1
|
Koné A, Souleymane C, Kalo M, Tchambaga Etienne C, Collet S, Sissouma D. Synthesis of novel benzimidazole-based retrochalcones and their anticancer activity against breast and colon cancer. SYNTHETIC COMMUN 2025; 55:175-182. [DOI: 10.1080/00397911.2024.2440026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Aboudramane Koné
- Laboratoire des Sciences et Technologies de l’Environnement, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny Abidjan-Cocody, Abidjan, Côte d’Ivoire
| | - Coulibaly Souleymane
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny Abidjan-Cocody, Abidjan, Côte d’Ivoire
| | - Mabintou Kalo
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny Abidjan-Cocody, Abidjan, Côte d’Ivoire
- Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix HOUPHOUËT-BOIGNY, Yamoussoukro, Côte d’Ivoire BP 1093
| | - Camara Tchambaga Etienne
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny Abidjan-Cocody, Abidjan, Côte d’Ivoire
| | - Sylvain Collet
- Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes, France
| | - Drissa Sissouma
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny Abidjan-Cocody, Abidjan, Côte d’Ivoire
| |
Collapse
|
2
|
Sandoval C, Torrens F, Godoy K, Reyes C, Farías J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. Int J Mol Sci 2023; 24:12258. [PMID: 37569634 PMCID: PMC10418467 DOI: 10.3390/ijms241512258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Leukemia invades the bone marrow progressively and, through unknown mechanisms, outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have been linked to several human diseases, including cancer. Small compounds that target PRMT1 have a significant impact on both functional research and clinical disease treatment. In fact, numerous PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using linear discriminant analysis allows us to accurately classify over 90% of the investigated active substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can account for more than 56% of the variation. Both analyses are validated using an internal "leave some out" test. The developed model could be utilized in future preclinical experiments with novel drugs.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, 46071 València, Spain;
| | - Karina Godoy
- Nucleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Camila Reyes
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Sandoval C, Torrens F, Godoy K, Reyes C, Farías J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. Int J Mol Sci 2023; 24:12258. [DOI: https:/doi.org/10.3390/ijms241512258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Leukemia invades the bone marrow progressively and, through unknown mechanisms, outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have been linked to several human diseases, including cancer. Small compounds that target PRMT1 have a significant impact on both functional research and clinical disease treatment. In fact, numerous PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using linear discriminant analysis allows us to accurately classify over 90% of the investigated active substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can account for more than 56% of the variation. Both analyses are validated using an internal “leave some out” test. The developed model could be utilized in future preclinical experiments with novel drugs.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, 46071 València, Spain
| | - Karina Godoy
- Nucleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Reyes
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
4
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. Development of binary classification models for grouping hydroxylated polychlorinated biphenyls into active and inactive thyroid hormone receptor agonists. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:267-284. [PMID: 37139950 DOI: 10.1080/1062936x.2023.2207039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Some adverse effects of hydroxylated polychlorinated biphenyls (OH-PCBs) in humans are presumed to be initiated via thyroid hormone receptor (TR) binding. Due to the trial-and-error approach adopted for OH-PCB selection in previous studies, experiments designed to test the TR binding hypothesis mostly utilized inactive OH-PCBs, leading to considerable waste of time, effort and other material resources. In this paper, linear discriminant analysis (LDA) and binary logistic regression (LR) were used to develop classification models to group OH-PCBs into active and inactive TR agonists using radial distribution function (RDF) descriptors as predictor variables. The classifications made by both LDA and LR models on the training set compounds resulted in an accuracy of 84.3%, sensitivity of 72.2% and specificity of 90.9%. The areas under the ROC curves, constructed with the training set data, were found to be 0.872 and 0.880 for LDA and LR models, respectively. External validation of the models revealed that 76.5% of the test set compounds were correctly classified by both LDA and LR models. These findings suggest that the two models reported in this paper are good and reliable for classifying OH-PCB congeners into active and inactive TR agonists.
Collapse
Affiliation(s)
- L K Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Chemistry, Bauchi State University, Gadau, Nigeria
| | - A Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - G A Shallangwa
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - S E Abechi
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
5
|
Bridging the Gap in Malaria Parasite Resistance, Current Interventions, and the Way Forward from in Silico Perspective: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227915. [PMID: 36432016 PMCID: PMC9692793 DOI: 10.3390/molecules27227915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decade has seen most antimalarial drugs lose their clinical potency stemming from parasite resistance. Despite immense efforts by researchers to mitigate this global scourge, a breakthrough is yet to be achieved, as most current malaria chemotherapies suffer the same fate. Though the etiology of parasite resistance is not well understood, the parasite's complex life has been implicated. A drug-combination therapy with artemisinin as the central drug, artemisinin-based combination therapy (ACT), is currently the preferred malaria chemotherapy in most endemic zones. The emerging concern of parasite resistance to artemisinin, however, has compromised this treatment paradigm. Membrane-bound Ca2+-transporting ATPase and endocytosis pathway protein, Kelch13, among others, are identified as drivers in plasmodium parasite resistance to artemisinin. To mitigate parasite resistance to current chemotherapy, computer-aided drug design (CADD) techniques have been employed in the discovery of novel drug targets and the development of small molecule inhibitors to provide an intriguing alternative for malaria treatment. The evolution of plasmepsins, a class of aspartyl acid proteases, has gained tremendous attention in drug discovery, especially the non-food vacuole. They are expressed at multi-stage of the parasite's life cycle and involve in hepatocytes' egress, invasion, and dissemination of the parasite within the human host, further highlighting their essentiality. In silico exploration of non-food vacuole plasmepsin, PMIX and PMX unearthed the dual enzymatic inhibitory mechanism of the WM382 and 49c, novel plasmepsin inhibitors presently spearheading the search for potent antimalarial. These inhibitors impose structural compactness on the protease, distorting the characteristic twist motion. Pharmacophore modeling and structure activity of these compounds led to the generation of hits with better affinity and inhibitory prowess towards PMIX and PMX. Despite these headways, the major obstacle in targeting PM is the structural homogeneity among its members and to human Cathepsin D. The incorporation of CADD techniques described in the study at early stages of drug discovery could help in selective inhibition to augment malaria chemotherapy.
Collapse
|
6
|
Mughal H, Bell EC, Mughal K, Derbyshire ER, Freundlich JS. Random Forest Model Predictions Afford Dual-Stage Antimalarial Agents. ACS Infect Dis 2022; 8:1553-1562. [PMID: 35894649 PMCID: PMC9987178 DOI: 10.1021/acsinfecdis.2c00189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The need for novel antimalarials is apparent given the continuing disease burden worldwide, despite significant drug discovery advances from the bench to the bedside. In particular, small-molecule agents with potent efficacy against both the liver and blood stages of Plasmodium parasite infection are critical for clinical settings as they would simultaneously prevent and treat malaria with a reduced selection pressure for resistance. While experimental screens for such dual-stage inhibitors have been conducted, the time and cost of these efforts limit their scope. Here, we have focused on leveraging machine learning approaches to discover novel antimalarials with such properties. A random forest modeling approach was taken to predict small molecules with in vitro efficacy versus liver-stage Plasmodium berghei parasites and a lack of human liver cell cytotoxicity. Empirical validation of the model was achieved with the realization of hits with liver-stage efficacy after prospective scoring of a commercial diversity library and consideration of structural diversity. A subset of these hits also demonstrated promising blood-stage Plasmodium falciparum efficacy. These 18 validated dual-stage antimalarials represent novel starting points for drug discovery and mechanism of action studies with significant potential for seeding a new generation of therapies.
Collapse
Affiliation(s)
- Haseeb Mughal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University – New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103
| | - Elise C. Bell
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Khadija Mughal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University – New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103
| | - Emily R. Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University – New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University – New Jersey Medical School, Newark, NJ, 07103
| |
Collapse
|
7
|
Dudev T, Cheshmedzhieva D, Dorkov P, Pantcheva I. A DFT/PCM Study on the Affinity of Salinomycin to Bind Monovalent Metal Cations. Molecules 2022; 27:532. [PMID: 35056843 PMCID: PMC8779476 DOI: 10.3390/molecules27020532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
The affinity of the polyether ionophore salinomycin to bind IA/IB metal ions was accessed using the Gibbs free energy of the competition reaction between SalNa (taken as a reference) and its rival ions: [M+-solution] + [SalNa] → [SalM] + [Na+-solution] (M = Li, K, Rb, Cs, Cu, Ag, Au). The DFT/PCM computations revealed that the ionic radius, charge density and accepting ability of the competing metal cations, as well as the dielectric properties of the solvent, have an influence upon the selectivity of salinomycin. The optimized structures of the monovalent metal complexes demonstrate the flexibility of the ionophore, allowing the coordination of one or two water ligands in SalM-W1 and SalM-W2, respectively. The metal cations are responsible for the inner coordination sphere geometry, with coordination numbers spread between 2 (Au+), 4 (Li+ and Cu+), 5/6 (Na+, K+, Ag+), 6/7 (Rb+) and 7/8 (Cs+). The metals' affinity to salinomycin in low-polarity media follows the order of Li+ > Cu+ > Na+ > K+ > Au+ > Ag+ > Rb+ > Cs+, whereas some derangement takes place in high-dielectric environment: Li+ ≥ Na+ > K+ > Cu+ > Au+ > Ag+ > Rb+ > Cs+.
Collapse
Affiliation(s)
- Todor Dudev
- Laboratory of Computational Chemistry and Spectroscopy, Faculty of Chemistry and Pharmacy, “St. Kl. Ohridski” University of Sofia, 1164 Sofia, Bulgaria;
| | - Diana Cheshmedzhieva
- Laboratory of Computational Chemistry and Spectroscopy, Faculty of Chemistry and Pharmacy, “St. Kl. Ohridski” University of Sofia, 1164 Sofia, Bulgaria;
| | - Peter Dorkov
- Research & Development Department, Biovet Ltd., 4550 Peshtera, Bulgaria;
| | - Ivayla Pantcheva
- Laboratory of Biocoordination and Bioanalytical Chemistry, Faculty of Chemistry and Pharmacy, “St. Kl. Ohridski” University of Sofia, 1164 Sofia, Bulgaria
| |
Collapse
|
8
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
9
|
Tuvshintulga B, Sivakumar T, Nugraha AB, Ahedor B, Batmagnai E, Otgonsuren D, Liu MM, Xuan X, Igarashi I, Yokoyama N. A combination of clofazimine‒atovaquone as a potent therapeutic regimen for the radical cure of Babesia microti infection in immunocompromised hosts. J Infect Dis 2021; 225:238-242. [PMID: 34664651 DOI: 10.1093/infdis/jiab537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Human babesiosis caused by Babesia microti can be fatal in immunocompromised patients, and the currently used drugs are often ineffective. A recent study found that clofazimine clears B. microti Munich strain in immunocompromised mice. In the present study, we investigated the efficacies of clofazimine and two-drug combinations involving clofazimine, atovaquone, and azithromycin against B. microti Peabody mjr strain in immunocompromised mice. Treatment with clofazimine alone, clofazimine plus azithromycin, and atovaquone plus azithromycin was ineffective and failed to eliminate the parasites completely, while a 44-day treatment with clofazimine plus atovaquone was highly effective and resulted in a radical cure.
Collapse
Affiliation(s)
- Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Arifin Budiman Nugraha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Believe Ahedor
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Enkhbaatar Batmagnai
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Davaajav Otgonsuren
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Ming Ming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
10
|
Banfi FF, Krombauer GC, da Fonseca AL, Nunes RR, Andrade SN, de Rezende MA, Chaves MH, Monção EDS, Taranto AG, Rodrigues DDJ, Vieira GM, de Castro WV, Varotti FDP, Sanchez BAM. Dehydrobufotenin extracted from the Amazonian toad Rhinella marina (Anura: Bufonidae) as a prototype molecule for the development of antiplasmodial drugs. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200073. [PMID: 33519927 PMCID: PMC7812938 DOI: 10.1590/1678-9199-jvatitd-2020-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Background: The resistance against antimalarial drugs represents a global challenge in the fight and control of malaria. The Brazilian biodiversity can be an important tool for research and development of new medicinal products. In this context, toxinology is a multidisciplinary approach on the development of new drugs, including the isolation, purification, and evaluation of the pharmacological activities of natural toxins. The present study aimed to evaluate the cytotoxicity, as well as the antimalarial activity in silico and in vitro of four compounds isolated from Rhinella marina venom as potential oral drug prototypes. Methods: Four compounds were challenged against 35 target proteins from P. falciparum and screened to evaluate their physicochemical properties using docking assay in Brazilian Malaria Molecular Targets (BraMMT) software and in silico assay in OCTOPUS® software. The in vitro antimalarial activity of the compounds against the 3D7 Plasmodium falciparum clones were assessed using the SYBR Green I based assay (IC50). For the cytotoxic tests, the LD50 was determined in human pulmonary fibroblast cell line using the [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. Results: All compounds presented a ligand-receptor interaction with ten Plasmodium falciparum-related protein targets, as well as antimalarial activity against chloroquine resistant strain (IC50 = 3.44 μM to 19.11 μM). Three of them (dehydrobufotenine, marinobufagin, and bufalin) showed adequate conditions for oral drug prototypes, with satisfactory prediction of absorption, permeability, and absence of toxicity. In the cell viability assay, only dehydrobufotenin was selective for the parasite. Conclusions: Dehydrobufotenin revealed to be a potential oral drug prototype presenting adequate antimalarial activity and absence of cytotoxicity, therefore should be subjected to further studies.
Collapse
Affiliation(s)
- Felipe Finger Banfi
- Laboratory of Immunopathology and Tropical Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Gabriela Camila Krombauer
- Laboratory of Immunopathology and Tropical Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Amanda Luisa da Fonseca
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Renata Rachide Nunes
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Silmara Nunes Andrade
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Millena Alves de Rezende
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | | | | | - Alex Guterres Taranto
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Domingos de Jesus Rodrigues
- Center for Biodiversity Studies in the Amazon Region of Mato Grosso (NEBAM), Federal University of Mato Grosso, MT, Brazil
| | | | | | - Fernando de Pilla Varotti
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Bruno Antonio Marinho Sanchez
- Laboratory of Immunopathology and Tropical Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| |
Collapse
|
11
|
Pessotti RDC, Hansen BL, Reaso JN, Ceja-Navarro JA, El-Hifnawi L, Brodie EL, Traxler MF. Multiple lineages of Streptomyces produce antimicrobials within passalid beetle galleries across eastern North America. eLife 2021; 10:65091. [PMID: 33942718 PMCID: PMC8096431 DOI: 10.7554/elife.65091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Some insects form symbioses in which actinomycetes provide defense against pathogens by making antimicrobials. The range of chemical strategies employed across these associations, and how these strategies relate to insect lifestyle, remains underexplored. We assessed subsocial passalid beetles of the species Odontotaenius disjunctus, and their frass (fecal material), which is an important food resource within their galleries, as a model insect/actinomycete system. Through chemical and phylogenetic analyses, we found that O. disjunctus frass collected across eastern North America harbored multiple lineages of Streptomyces and diverse antimicrobials. Metabolites detected in frass displayed synergistic and antagonistic inhibition of a fungal entomopathogen, Metarhizium anisopliae, and multiple streptomycete isolates inhibited this pathogen when co-cultivated directly in frass. These findings support a model in which the lifestyle of O. disjunctus accommodates multiple Streptomyces lineages in their frass, resulting in a rich repertoire of antimicrobials that likely insulates their galleries against pathogenic invasion.
Collapse
Affiliation(s)
- Rita de Cassia Pessotti
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bridget L Hansen
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jewel N Reaso
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Javier A Ceja-Navarro
- Bioengineering and Biomedical Sciences Department, Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States,Institute for Biodiversity Science and Sustainability, California Academy of SciencesBerkeleyUnited States
| | - Laila El-Hifnawi
- Department of Molecular and Cellular Biology, University of California, BerkeleyBerkeleyUnited States
| | - Eoin L Brodie
- Ecology Department, Earth and Environmental Sciences, Lawrence Berkeley National LaboratoryBerkeleyUnited States,Department of Environmental Science, Policy and Management, University of California, BerkeleyBerkeleyUnited States
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
12
|
Sahu AK, Said MS, Hingamire T, Gaur M, Khan A, Shanmugam D, Barvkar VT, Dharne MS, Bharde AA, Dastager SG. Approach to nigericin derivatives and their therapeutic potential. RSC Adv 2020; 10:43085-43091. [PMID: 35514935 PMCID: PMC9058090 DOI: 10.1039/d0ra05137c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022] Open
Abstract
A new nigericin analogue that has been chemically modified was synthesized through a fluorination process from the parent nigericin, produced from a novel Streptomyces strain DASNCL-29. Fermentation strategies were designed for the optimised production of nigericin molecule and subjected for purification and structural analysis. The fermentation process resulted in the highest yield of nigericin (33% (w/w)). Initially, nigericin produced from the strain DASNCL-29 demonstrated polymorphism in its crystal structure, i.e., monoclinic and orthorhombic crystal lattices when crystallised with methanol and hexane, respectively. Furthermore, nigericin produced has been subjected to chemical modification by fluorination to enhance its efficacy. Two fluorinated analogues revealed that they possess a very potent antibacterial activity against Gram positive and Gram negative bacteria. To date, the nigericin molecule has not been reported for any reaction against Gram-negative bacteria, which are increasingly becoming resistant to antibiotics. For the first time, fluorinated analogues of nigericin have shown promising activity. In vitro cytotoxicity analysis of fluorinated analogues demonstrated tenfold lesser toxicity than the parent nigericin. This is the first type of study where the fluorinated analogues of nigericin showed very encouraging activity against Gram-negative organisms; moreover, they can be used as a candidate for treating many serious infections.
Collapse
Affiliation(s)
- Amit Kumar Sahu
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- National Collection of Industrial Microorganisms (NCIM), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Madhukar S Said
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- Organic Chemistry Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Tejashri Hingamire
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Megha Gaur
- Department of Microbiology, Savitribai Phule-Pune University Pune-411007 India
| | - Abujunaid Khan
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- National Collection of Industrial Microorganisms (NCIM), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Dhanasekaran Shanmugam
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule-Pune University Pune-411007 India
| | - Mahesh S Dharne
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- National Collection of Industrial Microorganisms (NCIM), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Atul A Bharde
- Department of Microbiology, Savitribai Phule-Pune University Pune-411007 India
| | - Syed G Dastager
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- National Collection of Industrial Microorganisms (NCIM), CSIR National Chemical Laboratory Pune-411008 India
| |
Collapse
|
13
|
Belay C, Steinman NY, Campos LM, Dzikowski R, Golenser J, Domb AJ. Asymmetric trisalkylamine cyclopropenium derivatives with antimicrobial activity. Bioorg Chem 2020; 102:104069. [PMID: 32683179 DOI: 10.1016/j.bioorg.2020.104069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
Cationic molecules are found in abundance as antimicrobial agents with a well-defined mechanism of action and significant therapeutic benefits. Quaternary ammonium-containing compounds are frequently employed due to their facile synthesis and tunable properties. Over time, however, bacterial resistance to these compounds has become a significant obstacle. We report here a series of asymmetric trisalkylamine cyclopropenium cationic derivatives as chemical isosteres of quaternary ammonium compounds, capable of strong antimicrobial activity and overcoming microbial resistance. These small molecules were prepared by one-pot reaction of tetrachlorocyclopropene (TCC) with unhindered secondary amines in the presence of Hünig's base. In this work we describe the synthesis, purification, and characterization of five trisamino-cyclopropenium derivatives and confirm their structures by spectral analysis and mass-spectrometry. Three of the compounds displayed considerable antimalarial activity (IC50 < 0.1 µM) without demonstrating significant toxic effects in vitro (TC50 > 1 µM). This class of cyclopropenium-based compounds provides an opening for the discovery of potent and non-toxic antimicrobial agents.
Collapse
Affiliation(s)
- Chen Belay
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Noam Y Steinman
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
14
|
Bekono BD, Ntie-Kang F, Onguéné PA, Lifongo LL, Sippl W, Fester K, Owono LCO. The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar J 2020; 19:183. [PMID: 32423415 PMCID: PMC7236213 DOI: 10.1186/s12936-020-03231-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background African Traditional Medicine (ATM) is used for the healthcare of about 80% of the rural populations of the continent of Africa. The practices of ATM make use of plant-products, which are known to contain plant-based secondary metabolites or natural products (NPs), likely to play key roles in drug discovery, particularly as lead compounds. For various reasons, including resistance of strains of Plasmodium to known anti-malarial drugs, local African populations often resort to plant-based treatments and/or a combination of this and standard anti-malarial regimens. Emphasis has been laid in this review to present the anti-malarial virtue of the most recently published phytochemicals or natural products, which have been tested by in vitro and in vivo assays. Methods The data was based on the current version of the African Compound Libraries, which are constantly being updated based on inputs from journal articles and student theses (M.Sc/Ph.D) from African University libraries. Emphasis was laid on data published after 2012. In order to carry out the original data collection, currently being included in the African Compounds Database, individual journal websites were queried using the country names in Africa as search terms. Over 40,000 articles “hits” were originally retrieved, then reduced to about 9000 articles. The retained articles/theses was further queried with the search terms “malaria”, “malarial”, “plasmodium”, “plasmodial” and a combination of them, resulting in over 500 articles. Those including compounds with anti-malarial activities for which the measured activities fell within the established cut off values numbered 55, which were all cited in the review as relevant references. Results and discussion Pure compounds derived from African medicinal plants with demonstrated anti-malarial/antiplasmodial properties with activities ranging from “very active” to “weakly active” have been discussed. The majority of the 187 natural products were terpenoids (30%), followed by flavonoids (22%), alkaloids (19%) and quinones (15%), with each of the other compound classes being less than 5% of the entire compound collection. It was also observed that most of the plant species from which the compounds were identified were of the families Rubiaceae, Meliaceae and Asphodelaceae. The review is intended to continue laying the groundwork for an African-based anti-malarial drug discovery project.
Collapse
Affiliation(s)
- Boris D Bekono
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon. .,Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes Str. 3, 06120, Halle (Saale), Germany. .,Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062 , Dresden, Germany.
| | - Pascal Amoa Onguéné
- Department of Chemistry, University Institute of Wood Technology Mbalmayo, University of Yaoundé I, BP 50, Mbalmayo, Cameroon
| | - Lydia L Lifongo
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes Str. 3, 06120, Halle (Saale), Germany
| | - Karin Fester
- Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Luc C O Owono
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon.
| |
Collapse
|
15
|
Madhukar G, Malik MZ, Subbarao N. Development and rigorous validation of antimalarial predictive models using machine learning approaches. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:543-560. [PMID: 31328578 DOI: 10.1080/1062936x.2019.1635526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
The large collection of known and experimentally verified compounds from the ChEMBL database was used to build different classification models for predicting the antimalarial activity against Plasmodium falciparum. Four different machine learning methods, namely the support vector machine (SVM), random forest (RF), k-nearest neighbour (kNN) and XGBoost have been used for the development of models using the diverse antimalarial dataset from ChEMBL. A well-established feature selection framework was used to select the best subset from a larger pool of descriptors. Performance of the models was rigorously evaluated by evaluation of the applicability domain, Y-scrambling and AUC-ROC curve. Additionally, the predictive power of the models was also assessed using probability calibration and predictiveness curves. SVM and XGBoost showed the best performances, yielding an accuracy of ~85% on the independent test set. In term of probability prediction, SVM and XGBoost were well calibrated. Total gain (TG) from the predictiveness curve was more related to SVM (TG = 0.67) and XGBoost (TG = 0.75). These models also predict the high-affinity compounds from PubChem antimalarial bioassay (as external validation) with a high probability score. Our findings suggest that the selected models are robust and can be potentially useful for facilitating the discovery of antimalarial agents.
Collapse
Affiliation(s)
- G Madhukar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University , New Delhi , India
| | - M Z Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University , New Delhi , India
| | - N Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
16
|
Banegas-Luna AJ, Cerón-Carrasco JP, Puertas-Martín S, Pérez-Sánchez H. BRUSELAS: HPC Generic and Customizable Software Architecture for 3D Ligand-Based Virtual Screening of Large Molecular Databases. J Chem Inf Model 2019; 59:2805-2817. [DOI: 10.1021/acs.jcim.9b00279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Antonio J. Banegas-Luna
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos s/n, 30107 Murcia, Spain
| | - José P. Cerón-Carrasco
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos s/n, 30107 Murcia, Spain
| | - Savíns Puertas-Martín
- Supercomputing - Algorithms Research Group (SAL), Department of Informatics, University of Almería, Agrifood Campus of International Excellence, ceiA3, Almería, 04120, Spain
| | - Horacio Pérez-Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos s/n, 30107 Murcia, Spain
| |
Collapse
|
17
|
Ko JC, Chen JC, Chen TY, Yen TC, Ma PF, Lin YC, Wu CH, Peng YS, Zheng HY, Lin YW. Inhibition of thymidine phosphorylase expression by Hsp90 inhibitor potentiates the cytotoxic effect of salinomycin in human non-small-cell lung cancer cells. Toxicology 2019; 417:54-63. [PMID: 30796972 DOI: 10.1016/j.tox.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 11/18/2022]
Abstract
Salinomycin is a polyether ionophore antibiotic having anti-tumorigenic property in various types of cancer. Elevated thymidine phosphorylase (TP) levels, a key enzyme in the pyrimidine nucleoside salvage pathway, are associated with an aggressive disease phenotype and poor prognoses. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. In this study, we report whether Hsp90 inhibitor 17-AAG could enhance salinomycin-induced cytotoxicity in NSCLC cells through modulating TP expression in two non-small-cell lung cancer (NSCLC) cell lines, A549 and H1975. We found that salinomycin increased TP expression in a MKK3/6-p38 MAPK activation manner. Knockdown of TP using siRNA or inactivation of p38 MAPK by pharmacological inhibitor SB203580 enhanced the cytotoxic and growth inhibition effects of salinomycin. In contrast, enforced expression of MKK6E (a constitutively active form of MKK6) reduced the cytotoxicity and cell growth inhibition of salinomycin. Moreover, Hsp90 inhibitor 17-AAG enhanced cytotoxicity and cell growth inhibition of salinomycin in NSCLC cells, which were associated with down-regulation of TP expression and inactivation of p38 MAPK. Together, the Hsp90 inhibition induced TP down-regulation involved in enhancing the salinomycin-induced cytotoxicity in A549 and H1975 cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Tzu-Ying Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Ting-Chuan Yen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Peng-Fang Ma
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yuan-Cheng Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chia-Hung Wu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Shuan Peng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Hao-Yu Zheng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
18
|
Nor Azman NS, Hossan MS, Nissapatorn V, Uthaipibull C, Prommana P, Jin KT, Rahmatullah M, Mahboob T, Raju CS, Jindal HM, Hazra B, Mohd Abd Razak MR, Prajapati VK, Pandey RK, Aminudin N, Shaari K, Ismail NH, Butler MS, Zarubaev VV, Wiart C. Anti-infective activities of 11 plants species used in traditional medicine in Malaysia. Exp Parasitol 2018; 194:67-78. [PMID: 30268422 DOI: 10.1016/j.exppara.2018.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/02/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5 cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5 cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50 < 50 μg/mL. Extracts of U. grandiflora, C. costatus, T. peduncularis, L. eugenifolius, A. subulatum, and C. aeruginosa had good activities against P. falciparum K1 with IC50 < 10 μg/mL. Pinoresinol isolated from C. costatus was inactive against L. donovani and P. falciparum. C. costatus extract and pinoresinol increased the sensitivity of Staphylococcus epidermidis to cefotaxime. Pinoresinol demonstrated moderate activity against influenza virus (IC50 = 30.4 ± 11 μg/mL) and was active against Coxsackie virus B3 (IC50 = 7.1 ± 3.0 μg/mL). β-Amyrin from L. eugenifolius inhibited L. donovani with IC50 value of 15.4 ± 0.01 μM. Furanodienone from C. aeruginosa inhibited L. donovani and P. falciparum K1 with IC50 value of 39.5 ± 0.2 and 17.0 ± 0.05 μM, respectively. Furanodienone also inhibited the replication of influenza and Coxsackie virus B3 with IC50 value of 4.0 ± 0.5 and 7.2 ± 1.4 μg/mL (Ribavirin: IC50: 15.6 ± 2.0 μg/mL), respectively. Our study provides evidence that medicinal plants in Malaysia have potentials as a source of chemotypes for the development of anti-infective leads.
Collapse
Affiliation(s)
- Nadiah Syafiqah Nor Azman
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
| | - Md Shahadat Hossan
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, 80161 Nakhon Si Thammarat, Thailand.
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Khoo Teng Jin
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
| | - Mohammed Rahmatullah
- Department of Pharmacy, Faculty of Life Science, University of Development Alternative, 1207 Dhaka, Bangladesh.
| | - Tooba Mahboob
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hassan Mahmood Jindal
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, 70032, Kolkata, India
| | | | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817 Rajasthan, India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817 Rajasthan, India
| | - Norhaniza Aminudin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, University Putra Malaysia, 43400, Serdang, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA Puncak Alam, 42300 Kuala Selangor, Malaysia
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, St Lucia, Australia
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101, St. Petersburg, Russia
| | - Christophe Wiart
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia.
| |
Collapse
|
19
|
Salinomycin acts through reducing AKT-dependent thymidylate synthase expression to enhance erlotinib-induced cytotoxicity in human lung cancer cells. Exp Cell Res 2017; 357:59-66. [DOI: 10.1016/j.yexcr.2017.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023]
|
20
|
López-Malo D, Bueso-Bordils JI, Duart MJ, Alemán-López PA, Martín-Algarra RV, Antón-Fos GM, Lahuerta-Zamora L, Martínez-Calatayud J. QSPR studies on the photoinduced-fluorescence behaviour of pharmaceuticals and pesticides. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:609-620. [PMID: 28789565 DOI: 10.1080/1062936x.2017.1358212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Fluorimetric analysis is still a growing line of research in the determination of a wide range of organic compounds, including pharmaceuticals and pesticides, which makes necessary the development of new strategies aimed at improving the performance of fluorescence determinations as well as the sensitivity and, especially, the selectivity of the newly developed analytical methods. In this paper are presented applications of a useful and growing tool suitable for fostering and improving research in the analytical field. Experimental screening, molecular connectivity and discriminant analysis are applied to organic compounds to predict their fluorescent behaviour after their photodegradation by UV irradiation in a continuous flow manifold (multicommutation flow assembly). The screening was based on online fluorimetric measurement and comprised pre-selected compounds with different molecular structures (pharmaceuticals and some pesticides with known 'native' fluorescent behaviour) to study their changes in fluorescent behaviour after UV irradiation. Theoretical predictions agree with the results from the experimental screening and could be used to develop selective analytical methods, as well as helping to reduce the need for expensive, time-consuming and trial-and-error screening procedures.
Collapse
Affiliation(s)
- D López-Malo
- a Departamento de Farmacia , Universidad CEU - Cardenal Herrera , Valencia , Spain
| | - J I Bueso-Bordils
- a Departamento de Farmacia , Universidad CEU - Cardenal Herrera , Valencia , Spain
| | - M J Duart
- a Departamento de Farmacia , Universidad CEU - Cardenal Herrera , Valencia , Spain
| | - P A Alemán-López
- a Departamento de Farmacia , Universidad CEU - Cardenal Herrera , Valencia , Spain
| | - R V Martín-Algarra
- a Departamento de Farmacia , Universidad CEU - Cardenal Herrera , Valencia , Spain
| | - G M Antón-Fos
- a Departamento de Farmacia , Universidad CEU - Cardenal Herrera , Valencia , Spain
| | - L Lahuerta-Zamora
- a Departamento de Farmacia , Universidad CEU - Cardenal Herrera , Valencia , Spain
| | - J Martínez-Calatayud
- a Departamento de Farmacia , Universidad CEU - Cardenal Herrera , Valencia , Spain
| |
Collapse
|
21
|
Zhang Z, Zhao J, Mi Z, Pang Q, Wang A, Chen M, Liu X, Wei X, Liu T. Effects of salinomycin and 17‑AAG on proliferation of human gastric cancer cells in vitro. Mol Med Rep 2017. [PMID: 28627587 PMCID: PMC5562019 DOI: 10.3892/mmr.2017.6735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the effects and mechanisms of 17-AAG combined with salinomycin treatment on proliferation and apoptosis of the SGC-7901 gastric cancer cell line. An MTT assay was used to detect the proliferation of SGC-7901 cells. Morphological alterations of cells were observed under inverted phase-contrast and fluorescence microscopes. Cell cycle and apoptosis were assessed by flow cytometry analysis. The protein expression of nuclear factor (NF)-κB p65 and Fas-ligand (L) were evaluated by immunocytochemistry. Salinomycin with a concentration range of 1–32 µmol/l was demonstrated to inhibit growth of SGC-7901 cells effectively, affect the morphology and apoptosis rate of cells, and arrest SGC-7901 cells in S phase. Furthermore, salinomycin significantly increased the protein expression of Fas-L and decreased the protein expression of NF-κB p65. The alterations in SGC-7901 cells co-treated with salinomycin and 17-AAG were more significant compared with cells treated with one drug only. In conclusion, the individual use of salinomycin and combined use with 17-AAG may significantly inhibit SGC-7901 gastric cancer cell proliferation and induce cell apoptosis. The potential mechanisms may be associated with upregulation of Fas-L and downregulation of NF-κB. These results provide a basis for the potential use of salinomycin in gastric cancer treatment.
Collapse
Affiliation(s)
- Zuwen Zhang
- Key Laboratory of Cancer Prevention and Control, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Jumei Zhao
- Key Laboratory of Cancer Prevention and Control, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Zhikuan Mi
- Key Laboratory of Cancer Prevention and Control, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Qiuxia Pang
- Key Laboratory of Cancer Prevention and Control, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Aihong Wang
- Key Laboratory of Cancer Prevention and Control, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Meini Chen
- Key Laboratory of Cancer Prevention and Control, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Xiaobin Liu
- Key Laboratory of Cancer Prevention and Control, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Xiaoli Wei
- Key Laboratory of Cancer Prevention and Control, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Tao Liu
- The First Ward of Department of Otolaryngology, The Affiliated Hospital of Yan'an University, Yan'an, Shanxi 716000, P.R. China
| |
Collapse
|
22
|
Zhang Z, Zhao J, Pang Q, Wang A, Chen M, Wei X. An in vitro study on the effects of the combination of salinomycin with cisplatin on human gastric cancer cells. Mol Med Rep 2017. [PMID: 28627601 PMCID: PMC5561897 DOI: 10.3892/mmr.2017.6731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The present study aimed to investigate the anticancer effects of cisplatin (DDP) combined with salinomycin (SAL) on the gastric cancer cell line SGC-7901, as well as to explore the mechanisms underlying their actions. An MTT assay was used to evaluate the inhibitory effects of SAL, DDP and their combination on gastric cancer cell proliferation. Morphological alterations of cancer cells following treatment were observed under an inverted phase-contrast microscope and a fluorescence microscope. Cell cycle progression and apoptosis were analyzed using flow cytometry. The expression of nuclear factor (NF)-κB p65 and Fas protein ligand (L) in cancer cells was assessed using immunocytochemistry. The present results demonstrated that the combination of SAL and DDP significantly inhibited the proliferation (P<0.05) and altered the morphological characteristics of SGC-7901 cells, thus suggesting that SAL may enhance the susceptibility of gastric cancer cells to DDP. In addition, treatment with a combination of SAL and DDP resulted in S phase-arrest and increased the apoptotic rate of SGC-7901 cells. Furthermore, marked FasL upregulation and NF-κB p65 downregulation were observed in cancer cells treated with the combination of SAL and DDP. The results of the present study demonstrated that the combination of SAL and DDP induced the apoptosis of human gastric cancer cells, and suggested that the underlying mechanism may involve the upregulation of FasL and downregulation of NF-κB p65.
Collapse
Affiliation(s)
- Zuwen Zhang
- Medical College, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Jumei Zhao
- Medical College, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Qiuxia Pang
- Medical College, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Aihong Wang
- Medical College, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Meini Chen
- Medical College, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Xiaoli Wei
- Medical College, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| |
Collapse
|
23
|
Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression. Biochem Pharmacol 2016; 122:90-98. [DOI: 10.1016/j.bcp.2016.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
|
24
|
Clofazimine Inhibits the Growth of Babesia and Theileria Parasites In Vitro and In Vivo. Antimicrob Agents Chemother 2016; 60:2739-46. [PMID: 26883713 DOI: 10.1128/aac.01614-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/12/2016] [Indexed: 11/20/2022] Open
Abstract
The present study evaluated the growth-inhibitory effects of clofazimine, currently used for treating leprosy, against Babesia bovis, B. bigemina, B. caballi, and Theileria equi in in vitro culture and against Babesia microti in mice. The 50% inhibitory concentrations (IC50s) of clofazimine against the in vitro growth of B. bovis, B. bigemina, B. caballi, and T. equi were 4.5, 3, 4.3, and 0.29 μM, respectively. In mice infected with B. microti, treatment with 20 mg/kg of body weight of clofazimine administered orally resulted in a significantly lower peak parasitemia (5.3%) than that in the control group (45.9%), which was comparable to the subcutaneous administration of 25 mg/kg diminazene aceturate, the most widely used treatment for animal piroplasmosis. Although slight anemia was observed in both clofazimine- and diminazene aceturate-treated infected mice, the level and duration of anemia were lower and shorter, respectively, than those in untreated infected mice. Using blood transfusions and PCR, we also examined whether clofazimine completely killed B. microti On day 40 postinfection, when blood analysis was performed, parasites were not found in blood smears; however, the DNA of B. microti was detected in the blood of clofazimine-treated animals and in several tissues of clofazimine- and diminazene aceturate-treated mice by PCR. The growth of parasites was observed in mice after blood transfusions from clofazimine-treated mice. In conclusion, clofazimine showed excellent inhibitory effects against Babesia and Theileria in vitro and in vivo, and further study on clofazimine is required for the future development of a novel chemotherapy with high efficacy and safety against animal piroplasmosis and, possibly, human babesiosis.
Collapse
|
25
|
Zhang Y, Zuo Y, Guan Z, Lu W, Xu Z, Zhang H, Yang Y, Yang M, Zhu H, Chen X. Salinomycin radiosensitizes human nasopharyngeal carcinoma cell line CNE-2 to radiation. Tumour Biol 2016; 37:305-11. [PMID: 26209294 DOI: 10.1007/s13277-015-3730-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/28/2015] [Indexed: 01/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is primarily treated by chemoradiation. However, how to promote radiation sensitivity in NPC remains a challenge. Salinomycin is potentially useful for the treatment of cancer. This study aimed to explore the radiosensitivity of salinomycin on human nasopharyngeal carcinoma cell line CNE-2. CNE-2 were treated with salinomycin or irradiation, alone or in combination. The cytotoxicity effects of salinomycin were measured using CCK-8 assay. Clonogenic survival assay was used to evaluate the effects of salinomycin on the radiosensitivity of CNE-2. The changes of cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of Caspase3/Bax/Bal-2 was detected by Western blotting. DNA damage was detected via γ-H2AX foci counting. The results showed that salinomycin induced apoptosis and G2/M arrest, increased Bax and cleaved Caspase3, decreased Bcl-2 expression, and increased the formation of γ-H2AX nuclear foci. These data suggest that salinomycin may be a radiosensitizer for NPC radiotherapy.
Collapse
Affiliation(s)
- Yongqin Zhang
- Department of Radiation Oncology, The First People's Hospital of Zhangjiagang, #68 Jiyangxi Road, Zhangjiagang, Jiangsu province, 215600, China
| | - Yun Zuo
- Department of Radiation Oncology, The First People's Hospital of Zhangjiagang, #68 Jiyangxi Road, Zhangjiagang, Jiangsu province, 215600, China.
| | - Zhifeng Guan
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Weidong Lu
- Department of Radiation Oncology, The First People's Hospital of Zhangjiagang, #68 Jiyangxi Road, Zhangjiagang, Jiangsu province, 215600, China
| | - Zheng Xu
- Department of Radiation Oncology, The First People's Hospital of Zhangjiagang, #68 Jiyangxi Road, Zhangjiagang, Jiangsu province, 215600, China
| | - Hao Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Meilin Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hongcheng Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaochen Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
26
|
Zhang C, Tian Y, Song F, Fu C, Han B, Wang Y. Salinomycin inhibits the growth of colorectal carcinoma by targeting tumor stem cells. Oncol Rep 2015; 34:2469-76. [PMID: 26352531 DOI: 10.3892/or.2015.4253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022] Open
Abstract
Salinomycin is a monocarboxylic polyether antibiotic that has been reported to induce apoptosis in various types of cancer cells with specificity for cancer stem cells. However, its anticancer effect in colorectal cancer stem cells has never been reported. In the present study, we examined the ability of salinomycin to induce cell death in the colorectal cancer stem cell line CD44+EpCAM+ HCT-116, and we measured its in vivo tumor inhibition capacity. Salinomycin dose-dependently induced cytotoxicity in the CD44+EpCAM+ HCT-116 cells and inhibited colony formation. Salinomycin treatment was shown to induce apoptosis, as evidenced by nuclear fragmentation, an increase in the proportion of acridine orange/ethidium bromide-positive cells and an increase in the percentage of Annexin V-positive cells. Apoptosis was induced in colorectal cancer stem cells in a caspase-dependent manner, as shown by an increase in the levels of cleaved caspase-3, -8 and -9. JC-1 staining further revealed that salinomycin induced colorectal cancer cell apoptosis via the mitochondrial pathway. In addition, salinomycin treatment of xenograft mice inhibited the growth of tumors derived from the CD44+EpCAM+ HCT-116 cells. The present study demonstrated that the antibiotic salinomycin exerts an anti-colorectal cancer effect in vitro and in vivo, suggesting salinomycin as a potential drug for colorectal cancer therapy.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaping Tian
- Department of Dermatology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Feiyu Song
- Jilin Connell Pharmaceutical Company, Changchun, Jilin 130000, P.R. China
| | - Changhao Fu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Han
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Gebre AA, Okada H, Kim C, Kubo K, Ohnuki S, Ohya Y. Profiling of the effects of antifungal agents on yeast cells based on morphometric analysis. FEMS Yeast Res 2015; 15:fov040. [DOI: 10.1093/femsyr/fov040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/14/2022] Open
|
28
|
Salinomycin and other ionophores as a new class of antimalarial drugs with transmission-blocking activity. Antimicrob Agents Chemother 2015; 59:5135-44. [PMID: 26055362 DOI: 10.1128/aac.04332-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/21/2015] [Indexed: 11/20/2022] Open
Abstract
The drug target profile proposed by the Medicines for Malaria Venture for a malaria elimination/eradication policy focuses on molecules active on both asexual and sexual stages of Plasmodium, thus with both curative and transmission-blocking activities. The aim of the present work was to investigate whether the class of monovalent ionophores, which includes drugs used in veterinary medicine and that were recently proposed as human anticancer agents, meets these requirements. The activity of salinomycin, monensin, and nigericin on Plasmodium falciparum asexual and sexual erythrocytic stages and on the development of the Plasmodium berghei and P. falciparum mosquito stages is reported here. Gametocytogenesis of the P. falciparum strain 3D7 was induced in vitro, and gametocytes at stage II and III or stage IV and V of development were treated for different lengths of time with the ionophores and their viability measured with the parasite lactate dehydrogenase (pLDH) assay. The monovalent ionophores efficiently killed both asexual parasites and gametocytes with a nanomolar 50% inhibitory concentration (IC50). Salinomycin showed a fast speed of kill compared to that of standard drugs, and the potency was higher on stage IV and V than on stage II and III gametocytes. The ionophores inhibited ookinete development and subsequent oocyst formation in the mosquito midgut, confirming their transmission-blocking activity. Potential toxicity due to hemolysis was excluded, since only infected and not normal erythrocytes were damaged by ionophores. Our data strongly support the downstream exploration of monovalent ionophores for repositioning as new antimalarial and transmission-blocking leads.
Collapse
|
29
|
Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides. Molecules 2014; 19:19435-59. [PMID: 25429565 PMCID: PMC6271077 DOI: 10.3390/molecules191219435] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/09/2023] Open
Abstract
A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.
Collapse
|
30
|
Salinomycin inhibited cell proliferation and induced apoptosis in human uterine leiomyoma cells. Obstet Gynecol Sci 2014; 57:501-6. [PMID: 25469339 PMCID: PMC4245344 DOI: 10.5468/ogs.2014.57.6.501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 01/06/2023] Open
Abstract
Objective The aim of this study was to investigate the anti-proliferative effect of the salinomycin in cell proliferation and apoptosis in primary cultured human uterine leiomyoma cells. Methods Cell viability was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Caspase-3 activity assay and DNA fragmentation assay were performed to determine the effect of apoptosis. The expression of apoptosis regulatory-related proteins was evaluated by western blot. Results The cell viability and proliferation of uterine leiomyoma cells were significantly reduced by salinomycin treatment in a dose-dependent manner. DNA fragmentation assay results showed apoptotic cell death after salinomycin incubation. Salinomycin activated caspase-3, -8, and -9, causing apoptosis in uterine leiomyoma cells. Down-regulation of Bcl-2, XIAP, and FLIP with a concomitant increase in Bax, Fas, and DR5 were observed. Conclusion These results provided the first evidence that salinomycin induce both intrinsic and extrinsic apoptosis. Therefore, salinomycin may be a promising chemopreventive and therapeutic agent against human uterine leiomyoma.
Collapse
|
31
|
Caboni L, Gálvez-Llompart M, Gálvez J, Blanco F, Rubio-Martinez J, Fayne D, Lloyd DG. Molecular topology applied to the discovery of 1-benzyl-2-(3-fluorophenyl)-4-hydroxy-3-(3-phenylpropanoyl)-2H-pyrrole-5-one as a non-ligand-binding-pocket antiandrogen. J Chem Inf Model 2014; 54:2953-66. [PMID: 25233256 DOI: 10.1021/ci500324f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the discovery of 1-benzyl-2-(3-fluorophenyl)-4-hydroxy-3-(3-phenylpropanoyl)-2H-pyrrole-5-one as a novel non-ligand binding pocket (non-LBP) antagonist of the androgen receptor (AR) through the application of molecular topology techniques. This compound, validated through time-resolved fluorescence resonance energy transfer and fluorescence polarization biological assays, provides the basis for lead optimization and structure-activity relationship analysis of a new series of non-LBP AR antagonists. Induced-fit docking and molecular dynamics studies have been performed to establish a consistent hypothesis for the interaction of the new active molecule on the AR surface.
Collapse
Affiliation(s)
- Laura Caboni
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
32
|
Onguéné PA, Ntie-Kang F, Mbah JA, Lifongo LL, Ndom JC, Sippl W, Mbaze LM. The potential of anti-malarial compounds derived from African medicinal plants, part III: an in silico evaluation of drug metabolism and pharmacokinetics profiling. Org Med Chem Lett 2014; 4:6. [PMID: 26548985 PMCID: PMC4970435 DOI: 10.1186/s13588-014-0006-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023] Open
Abstract
Background Malaria is an endemic disease affecting many countries in Tropical regions. In the search for compound hits for the design and/or development of new drugs against the disease, many research teams have resorted to African medicinal plants in order to identify lead compounds. Three-dimensional molecular models were generated for anti-malarial compounds of African origin (from 'weakly' active to 'highly' active), which were identified from literature sources. Selected computed molecular descriptors related to absorption, distribution, metabolism, excretion and toxicity (ADMET) of the phytochemicals have been analysed and compared with those of known drugs in order to access the 'drug-likeness' of these compounds. Results In the present study, more than 500 anti-malarial compounds identified from 131 distinct medicinal plant species belonging to 44 plant families from the African flora have been considered. On the basis of Lipinski's 'Rule of Five', about 70% of the compounds were predicted to be orally bioavailable, while on the basis of Jorgensen's 'Rule of Three', a corresponding >80% were compliant. An overall drug-likeness parameter indicated that approximately 55% of the compounds could be potential leads for the development of drugs. Conclusions From the above analyses, it could be estimated that >50% of the compounds exhibiting anti-plasmodial/anti-malarial activities, derived from the African flora, could be starting points for drug discovery against malaria. The 3D models of the compounds have been included as an accompanying file and could be employed in virtual screening. Electronic supplementary material The online version of this article (doi:10.1186/s13588-014-0006-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pascal Amoa Onguéné
- Department of Chemistry, Faculty of Science, University of Douala, 00237, P. O. Box 24157, Douala, Cameroon.
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, Chemical and Bioactivity Information Centre, University of Buea, 00237, P. O. Box 63, Buea, Cameroon. .,Department of Pharmaceutical Sciences, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, Halle, (Saale) 06120, Germany.
| | - James Ajeck Mbah
- Department of Chemistry, Faculty of Science, Chemical and Bioactivity Information Centre, University of Buea, 00237, P. O. Box 63, Buea, Cameroon.
| | - Lydia Likowo Lifongo
- Department of Chemistry, Faculty of Science, Chemical and Bioactivity Information Centre, University of Buea, 00237, P. O. Box 63, Buea, Cameroon.
| | - Jean Claude Ndom
- Department of Chemistry, Faculty of Science, University of Douala, 00237, P. O. Box 24157, Douala, Cameroon.
| | - Wolfgang Sippl
- Department of Pharmaceutical Sciences, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, Halle, (Saale) 06120, Germany.
| | - Luc Meva'a Mbaze
- Department of Chemistry, Faculty of Science, University of Douala, 00237, P. O. Box 24157, Douala, Cameroon.
| |
Collapse
|
33
|
Wang Q, Wu P, Ren W, Xin K, Yang Y, Xie C, Yang C, Liu Q, Yu L, Jiang X, Liu B, Li R, Wang L. Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method. NANOSCALE RESEARCH LETTERS 2014; 9:351. [PMID: 25147486 PMCID: PMC4134115 DOI: 10.1186/1556-276x-9-351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/14/2014] [Indexed: 06/03/2023]
Abstract
To establish a satisfactory delivery system for the delivery of salinomycin (Sal), a novel, selective cancer stem cell inhibitor with prominent toxicity, gelatinase-responsive core-shell nanoparticles (NPs), were prepared by nanoprecipitation method (NR-NPs) and single emulsion method (SE-NPs). The gelatinase-responsive copolymer was prepared by carboxylation and double amination method. We studied the stability of NPs prepared by nanoprecipitation method with different proportions of F68 in aqueous phase to determine the best proportion used in our study. Then, the NPs were prepared by nanoprecipitation method with the best proportion of F68 and single emulsion method, and their physiochemical traits including morphology, particle size, zeta potential, drug loading content, stability, and in vitro release profiles were studied. The SE-NPs showed significant differences in particle size, drug loading content, stability, and in vitro release profiles compared to NR-NPs. The SE-NPs presented higher drug entrapment efficiency and superior stability than the NR-NPs. The drug release rate of SE-NPs was more sustainable than that of the NR-NPs, and in vivo experiment indicated that NPs could prominently reduce the toxicity of Sal. Our study demonstrates that the SE-NPs could be a satisfactory method for the preparation of gelatinase-responsive NPs for intelligent delivery of Sal.
Collapse
Affiliation(s)
- Qin Wang
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
| | - Puyuan Wu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Zhongshan Road 321, Nanjing 210008, People's Republic of China
| | - Wei Ren
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Zhongshan Road 321, Nanjing 210008, People's Republic of China
| | - Kai Xin
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
| | - Yang Yang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Zhongshan Road 321, Nanjing 210008, People's Republic of China
| | - Chen Xie
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China
| | - Chenchen Yang
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Zhongshan Road 321, Nanjing 210008, People's Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Zhongshan Road 321, Nanjing 210008, People's Republic of China
| | - Xiqun Jiang
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Zhongshan Road 321, Nanjing 210008, People's Republic of China
| | - Rutain Li
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Zhongshan Road 321, Nanjing 210008, People's Republic of China
| | - Lifeng Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Zhongshan Road 321, Nanjing 210008, People's Republic of China
| |
Collapse
|
34
|
Sensitization of cancer cells through reduction of total Akt and downregulation of salinomycin-induced pAkt, pGSk3β, pTSC2, and p4EBP1 by cotreatment with MK-2206. BIOMED RESEARCH INTERNATIONAL 2014; 2014:295760. [PMID: 25114899 PMCID: PMC4119636 DOI: 10.1155/2014/295760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
MK-2206 is an inhibitor of Akt activation. It has been investigated as an anticancer drug in clinical trials assessing the potential of pAkt targeting therapy. The purpose of this study was to identify conditions that increase the sensitivity of cancer cells to MK-2206. We found that the treatment of cancer cells with a high concentration of salinomycin (Sal) reduced total Akt protein levels but increased activated Akt levels. When cancer cells were cotreated with MK-2206 and Sal, both pAkt and total Akt levels were reduced. Using microscopic observation, an assessment of cleaved PARP, FACS analysis of pre-G1 region, and Hoechst staining, we found that Sal increased apoptosis of MK-2206-treated cancer cells. These results suggest that cotreatment with MK-2206 and Sal sensitizes cancer cells via reduction of both pAkt and total Akt. Furthermore, cotreatment of cancer cells with Sal and MK-2206 reduced pp70S6K, pmTOR, and pPDK1 levels. In addition, Sal-induced activation of GSK3β, TSC2, and 4EBP1 was abolished by MK-2206 cotreatment. These results suggest that cotreatment using MK-2206 and Sal could be used as a therapeutic method to sensitize cancer cells through targeting of the PI3K/Akt/mTOR pathway. Our findings may contribute to the development of MK-2206-based sensitization therapies for cancer patients.
Collapse
|
35
|
Zhou S, Wang F, Wong ET, Fonkem E, Hsieh TC, Wu JM, Wu E. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities. Curr Med Chem 2014; 20:4095-101. [PMID: 23931281 DOI: 10.2174/15672050113109990199] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Pharmaceutical Sciences, North Dakota State University, 203 Sudro Hall, NDSU Dept 2665, PO Box 6050, Fargo, ND 58108-6050.
| | | | | | | | | | | | | |
Collapse
|
36
|
Antoszczak M, Maj E, Stefańska J, Wietrzyk J, Janczak J, Brzezinski B, Huczyński A. Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin. Bioorg Med Chem Lett 2014; 24:1724-9. [DOI: 10.1016/j.bmcl.2014.02.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 11/29/2022]
|
37
|
Ntie-Kang F, Onguéné PA, Lifongo LL, Ndom JC, Sippl W, Mbaze LM. The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar J 2014; 13:81. [PMID: 24602358 PMCID: PMC3975711 DOI: 10.1186/1475-2875-13-81] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/25/2014] [Indexed: 11/10/2022] Open
Abstract
Malaria is currently a public health concern in many countries in the world due to various factors which are not yet under check. Drug discovery projects targeting malaria often resort to natural sources in the search for lead compounds. A survey of the literature has led to a summary of the major findings regarding plant-derived compounds from African flora, which have shown anti-malarial/antiplasmodial activities, tested by in vitro and in vivo assays. Considerations have been given to compounds with activities ranging from "very active" to "weakly active", leading to >500 chemical structures, mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylenes, xanthones, quinones, steroids and lignans. However, only the compounds that showed anti-malarial activity, from "very active" to "moderately active", are discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | - Luc Meva'a Mbaze
- Department of Chemistry, Faculty of Science, University of Douala, PO Box 24157, Douala, Cameroon.
| |
Collapse
|
38
|
Ntie-Kang F, Zofou D, Babiaka SB, Meudom R, Scharfe M, Lifongo LL, Mbah JA, Mbaze LM, Sippl W, Efange SMN. AfroDb: a select highly potent and diverse natural product library from African medicinal plants. PLoS One 2013; 8:e78085. [PMID: 24205103 PMCID: PMC3813505 DOI: 10.1371/journal.pone.0078085] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/06/2013] [Indexed: 11/22/2022] Open
Abstract
Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound datasets and the availability of such is vital for drug discovery protocols. We assess the bioactivity and "drug-likeness" of a relatively small but structurally diverse dataset (containing >1,000 compounds) from African medicinal plants, which have been tested and proven a wide range of biological activities. The geographical regions of collection of the medicinal plants cover the entire continent of Africa, based on data from literature sources and information from traditional healers. For each isolated compound, the three dimensional (3D) structure has been used to calculate physico-chemical properties used in the prediction of oral bioavailability on the basis of Lipinski's "Rule of Five". A comparative analysis has been carried out with the "drug-like", "lead-like", and "fragment-like" subsets, as well as with the Dictionary of Natural Products. A diversity analysis has been carried out in comparison with the ChemBridge diverse database. Furthermore, descriptors related to absorption, distribution, metabolism, excretion and toxicity (ADMET) have been used to predict the pharmacokinetic profile of the compounds within the dataset. Our results prove that drug discovery, beginning with natural products from the African flora, could be highly promising. The 3D structures are available and could be useful for virtual screening and natural product lead generation programs.
Collapse
Affiliation(s)
- Fidele Ntie-Kang
- Chemical and Bioactivity Information Centre, Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Center Atomic Molecular Physics, Optics and Quantum, Faculty of Science, University of Douala, Douala, Cameroon
- Department of Pharmaceutical Sciences, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Denis Zofou
- Biotechnology Unit, Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Smith B. Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Rolande Meudom
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Michael Scharfe
- Department of Pharmaceutical Sciences, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Lydia L. Lifongo
- Chemical and Bioactivity Information Centre, Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - James A. Mbah
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Luc Meva’a Mbaze
- Department of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Wolfgang Sippl
- Department of Pharmaceutical Sciences, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Simon M. N. Efange
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| |
Collapse
|
39
|
Kim JH, Choi AR, Kim YK, Kim HS, Yoon S. Low amount of salinomycin greatly increases Akt activation, but reduces activated p70S6K levels. Int J Mol Sci 2013; 14:17304-17318. [PMID: 23975168 PMCID: PMC3794729 DOI: 10.3390/ijms140917304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 02/05/2023] Open
Abstract
The present study identified a novel salinomycin (Sal)-sensitization mechanism in cancer cells. We analyzed the signal proteins Akt, Jnk, p38, Jak, and Erk1/2 in cancer cell lines that had arrested growth following low amounts of Sal treatment. We also tested the signal molecules PI3K, PDK1, GSK3β, p70S6K, mTOR, and PTEN to analyze the PI3K/Akt/mTOR pathway. The results showed that Sal sensitization positively correlates with large reductions in p70S6K activation. Interestingly, Akt was the only signal protein to be significantly activated by Sal treatment. The Akt activation appeared to require the PI3K pathway as its activation was abolished by the PI3K inhibitors LY294002 and wortmannin. The Akt activation by Sal was conserved in the other cell lines analyzed, which originated from other organs. Both Akt activation and C-PARP production were proportionally increased with increased doses of Sal. In addition, the increased levels of pAkt were not reduced over the time course of the experiment. Co-treatment with Akt inhibitors sensitized the Sal-treated cancer cells. The results thereby suggest that Akt activation is increased in cells that survive Sal treatment and resist the cytotoxic effect of Sal. Taken together; these results indicate that Akt activation may promote the resistance of cancer cells to Sal.
Collapse
Affiliation(s)
- Ju-Hwa Kim
- Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do 410-769, Korea; E-Mails: (J.-H.K.); (A.-R.C.)
| | - Ae-Ran Choi
- Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do 410-769, Korea; E-Mails: (J.-H.K.); (A.-R.C.)
| | - Yong Kee Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-133, Korea; E-Mail:
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea; E-Mail:
| | - Sungpil Yoon
- Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do 410-769, Korea; E-Mails: (J.-H.K.); (A.-R.C.)
| |
Collapse
|
40
|
Zofou D, Ntie-Kang F, Sippl W, Efange SMN. Bioactive natural products derived from the Central African flora against neglected tropical diseases and HIV. Nat Prod Rep 2013; 30:1098-120. [PMID: 23817666 DOI: 10.1039/c3np70030e] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the medicinal potential of bioactive metabolites isolated from medicinal plants in Central Africa for the treatment of neglected tropical diseases and HIV. A correlation is established between the biological activities of the isolated compounds and the uses of the plants in traditional medicine. Insight is provided on how secondary metabolites from medicinal plants in Central Africa could be exploited for drug discovery.
Collapse
Affiliation(s)
- Denis Zofou
- Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, P. O. Box 63, Buea, Cameroon
| | | | | | | |
Collapse
|
41
|
Arafat K, Iratni R, Takahashi T, Parekh K, Al Dhaheri Y, Adrian TE, Attoub S. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1. PLoS One 2013; 8:e66931. [PMID: 23805285 PMCID: PMC3689654 DOI: 10.1371/journal.pone.0066931] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 05/11/2013] [Indexed: 01/01/2023] Open
Abstract
A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5–5 µM for 7 days) significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Khatija Parekh
- Departments of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Thomas E. Adrian
- Departments of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|
42
|
Parajuli B, Lee HG, Kwon SH, Cha SD, Shin SJ, Lee GH, Bae I, Cho CH. Salinomycin inhibits Akt/NF-κB and induces apoptosis in cisplatin resistant ovarian cancer cells. Cancer Epidemiol 2013; 37:512-7. [PMID: 23545383 DOI: 10.1016/j.canep.2013.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Despite advances in treatment, ovarian cancer is the most lethal gynecologic malignancy. Therefore significant efforts are being made to develop novel strategies for the treatment of ovarian cancer. Salinomycin has been shown to be highly effective in the elimination of cancer stem cells both in vitro and in vivo. The present study focused on investigating important cell signaling molecules such as Akt and NF-κB during salinomycin-induced apoptosis in cisplatin resistant ovarian cancer cells (A2780cis). METHODS MTT assay was performed to determine cell viability. Flow cytometry and DNA fragmentation assay were performed to analyze the effect on cell cycle and apoptosis. The expression of apoptosis related proteins was evaluated by Western blot analysis. RESULTS The cell viability was significantly reduced by salinomycin treatment in a dose dependent manner. The flow cytometry result showed an increase in sub-G1 phase. Salinomycin inhibited the nuclear transportation of NF-κB, and downregulated Akt expression. Declined Bcl-2, activation of caspase-3 and increased PARP cleavage triggered apoptosis. Moreover, DNA fragmentation assay also revealed apoptotic induction. CONCLUSION The result suggested that salinomycin-induced apoptosis in A2780cis was associated with inhibition of Akt/NF-κB. It may become a potential chemotherapeutic agent for the cisplatin resistant ovarian cancer therapy.
Collapse
Affiliation(s)
- Bidur Parajuli
- Department of Obstetrics and Gynecology, Keimyung University, School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bispo NA, Culleton R, Silva LA, Cravo P. A systematic in silico search for target similarity identifies several approved drugs with potential activity against the Plasmodium falciparum apicoplast. PLoS One 2013; 8:e59288. [PMID: 23555651 PMCID: PMC3608639 DOI: 10.1371/journal.pone.0059288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/13/2013] [Indexed: 11/18/2022] Open
Abstract
Most of the drugs in use against Plasmodium falciparum share similar modes of action and, consequently, there is a need to identify alternative potential drug targets. Here, we focus on the apicoplast, a malarial plastid-like organelle of algal source which evolved through secondary endosymbiosis. We undertake a systematic in silico target-based identification approach for detecting drugs already approved for clinical use in humans that may be able to interfere with the P. falciparum apicoplast. The P. falciparum genome database GeneDB was used to compile a list of ≈600 proteins containing apicoplast signal peptides. Each of these proteins was treated as a potential drug target and its predicted sequence was used to interrogate three different freely available databases (Therapeutic Target Database, DrugBank and STITCH3.1) that provide synoptic data on drugs and their primary or putative drug targets. We were able to identify several drugs that are expected to interact with forty-seven (47) peptides predicted to be involved in the biology of the P. falciparum apicoplast. Fifteen (15) of these putative targets are predicted to have affinity to drugs that are already approved for clinical use but have never been evaluated against malaria parasites. We suggest that some of these drugs should be experimentally tested and/or serve as leads for engineering new antimalarials.
Collapse
Affiliation(s)
- Nadlla Alves Bispo
- Instituto de Patologia Tropical e Saúde Pública/Universidade Federal de Goiás/Goiânia, Brazil
| | - Richard Culleton
- Malaria Unit/Institute of Tropical Medicine (NEKKEN)/Nagasaki University/Nagasaki, Japan
| | - Lourival Almeida Silva
- Instituto de Patologia Tropical e Saúde Pública/Universidade Federal de Goiás/Goiânia, Brazil
| | - Pedro Cravo
- Instituto de Patologia Tropical e Saúde Pública/Universidade Federal de Goiás/Goiânia, Brazil
- Centro de Malária e Doenças Tropicais.LA/IHMT/Universidade Nova de Lisboa/Lisboa, Portugal
- * E-mail:
| |
Collapse
|
44
|
Zhang L, Fourches D, Sedykh A, Zhu H, Golbraikh A, Ekins S, Clark J, Connelly MC, Sigal M, Hodges D, Guiguemde A, Guy RK, Tropsha A. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J Chem Inf Model 2013; 53:475-92. [PMID: 23252936 DOI: 10.1021/ci300421n] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantitative structure-activity relationship (QSAR) models have been developed for a data set of 3133 compounds defined as either active or inactive against P. falciparum. Because the data set was strongly biased toward inactive compounds, different sampling approaches were employed to balance the ratio of actives versus inactives, and models were rigorously validated using both internal and external validation approaches. The balanced accuracy for assessing the antimalarial activities of 70 external compounds was between 87% and 100% depending on the approach used to balance the data set. Virtual screening of the ChemBridge database using QSAR models identified 176 putative antimalarial compounds that were submitted for experimental validation, along with 42 putative inactives as negative controls. Twenty five (14.2%) computational hits were found to have antimalarial activities with minimal cytotoxicity to mammalian cells, while all 42 putative inactives were confirmed experimentally. Structural inspection of confirmed active hits revealed novel chemical scaffolds, which could be employed as starting points to discover novel antimalarial agents.
Collapse
Affiliation(s)
- Liying Zhang
- The Laboratory for Molecular Modeling, Eshelman School of Pharmacy, CB# 7568, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Galvez J, Galvez-Llompart M, Zanni R, Garcia-Domenech R. Advances in the molecular modeling and quantitative structure–activity relationship-based design for antihistamines. Expert Opin Drug Discov 2013; 8:305-17. [DOI: 10.1517/17460441.2013.748745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Abstract
Malaria, the disease caused by infection with protozoan parasites from the genus Plasmodium, claims the lives of nearly 1 million people annually. Developing nations, particularly in the African Region, bear the brunt of this malaria burden. Alarmingly, the most dangerous etiologic agent of malaria, Plasmodium falciparum, is becoming increasingly resistant to current first-line antimalarials. In light of the widespread devastation caused by malaria, the emergence of drug-resistant P. falciparum strains, and the projected decrease in funding for malaria eradication that may occur over the next decade, the identification of promising new targets for antimalarial drug design is imperative. P. falciparum kinases have been proposed as ideal drug targets for antimalarial drug design because they mediate critical cellular processes within the parasite and are, in many cases, structurally and mechanistically divergent when compared with kinases from humans. Identifying a molecule capable of inhibiting the activity of a target enzyme is generally an arduous and expensive process that can be greatly aided by utilizing in silico drug design techniques. Such methods have been extensively applied to human kinases, but as yet have not been fully exploited for the exploration and characterization of antimalarial kinase targets. This review focuses on in silico methods that have been used for the evaluation of potential antimalarials and the Plasmodium kinases that could be explored using these techniques.
Collapse
|
47
|
Predicting Dyspnea Inducers by Molecular Topology. J CHEM-NY 2013. [DOI: 10.1155/2013/798508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
QSAR based on molecular topology (MT) is an excellent methodology used in predicting physicochemical and biological properties of compounds. This approach is applied here for the development of a mathematical model capable to recognize drugs showing dyspnea as a side effect. Using linear discriminant analysis, it was found a four-variable regression equations enabling a predictive rate of about 81% and 73% in the training and test sets of compounds, respectively. These results demonstrate that QSAR-MT is an efficient tool to predict the appearance of dyspnea associated with drug consumption.
Collapse
|
48
|
Abstract
Frequent failure of drug candidates during development stages remains the major deterrent for an early introduction of new drug molecules. The drug toxicity is the major cause of expensive late-stage development failures. An early identification/optimization of the most favorable molecule will naturally save considerable cost, time, human efforts and minimize animal sacrifice. (Quantitative) Structure Activity Relationships [(Q)SARs] represent statistically derived predictive models correlating biological activity (including desirable therapeutic effect and undesirable side effects) of chemicals (drugs/toxicants/environmental pollutants) with molecular descriptors and/or properties. (Q)SAR models which categorize the available data into two or more groups/classes are known as classification models. Numerous techniques of diverse nature are being presently employed for development of classification models. Though there is an increasing use of classification models for prediction of either biological activity or toxicity, the future trend will naturally be towards the development of classification models capable of simultaneous prediction of biological activity, toxicity, and pharmacokinetic parameters so as to accelerate development of bioavailable safe drug molecules.
Collapse
|
49
|
|
50
|
Kim JH, Kim TY, Kim HS, Hong S, Yoon S. Lower salinomycin concentration increases apoptotic detachment in high-density cancer cells. Int J Mol Sci 2012; 13:13169-13182. [PMID: 23202945 PMCID: PMC3497319 DOI: 10.3390/ijms131013169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 02/06/2023] Open
Abstract
The present study identified a novel salinomycin (Sal) sensitization mechanism in cancer. We tested whether Sal reduced proliferation in a high-density population by counting attached cell numbers after Sal treatment. Sal reduced proliferation in high-density cell populations. Longer exposure to Sal further reduced proliferation. Sal concentrations of 0.1 and 5 μM had similar sensitization effects, suggesting that Sal toxicity was minimal with longer exposure to a high-density cell population. The results suggest that Sal can be applied at a relatively low concentration for a longer time to overcome drug-resistant solid tumors. The 0.5 μM Sal treatment resulted in fewer attached cells than that of the 5 μM Sal treatment with a longer exposure. The lower Sal concentration mainly increased the number of easily detachable cells on the surface. In particular, 0.5 μM Sal increased cellular detachment of newly produced daughter cells. The easily-detachable cells were undergoing apoptosis. It seems that the 0.5 μM Sal treatment also increased cellular toxicity. These novel findings may contribute to the development of Sal-based therapy for patients with drug-resistant cancer or a high-density solid tumor.
Collapse
Affiliation(s)
- Ju-Hwa Kim
- Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do 410-769, Korea; E-Mail:
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; E-Mail:
| | - Tae Young Kim
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea; E-Mail:
| | - Hyung Sik Kim
- College of Pharmacy, Pusan National University, Busan 609-390, Korea; E-Mail:
| | - Suntaek Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; E-Mail:
| | - Sungpil Yoon
- Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do 410-769, Korea; E-Mail:
| |
Collapse
|