responses. ALS-increased DEGs had high exosome expression, were neutrophil-specific, associated with translation, and overlapped significantly with genes near ALS susceptibility loci (e.g., IFRD1, TBK1, CREB5). ALS-decreased DEGs, in contrast, had low exosome expression, were erythroid lineage-specific, and associated with anemia and blood disorders. Genes encoding neurofilament proteins (NEFH, NEFL) had poor diagnostic accuracy (50-53%). However, support vector machines distinguished ALS patients from ALS mimics and controls with 87% accuracy (sensitivity: 86%, specificity: 87%). Expression profiles were heterogeneous among patients and we identified two subgroups: (i) patients with higher expression of IL6R and myeloid lineage-specific genes and (ii) patients with higher expression of IL23A and lymphoid-specific genes. The gene encoding copper chaperone for superoxide dismutase (CCS) was most strongly associated with survival (HR = 0.77; P = 1.84e-05) and other survival-associated genes were linked to mitochondrial respiration. We identify a 61 gene signature that significantly improves survival prediction when added to Cox proportional hazard models with baseline clinical data (i.e., age at onset, site of onset and sex). Predicted median survival differed 2-fold between patients with favorable and risk-associated gene expression signatures. CONCLUSIONS Peripheral blood analysis informs our understanding of ALS disease mechanisms and genetic association signals. Our findings are consistent with low-grade neutrophilia and hypoxia as ALS phenotypes, with heterogeneity among patients partly driven by differences in myeloid and lymphoid cell abundance. Biomarkers identified in this study require further validation but may provide new tools for research and clinical practice.
Collapse
Affiliation(s)
- William R. Swindell
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, OH 45236 USA
| | - Colin P. S. Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Edward O. List
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - Darlene E. Berryman
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - John J. Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
46
|
Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front Neurol 2019; 10:291. [PMID: 31001186 PMCID: PMC6456669 DOI: 10.3389/fneur.2019.00291] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Motor neuron disease can be viewed as an umbrella term describing a heterogeneous group of conditions, all of which are relentlessly progressive and ultimately fatal. The average life expectancy is 2 years, but with a broad range of months to decades. Biomarker research deepens disease understanding through exploration of pathophysiological mechanisms which, in turn, highlights targets for novel therapies. It also allows differentiation of the disease population into sub-groups, which serves two general purposes: (a) provides clinicians with information to better guide their patients in terms of disease progression, and (b) guides clinical trial design so that an intervention may be shown to be effective if population variation is controlled for. Biomarkers also have the potential to provide monitoring during clinical trials to ensure target engagement. This review highlights biomarkers that have emerged from the fields of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine analysis); imaging and electrophysiology, and gives examples of how a combinatorial approach may yield the best results. We emphasize the importance of systematic sample collection and analysis, and the need to correlate biomarker findings with detailed phenotype and genotype data.
Collapse
Affiliation(s)
- Nick S Verber
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Stephanie R Shepheard
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Harry E McDonough
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Sophie A Moore
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Tom M Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
47
|
Combined Tissue-Fluid Proteomics to Unravel Phenotypic Variability in Amyotrophic Lateral Sclerosis. Sci Rep 2019; 9:4478. [PMID: 30872628 PMCID: PMC6418138 DOI: 10.1038/s41598-019-40632-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of biomarkers for early diagnosis, clinical stratification and to monitor treatment response has hampered the development of new therapies for amyotrophic lateral sclerosis (ALS), a clinically heterogeneous neurodegenerative disorder with a variable site of disease initiation and rate of progression. To identify new biomarkers and therapeutic targets, two separate proteomic workflows were applied to study the immunological response and the plasma/brain proteome in phenotypic variants of ALS. Conventional multiplex (TMT) proteomic analysis of peripheral blood mononuclear cells (PBMCs) was performed alongside a recently introduced method to profile neuronal-derived proteins in plasma using brain tissue-enhanced isobaric tagging (TMTcalibrator). The combined proteomic analysis allowed the detection of regulated proteins linked to ALS pathogenesis (RNA-binding protein FUS, superoxide dismutase Cu-Zn and neurofilaments light polypeptide) alongside newly identified candidate biomarkers (myosin-9, fructose-bisphosphate aldolase and plectin). In line with the proteomic results, orthogonal immunodetection showed changes in neurofilaments and ApoE in bulbar versus limb onset fast progressing ALS. Functional analysis of significantly regulated features showed enrichment of pathways involved in regulation of the immune response, Rho family GTPases, semaphorin and integrin signalling. Our cross-phenotype investigation of PBMCs and plasma/brain proteins provides a more sensitive biomarker exploratory platform than conventional case-control studies in a single matrix. The reported regulated proteins may represent novel biomarker candidates and potentially druggable targets.
Collapse
|
48
|
Oeckl P, Weydt P, Steinacker P, Anderl-Straub S, Nordin F, Volk AE, Diehl-Schmid J, Andersen PM, Kornhuber J, Danek A, Fassbender K, Fliessbach K, Jahn H, Lauer M, Müller K, Knehr A, Prudlo J, Schneider A, Thal DR, Yilmazer-Hanke D, Weishaupt JH, Ludolph AC, Otto M. Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. J Neurol Neurosurg Psychiatry 2019; 90:4-10. [PMID: 30224549 DOI: 10.1136/jnnp-2018-318868] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/16/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the role of neuroinflammation in asymptomatic and symptomatic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mutation carriers. METHODS The neuroinflammatory markers chitotriosidase 1 (CHIT1), YKL-40 and glial fibrillary acidic protein (GFAP) were measured in cerebrospinal fluid (CSF) and blood samples from asymptomatic and symptomatic ALS/FTD mutation carriers, sporadic cases and controls by ELISA. RESULTS CSF levels of CHIT1, YKL-40 and GFAP were unaffected in asymptomatic mutation carriers (n=16). CHIT1 and YKL-40 were increased in gALS (p<0.001, n=65) whereas GFAP was not affected. Patients with ALS carrying a CHIT1 polymorphism had lower CHIT1 concentrations in CSF (-80%) whereas this polymorphism had no influence on disease severity. In gFTD (n=23), increased YKL-40 and GFAP were observed (p<0.05), whereas CHIT1 was nearly not affected. The same profile as in gALS and gFTD was observed in sALS (n=64/70) and sFTD (n=20/26). CSF and blood concentrations correlated moderately (CHIT1, r=0.51) to weak (YKL-40, r=0.30, GFAP, r=0.39). Blood concentrations of these three markers were not significantly altered in any of the groups except CHIT1 in gALS of the Ulm cohort (p<0.05). CONCLUSION Our data indicate that neuroinflammation is linked to the symptomatic phase of ALS/FTD and shows a similar pattern in sporadic and genetic cases. ALS and FTD are characterised by a different neuroinflammatory profile, which might be one driver of the diverse presentations of the ALS/FTD syndrome.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Patrick Weydt
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | | | | | - Frida Nordin
- Department of Pharmacology and Clinical Neurosciences, Umeå University, Umeå, Sweden
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Peter M Andersen
- Department of Neurology, Ulm University Hospital, Ulm, Germany.,Department of Pharmacology and Clinical Neurosciences, Umeå University, Umeå, Sweden
| | - Johannes Kornhuber
- Department of Psychiatry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Adrian Danek
- Department of Neurology, LMU Munich, Munich, Germany
| | | | - Klaus Fliessbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | | | - Holger Jahn
- Department of Psychiatry, University Hospital Hamburg, Hamburg, Germany
| | - Martin Lauer
- Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Kathrin Müller
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Antje Knehr
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Johannes Prudlo
- Department of Neurology, University of Rostock, and German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | - Dietmar R Thal
- Department of Neuroscience, KU Leuven and Department of Pathology, UZ Leuven, Belgium.,Laboratory of Neuropathology, Institute of Pathology, Ulm University, Ulm, Germany
| | | | | | | | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
49
|
Zubiri I, Lombardi V, Bremang M, Mitra V, Nardo G, Adiutori R, Lu CH, Leoni E, Yip P, Yildiz O, Ward M, Greensmith L, Bendotti C, Pike I, Malaspina A. Tissue-enhanced plasma proteomic analysis for disease stratification in amyotrophic lateral sclerosis. Mol Neurodegener 2018; 13:60. [PMID: 30404656 PMCID: PMC6223075 DOI: 10.1186/s13024-018-0292-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
Background It is unclear to what extent pre-clinical studies in genetically homogeneous animal models of amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disorder, can be informative of human pathology. The disease modifying effects in animal models of most therapeutic compounds have not been reproduced in patients. To advance therapeutics in ALS, we need easily accessible disease biomarkers which can discriminate across the phenotypic variants observed in ALS patients and can bridge animal and human pathology. Peripheral blood mononuclear cells alterations reflect the rate of progression of the disease representing an ideal biological substrate for biomarkers discovery. Methods We have applied TMTcalibrator™, a novel tissue-enhanced bio fluid mass spectrometry technique, to study the plasma proteome in ALS, using peripheral blood mononuclear cells as tissue calibrator. We have tested slow and fast progressing SOD1G93A mouse models of ALS at a pre-symptomatic and symptomatic stage in parallel with fast and slow progressing ALS patients at an early and late stage of the disease. Immunoassays were used to retest the expression of relevant protein candidates. Results The biological features differentiating fast from slow progressing mouse model plasma proteomes were different from those identified in human pathology, with only processes encompassing membrane trafficking with translocation of GLUT4, innate immunity, acute phase response and cytoskeleton organization showing enrichment in both species. Biological processes associated with senescence, RNA processing, cell stress and metabolism, major histocompatibility complex-II linked immune-reactivity and apoptosis (early stage) were enriched specifically in fast progressing ALS patients. Immunodetection confirmed regulation of the immunosenescence markers Galectin-3, Integrin beta 3 and Transforming growth factor beta-1 in plasma from pre-symptomatic and symptomatic transgenic animals while Apolipoprotein E differential plasma expression provided a good separation between fast and slow progressing ALS patients. Conclusions These findings implicate immunosenescence and metabolism as novel targets for biomarkers and therapeutic discovery and suggest immunomodulation as an early intervention. The variance observed in the plasma proteomes may depend on different biological patterns of disease progression in human and animal model. Electronic supplementary material The online version of this article (10.1186/s13024-018-0292-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Zubiri
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK. .,Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK.
| | - Vittoria Lombardi
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Michael Bremang
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Vikram Mitra
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Rocco Adiutori
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Ching-Hua Lu
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK.,Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Emanuela Leoni
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK.,Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Ping Yip
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Ozlem Yildiz
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Malcolm Ward
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, UK
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Ian Pike
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Andrea Malaspina
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK.
| |
Collapse
|
50
|
Longitudinal assessment of clinical and inflammatory markers in patients with amyotrophic lateral sclerosis. J Neurol Sci 2018; 394:69-74. [PMID: 30219498 DOI: 10.1016/j.jns.2018.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate potential associations between clinical features and inflammatory markers in patients with amyotrophic lateral sclerosis (ALS). METHODS A consecutive series of 68 patients (39 males and 29 females) with sporadic ALS were subjected to a comprehensive clinical assessment and blood draw. A subset of these patients underwent a new assessment within 6-12 months after the baseline visit. In addition, a group of 62 subjects composed by age and sex-matched healthy subjects (38 males and 24 females) was enrolled in this study. Peripheral blood was drawn and plasma levels of chemokines and cytokines were measured by cytometric bead array and enzyme-linked immunosorbent assay. RESULTS Our sample was composed by patients with ALS with an average age of 58 (±12.3) years old and 3 (±2.7) years of disease length at the baseline visit. Patients with ALS presented increased plasma levels of interleukin (IL)-6 and IL-8 in comparison with controls. After multivariate analysis, higher levels of IL-6 and lower levels of IL-2 were significantly associated with increased likelihood of ALS diagnosis. When evaluating the subset of patients assessed longitudinally, we did not find any significant difference in the levels of inflammatory markers between the two time points. Older age at ALS onset was the only factor associated with a faster rate of disease progression. CONCLUSIONS IL-6 levels could discriminate between ALS and controls and may be regarded as a potential biomarker of ALS diagnosis. An increase in IL-2 levels was associated with a protective effect on the odds of ALS diagnosis. Older age at ALS onset predicted a fast rate of disease progression.
Collapse
|